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Abstract
Purpose More than a third of primary breast cancer patients are treated with cytotoxic chemotherapy, typically without 
guidance from predictive markers. Increased use of neoadjuvant chemotherapy provides opportunities for identification 
of molecules associated with treatment response, by comparing matched tumour samples before and after therapy. Our 
hypothesis was that somatic variants of increased prevalence after therapy promote resistance, while variants with reduced 
prevalence cause sensitivity.
Methods We performed systematic analyses of matched pairs of cancer exomes from primary oestrogen receptor-positive/
HER2-negative breast cancers (n = 6) treated with neoadjuvant epirubicin/cyclophosphamide. We identified candidate genes 
as mediators of chemotherapy response by consistent subclonal changes in somatic variant prevalence through therapy, 
predicted variant impact on gene function, and enrichment of specific functional pathways. Influence of candidate genes on 
breast cancer outcome was tested using publicly available breast cancer expression data (n = 1903).
Results We identified 14 genes as the strongest candidate mediators of chemoresponse: TCHH, MUC17, ARAP2, FLG2, 
ABL1, CENPF, COL6A3, DMBT1, ITGA7, PLXNA1, S100PBP, SYNE1, ZFHX4, and CACNA1C. Genes contained 
somatic variants showing prevalence changes in up to 4 patients, with up to 3 being predicted as damaging. Genes coding for 
extra-cellular matrix components or related signalling pathways were significantly over-represented among variants showing 
prevalence changes. Expression of 5 genes (TCHH, ABL1, CENPF, S100PBP, and ZFHX4) was significantly associated 
with patient survival.
Conclusions Genomic analysis of paired pre- and post-therapy samples resulting from neoadjuvant therapy provides a 
powerful method for identification of mediators of response. Genes we identified should be assessed as predictive markers 
or targets in chemo-sensitization.
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Introduction

Primary solid cancers are increasingly commonly treated with 
systemic therapies before resection surgery, referred to as neo-
adjuvant systemic therapies, rather than the more traditional 
approach of surgery first [1, 2]. This is because neoadjuvant 
protocols present clinical advantages, while still achieving the 
key aim of targeting disseminated disease. Advantages include 
that primary tumours can be reduced in size, potentially allow-
ing less radical surgical resection [3], and response to therapy 
can be monitored by imaging of the primary tumour, poten-
tially allowing regimens to be modified if responses are inad-
equate [4]. A consequence of the increased use of neoadjuvant 
protocols is the availability for research purposes of matched 
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samples of primary tumour tissue taken before systemic ther-
apy, usually in the form of a diagnostic biopsy, and after ther-
apy from the resection. These matched samples present a pow-
erful resource for study of the molecular response of tumours 
to therapy, and thereby to identify pathways associated with 
relative therapy resistance or sensitivity [5–7]. The hypothesis 
behind such analyses is that tumour cells that remain after 
therapy include characteristics associated with therapy resist-
ance, while characteristics present before therapy but lost in 
the matched post-treatment sample include molecular events 
associated with relative therapy sensitivity.

With respect to cancer genomics, this hypothesis implies 
that somatic variants that expand in prevalence after therapy 
may promote resistance, while somatic variants that are elimi-
nated or reduced in prevalence may be associated with therapy 
sensitivity [6]. However, such studies are in their infancy for 
solid cancers as they are limited by technical and analytical 
challenges relating to the small size of samples, whether these 
samples are representative of the diversity of somatic clones 
throughout the tumour, whether variable infiltration with 
non-cancer (stromal) cells invalidates assessment of vari-
ant prevalence, and the difficulty of separating functionally 
response-modifying variants from passengers. For example, in 
the context of breast cancer and cytotoxic chemotherapy, one 
of the most common neoadjuvant systemic therapy settings, 
we are aware of only five such studies [6, 8–11].

We have recently performed a study into the genomic 
selection cytotoxic chemotherapy exerts on primary breast 
cancers using this matched pre- and post-therapy design [6]. 
Importantly, we used laser microdissection to select tumour 
cells from samples before sequencing whole cancer exomes, 
in order to allow comparison of the prevalence of somatic 
variants without the confounder of variable stromal contami-
nation. We successfully identified two genes, MUC17 and 
PCNX1, that hosted somatic variants showing evidence of 
selection by therapy and subsequently validated their poten-
tial as mediators of therapy response. Here, we present a 
prioritized list of candidate mediators of chemoresponse 
in breast cancer, which was identified from our novel data-
set using a systematic pipeline for analysis of these paired 
cancer genomes. We also confirm that the levels of expres-
sion of these genes impact on breast cancer outcomes using 
publicly available expression data, thereby validating our 
selection methodology and identifying genes of importance 
for future functional analyses.

Methods and materials

Patient recruitment and data acquisition

This has already been described in detail [6], a brief sum-
mary follows. Ethical approval for this work was obtained 

from Leeds (East) REC (ref. 06/Q1206/180). Patients gave 
informed, written consent for use of their tissues in accord-
ance with this permission, and the study protocol conformed 
to the Declaration of Helsinki. Data are reported in accord-
ance with REMARK [12] where appropriate. 6 patients 
undergoing neoadjuvant chemotherapy using epirubicin/
cyclophosphamide for primary oestrogen receptor-positive/
HER2-negative breast cancer at the Leeds Teaching Hos-
pitals NHS Trust and showing only partial responses were 
included in the study. Tumour samples from before chemo-
therapy (diagnostic biopsies) and after chemotherapy (resec-
tion) were available. Tumour cells were isolated by laser 
capture microscopy using a Zeiss/PALM machine (Zeiss, 
Oberkochen, Germany). Whole-exome sequencing data 
were obtained from tumour cells, and from matched normal 
tissues (normal tissue adjacent to the tumour) using Sure-
SelectXT reagents (Agilent Technologies) and the HiSeq 
3000 (Illumina), with paired-end reads (150 bp). Sequence 
data have been deposited at the European Genome-phenome 
Archive, under accession number EGAS00001003626 (https 
://ega-archi ve.org).

Sequencing analysis, variant calling and intra‑ 
and inter‑patient comparisons

Whole-exome sequencing data were processed as previ-
ously described [6] using open-source bioinformatics tools 
by Edinburgh Genomics Laboratory (Edinburgh, UK). In 
summary, adapters, primers and poor-quality bases were 
trimmed using cutadapt (v1.8.3) [13] and trimmed reads 
were aligned to reference genome Hg19 using BWA-MEM 
(v0.7.15) [14]. PCR duplicates were marked using the Mark-
Duplicates tool from the Picard tools package (v1.115). Base 
quality score recalibration (BQSR) was performed using 
BaseRecalibrator from GATK (v3.7) [15]. MuTect2 (GATK 
v3.7) was used to detect somatic variants, and the Haplo-
typeCaller pipeline (GATK v3.7) was used to detect germ-
line variants. Variant filtering was performed using Select-
Variants from GATK, to exclude variants with a read depth 
of less than 5 or more than 800, or a quality Phred score of 
less than 30. Variant metrics were extracted using snpSift 
tool extractFields [16]. Changes in mutant allele frequency 
(MAF) were determined when the exact same variant was 
detected and survived filtering both pre- and post-therapy 
in the same case—a threshold of changes > 5% was set for 
inclusion in subsequent analyses. Variants were defined as 
unique to pre- or post-therapy when this variant was not 
detected or did not survive filtering in the matched sample.

In silico analyses

The ToppGene suite was used for functional enrichment 
analyses [17]. Expression data were accessed through 

https://ega-archive.org
https://ega-archive.org
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cBioPortal [18]. METABRIC [19] data were selected from 
the section labelled breast, under the subcategory Invasive 
Breast Carcinoma. mRNA expression z-scores was high-
lighted, and mutations and copy number were deselected. 
Genes of interest were submitted and expression down-
loaded in a tab delimited format and analysed in Prism v8 
(Graphpad, San Diego, USA).

Results

Somatic variants were best defined by comparison 
to pooled normal sequences

Our first aim was to assess different ways of defining somatic 
(cancer-specific) genomic variants in each of the separate 
pre- and post-therapy samples. Variants within the sequenc-
ing data of either cancer or normal samples were considered 
for further analysis if their read depths were greater or equal 
to 5 and less than 800, and if they had quality Phred scores 
of greater than or equal to 30. Next, somatic variants were 
identified as variants seen in the cancer samples but absent 
in the matched normal sample—resulting in a mean somatic 
variant burden of 633 (range 72–2719; see Table 1).

It should be noted that 5 or more reads of a variant in a 
cancer sample represents adequate proof of the presence of 
that variant, but absence of a variant in the normal sequence 
is harder to prove since heterozygous variants can be missed 

by chance depending on read depth [20]. Median read depths 
of our normal samples in this study ranged from 15 to 46. 
As an example, at this lowest median depth, probability cal-
culations defined that ~ 0.003% of heterozygous germ-line 
variants would be called as homozygous wild type in error. 
Since the typical ‘normal’ genome varies from the reference 
genome at between 4.1 and 5 million positions [21], this 
represents a risk of misidentifying hundreds of variants. In 
order to mitigate this, we also identified somatic variants by 
comparing each cancer sample to the pooled variants identi-
fied in all 6 normal samples—effectively pooling the read 
depths thereby reducing the probability of missing heterozy-
gote germ-line variants, which scales  2n with read depth, to 
negligible. This resulted in a mean somatic variant burden 
of 291 (range 45–1434; substantially lower than previously; 
Table 1). Interestingly, single-nucleotide variants (SNV) 
were much more commonly filtered out by this strategy than 
either insertions or deletions (Table 1), suggesting that more 
SNV were missed in the germ-line sequencing than the other 
aberrations. We believe the use of pooled normal variants 
allows more robust identification of somatic mutations when 
read depth is limiting [20], at the cost of potentially los-
ing true somatic variants from individual cases that exactly 
match germ-line variants from another case. This match 
between somatic and germ-line variants would normally be 
regarded as very unlikely; however, it could be argued that 
this risk is greater where the cohort was assembled on the 
basis of sharing a tumour phenotype (in this case, relatively 

Table 1  Somatic variants were 
more stringently defined by 
comparison to pooled germ-
line sequences than to matched 
individual germ-lines

Somatic variants in cancer cells (either pre- or post-NAC) were identified from six breast cancers from 
exome sequencing data by comparison to sequencing of the individual patient-matched normal genome 
(left columns), or by comparison to the pooled variants from all six normal genomes (right columns). Total 
numbers of variants are shown (All), as well as broken down as single-nucleotide variants (SNV), inser-
tions (Ins), and deletions (Del). The mean % difference in variant count between use of matched or all nor-
mals is shown in the bottom row

Sample Somatic variants (not in matched 
normal)

Somatic variants (not in any normal)

SNV Ins Del All SNV Ins Del All

1: pre-NAC 174 9 14 197 68 7 5 80
1: post-NAC 80 6 7 93 36 3 6 45
2: pre-NAC 2585 53 81 2719 1355 25 54 1434
2: post-NAC 58 6 8 72 43 4 6 53
3: pre-NAC 228 80 91 399 124 76 87 287
3: post-NAC 385 60 20 465 112 54 14 180
4: pre-NAC 401 67 89 557 339 62 85 376
4: post-NAC 439 47 47 533 238 42 44 324
5: pre-NAC 952 154 83 1189 125 135 70 330
5: post-NAC 931 38 48 1017 137 26 33 196
6: pre-NAC 102 36 25 163 38 33 23 94
6: post-NAC 133 28 26 187 42 21 24 87
Mean % change 

using all normals
− 56% − 22% − 20% − 50%
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poor response to chemotherapy) to which either somatic or 
germ-line variants could contribute [22]. Nevertheless, the 
benefits of greatly reducing mis-calling of somatic variants 
outweigh the risk of missing rare true positives.

Comparisons between pre‑ and post‑NAC samples 
identified candidate mediators of resistance 
and sensitivity

Next, in order to identify variants that changed in allelic 
frequency during chemotherapy indicating a potential role 
in defining relative resistance or sensitivity, we compared 
the somatic variant profiles in the matched pre- and post-
NAC samples. Variants were assigned to the two follow-
ing groups: (A) unique to the pre-NAC sample, or reduced 
in mutant allele frequency (MAF) after therapy if detected 
both pre- and post-NAC (i.e. lost or reduced in prevalence 
after NAC) and (B) unique to the post-NAC sample, or 
increased in MAF after therapy if detected in both samples 
(i.e. selected for by NAC). The numbers of variants in these 
two groups for the 6 cases ranged from 73 to 1488 for group 
A and 35 to 232 for group B, representing pooled totals of 
2488 variants for list A and 751 variants for list B; these 
variants are listed in Table S1.

Prioritization based on comparisons between cases

Our next aim was to prioritize these potential mediators of 
chemotherapy response for future downstream analyses, 
by estimating their likelihoods of being true mediators of 
response as opposed to passenger variants. Our first strat-
egy was to look for commonalities between the 6 different 
cancer cases. There were no somatic variants in common 
between the different cancers, which reflect the huge genetic 
heterogeneity of breast cancers [23]. However, many somatic 
variants were identified within the same gene in different 
cancers.

112 genes hosted variants that were categorized into list 
A in 2 or more cancers (100 genes had variants in two cases, 
11 in three, and 1 in four). 21 genes hosted variants catego-
rized into list B in 2 or more cancers (20 genes represented 
in two cases, and 1 gene in three cases). These 131 genes 
(not 133 genes: see below), termed list C, are potentially 
enriched for genes having an impact on chemoresponse, 
making the assumption that the different variants in each 
gene were functionally similar driving the same change in 
response (ie all loss-of-function or all gain-of-function). 
Note that two genes (MUC17 and ZDHHC11) were catego-
rized onto list C twice, through variants for which the allelic 
frequency decreased through therapy in multiple patients 
and through different variants being consistently increased 
in allelic frequency through therapy (from list A, both genes 
had variants in three cases and from list B, both genes had 

different variants in two cases). If these variants all contrib-
ute to therapy response, it implies that for each gene, one 
set of variants must be loss-of-function while the other set 
must be gain-of-function. There are few individual genes 
within the literature that undergo both loss-of-function and 
gain-of-function somatic cancer mutations, with GATA3 
[24] and p53 [25] providing examples. This was considered 
unlikely in the case of these two genes, although both genes 
may be functionally relevant in one of the loss-of-function or 
gain-of-function settings and therefore remain as candidate 
mediators of response.

It is also worth highlighting that a further 126 genes had 
at least one variant on list A and one variant on list B, again 
implying both loss-of-function and gain-of-function variants 
if these variants both contribute to therapy response. Most 
surprisingly, for 17 of these genes, variants from list A and 
list B were identified in the same individual patients. Our 
interpretation is that because these examples do not show 
consistent directions of frequency alteration through therapy 
across different patients, they should not be prioritized. The 
risk with this strategy is abandoning a rare and scientifically 
interesting example of loss-of-function and gain-of-function 
variants within single genes, hidden within these probable 
false positives.

Prioritization based on functional enrichment 
analyses

The lists of genes identified so far were, at best, enriched for 
genes potentially involved in chemoresponse, on the basis 
of changes in variant frequency in individual (lists A and B) 
or multiple cancers (list C). A further method of identifying 
functionally relevant genes within these lists was to search 
for any over-represented molecular functions, based on the 
hypothesis that variants in a number of different genes might 
be responsible in different individuals for deregulation of the 
same molecular pathway that defines chemoresponse. Genes 
within over-represented pathways would represent stronger 
candidate mediators, although a risk with this strategy is the 
potential to identify pathways that require multiple aberra-
tions to exert a strong functional influence and therefore the 
impact of each individual gene is challenging to validate in 
downstream functional analyses.

We performed gene set enrichment analyses on gene lists 
A, B, and C (Table S2). A variety of molecular pathways 
were significantly over-represented among the mutated 
genes in each category. Of particular note were the path-
ways consistently identified in all three lists, which may 
indicate potential deregulation by loss-of-function and gain-
of-function variants in a wide range of individual genes; 
these were extra-cellular matrix, glycoproteins, collagens 
and proteoglycans; integrin signalling pathway molecules; 
and, structural components of basement membranes.
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Prioritization based on predictions of functional 
impact of variants

A variety of well-established bioinformatics tools are availa-
ble to predict the impact of individual variants on gene func-
tion [26]. Variants predicted to have a potent impact on gene 
function would be less likely to be passenger mutations, and 
would therefore be stronger candidate mediators of chem-
oresponse. We used these tools on the variants identified 
in list C, which we expect to be enriched in true positive 
(functional) variants by previous analyses, and compared 
these outcomes to those from the variants on lists A and B, 
and the entire initial list of somatic variants. Of the 336 vari-
ants that occurred within the 131 genes of list C, 82.1% were 
predicted to be damaging by at least one of SIFT (Sorting 
Intolerant from Tolerant, scores below 0.05) or PolyPhen2. 
42.1% of variants from the pooled list A and B were pre-
dicted to be damaging, while this value was 53.6% for the 
entire list of somatic variants. The fact that list C is heavily 
enriched for damaging variants, as compared to the longer 
lists from which the genes on list C were selected, supports 
our prioritization strategy based on both changes in allelic 
frequency through therapy and commonalities between 
patients, increasing the justification for further examination 
of the individual genes with damaging variants with respect 
to chemoresponse.

Final prioritization of candidate genes

Next, we integrated the pathway enrichment and the predic-
tions of variant effect analyses to produce a prioritized list 
of candidate genes as mediators of chemotherapy response. 
Prioritization order of genes was initially defined by the 
number patients in which variants showing selection were 
found (2, 3 or 4; more patients giving higher priority). This 
was further ordered based on the number of these variants 
that were predicted to be damaging (potentially up to 7 since 
some patients showed a change in prevalence of multiple 
variants within individual genes; larger number giving 
higher priority). Finally, the list was ordered on whether 
genes were listed in any of the top 3 enriched pathways from 
lists A, B or C. This process of prioritizing resulted in an 
ordered list of the 131 candidate genes (with MUC17 and 
ZDHHC11 each having two separate entries representing 
variants increased or decreased in prevalence). We set an 
arbitrary threshold for scores of 5 or greater (number of 
patients + number of damaging variants + 1 if in an enriched 
pathway) to give 14 genes in our highest priority category as 
having the strongest potential to be mediators of chemore-
sponse in breast cancer (Table 2 shows the genes and their 
prioritization scores; Table S3 shows the variants leading 
to their selection). The steps taken to reach this final list of 
candidate genes are illustrated in a flow chart (Fig. S1).

Table 2  Prioritized list of genes 
showing the strongest evidence 
of involvement in defining 
chemoresponse to epirubicin/
cyclophosphamide in breast 
cancer

Genes were identified that hosted somatic variants showing selection by therapy. Genes were prioritized 
on the basis of how many cases showed a consistent direction of selection (column 3), how many vari-
ants were predicted to be damaging (column 4), and whether the gene functions in a pathway that was 
over-represented in the lists of genes showing selection (column 5). These factors were combined (column 
3 + column 4 + 1 if Y in column 5) to give a final prioritization score (column 6)

Gene Selected against 
(A) or for (B)?

No of 
tumours?

Damaging 
predictions?

Pathway (yes/no)? Priority total

TCHH A 3 3 N 6
MUC17 B 2 3 N 5
ARAP2 A 3 2 N 5
FLG2 B 3 2 N 5
ABL1 A 3 2 N 5
CENPF A 2 3 N 5
COL6A3 A 2 2 Y; collagen proteins 5
DMBT1 A 4 1 N 5
ITGA7 A 2 2 Y; integrin signalling pathway 5
PLXNA1 A 2 3 N 5
S100PBP A 2 3 N 5
SYNE1 A 3 2 N 5
ZFHX4 A 2 3 N 5
CACNA1C B 2 2 Y; type II diabetes mellitus 5
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Expressions correlated with breast cancer outcomes

Finally, to support the potential importance of our 14 high-
est priority genes in defining breast cancer chemoresponse 
and patient survival, we assessed whether expression levels 
correlated with cancer outcomes using publicly available 
transcriptome data for primary breast cancer samples. Using 
the METABRIC dataset (n = 1903) [19], we tested whether 
expression of each individual gene was associated with sur-
vival status (ie died from breast cancer vs alive/lost to follow 
up) by receiver operator curve analyses. 7 genes (TCHH, 
ABL1, CENPF, PLXNA1, S100PBP, SYNE1, ZFHX4) were 
significantly associated (individual p < 0.05, and multiple 
test corrected FDR < 5%). All of these genes showed a sig-
nificant difference in the distribution of expression levels 
between the groups that died from breast cancer (n = 622) 
vs alive/lost to follow--up (n = 1281) (p < 0.05) (see ‘violin’ 
plots in Fig. 1). In addition, 5 of these significantly predicted 
differences in length of survival using Kaplan–Meier sur-
vival analyses (p < 0.05; right plot of the pairs, Fig. 1). Since 
our initial cohort used for genomic sequencing included only 

oestrogen receptor-positive/HER2-negative cases, we also 
analysed only these cases from the METABRIC dataset 
(n = 1350). This analysis is potentially more relevant since it 
matches our initial observations in terms of molecular cancer 
subtype; however, it could be argued it is also less relevant 
since a smaller proportion of these cases would have been 
treated with chemotherapy in the primary setting. In this 
analysis, expression of 2 genes (CENPF, PLXNA1) showed 
significant differences between groups that died from 
breast cancer (n = 388) vs alive/lost to follow up (n = 962) 
(p < 0.05), and significantly predicted differences in length 
of survival in Kaplan–Meier analyses (p < 0.05) (Fig. S2). 
We concluded that our analysis has successfully identified 
genes that impact on breast cancer outcomes.

Discussion

Cytotoxic chemotherapy has been used in primary breast 
cancer treatment for more than 60 years [27], yet patients 
are still stratified to the therapy without molecular insights 

Fig. 1  Expression of candidate genes correlated with breast can-
cer outcomes. Expression levels of candidate genes in Table 2 were 
analysed for correlations with survival from breast cancer using the 
METABRIC dataset [19], by comparing the distribution of levels 
between patients who died of their cancer to those that did not using 
‘violin’ plots (left of each pair), and by Kaplan–Meier analyses after 
expression was dichotomized using receiver operator curve analyses 

into low and high groups (right of each pair). For violin plots, median 
and quartiles are shown (horizontal lines) and significance was tested 
using 2-tailed Mann–Whitney U tests. For Kaplan–Meier analyses, 
significance was tested using log rank tests. Significant correlations 
only are shown; PLXNA1 and SYNE1 were significant in only the 
first analysis
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into whether their individual cancers will respond. Almost 
all metastatic breast cancer patients receive cytotoxic chem-
otherapy, and eventual failure to respond leads to patient 
death. In both primary and metastatic settings, activity of 
molecular pathways and expression of individual genes that 
define tumour responses are poorly understood. We present 
a strategy for identification and prioritization of candidate 
mediators of chemoresponse using paired cancer exome data 
taken pre- and post-therapy. We use this strategy to iden-
tify molecular pathways involved with defining responses 
in breast cancer (Table S2), as well as 14 high-priority spe-
cific candidate genes (Table 2). The relatively small size 
of our cohort (n = 6) is a limitation for our study. However, 
it is worth noting that this is in the same range as the only 
two other studies to sequence genomes of matched pre- and 
post-chemotherapy primary breast cancer samples (n = 20 
[9], n = 9 [11], and our work is the only study to employ 
laser capture of cancer cells to allow robust comparisons of 
mutant allele frequencies.

We have already validated the role of one of these genes, 
MUC17, using in  vitro approaches and further cohorts 
of chemotherapy-treated patients [6]. Here, we assessed 
whether expression levels of candidate genes correlated 
with breast cancer outcomes using publicly available data 
from the METABRIC study [19]. Although 7 of the genes 
(50%) showed significant correlation with outcome, thereby 
supporting our priority gene list, it is worth emphasizing 
the issues with this approach and therefore that the genes 
failing to show significant correlations remain candidate 
chemoresponse mediators. Most obviously, our initial exome 
data focused on cancer cells only (isolated by laser micro-
dissection), while the METABRIC expression data include 
contributions of variable amounts of stroma [19] that could 
mask true relationships for the cancer cells. In addition, the 
patients within METABRIC received a wide range of treat-
ments for their primary disease [19], not always including 
cytotoxic chemotherapy, this issue is mitigated to some 
extent by our use of cancer-specific survival as the end-
point, since almost all patients will have received cytotoxic 
chemotherapy for metastases, but we are unable to assess 
whether metastatic expression was concordant with the ana-
lysed levels in primaries. Two of the genes that were vali-
dated in the METABRIC data have previously been reported 
as mediators of breast cancer chemotherapy response. 
ABL1, a non-receptor tyrosine kinase, has been implicated 
in response to DNA-damaging chemotherapeutics in tissue 
culture [28], while high expression of the centrosomal pro-
tein CENPF has been associated with good chemoresponses 
in breast cancers [29]. Of the other validated genes, only one 
has previously been associated with cytotoxic chemotherapy 
response in other cancers: somatic variants in SYNE1, which 
codes for a nuclear envelope-associated protein [30], corre-
lated with poor response to induction chemotherapy in head 

and neck cancer [31]. The remaining four genes have diverse 
cancer-related associations. For example, over-expression of 
TCHH, which encodes trichohyalin, a structural protein that 
binds keratin fibres [32], has been linked with sensitivity to 
tyrosine kinase inhibition in bladder cancer [33]. PLXNA1, 
a semaphorin receptor, has a range of influences that can be 
either pro- [34] or anti-tumourigenic [35]. S100PBP expres-
sion correlated with spread to different metastatic sites in 
breast cancer [36], although its precise molecular function is 
poorly understood. The transcription factor ZFHX4 has been 
reported as required for maintenance of tumour-initiating 
cells in glioblastoma [37].

With respect to molecular pathways (Table  S2), we 
implicate extra-cellular matrix (ECM) components, includ-
ing collagens and laminins, and signalling molecules that 
interact with the ECM, including integrins, in chemore-
sponse (Table S2). Associations between ECM and therapy 
response are well reported [38, 39],a prevailing model sug-
gests that relatively dense ECM presents a physical barrier 
restricting drug movement, and thereby mediating cancer 
cell survival through reduced local concentrations, although 
some more specific molecular signalling is also implied [38]. 
Two genes from these pathways were included in our final 
prioritized list: COL6A3 and ITGA7. COL6A3 itself has 
previously been implicated in mediation of chemoresistance 
in breast cancer, with upregulation of collagen VI, the het-
erotrimer to which COL6A3 contributes, in breast cancers 
[40], and endotrophin, a soluble C-terminal domain cleaved 
from the COL6A3 protein, associated with cisplatin resist-
ance in a mouse model [41]. ITGA7, which acts as a receptor 
for a number of laminins [42, 43], has also recently been 
implicated in chemoresponse [44, 45], although not in the 
context of breast cancer. A more surprising over-represented 
pathway was type II diabetes (with CACNA1C from our 
prioritized gene list). Some have reported that diabetes is 
associated with relatively poor breast cancer chemotherapy 
responses [46, 47]; therefore, a mechanistic link is plau-
sible. Higher expression of CACNA1C, a subunit of the 
Cav1.2 voltage-gated calcium channel, has been associated 
with improved therapy response in B-cell lymphoma to a 
combination regimen including both doxorubicin and cyclo-
phosphamide (closely related to the therapy in our study), 
although the authors concluded that CACNA1C impacted 
on response to the rituximab component of their combina-
tion [48].

The remaining candidate genes did not associate with 
survival in validation analyses and were not components 
of over-represented molecular pathways: ARAP2, FLG2, 
and DMBT1. ARAP2 is a GTPase-activating protein for 
the ADP-ribosylation factor family [49], but has not been 
assigned specific functions in cancer. Similarly, FLG2 (filag-
grin 2) has not been implicated in cancer, but is involved 
with skin homeostasis through interactions with keratin [50]. 
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Interestingly, filaggrin 2 is a member of the same protein 
family and is encoded in the same gene cluster as TCHH/
trichohyalin described above [51], further implicating kera-
tin dynamics in modulation of chemoresponse. Finally, 
DMBT1 is a secreted scavenger receptor [52], which is a 
potential tumour suppressor and reportedly increases sensi-
tivity to the chemotherapeutic cisplatin [53].

In summary, we present evidence to implicate a novel list 
of genes in defining chemoresponse in breast cancer, and we 
propose these gene products as targets for chemosensitizing 
strategies or as predictive markers in order to improve out-
comes for breast cancer patients.
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