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Abstract

In this paper, we study low rank high dimensional multivariate linear

models (LRMLM) for high dimensional multi-response data. We propose

an intuitively appealing estimation approach, and develop an algorithm

for implementation purposes. Asymptotic properties are established in or-

der to justify the estimation procedure theoretically. Intensive simulation

studies are also conducted to demonstrate performance when the sample

size is finite, and a comparison is made with some popular methods from

the literature. The results show the proposed estimator outperforms all of

the alternative methods under various circumstances. Finally, using our

suggested estimation procedure we apply the LRMLM to analyse an envi-

ronmental data set and predict concentrations of PM2.5 at the locations
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concerned. The results illustrate how the proposed method provides more

accurate predictions than the alternative approaches.

KEY WORDS: BIC, cross-validation, high dimensionality, low rank,

multivariate linear models, penalised least squares estimation.

SHORT TITLE: LRMLM.

1 Introduction

It is common to find multi-response data in many real life problems. Component-

wise analysis is clearly not a good choice for multi-response data analysis, be-

cause it does not fully make use of the information available. For example, the

observations of other components may contain the information for the com-

ponent of interest, and such information would be completely overlooked by

component-wise analysis, therefore, the resulting estimators would not be as

efficient as we can expect. It is necessary to take multivariate analysis ap-

proach for multi-response data analysis. The most commonly used multivariate

regression models are the multivariate linear models. The research in the mul-

tivariate linear models can be at least traced back to Anderson (1951). There

is much literature after Anderson (1951) about the classic multivariate linear

models, see the references in Reinsel and Velu (1998) and Anderson (2004).

With the surge in high dimensional data analysis in the past more than a

decade, the multivariate linear models in high dimensional setting are attract-

ing more and more attention than ever before. Many interesting developments

in low rank high dimensional multivariate linear models have appeared in lit-

erature, see Yuan et al. (2007), Negahban and Wainwright (2011), Obozinski

et al. (2011), Kong et al. (2017), Bing and Wegkamp (2019), Raskutti et al.

(2019), Zheng et al. (2019) and the references therein.

A commonly used approach to deal with the low rank coefficient matrix in

a multivariate linear model is based on the idea of decomposing the coefficient

matrix, say A with rank r and size p × q, to CDQ, where C and Q are two

matrices of size p × r̂ and r̂ × q, respectively, and D is a diagonal matrix of
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size r̂, where r̂ is an estimator of r. The estimation of r plays a key role

for the success of the approach used. Different approaches may end up with

different ways to estimate r, see Yuan et al. (2007) and Bing and Wegkamp

(2019). Although the existing approaches for estimating r enjoy nice asymptotic

properties, when implementing them, we often come up against a dilemma: we

create a new unknown parameter in order to estimate an unknown parameter,

this is because we have to select a tuning parameter in the estimation of r. In

addition to that, as far as the estimation ofA is concerned, which is the ultimate

goal for multivariate linear models, even if we knew the rank r, in order to get

the estimator of A based on the decomposition, we would have to estimate C,

Q and D. Even with the constraints coming with the decomposition, we may

have to estimate at least (p + q)r unknown parameters, which is more than

the unknown parameters we need to estimate without using the decomposition

when r > pq/(p + q). That implies we may end up with a better estimator

of A if we simply apply the standard least squares estimation for multivariate

linear models when r > pq/(p + q), which clearly shows the limitation of the

decomposition based approach.

In this paper, we are going to propose an estimation procedure for the low

rank multivariate linear models, in which we only need to estimate r(p+q)−r2

unknown parameters in order to get the estimator of A. We can easily show

r(p + q) − r2 ≤ pq, because r ≤ min(p, q). Intuitively speaking, the proposed

estimation procedure would be more efficient than either of the standard least

squares estimation and the decomposition based approach. This conclusion is

confirmed to be true by both the asymptotic theory established in Section 4 and

simulation studies in Section 5. As part of the proposed estimation procedure,

the rank of A is estimated by the BIC, which is free of tuning parameter.

We will show the resulting estimator enjoys good theoretical properties and

performs well in simulation studies.

Another advantage of the proposed estimation procedure is it clearly appre-

ciates the high dimensionality by directly imposing a penalty on those entries

of A in question, which makes the proposed estimation procedure easily accom-
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modate the high dimensional cases and enjoy the function of feature selection.

In the context of multi-response data analysis, the proposed estimation pro-

cedure also comes with a very nice practical implication, which is the impacts of

explanatory variables on some responses are linear combinations of the impacts

on certain responses when the matrix coefficient is of low rank, this would be

very helpful when it comes to interpreting the results for a given real dataset,

and may lead to some interesting findings in the discipline which the dataset

comes from.

To implement the proposed estimation procedure, we have also developed

an algorithm for the estimation. Our simulation studies show the proposed

algorithm is fast and accurate.

The rest of this paper is organised as follows: we begin with a detailed

description of the models we are going to address in Section 2. The proposed

estimation procedure and associated computational algorithm are described in

Section 3. The asymptotic properties of the estimators obtained by the pro-

posed estimation procedure are presented in Section 4. Section 5 is devoted to

simulation studies, in which we will examine how well the proposed estimation

works. Finally, in Section 6, we apply the low rank multivariate linear models

together with the proposed estimation procedure to analyse an environmental

data set and predict the concentrations of PM2.5 at the locations concerned.

The results show the proposed method provides more accurate prediction than

other methods. We leave the theoretical proofs of all asymptotic properties in

the Appendix.

2 The low rank high dimensional multivariate linear

models

To give a generic description of the models we are going to address, we use Y

to denote the vector of all response variables, X the vector of all covariates.

Without any confusion, from now on, we call Y the response variable, X the

covariate. We assume Y is of q dimension, X is of p dimension. p and q
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may tend to ∞ when sample size tends to ∞. The low rank high dimensional

multivariate linear models which we are going to address in this paper are

Y = A⊤X + ǫ, (2.1)

where A is a p × q unknown matrix of unknown rank r, r < q < p, ǫ =

(ǫ1, . . . , ǫq)
⊤ is a q dimensional random error, and

E(ǫ | X) = 0, cov(ǫ | X) = Σ.

Like Yuan et al. (2007), Bing and Wegkamp (2019) and Raskutti et al. (2019),

we assume Σ = σ2Iq, and σ2 is unknown.

Suppose we have a sample (X⊤
i , Y ⊤

i ), i = 1, · · · , n, from (X⊤, Y ⊤), the

model for the sample can be written as

Y = XA+E (2.2)

where Y = (Y1, · · · , Yn)
⊤, X = (X1, · · · , Xn)

⊤, and E = (ǫ1, · · · , ǫn)
⊤.

3 Estimation procedure

Throughout this paper, for any matrix Ω = (wij) of size p × q and any vector

b = (b1, · · · , bp), we define

‖Ω‖1 =
p
∑

i=1

q
∑

j=1

|wij |, ‖Ω‖ =





p
∑

i=1

q
∑

j=1

w2
ij





1/2

, ‖b‖2 = (b⊤b)1/2, ‖b‖1 =
p
∑

i=1

|bi|.

For any integers 1 ≤ j1 < j2 < · · · < jr ≤ q, the complement set of set Dr,

Dr = {j1, · · · , jr}, is denoted by Dc
r, that is Dc

r = {1, 2, · · · , q} \ Dr. Let Y
i

be the ith column of Y,

YDr
= (Yj1 , · · · , Yjr), Hk(r) = {Dk : rank(ADk

) = r},

H̄k(r) = {Dk : rank(ADk
) < r}, G(k) = {B ∈ R

p×k : rank(B) = k},

and λmin(B) and λmax(B) be the smallest and largest eigenvalues of a square

matrix B.
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Suppose we have an independent and identically distributed sample (Y ⊤
i , X⊤

i ),

i = 1, · · · , n, from (Y ⊤, X⊤). A standard penalised least squares estimation

would provide us with an estimator Ã of A, which is the minimiser of

n
∑

i=1

‖Yi −A⊤Xi‖2 + Pλ(‖A‖1), (3.1)

where Pλ(·) is a penalty function. However, this estimation does not take

into account the information that A is of low rank, which would result in an

estimator not as efficient as we could expect. In fact, it is easy to see this

estimation is equivalent to componentwise penalised least squares estimation

for (2.1).

The proposed estimation procedure will fully make use of the low rank

information of A, and the resulting estimator will be more efficient.

3.1 Estimation method

The idea, based on which the proposed estimation is constructed, is that each

column of A is a linear combination of r linearly independent columns of A.

Based on this idea, we propose the following estimation procedure for A. We

start with the case when the rank r of A is known, then propose an estimation

for r.

3.1.1 When r is known

Let Yi = (yi1, · · · , yiq)⊤, Xi = (xi1, · · · , xip)⊤ for i = 1, · · · , n. Apply the

idea of penalised least squares estimation and minimise

n
∑

i=1







r
∑

l=1

(

yijl −X⊤
i ajl

)2
+

∑

k/∈{j1, ··· , jr}

(

yik −X⊤
i

r
∑

ℓ=1

bkℓajℓ

)2






+

r
∑

l=1

Pλ(‖ajl‖1) (3.2)

with respect to ajls, bkℓs, and {j1, · · · , jr}, where 1 ≤ j1 < · · · < jr ≤ q, Pλ(·)
is a penalty function, λ involved is a tuning parameter which can be selected

by some criterion, such as BIC.
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When r is large, bkℓs are also likely to have sparsity, in which case, we can

add another penalty term into (3.2) to penalise bkℓs. However, when r is small,

which is the case of main interest, there is no need to penalise bkℓs, this is

because for each component of Yi, say the kth component, there are only r bkℓs,

which is not many.

Notice that the minimiser of (3.2) is not unique. We denote a minimiser of

(3.2) by

D̂ = {ĵ1, · · · , ĵr}, âj , j ∈ D̂, b̂kℓ, k ∈ D̂c, ℓ ∈ {1, · · · , r}.

For any j, 1 ≤ j ≤ q, the jth column of A is estimated by















âj , if j ∈ D̂
r
∑

ℓ=1

b̂jℓâĵℓ , if j ∈ D̂c

We use Â(r) to denote the estimator of A.

The non-uniqueness of the minimiser of (3.2) is because that there can be

more than one ways to choose r independent columns Dr so that ADr
is full-

rank. Theoretically speaking, as long as ADr
and r can be well estimated, we

can recovery the low-rank structure of A regardless of the choice of Dr. Our

theory shows that the consistency of our proposed estimator holds uniformly in

Dr; please refer to Lemmas 1-3 in the Appendix. Hence, this non-unique issue

does not affect the performance of the proposed estimation procedure, which is

further corroborated via extensive simulations in Section 5.

3.1.2 Estimation of r

The estimation of A in section 3.1.1 is built on the assumption that the rank

r of A is known, and this assumption is not realistic in reality. In fact, rank r

plays a very important role in the estimation of A. If r is underestimated, a

substantial bias would creep into the estimation procedure and make the final

estimator of A very biased. On the other hand, if r is overestimated, we would

have to estimate unnecessarily many unknown parameters, which would make
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the final estimator of A have big variance. In this paper, we use BIC, which is

defined as follows, to estimate r

BIC(k) = ‖Y−XÂ(k)‖2 +
√

kp log phn, (3.3)

where hn is a positive diverging sequence, which can be set to be log n. The

estimator of r is given by

r̂ = argmin
1≤k≤r̄

BIC(k),

where r̄ is a pre-specified bound for r. The proposed estimator Â(r̂) of A is

the Â(r), obtained in section 3.1.1, with r being replaced by r̂.

We will show in Section 4 the proposed BIC estimator r̂ enjoys an excellent

asymptotic property, say it tends to identify the true model consistently. If the

prediction accuracy is our primary concern, we can consider the multifold cross-

validation (CV), which tends to select the model with the optimal prediction

performance (Zhang, 1993). The data are splitted randomly into M groups of

equal sizes (assuming that n/M is an integer for simplicity), Gm,m = 1, . . . ,M .

For each k, 1 ≤ k ≤ q, let Â−m(k) be the estimator of A, obtained by the

method in Section 3.1.1 when the rank of A is k, without using the observations

of the mth group. The cross-validation sum is defined as

CV(k) =

M
∑

m=1

∑

i∈Gm

‖Yi − Â
⊤
−m(k)Xi‖2. (3.4)

The CV estimator of r is taken to be the minimiser of CV(k).

3.2 Computational algorithm

The minimisation of (3.2) can be difficult. We propose an iterative algorithm

to solve this problem. The route of our algorithm is: we first minimise (3.2),

for given {j1, · · · , jr}, with respect to ajls, bkℓs, and denote the resulting

minimum of (3.2) by F (j1, · · · , jr), then minimise F (j1, · · · , jr), with respect

to j1, · · · , jr. The details of our algorithm are described as follows.

For any given {j1, · · · , jr}, we minimise (3.2) with respect to ajls and bkℓs

by the following iterative approach
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(1) We minimise

n
∑

i=1

r
∑

l=1

(

yijl −X⊤
i ajl

)2
+

r
∑

l=1

Pλ(‖ajl‖1)

with respect to ajls, and denote the minimiser by a
(0)
jl

s. There are many

existing methods to do the minimisation in this step, because this is the

minimisation for standard penalised least squares estimation.

(2) Minimise
n
∑

i=1

∑

k/∈{j1, ··· , jr}

(

yik −X⊤
i

r
∑

ℓ=1

bkℓa
(0)
jℓ

)2

with respect to bkℓs, and denote the minimiser by b
(0)
kℓ s. Clearly, b

(0)
kℓ enjoys

a closed form, therefore, the minimisation in this step is very easy.

(3) Let a
(0)
jl

s and b
(0)
kℓ s be the initial values, and minimise (3.2) iteratively.

Specifically, let a
(k)
jl

s and b
(k)
kℓ s be the values of ajls and bkℓs in the kth

iteration. Replace the bkℓs in (3.2) by b
(k)
kℓ s and minimise (3.2) with respect

to ajls, a
(k+1)
jl

s are taken to the resulting minimiser.

Replace the ajls in (3.2) by a
(k+1)
jl

s and minimise (3.2) with respect to

bkℓs, b
(k+1)
kℓ s are taken to the resulting minimiser.

Continue the iteration until convergence, the limits of a
(k)
jl

s and b
(k)
kℓ s are

the minimser of (3.2), and the minimum of (3.2) is denoted by F (j1, · · · , jr).

A naive approach to minimise F (j1, · · · , jr), with respect to j1, · · · , jr,

would be to compute F (j1, · · · , jr) for each possible {j1, · · · , jr}, where

1 ≤ j1 < · · · , < jr ≤ q, and the {j1, · · · , jr} which minimises the obtained

F (j1, · · · , jr)s is the minimiser {ĵ1, · · · , ĵr} of F (j1, · · · , jr). However, this

approach would have to compute
(

q
r

)

F (j1, · · · , jr)s, which is computation-

ally too expensive. We shall borrow the idea of forward selection to minimise

F (j1, · · · , jr), which is depicted as follows

(I) Let F (j1) be F (j1, · · · , jr) when r = 1, and compute F (j1) for each

possible j1, 1 ≤ j1 ≤ q. Let ĵ1 be the one which minimises F (j1).
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(II) For any k < r, when we have {ĵ1, · · · , ĵk}, the way to select a jk+1 from

{ĵ1, · · · , ĵk}c, the set {1, · · · , q} − {ĵ1, · · · , ĵk}, to add into the set

{ĵ1, · · · , ĵk} is as follows: for each possible jk+1, we arrange ĵ1, · · · , ĵk

and jk+1 in ascent order, and denote them by j̃1 < · · · < j̃k+1. We

compute F (j̃1, · · · , j̃k+1). The selected jk+1 is the one which minimises

F (j̃1, · · · , j̃k+1). We add the selected jk+1 into the set {ĵ1, · · · , ĵk}, and
sort the elements in the new set in ascent order. With a little bit abuse of

notation, we denote the new set by {ĵ1, · · · , ĵk+1}, where ĵ1 < · · · < ĵk+1.

(III) Continue (II) until k = r. We use the obtained {ĵ1, · · · , ĵr} to approxi-

mate the minimiser of F (j1, · · · , jr).

Substitute {ĵ1, · · · , ĵr} for {j1, · · · , jr} in (3.2), and minimise (3.2) with

respect to aĵl
s and bkℓs. Denote the resulting minimiser by âĵl

s and b̂kℓs. We

take

{ĵ1, · · · , ĵr}, âĵl
, l = 1, · · · , r, b̂kℓ, k /∈ {ĵ1, · · · , ĵr}, ℓ = 1, · · · , r

as a minimiser of (3.2) with respect to {j1, · · · , jr}, aĵls and bkℓs.

4 Asymptotic properties

In this section we are going to investigate the asymptotic behavior of the pro-

posed estimator of A.

Throughout this paper, An ∼ Bn means that there is a constant C > 1

such that Bn/C ≤ An ≤ BnC with probability tending to 1. “&” and “.” are

similarly defined.

To make the theoretical derivation more neat, we write the minimisation of

(3.2) in matrix form. Specifically, for any given integer k ∈ [1, q), when r = k,

the minimisation of (3.2) can be written to the minimisation of the following

objective function

L(U,V,Dk; k) = ‖YDk
−XU‖2 + ‖YDc

k
−XUV⊤‖2 +

k
∑

ℓ=1

Pλn
(‖Uℓ‖1) (4.1)
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with respect to {Dk, U ∈ G(k), V ∈ R
(q−k)×k}.

Without loss of generality, we use the (adaptive) lasso type penalty

Pλn
(‖Uℓ‖1) = n

p
∑

j=1

λjℓ|ujℓ|,

see Zou (2006), where λjℓ > 0 and ujℓ are the (j, ℓ)th element of U.

Throughout this section, we assume that each column of X has been nor-

malized to have L2-norm of n. Furthermore, we denote

γ0n = min{λjℓ : ajℓ = 0}, γ1n = max{λjℓ : ajℓ 6= 0},

where ajℓ is the (j, ℓ)th entry of A.

In order to establish the asymptotic properties of the proposed methods, we

impose the following technical conditions:

Condition 1 There exist positive constants κ̄ and κ such that with probability

one κ ≤ λmin(n
−1X⊤X) < λmax(n

−1X⊤X) ≤ κ̄.

Condition 2 For some positive constants C and K, E{exp(Cǫ2j )} < K for

j = 1, · · · , q.

Condition 3 The elements of A and XA are bounded. The matrix A is sn-

sparse in the sense that max1≤ℓ≤q
∑p

j=1 I(ajℓ 6= 0) ≤ sn.

Condition 4 rp log p/n → 0 when n → ∞.

Condition 5 For any given k ∈ [1, q),

lim inf
n→∞

minD∈H̄k(r),U∈G(k)

[

‖XU−XAD‖2 + tr
{

(XADc)⊤(I−HU)XADc

}]

max(
√
nrp log p, nrsnγ1n)

→ ∞,

where HU = ZU(Z
⊤
U
ZU)

−1Z⊤
U

and ZU = n−1/2XU.

Remark 1 Condition 1 implies that the predictor matrix has a reasonably

good behavior; this is a type of restricted eigenvalue assumption and is com-

monly used in the literature, e.g., Fan and Peng (2004). Condition 2 requires

that each entry of E is sub-Gaussian, which ensures its tail probability decays
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exponentially. Condition 3 facilitates our derivation but can be much relaxed

so that the true signal strength depends on n as well. Condition 4 imposes re-

quirement on the diverging rate in order to obtain consistent estimation when

p, r diverges with n. Condition 5 is an identifiability assumption, ensuring that

a true low-rank structure can be recognized.

We start with the establishment of the asymptotic property of the minimiser

Â(r) = (Û, V̂) of (4.1) when k = r. As far as the asymptotic properties are

concerned, p, q and r are allowed to depend on n and diverge as n → ∞. The

reason for us to suppress the subscript n of p, q and r is to make notations neat.

We define an index set

M(D) = {1 ≤ j ≤ p, ℓ ∈ D : ajℓ 6= 0},

and its complement set is denoted by Mc(D). We have the following theorem:

Theorem 1 Under Conditions 1-5, if γ0n/
√

rp log p/n → ∞ and rsnγ
2
1n → 0

as n → ∞, there exists, with probability tending to one, a local minimiser

{D̂r, Â(r)} of L(U,V,Dr; r) satisfying: AD̂r
is full-rank, and

ÂMc(D̂r)
= 0, ‖Â(r)−A‖ = Op({r(sn + q)(log p/n+ γ21n)}1/2).

Theorem 1 implies that we can identify a “correct” D̂r in the sense that AD̂r

is full rank with an overwhelming probability when n is large. The penalised

estimators of the zero coefficients are exactly zero under some conditions on γ0n.

The condition rsnγ
2
1n → 0 together with Condition 4 ensures that the proposed

estimator is consistent. From the proof of this theorem in the Appendix, we

can see, as a special case, that ‖Â(r) − A‖ = Op(
√

r(p+ q) log p/n) when

γ0n = γ1n = 0. This is in line with the relevant existing results, see, for

example, Negahban and Wainwright (2011).

When the coefficient matrix is sparse, under properly selected tuning pa-

rameters, the proposed penalised estimator would enjoy the “oracle property”.

Specifically, if the adaptive lasso penalty with tuning parameter λjℓ = λnã
−1
jℓ

is used, where Ã = (ãjl)p×q is the standard least-squares estimator of A,

we can verify that ‖Â(r) − A‖ = Op({r(sn + q)(log p/n)}1/2), provided that
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rqp2 log p/n → 0 as n → ∞, by setting λn ∼
√

log p/n and using the fact that

ãjℓ = Op(1) for ajℓ 6= 0 and ãjℓ = Op(
√

pq log p/n) for ajℓ = 0.

As mentioned before, the estimation of the rank r of A plays a very impor-

tant role in the estimation procedure of A. Theorem 2 shows that the proposed

BIC estimator r̂, defined by (3.3), is consistent.

Theorem 2 Under the conditions in Theorem 1, if r̄/hn → 0 as n → ∞, we

have Pr(r̂ = r) → 1 as n → ∞.

It is very easy to see Theorem 1 together with Theorem 2 imply the proposed

estimator of A is consistent.

5 Simulation studies

In this section, we use two simulated examples, low and high dimensional ones,

to assess the coefficient matrix estimation, the prediction, and the rank recovery

performance of the proposed method. We assess the proposed method and

consider the rank being estimated by either 5 fold cross-validation (OUR-CV;

Eq.(3.4)) or BIC (OUR-BIC; Eq.(3.3)). Throughout this section, OUR-CV

and OUR-BIC are implemented by the algorithm introduced in Section 3.2

with Pλ(·) being the L1 penalty function. The tuning parameter λ is selected

by 5 fold cross-validation.

In the low dimensional example, we compareOUR-CV andOUR-BIC with

the Factor Estimation and Selection method (FES) proposed in Yuan et al.

(2007), the Rank Selection Criterion (RSC) proposed in Bunea et al. (2011),

and the Self-Tuning Rank Selection (STRS) proposed in Bing and Wegkamp

(2019). Besides, we also consider the Ordinary Least Squares estimator (OLS)

and a Low-rank Matrix Decomposition estimator (LMD) as two benchmarks.

Denote ÂOLS the OLS estimator of A, the LMD estimator of A is obtained

from a rank r̂ truncated singular value decomposition of ÂOLS as

ÂLMD = UDV⊤ =
r̂
∑

l=1

σlulv
⊤
l ,
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where D = diag{σ1, . . . , σr̂} is a diagonal matrix of r̂ largest positive singular

values of ÂOLS , and U = (u1, . . . ,ur̃) and V = (v1, . . . ,vr̂) are corresponding

left and right singular vectors of ÂOLS , respectively. Further, r̂ is estimated by

the eigen-ratio method, see Ahn and Horenstein (2013) and references therein.

In the high dimensional example, we only compare OUR-CV and OUR-BIC

with RSC and STRS as FES, OLS and LMD are not applicable.

5.1 Simulation settings

Consider the multivariate linear regression model (2.2). Similar to Bunea et al.

(2011) and Bing and Wegkamp (2019), we consider a data generating process

as follows.

(1) Coefficient matrix A: Let A = bΓ0Γ1, with b > 0, Γ0 ∈ IRp×r, Γ1 ∈ IRr×q

and r ≤ min(p, q). The entries of Γ0 and Γ1 are independently drawn

from N(0, 1). The parameter r controls the rank of A. The parameters

b and r together control the signal to noise ratio in (2.2).

(2) Error matrix E: The entries of E are independently drawn from N(0, 1).

The design matrix X is generated with the following two settings to cover the

low and high dimensional cases, respectively.

(3a) Design matrix X when n > p (low dimensional case): Xi, i = 1, · · · , n

are independently drawn from multivariate Normal distributionNp(0, Σ).

For i, j = 1, · · · , p, the (i, j)th entry of Σ is defined as Σij = η|i−j| for

some η ∈ (0, 1).

(3b) Design matrix X when p > n > q (high dimensional case): Let X =

Λ0Λ1Σ
1/2, with Λ0 ∈ IRn×q, and Λ1 ∈ IRq×p. The entries of Λ0 and

Λ1 are independently drawn from N(0, 1). The covariance matrix Σ is

defined as in (3a).

For each case, we generate a testing sample {Y∗,X∗} of size n∗ independent

of {Y,X} to assess the prediction performance of each method. To sum up,

the parameters that control the data generating process are listed in Table 1.
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Table 1: Summary of parameters in data generating process

Parameter Description

n Training sample size

n∗ Testing sample size

p Dimension of covariate variables

q Dimension of response variables

r Rank of coefficient matrix

b Signal strength parameter

η Correlation level among covariates

5.2 Low dimensional example

In the first example, we examine the performance of OUR-CV, OUR-BIC,

RSC, STRS, FES, OLS and LMD in the low dimensional case. We set n =

100, n∗ = 50, p = 25 and q = 20. Then, we vary the rank r = 5, 10, 15, the

signal strength parameter b = 0.2, 0.4, and the correlation level η = 0.5, 0.9.

We simulate 200 replications for each scenario.

For each replication, we calculate two re-scaled Frobenius norms as

∆k =
1

pq
‖Âk−A‖2 and Γk =

1

n∗q
‖Y∗−X∗Âk‖2, k = 1, · · · , 200, (5.1)

where Âk is the estimate of A in the kth replication, and {Y∗,X∗} is a testing

sample of size n∗. Then, we calculate the sample mean and sample standard

deviation of ∆k and Γk over 200 replications.

We use r̂k to denote the estimated rank of A in the kth replication, k =

1, · · · , 200. The estimation accuracy of the rank r is assessed by the correct

rank recovery rate which is defined as

R =
1

200

200
∑

k=1

I(r̂k = r), (5.2)

where I(·) is the indicator function.

The simulation results of the low dimensional example with b = 0.2 and

0.4 are presented in Tables 2 and 3, respectively. In most scenarios, OUR-CV
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performs slightly better than OUR-BIC but pays a price on the computational

cost. When the rank is small (e.g. r = 5), OUR-CV, OUR-BIC and STRS

can recovery the correct rank with a rate close to 1 and have small estimation

and prediction errors. RSC struggles when η is large and resultes in low correct

recovery rates. LMD suffers when the signal to noise ratio is small. When the

rank is moderate or large (e.g. r = 10 or 15), the correct rank recovery rates of

RSC, STRS and LMD drop. As a result, the estimation and prediction errors

of RSC, STRS and LMD are also inflated. Compared with the other methods,

OUR-CV and OUR-BIC are less sensitive to rank, correlation level and the

signal to noise ratio. In general, FES performs similar as RSC in terms of

estimation and prediction, and OLS performs unsatisfactory as it ignores the

low rank structure in A.

5.3 High dimensional example

In the high dimensional example, we examine the performance ofOUR-CV and

OUR-BIC and compare them with RSC and STRS. We set n = 40, n∗ = 40,

p = 100 and q = 25. Then, we vary the rank r = 10, 20, the signal strength

parameter b = 0.2, 0.4, and the correlation level η = 0.5, 0.9. We simulate

200 replications for each scenario. The estimation and prediction errors are

still measured by the sample mean and sample standard deviation of the re-

scaled Frobenius norms defined in (5.1). The estimation accuracy of rank r is

measured by the correct rank recovery rate defined in (5.2).

The simulation results of the high dimensional example with b = 0.2 and

0.4 are presented in Tables 4 and 5, respectively. Similar to the low dimen-

sional case, OUR-CV outperforms OUR-BIC in most scenarios. When both

η and r are large, OUR-CV and OUR-BIC maintains reasonable correct rank

recovery rates while RSC and STRS fail to recovery the correct rank in most

replications.
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Table 2: Results for the low dimensional example with b = 0.2

η = 0.5 η = 0.9

Rank Method ∆ Γ R ∆ Γ R

OUR-CV 0.013(0.005) 1.121(0.052) 1.00 0.040(0.006) 1.130(0.053) 1.00

OUR-BIC 0.013(0.005) 1.124(0.054) 1.00 0.041(0.006) 1.132(0.053) 0.99

RSC 0.017(0.011) 1.130(0.074) 0.87 0.062(0.018) 1.249(0.071) 0.59

5 STRS 0.013(0.010) 1.128(0.053) 1.00 0.052(0.013) 1.133(0.055) 0.97

FES 0.018(0.015) 1.132(0.045) NA 0.073(0.022) 1.221(0.048) NA

OLS 0.022(0.026) 1.332(0.066) NA 0.125(0.027) 1.335(0.069) NA

LMD 0.014(0.008) 1.253(0.195) 0.76 0.046(0.015) 1.247(0.075) 0.68

OUR-CV 0.015(0.006) 1.235(0.058) 0.98 0.087(0.010) 1.254(0.060) 0.95

OUR-BIC 0.015(0.006) 1.236(0.058) 0.96 0.089(0.009) 1.257(0.061) 0.92

RSC 0.018(0.017) 1.290(0.087) 0.81 0.097(0.019) 1.278(0.068) 0.40

10 STRS 0.016(0.013) 1.244(0.061) 0.90 0.093(0.016) 1.254(0.059) 0.65

FES 0.019(0.016) 1.267(0.049) NA 0.106(0.022) 1.276(0.051) NA

OLS 0.022(0.028) 1.341(0.067) NA 0.124(0.035) 1.341(0.067) NA

LMD 0.020(0.032) 1.391(0.230) 0.38 0.135(0.048) 1.505(0.187) 0.27

OUR-CV 0.020(0.009) 1.312(0.061) 0.96 0.095(0.012) 1.321(0.064) 0.88

OUR-BIC 0.020(0.009) 1.314(0.063) 0.92 0.097(0.012) 1.322(0.064) 0.86

RSC 0.022(0.019) 1.338(0.069) 0.44 0.117(0.015) 1.329(0.067) 0.28

15 STRS 0.021(0.012) 1.323(0.067) 0.65 0.104(0.013) 1.325(0.064) 0.42

FES 0.022(0.015) 1.326(0.058) NA 0.117(0.018) 1.332(0.059) NA

OLS 0.024(0.029) 1.337(0.065) NA 0.124(0.032) 1.338(0.041) NA

LMD 0.029(0.033) 1.373(0.292) 0.15 0.136(0.041) 2.012(0.403) 0.12

The columns ∆ and Γ report the sample mean and sample standard devi-
ation (in parentheses) of ∆k and Γk, which are defined in (5.1), over 200
replications. The column R reports the rank recovery rate, which is defined
in (5.2), over 200 replications.

6 Real data analysis

Particulate matter up to 2.5µm (PM2.5) is a complex mixture of solid par-

ticles, chemicals (e.g. sulfates, nitrates) and liquid droplets in the air, which

include inhalable particles that are small enough to penetrate the thoracic re-

gion of the respiratory system. Short term (days) exposure to inhalable PM2.5

can cause an increase in hospital admissions related to respiratory and cardio-

vascular morbidity, such as aggravation of asthma, respiratory symptoms, and

cardiovascular disorders. Long term (years) exposure to inhalable PM2.5 may
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Table 3: Results for the low dimensional example with b = 0.4

η = 0.5 η = 0.9

Rank Method ∆ Γ R ∆ Γ R

OUR-CV 0.010(0.003) 1.125(0.052) 1.00 0.037(0.005) 1.125(0.052) 1.00

OUR-BIC 0.011(0.003) 1.125(0.052) 0.99 0.037(0.005) 1.126(0.052) 0.98

RSC 0.015(0.005) 1.168(0.069) 0.32 0.051(0.007) 1.135(0.056) 0.82

5 STRS 0.011(0.003) 1.126(0.052) 1.00 0.037(0.006) 1.125(0.052) 1.00

FES 0.015(0.008) 1.154(0.026) NA 0.054(0.013) 1.139(0.051) NA

OLS 0.023(0.015) 1.332(0.066) NA 0.125(0.027) 1.332(0.066) NA

LMD 0.011(0.004) 1.171(0.095) 0.99 0.041(0.017) 1.280(0.085) 0.86

OUR-CV 0.014(0.006) 1.231(0.057) 1.00 0.078(0.009) 1.238(0.059) 0.97

OUR-BIC 0.014(0.006) 1.231(0.057) 0.99 0.080(0.009) 1.240(0.059) 0.95

RSC 0.019(0.017) 1.309(0.069) 0.86 0.093(0.017) 1.292(0.078) 0.66

10 STRS 0.015(0.013) 1.233(0.057) 0.98 0.082(0.011) 1.245(0.061) 0.73

FES 0.017(0.016) 1.312(0.055) NA 0.096(0.012) 1.258(0.060) NA

OLS 0.024(0.021) 1.340(0.027) NA 0.124(0.025) 1.341(0.067) NA

LMD 0.018(0.016) 1.322(0.067) 0.90 0.108(0.035) 1.506(0.109) 0.45

OUR-CV 0.019(0.009) 1.301(0.061) 0.97 0.103(0.011) 1.314(0.065) 0.91

OUR-BIC 0.020(0.009) 1.303(0.062) 0.95 0.104(0.011) 1.315(0.065) 0.88

RSC 0.021(0.019) 1.331(0.071) 0.63 0.119(0.014) 1.339(0.071) 0.35

15 STRS 0.021(0.012) 1.322(0.069) 0.81 0.107(0.011) 1.323(0.067) 0.54

FES 0.021(0.015) 1.327(0.063) NA 0.110(0.013) 1.327(0.066) NA

OLS 0.022(0.023) 1.335(0.065) NA 0.125(0.025) 1.342(0.065) NA

LMD 0.028(0.037) 1.414(0.165) 0.36 0.175(0.097) 1.949(0.269) 0.17

The columns ∆ and Γ report the sample mean and sample standard devi-
ation (in parentheses) of ∆k and Γk, which are defined in (5.1), over 200
replications. The column R reports the rank recovery rate, which is defined
in (5.2), over 200 replications.

lead to an increase in mortality from cardiovascular and respiratory diseases,

like lung cancer. The hazardous effects of inhalable PM2.5 on human health

have been well-documented, see Riediker et al. (2004), Polichetti et al. (2009),

Franck et al. (2011), Xing et al. (2016), Pun et al. (2017) and references therein.

In this section, we investigate the relationship between concentration of

PM2.5 and four air pollutants: ozone, sulfur dioxide (SO2), carbon monoxide

(CO), and nitrogen dioxide (NO2). The dataset for us to study is available at

https://www.epa.gov/outdoor-air-quality-data,
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Table 4: Results for the high dimensional example with b = 0.2

η = 0.5 η = 0.9

Rank Method ∆ Γ R ∆ Γ R

OUR-CV 0.225(0.030) 1.468(0.142) 1.00 0.273(0.034) 1.508(0.146) 0.96

10 OUR-BIC 0.226(0.031) 1.471(0.146) 0.99 0.273(0.034) 1.511(0.146) 0.96

RSC 0.299(0.036) 2.165(0.185) 0.85 0.351(0.085) 2.392(0.203) 0.38

STRS 0.226(0.031) 1.470(0.144) 0.97 0.2857(0.039) 1.522(0.151) 0.94

OUR-CV 0.402(0.047) 1.679(0.183) 0.93 0.502(0.046) 1.790(0.208) 0.85

20 OUR-BIC 0.406(0.049) 1.685(0.184) 0.91 0.508(0.048) 1.794(0.210) 0.84

RSC 0.618(0.072) 2.602(0.471) 0.15 0.758(0.091) 2.627(0.616) 0.06

STRS 0.449(0.058) 2.052(0.235) 0.62 0.561(0.062) 2.156(0.273) 0.51

The columns ∆ and Γ report the sample mean and sample standard devi-
ation (in parentheses) of ∆k and Γk, which are defined in (5.1), over 200
replications. The column R reports the rank recovery rate, which is defined
in (5.2), over 200 replications.

Table 5: Results for the high dimensional example with b = 0.4

η = 0.5 η = 0.9

Rank Method ∆ Γ R ∆ Γ R

OUR-CV 0.949(0.102) 1.526(0.148) 1.00 0.977(0.122) 1.560(0.151) 0.99

10 OUR-BIC 0.951(0.104) 1.527(0.148) 0.98 0.979(0.123) 1.568(0.153) 0.98

RSC 1.198(0.124) 2.392(0.188) 0.74 1.201(0.159) 2.548(0.195) 0.50

STRS 0.954(0.107) 1.528(0.150) 1.00 0.982(0.126) 1.570(0.156) 0.98

OUR-CV 1.021(0.152) 1.770(0.201) 0.95 1.181(0.184) 1.838(0.211) 0.88

20 OUR-BIC 1.025(0.155) 1.774(0.202) 0.92 1.183(0.188) 1.841(0.214) 0.87

RSC 1.808(0.406) 2.656(0.482) 0.35 2.059(0.685) 2.744(0.658) 0.13

STRS 1.457(0.189) 2.104(0.262) 0.78 1.513(0.197) 2.210(0.285) 0.67

The columns ∆ and Γ report the sample mean and sample standard devi-
ation (in parentheses) of ∆k and Γk, which are defined in (5.1), over 200
replications. The column R reports the rank recovery rate, which is defined
in (5.2), over 200 replications.

it was collected from 37 outdoor monitoring sites across the United States.

Specifically, the concentration of each of the 4 pollutants was measured and

collected daily from the 37 sites between January 2017 to April 2019, and it

has 729 observations in total. The concentration of PM2.5 was collected in the
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same manner.

What we are interested in is the association between the concentrations of

PM2.5 and the concentrations of the four air pollutants at the 37 monitor sites.

As the concentrations of the four air pollutants at one site may also contribute

the concentrations of PM2.5 at other sites, we include the concentrations of the

four air pollutants at all 37 sites in the explanatory variables for the concentra-

tion of PM2.5 at each site of the 37 sites, this gives us 148 explanatory variables

for the concentration of PM2.5 at each site. In Figure 1, we plot the sample

means of the concentrations of PM2.5 and of the four air pollutants against the

geological locations where they were collected.

We take the first-order difference for each column of the dataset to remove

the non-stationarity, and standardize it to make it have mean 0 and variance

1. Let Y = (Y1, · · · , Y37) ∈ IR728×37 be the matrix of the 728 observations

of the response variable which contains the concentrations of PM2.5 collected

by the 37 sites, and X = (X1, · · · , X148) ∈ IR728×148 be matrix of the 728

observations of predictor which contains the 148 explanatory variables. We

apply the multivariate linear regression model (2.2) to fit the dataset, where

E ∈ IR728×37 is the matrix of random errors, and A ∈ IR148×37 is the coefficient

matrix of interest.

We compare the prediction performance of our method with rank esti-

mated by the 5-fold cross-validation (OUR-CV), the Self-Tuning Rank Selec-

tion (STRS) proposed in Bing and Wegkamp (2019), and the Ordinary Least

Squares estimator (OLS). For each method, we use the first 600 observations as

the training set and predict the remaining 128 observations (the test set). Let

Ytest and Ŷtest be the matrices respectively of true and predicted values (ob-

tained by one of the three methods listed above) of the response variable in the

test set. The prediction accuracy is measured by the mean squared Frobenius

norm of the difference between Ŷtest and Ytest, which is defined as

Prediction Error =
1

ntq
‖Ŷtest −Ytest‖2,

where q = 37 and nt = 128, which are the number of columns and the number

of rows of Ytest, respectively.

20



●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

0.030

0.035

0.040

0.045

OZONE

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

1

2

3

4

SO2

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

0.2

0.4

0.6

0.8

CO

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

10

20

30

NO2

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

15

20

25

PM2.5

Figure 1: Sample means of the concentrations of PM2.5 and of the four air

pollutants

We report in Table 6 the prediction error as well as the estimated rank

of the coefficient matrix for each method concerned. According to Table 6,

OUR-CV achieves the smallest prediction error among the three competitors.

Besides, the rank estimated by OUR-CV is 3 which is more parsimonious than

the one estimated by STRS. To justify the rank estimation results, we apply

eigen-decomposition to the coefficient matrix estimated by the OLS method,

and draw the scree plot with the top 20 eigenvalues in Figure 2. The scree plot

shows a clear elbow shape at the third eigenvalue.
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Table 6: Prediction error and estimated rank of the coefficient matrix.

Methods OUR-CV STRS OLS

Prediction error 0.7692 0.8551 1.0394

Estimated rank 3 10 NA

Scree plot of the coefficient matrix estimated by OLS

Top 20 principle components
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Figure 2: Scree plot of the coefficient matrix estimated by the OLS method.

The solid dotted line denotes the leading eigenvalues in descending order. The

grey bars denote the proporation of variance explained by each eigenvector.

The coefficient matrix estimated by OUR-CV unveils a parsimonious yet

interpretable relationship between PM2.5 and the other four air pollutants.

Among the four pollutants, CO has the largest positive contribution to the

concentration of PM2.5. As we know, CO is usually produced in the incomplete

combustion of carbon-containing fuels, such as gasoline, natural gas, coal, and

wood. Two major anthropogenic sources of CO in the United States are vehicle

emissions and heating. We find that monitors located in California and around

New York City have high CO coefficients which are caused by the dense vehicle

population. Also, we notice that the monitors with higher latitudes have higher

CO coefficients which may reflect the impact of heating. Further, the attributes
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of each pollutant tend to cluster into three geological areas in the United States:

west coast, central and east coast.

Appendix

Appendix: proofs

Given Dk, the objective function (with respect to (U,V)) is

L(U,V;Dk) =‖YDk
−XU‖2 + ‖YDc

k
−XUV⊤‖2 + n

k
∑

ℓ=1

p
∑

j=1

λjℓ|ujℓ|

:=L1(U;Dk) + L2(U,V;Dk) + n
k
∑

ℓ=1

p
∑

j=1

λjℓ|ujℓ|.

We present three useful lemmas.

Lemma 1 Suppose Conditions 1-4 are satisfied. The following result holds

uniformly for Dr such that ADr
is full-rank: With probability tending to one,

there exists a local minimiser Â(r) of L(U,V;Dr) such that ‖Â(r) − A‖ =

Op(αn), where αn =
√

r(p+ q) log p/n+
√
rsnγ1n.

Proof. For notational simplicity, in what follows we suppress the dependence

of D on r and write L(U,V;Dr) as L(U). It is easy to verify that for a given

U, by minimising the function L2(U,V;Dr) with respect to V, we obtain that

L2(U) := L2(U, V̂;Dr) = tr
{

Y⊤
Dc(I−HU)YDc

}

. (A.1)

We will show that there exists a large constant C > 0 such that

Pr

{

inf
w∈Rp×r;‖w‖=C

L(AD + αnw) < L(AD), ∀D ∈ Hr(r)

}

→ 0, (A.2)

which implies with probability tending to one that there exists a local minimum

in the ball {AD + αnw : ‖w‖ ≤ C} uniformly in D. Hence, there exists a local

minimiser of L(U) such that ‖Û−AD‖ = Op(αn).
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Write

L(AD + αnw)− L(AD)

={L1(AD + αnw)− L1(AD)}+ {L2(AD + αnw)− L2(AD)}

+ n
∑

ℓ∈D

p
∑

j=1

λjℓ(|ajℓ + αnwjℓ| − |ajℓ|)

:=∆1 +∆2 +∆3.

Observe that ∆1 = nα2
ntr{w⊤(n−1X⊤X)w}−2αntr(E

⊤
DXw). By Condition

1, we have tr{w⊤(n−1X⊤X)w} ≥ κ‖w‖2. It follows then, that the first term

of ∆1 is uniformly larger than C2κnα2
n, which is quadratic in C.

For the second term of ∆1, using Cauchy-Schwartz inequality, we have

2αntr(E
⊤
DXw) ≤ 2αnC





∑

ℓ∈D

p
∑

j=1

(X⊤
j E

ℓ)2





1/2

.

By Condition 2 and tail probability of sub-Gaussian variables, we have

pqPr
(

|X⊤
j E

ℓ| > c
√

n log p
)

→ 0 (A.3)

for a sufficiently large c > 0, and thus X⊤
j E

ℓ = Op(
√
n log p) uniformly in j and

ℓ. Consequently, the second term is uniformly of order Op(
√
rnp log pαnC),

which is linear in C. Therefore, by the definition of αn, as long as the constant

C is sufficiently large, the first term dominates the second term with arbitrarily

large probability.

Next, we deal with ∆2. To facilitate the presentation, denote ÃD = AD +

αnw, Z̃ = n−1/2XÃD, HAD
= H and H̃

ÃD
= H̃.

By YDc = XADV
∗⊤ +EDc and Z(I−H) = 0, simple algebra yields that

∆2 = α2
ntr
{

(XwV∗⊤)⊤(I− H̃)(XwV∗⊤)
}

+ 2αntr
{

E⊤
Dc(I− H̃)(XwV∗⊤)

}

+ tr
{

E⊤
Dc(H− H̃)EDc

}

, (A.4)

where V∗ ∈ R
(q−r)×r such that ADV

∗⊤ = ADc .

Following the same arguments as in ∆1, it can be shown that as long as

the constant C is sufficiently large, the first term on the right side of (A.4) will
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always dominate the second term with arbitrarily large probability. Consider

the third term on the right side of (A.4). By Condition 1 again, we get

‖Z̃− Z‖ ≤ κ̄‖ÃD −AD‖ = O(αnC),

‖Z̃⊤
Z̃− Z⊤Z‖ = O(αnC),

‖(Z̃⊤
Z̃)−1 − (Z⊤Z)−1‖ = O(αnC),

and accordingly ‖H̃−H‖ = O(αnC). By (A.3), we have that

tr
{

E⊤
Dc(H− H̃)EDc

}

= tr
[

n−1E⊤
DcX

{

AD(Z
⊤Z)−1(AD)

⊤ − ÃD(Z̃
⊤
Z̃)−1Ã

⊤
D

}

X⊤EDc

]

= tr
[

n−1/2E⊤
DcX

{

AD(Z
⊤Z)−1(AD)

⊤ − ÃD(Z̃
⊤
Z̃)−1Ã

⊤
D

}

n−1/2X⊤EDc

]

≤ O(αnC)‖n−1/2E⊤
DcX‖2

= Op(αnCrp log p)

holds uniformly in D, which is of smaller order of ∆1.

For ∆3, observe that

∆3 := ∆31 +∆32

= n
∑∑

j,ℓ∈M(D)

λjℓ (|ajℓ + αnwjℓ| − |ajℓ|) + ∆32,

where ∆32 ≥ 0. By the definition of αn and sn, |∆31| ≤
√
rsnnαnγ1n‖w‖ which

is dominated by the ∆1. Hence, by choosing a sufficiently large C, (A.2) holds.

By similar arguments, we can verify that ‖V̂−V∗‖ = Op(αn), and accord-

ingly ‖Â(r)−A‖ = Op(αn) follows. �

The next lemma establishes the sparsity property of Â(r).

Lemma 2 Suppose the conditions given in Lemma 1 all hold. If n1/2γ0n/
√
rp log p →

∞, then the following result holds uniformly for Dr such that ADr
is full-rank:

For any ÂDr
satisfying ‖ÂDr

−ADr
‖ = Op(αn), Pr(âjℓ = 0, ∀j, ℓ ∈ Mc(Dr)) →

1, where Â = (âjℓ)p×q.
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Proof. The objective function can be written as

L(U) = tr(Y⊤
DYD +Y⊤

DcYDc)− 2tr(Y⊤
DXU+Y⊤

DcXUV⊤)

+ tr(U⊤X⊤XU+U⊤X⊤XUV⊤V) + n

r
∑

ℓ=1

p
∑

j=1

λjℓ|ujℓ|.

The Û
ℓ
, the ℓth column of Û, satisfies the KKT optimality condition

∂L(U)

∂ujℓ |
ˆAD

= 2(X⊤)j(XÂD −YD)
ℓ + 2(X⊤)j(XÂDV

⊤ −YDc)Vℓ

+ nλjℓsgn(âjℓ) = 0. (A.5)

Firstly, consider the first term of (A.5). Note that

n−1/2(X⊤)j(XAD −YD)
ℓ = −n−1/2(X⊤)jE

ℓ
D = Op(

√

log p)

holds uniformly in j and D. By ‖ÂD −AD‖ = Op(αn), we have

n−1/2(X⊤)j(XÂD −YD)
ℓ

= n−1/2(X⊤)j(XAD −YD)
ℓ + n−1/2(X⊤)jX(ÂD −AD)

ℓ

= Op(
√

log p) + n−1/2(X⊤)jXOp(αn)

= Op(
√
nαn). (A.6)

Next, for the second term of (A.5), observe that

n−1/2(X⊤)j(XÂDV
⊤ −YDc)

= −n−1/2(X⊤)jEDc + n−1/2(X⊤)jX(ÂDV
⊤ −ADV

∗⊤)

and consequently,

n−1/2(X⊤)j(XÂDV
⊤ −YDc)Vℓ = Op(

√
nαn) (A.7)

holds uniformly in j and D.

Finally, notice that if âjℓ 6= 0 for j, ℓ ∈ Mc(Dr), then sgn(âjℓ) 6= 0. Com-

bining (A.6) and (A.7), and the assumption that n1/2γ0n/
√
rp log p → ∞, then

(A.5) will not hold for any j, ℓ ∈ Mc(Dr). This is a contradiction, which yields

the assertion of this lemma. �
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Lemma 3 Suppose Conditions 1-4 are satisfied. The following result holds

uniformly for Dr such that ADr
is full-rank: With probability tending to one,

there exists a local minimiser Â of L(U,V;Dr) such that ÂMc(Dr) = 0, and

‖Â−A‖ = Op(βn,k), where βn,k =
√

r(sn + q)(log p/n+ γ21n).

Proof. By Lemma 2, with probability tending to one, ÂMc(Dr) = 0. Hence, it

suffices to show that there exists a large constant C > 0 such that

Pr

{

inf
‖w‖=C

L(AD + βn,kw) < L(AD), ∀D ∈ Hr(r)

}

→ 0, (A.8)

where wMc(D) = 0. The proof of (A.8) follows similarly from the arguments in

the proof of Lemma 1, except for the second term of ∆1. Notice that

2βn,ktr(E
⊤
DXw) = Op(Cβn,k

√

rnsn log p),

where we use (A.3) again. Therefore, all the other arguments in the proof of

Lemma 1 follows with αn replaced with βn. �

Lemma 4 Suppose Conditions 1-5 are satisfied. With probability tending to

one, AD̂r
is full-rank, where (D̂r, Û, V̂) is the minimiser of L(U,V,Dr; r).

Proof. It suffices to show that there exists some Kr ∈ Hr,

Pr

{

min
Dr∈H̄r

min
U

L(U;Dr) < L(AKr
;Kr)

}

→ 0. (A.9)

Consider D ∈ H̄r. Firstly, by the proof of Lemma 1, we see that

L(U) = tr(Y⊤
DYD)− 2tr(Y⊤

DXU) + tr(U⊤X⊤XU)

+ L2(U) + n
∑

ℓ∈D

p
∑

j=1

λjℓ|ujℓ|.

Accordingly,

min
U

L(U)− L(AK)

≥ min
U

[

‖XU−XAD‖2 + tr
{

(XADc)⊤(I−HU)XADc

}]

−max
U

(

2‖X⊤ED‖‖AD −U‖+ 2‖E⊤
DcHUXADc‖+ rnsnγ1nC

)

−
{

2‖E⊤
DcXADc‖+ tr

(

E⊤
KcHAK

EKc

)}

:= ∆1 +∆2 +∆3,
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where C > 0 is a constant.

Denote cn =
√
nrp log p. Observe that ‖X⊤ED‖ = Op(cn), ‖E⊤

DcXADc‖ =

Op(cn), ‖E⊤
DcHUXADc‖ = Op(cn) and tr(E⊤

KcHAK
EKc) = Op(rp log p).

By Condition 5, we know that

c−1
n minU

[

‖XU−XAD‖2 + tr
{

(XADc)⊤(I−HU)XADc

}]

→ ∞,

we have either c−1
n ‖XU−XAD‖2 → ∞ or c−1

n tr
{

(XADc)⊤(I−HU)XADc

}

→
∞.

Consider the former one. Note that ‖XU −XAD‖2 . nκ̄‖AD −U‖2 and

thus ‖AD − U‖/
√

cn/n → ∞. In this case, the ∆1 ≥ minU‖XU − XAD‖2

which dominates ∆2 and ∆3. Under the situation that the later one holds, it

can be similarly shown that the ∆1 will dominate the other terms. �

Proof of Theorem 1

Theorem 1 follows immediately from Lemmas 3-4. �

Proof of Theorem 2

Consider k < r firstly. Using the same arguments in the proof of Lemma 4, it

can be seen that

min
k

BIC(k)− BIC(r) &
√

nrp log p−
√

rp log phn.

It follows immediately that Pr(mink BIC(k) > BIC(r)) → 1 as n → ∞, provided

that hn/
√
n → 0.

For the case k > r, we firstly notice that using the same procedure in the

proof of Lemma 1, it can be shown that ‖Â(k)−A‖ = Op(βn,k). Accordingly,

min
k

BIC(k)− BIC(r) & Op(
√

kp log p) + (
√
k −

√
k − 1)

√

p log phn

≥ Op(
√

kp log p) +
1

2
k−1/2

√

p log phn,

which implies that with probability tending to one the case of k > r would not

happen as long as k/hn → 0.
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Combining the two cases together implies that any k failing to identify the

true low-rank structure cannot be selected as the optimal rank. That is to say,

the model associated with the optimal k must be the true one. This completes

the proof. �
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