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Onset of interchange instability in a coupled core�SOL plasma
Fryderyk Wilczynski,1, a) David W. Hughes,1 Wayne Arter,2 and Fulvio Militello2
1)School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom
2)CCFE, Culham Science Centre, Abingdon OX14 3DB, United Kingdom

(Dated: 24 June 2020)

The dynamics at the edge of fusion con�nement devices is driven by interchange instabilities and involves
the motion of plasma across two regions � the `core region' and the scrape-o� layer (SOL), distinguished
by whether �eld lines are, respectively, closed or connected to the wall. Motivated by this phenomenon,
we present an extensive linear stability analysis of a two-layer plasma model encompassing the coupled
interactions between the region with closed �eld lines and the SOL. We focus on the e�ect of varying the
particle di�usivity and ion viscosity, revealing the signi�cant variation in the spatial structure of the critical
modes. In addition, we have investigated the dependence of the stability threshold on the ratio of the width
of the region with closed �eld lines to that of the SOL; this dependence is strong when the ratio is su�ciently
small, but becomes insigni�cant once the ratio is of order unity.

I. INTRODUCTION

The dynamics at the edge of magnetic con�nement fu-
sion devices involves the turbulent transport of plasma
from the well-con�ned core, through the scrape-o� layer
(SOL), towards the material surfaces. It has been uni-
versally observed that turbulence in the SOL is char-
acterized by intermittent ejection of coherent �lamen-
tary structures1,2. These �laments dominate the particle
transport and enhance the plasma interaction with the
surrounding material boundaries. This is problematic on
two fronts: plasma-wall interactions can potentially dam-
age plasma-facing components and shorten the life-time
of the device; furthermore, energy losses associated with
the ejection of �laments inhibit fusion reactions in the
con�nement region, thus diminishing the performance of
the tokamak. As fusion power increases, so does the ero-
sive potential of �laments; understanding the dynamics
of �laments therefore plays a vital role in the successful
operation of future, more powerful fusion reactors, such
as ITER and DEMO.
It is widely recognized that turbulence in the SOL is

driven by a combination of interchange dynamics, due
to pressure gradients and magnetic �eld curvature, and
drift-Alfvén waves. Since drift-Alfvén waves are strongly
damped on open �eld lines, turbulent motions in the
SOL are dominated by interchange dynamics, supple-
mented by parallel losses and sheath dissipation at the
plasma-solid interface3. Over the years, numerous inter-
change models, of various complexity, have been devel-
oped, which successfully capture several experimentally
measured features of the midplane SOL plasma. Ini-
tial models focused solely on the dynamics in the SOL
region4�8, in which turbulence was driven by the inclu-
sion of a local source term. Subsequently, motivated by
the concept that turbulence originates in the core, the
simple SOL models have been extended to consider a con-
�guration composed of two regions, one representing the
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FIG. 1: Schematic of the two-region con�guration.

core and the other the SOL, as sketched in Fig. 1. The
two regions are separated by a magnetic separatrix and
exhibit distinct dynamics parallel to the magnetic �eld.
In the `core', corresponding to �ux surfaces interior to
the Last Closed Flux Surface (LCFS), the magnetic �eld
lines close back upon themselves and do not come in con-
tact with material surfaces. By contrast, in the SOL, the
magnetic �eld lines are open, in the sense that they pen-
etrate a solid surface. Since every �eld line in the SOL
is connected to a material surface, the SOL plasma is
always subject to parallel losses of particles and energy.

One of the most notable early models in the edge-
SOL drift �uid modelling campaign was ESEL9, a two-
dimensional interchange model consisting of evolution
equations for density, vorticity, and electron tempera-
ture. Computations using ESEL successfully reproduce
intermittent ejection of coherent plasma blobs from the
core region, and their subsequent propagation into the
SOL. Furthermore, ESEL has been successful in captur-
ing properties of SOL turbulence, with reports of signif-
icant points of agreement with tokamak experiments on
TCV10,11, JET12, EAST13, and MAST14,15. The agree-
ment between the simulation results and experimental
data was established based on the comparison of the
statistics of experimental measurements using Langmuir
probes with the statistics of single-point recordings from
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Machine Dn µ Reference

TCV 10
−2

10
−2 Garcia et al. 16,17

TCV 4.5× 10
−3

2.5× 10
−2 Garcia et al. 10

TCV 4.5× 10
−3

8.5× 10
−3 Fundamenski et al. 12

JET 2.9× 10
−4

3.1× 10
−3 Fundamenski et al. 12

TCV 4.7× 10
−3 � Militello et al. 14

MAST 1.95× 10
−3 � Militello et al. 14

MAST 1.21× 10
−2

1.13× 10
−1 Militello et al. 15

EAST 1.8× 10
−3

3.5× 10
−2 Yan et al. 13

TABLE I: Example values of ion viscosity µ and
particle di�usivity Dn used in ESEL simulations, where
the values have been normalized with respect to Bohm
di�usion (see Sec. II B for details); the missing data

values are not explicitly reported.

synthetic probes within the simulation domain. Signif-
icant agreement between simulation and experimental
data has also been found in terms of observations of ra-
dial pro�les of time-averaged particle density and radial
particle �ux, as well as probability distribution functions
of their �uctuations.
Although simulations of the nonlinear regime provide

a valuable insight into the dynamics of the plasma, they
cannot tell the whole story. Each numerical simulation
necessarily studies one particular set-up (e.g. parame-
ter values and geometrical con�guration); such compu-
tations are though inherently expensive, and can thus
provide only fragmentary information. A complemen-
tary approach is provided by a detailed linear stability
analysis, which, surprisingly, has not been performed for
this problem. Such an analysis allows a comprehensive
exploration of the nature of the onset of instability and
its dependence on the various parameter values and on
the geometrical set-up.
Even the simplest interchange models admit a sub-

stantial number of physical parameters, such as curva-
ture drive, perpendicular di�usion coe�cients, and par-
allel dissipation rates. These parameters di�er between
each study, depending on the machine and the partic-
ular discharge modelled. Di�erences between machine
parameters (such as magnetic �eld, radius of curvature,
safety factor, parallel connection length) and plasma con-
ditions between di�erent discharges (such as plasma den-
sity, electron and ion temperature) lead to a signi�cant
variability in terms of the values of physical model pa-
rameters used in the simulations. For example, Table I
highlights the variability in the values of particle di�u-
sivity and ion viscosity in ESEL simulations. With the
variability in terms of the physical parameters used, it is
clearly of interest to determine if there is the possibility
of di�erent regimes of behavior.
Another source of variability comes from the di�er-

ences in the two geometrical parameters of the numerical
domain. One of these is the ratio of the width of the
core region to that of the SOL in the model (d1 : d2 in
Fig. 1). The physical processes associated with these re-
gions are very di�erent: the core region is responsible for

turbulence production, whereas the SOL is responsible
for dissipation to the sheath. It is therefore reasonable
to expect that this ratio of widths could play a role in
terms of the onset of instability and subsequent nonlinear
evolution of the system. The other relevant geometrical
parameter is the aspect ratio between the radial and the
poloidal extent of the numerical domain. Analytically,
one can assume periodicity in the poloidal direction of ar-
bitrary wavelength; computationally, however, the wave-
lengths are constrained by the �nite poloidal extent of
the domain. Knowledge of the critical wavelength at the
onset of instability can therefore guide the choice of an
appropriate aspect ratio, thereby avoiding the possibility
of arti�cially constraining the intensity of turbulence by
restricting the system to slower growing modes.
A deeper understanding of the onset of the underlying

interchange instabilities could be of great bene�t in the
study of edge turbulence and SOL �lament generation.
For example, without knowledge of the stability thresh-
old, it is di�cult to judge how supercritical (i.e. how far
into the nonlinear regime) are the simulations performed.
Here, we perform a linear stability analysis of a simple
two-dimensional �uid model for interchange plasma dy-
namics in a con�guration that encompasses both the core
and the SOL regions. Given the distinct properties of
the two regions, the most elegant and e�cient means
of tackling the problem is by a two-layer approach with
matching conditions at the separatrix. We characterize
the onset of instability and perform an extensive analy-
sis to describe how the behavior of the system varies as a
function of plasma parameters and geometrical con�gu-
ration. The work presented here may therefore be viewed
as an extension of our two earlier studies18,19. In the for-
mer, we restricted our attention solely to the dynamics
in the SOL, as well as exploring the analogy between
the interchange instability in the plasma edge and that
of Rayleigh-Bénard convection. In the latter, we consid-
ered the conceptually simpler two-layer problem of the
convective instability of two superposed miscible neutral
�uids.
The remainder of the paper is structured as follows. In

Section II we introduce the governing equations, together
with the conditions to be satis�ed at the boundaries and
at the separatrix. Section III contains the formulation of
the marginal stability problem, and the results are anal-
ysed in Section IV. A concluding discussion is contained
in Section V.

II. MATHEMATICAL FORMULATION

A. Governing equations

The starting point of our analysis is the electrostatic
drift �uid model of Easy et al.

20,21 . The model assumes
cold ions, isothermal electrons, and the Boussinesq ap-
proximation. The geometry is simpli�ed to a local slab
with a uniform magnetic �eld B = Bẑ; the e�ects of
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magnetic curvature and inhomogeneity ofB are then rep-
resented through additional e�ective gravity terms acting
in the radial direction. Coordinates x and y represent the
e�ective radial and poloidal directions, respectively. The
evolution of plasma potential ϕ and electron density ne

are determined by the plasma vorticity and density equa-
tions:

mine

B

(

∂

∂t
+ vE · ∇+ v‖i∇‖

)
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∇‖j‖ −
eg

Ωi

∂ne
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+
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⊥ω,
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+D∇2
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(2)

Here, ω = ∇2
⊥ϕ/B is the plasma vorticity,

vE = B−1(b̂×∇ϕ) is the E × B drift velocity, and
j‖ = en

(

v‖i − v‖e
)

is the parallel current density, where
v‖i (v‖e) is the parallel ion (electron) velocity; sn is a
particle source, νi represents the e�ective cross �eld kine-
matic viscosity of ions, D is the collisional di�usion co-
e�cient, e is the elementary unit charge, mi is the ion
mass. Parameter g = 2c2s/Rc represents the e�ective
gravitational acceleration that captures the in�uence of
magnetic gradients and curvature; cs =

√

Te/mi is the
sound speed, Te is the electron temperature in Joules, and
Rc is the radius of curvature (typically the major radius
of the machine). The ion gyrofrequency Ωi = eB/mi

is related to the sound speed through the gyroradius
ρs = cs/Ωi. Equation (1) is a statement of the current
conservation law ∇ · J = 0, with individual terms, from
the left hand side, representing divergences of ion polar-
ization current density, parallel current density, electron
diamagnetic current density and perpendicular current
density due to ion viscosity.
As presented, equations (1), (2) are incomplete. To

form a self-consistent system we need to provide descrip-
tions for the parallel ion and electron velocities. This can
be achieved by constructing additional evolution equa-
tions for parallel momenta, although such an approach
requires a three-dimensional treatment. Alternatively,
the dynamics of plasma parallel to the magnetic �eld can
be modelled by implementation of a suitable closure for
the current along the �eld lines.
Here we pursue the latter option and restrict our atten-

tion to the dynamics perpendicular to the magnetic �eld.
We consider an outboard midplane region of the plasma
edge that encompasses both a representation of the core
region and the scrape-o� layer, as depicted in Fig. 1. In
the SOL the �eld lines end with a Debye sheath at a ma-
terial surface, which provides a sink for plasma particles.
A simpli�ed description of the e�ect of sheath currents on
the collective plasma dynamics can be obtained by aver-
aging the model equations along the �eld lines and invok-
ing the sheath dissipation closure. This closure scheme

assumes negligible gradients of density and potential in
the parallel direction and also that parallel current is reg-
ulated by the sheath boundary conditions22,23,

v‖i(z = ±l‖) = ±cs, (3)

v‖e(z = ±l‖) = ±cs exp

(

−
e

Te
ϕ

)

, (4)

where l‖ is the parallel SOL connection length � typi-
cally the mid-plane to target distance.
In order to con�ne the dynamics to the plane perpen-

dicular to the imposed magnetic �eld, we require an av-
erage over the parallel direction, de�ned by

〈·〉 =
1

2l‖

∫ +l‖

−l‖

dz. (5)

In the vorticity equation (1), the average of the diver-
gence of the parallel current gives

〈∇‖j‖〉 =
ecsne

l‖

(

1− exp

(

−
e

Te
ϕ

))

, (6)

while the term v‖i∇‖ω vanishes on the assumption that ω
does not vary in the parallel direction. In the continuity
equation (2), the averaged parallel particle �ux becomes

〈∇‖

(

v‖ene

)

〉 =
csne
l‖

exp

(

−
e

Te
ϕ

)

. (7)

Here, n0 is the constant reference density maintained by
the source term20,24, i.e.,

〈sn〉 =
cs
l‖
n0. (8)

In the core region, the �eld lines are closed, and hence
the parallel direction can be considered periodic. Thus,
on integration along the �eld lines, all parallel terms in-
cluding the source term vanish. On adopting x = 0 as the
position of the separatrix, the two-dimensional governing
equations become:

∂ω

∂t
+ vE · ∇ω = −

g

ne

∂ne
∂y

+ νi∇
2ω +H(x)Λω, (9)

∂ne
∂t

+ vE · ∇ne =
gne
Bc2s

∂ϕ

∂y
−
g

Ωi

∂ne
∂y

+D∇2ne +H(x)Λn,

(10)

where

Λω =
1

l‖
csΩi

(

e

Te
ϕ

)

, (11)

Λn =
cs
l‖
n0 −

cs
l‖
ne

(

1−
e

Te
ϕ

)

, (12)

are the linearized versions of the parallel loss terms in the
SOL due to sheath dissipation. Here, H(x) is the Heavi-
side function, and n0 is a constant reference SOL density.
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An alternative prescription for the transition from closed
to open �eld line regions, which is commonly used in
the literature (e.g. Madsen et al.

25), is a smoothly vary-
ing tanh function; however, such an approach introduces
an additional parameter describing the narrow transition
width. Equations (9) and (10) are to be solved subject
to the following radial boundary conditions10,14:

ϕ = ω = 0, n = n0 +∆n at x = −d1, (13)

∂ϕ

∂x
= ω =

∂n

∂x
= 0 at x = d2. (14)

The poloidal direction is considered to be periodic.

B. Normalization

Conventionally, in edge plasma literature the govern-
ing equations appear in Bohm-normalized form obtained
by scaling length with ρs, time with Ω−1

i , density with
n0, potential with Te/e. Equations (9), (10), scaled ac-
cording to Bohm normalization, become

dω

dt
= −

ĝ

n

∂n

∂y
+ µ∇2ω +H(x)

ϕ

L‖
, (15)

dn

dt
= nĝ

∂ϕ

∂y
− ĝ

∂n

∂y
+Dn∇

2n+H(x)

(

nϕ

L‖
−
n− 1

L‖

)

,

(16)

where

ĝ =
g

ρsΩ2
i

=
2ρs
Rc

, L‖ =
l‖

ρs
,

Dn =
D

DBohm
, µ =

νi
DBohm

, (17)

are the normalized e�ective gravitational acceleration,
parallel connection length, particle di�usion and viscos-
ity, respectively, and DBohm = ρ2sΩi is Bohm di�usion.
Formally, equations (15), (16) constitute a two-region

version of the model studied in Easy et al.
20 (their equa-

tions (8), (7)). The model considered here is di�erent
from ESEL in terms of the following aspects. First, the
ESEL model includes evolution of electron temperature,
and, in this respect, it could be considered more compli-
cated. Here, we consider the idealized isothermal limit,
whereby the electron temperature is assumed constant.
Second, the ESEL model employs the so-called thin layer
approximation25. This approximation neglects particle
density variations in the polarization �ux entering the
vorticity equation and hence assumes a constant inertia
of all �uid parcels, irrespective of the local particle den-
sity. As a consequence, in the ESEL model, the density
variation 1/n in front of the �rst term on the vorticity
equation (15) is neglected (see for example equation (20c)
in Garcia et al.

16). Third, in ESEL the parallel losses of
particle density and vorticity in the region of open �eld
lines are modelled using the vorticity advection closure.

In our model, parametrization of parallel losses is based
on the sheath dissipation closure.
The Bohm-normalized equations (15), (16) evolve on

the time scale given by the ion gyrofrequency, Ω−1
i . On

the other hand, according to the underlying assumptions
behind drift-ordered models, the system should evolve
on a much slower time scale given by the dynamical fre-
quency (the dynamical frequency is much smaller than
the gyrofrequency26). Furthermore, in light of the anal-
ysis in Wilczynski et al.

18 , we expect the length scale
of the convective cells to be comparable with the radial
extent of the domain, and thus much larger than the
gyroradius ρs. Therefore, we shall proceed with the al-
ternative nondimensionalization based on the di�usion
timescale; on scaling time with d21/D, length with d1,
potential with BD, density with n0, equations (9), (10)
become

dω

dt
= −Ra

∗
Pr

1

n

∂n

∂y
+ Pr∇2ω +H(x)

L2
⊥Ω

L‖
ϕ, (18)

dn

dt
= ζn

∂ϕ

∂y
−

Ra
∗
Pr

Ω

∂n

∂y
+∇2n

+H(x)

(

L2
⊥

L‖
nϕ−

Ω

L‖
(n− 1)

)

.

(19)

The dimensionless parameters are

Ra
∗ =

gd31
Dνi

, Pr =
νi
D
, Ω =

Ωid
2
1

D
,

L‖ =
l‖

ρs
, L⊥ =

d1
ρs
, ζ =

2d1
Rc

. (20)

The parameter Ra∗ measures the ratio of the strength
of the curvature-induced gravitational force to viscous
forces. It is similar to the Rayleigh number associated
with buoyancy-driven �ow, although this analogy is not
complete since Ra∗ is missing a factor describing the den-
sity di�erence (or temperature di�erence in convection)
across the layer. Pr can be thought of as equivalent to
the Prandtl number in the convection problem, but in-
stead of describing the ratio of �uid viscosity to thermal
di�usivity, here it represents the ratio of ion viscosity to
particle di�usivity. Ω is the gyrofrequency divided by the
frequency given by the di�usion time scale. L‖ is the nor-
malized measure of parallel connection length, and L⊥ is
the normalized measure of the width of the layer. Fi-
nally, the parameter ζ is representative of the e�ect of
compressibility of the E ×B drift. These are related to
the traditional Bohm plasma parameters (17) as follows:

Ra
∗ =

ĝL3
x

Dnµ
, Pr =

µ

Dn
, Ω =

L2
x

Dn
,

ζ = ĝLx, L⊥ = Lx, (21)

where Lx is the Bohm-normalized radial length of the
core region under consideration.
As outlined brie�y in the Introduction, di�erences in

plasma conditions between discharges lead to consid-
erable variability in the values of the physical param-
eters. In particular, Dn and µ admit a wide range
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of values, depending on the edge plasma density and
temperature. Evaluating the di�usion coe�cients us-
ing neoclassical expressions12, assuming MAST machine
parameters (q = 7, B = 0.5T, Rc = 0.85m14), with
plasma density and electron temperature in the ranges
ne ∈

[

1018, 1020 m−3
]

, Te ∈ [10, 100 eV], yields values of

Dn and µ that range between 10−4 � 10−1 and 10−3 � 1
respectively. Variation in the possible values of ĝ, which
is independent of plasma density, is modest in compari-
son.
Throughout our analysis, we therefore focus on the ef-

fect of varying Dn and µ, and �x ĝ = 2.4×10−3, L⊥ = 50
(implying that ζ = 0.12), L‖ = 5500. Numerically, we

explore values of Dn in the range 10−3 � 1 and µ in the
range 10−3 � 1. At small values of Dn, the problem be-
comes numerically sti�, and thus exploring values of Dn

below 10−3 is computationally prohibitive. Recall that
varying Dn and µ a�ects Ra∗, Pr and Ω according to
(21). Thus, variation of µ a�ects only the di�usion term
in the vorticity equation (18) and no terms in the density
equation (19), whereas variation of Dn a�ects all terms
on the right hand side in the vorticity equation, as well
as the second and the �nal term on the right hand side
of the density equation.

III. LINEAR STABILITY ANALYSIS

A. Basic state

We consider a steady basic state with plasma at rest,
and assume that the basic state plasma density varies
as a function only of the radial coordinate. We describe
the basic state by upper case variables; thus Φk = 0 and
nk = Nk(x). The basic state density distribution is given
by

d2N1

dx2
= 0, −1 ≤ x < 0, (22)

d2N2

dx2
−

Ω

L‖
N2 = −

Ω

L‖
, 0 < x ≤ δ, (23)

where indices k = 1, 2 denote core and SOL regions re-
spectively and δ = d2/d1 denotes the dimensionless width
of the SOL. Boundary conditions on density (cf. (13),
(14)), and the continuity of density and density �ux at
the separatrix require that

N1 = 1 +∆n at x = −1, (24)

dN2

dx
= 0 at x = δ, (25)

N1 = N2,
dN1

dx
=

dN2

dx
at x = 0. (26)

Solving (22), (23) subject to conditions (24)�(26) yields

N1 = 1 +∆n (1 +A1 (x+ 1)) , (27)

N2 = 1 +∆n (A2 cosh(αx) +B2 sinh(αx)) , (28)

-1 -0.5 0 0.5 1
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1.15

1.2

FIG. 2: Basic state pro�les for varying values of Dn,
with other parameters �xed: ∆n = 0.2, δ = 1, L⊥ = 50,

L‖ = 5500.

where α = (Ω/L‖)
1/2 = L⊥/(DnL‖)

1/2 and

A1 =
−α tanh(αδ)

(1 + α tanh(αδ))
, A2 =

1

(1 + α tanh(αδ))
,

B2 =
− tanh(αδ)

(1 + α tanh(αδ))
. (29)

Figure 2 shows plots of the basic state density distribu-
tion for varying values of Dn. We note that the basic
state depends explicitly on the value of the particle dif-
fusivity Dn and parallel connection length L‖. This in-
dicates that the equilibrium density pro�le arises from
the balance between perpendicular di�usion and paral-
lel losses. In particular, when the di�usivity Dn is small
(α is large), the SOL is loss dominated, and the density
pro�le in the SOL approaches a uniform reference den-
sity (as αx → ∞, N2 → 1); this is illustrated in Fig. 2
for Dn = 10−3. On the other hand, for su�ciently large
Dn (small α), di�usion dominates over parallel losses and
the equilibrium density in the SOL exceeds the constant
reference value, as illustrated for the case of Dn = 1.

B. Linear perturbations equations

On introducing the change of variable θ = log(n), the
governing equations (19), (18) become

dω

dt
= −Ra∗Pr

∂θ

∂y
+ Pr∇2ω +H(x)

L2
⊥Ω

L‖
ϕ, (30)

dθ

dt
= ζ

∂ϕ

∂y
−
Ra

∗
Pr

Ω

∂θ

∂y
+∇2θ + |∇θ|

2

+H(x)

(

L2
⊥

L‖
ϕ−

Ω

L‖
(1− exp(−θ))

)

.

(31)
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Note that the basic state equation (23) written in terms
of Θ2(x) = log(N2(x)) becomes

Θ′′
2 +Θ′2

2 −
Ω

L‖
(1− exp(−Θ2)) = 0. (32)

We now consider small perturbations to this basic
state, expressing the potential, vorticity and log-density
in the perturbed state by ϕk, ωk and Θk+θk respectively.
On substituting these expressions into equations (30) and
(31) and retaining only the lowest order terms in the per-
turbations, the linearized forms of the equations of mo-
tion become

∂ω1

∂t
= −Ra∗Pr

∂θ1
∂y

+ Pr∇2ω1, (33)

∂θ1
∂t

=(Θ′
1(x)+ζ)

∂ϕ1

∂y
−
Ra

∗
Pr

Ω

∂θ1
∂y

+∇2θ1 +2Θ′
1(x)

∂θ1
∂x

,

(34)

∂ω2

∂t
= −Ra∗Pr

∂θ2
∂y

+ Pr∇2ω2 +
L2
⊥Ω

L‖
ϕ2, (35)

∂θ2
∂t

= (Θ′
2(x) + ζ)

∂ϕ2

∂y
−
Ra

∗
Pr

Ω

∂θ2
∂y

+∇2θ2

+2Θ′
2(x)

∂θ2
∂x

−
1

N2(x)

Ω

L‖
θ2 +

L2
⊥

L‖
ϕ2.

(36)

The perturbation variables satisfy the following bound-
ary conditions (cf. (13), (14)):

ϕ = ω = θ = 0 at x = −1, (37)

∂xϕ = ω = ∂xθ = 0 at x = δ. (38)

Additionally, continuity of velocity, tangential and nor-
mal stress, density and density �ux are satis�ed at the
separatrix:

ϕ1 = ϕ2,
∂ϕ1

∂x
=
∂ϕ2

∂x
,

∂2ϕ1

∂x2
−
∂2ϕ1

∂y2
=
∂2ϕ2

∂x2
−
∂2ϕ2

∂y2
,

∂

∂x

(

∂2ϕ1

∂x2
+ 3

∂2ϕ1

∂y2

)

=
∂

∂x

(

∂2ϕ2

∂x2
+ 3

∂2ϕ2

∂y2

)

,

θ1 = θ2,
∂θ1
∂x

=
∂θ2
∂x

at x = 0. (39)

C. Marginal stability analysis

We seek normal mode solutions of the form

ϕk(x, y, t) = ϕ̂k(x) exp (iky + σt) + c.c., (40)

θk(x, y, t) = θ̂k(x) exp (iky + σt) + c.c., (41)

where k is the poloidal wavenumber and σ is the growth
rate, which can, in general, be complex: σ = s + iγ;

s, γ ∈ R. Substituting these expressions into equations
(33)�(36) yields

σ
(

D2 − k2
)

ϕ̂1 = −ikRa∗Pr θ̂1

+ Pr
(

D4 − 2k2D2 + k4
)

ϕ̂1,
(42)

σθ̂1 = ik (Θ′
1(x) + ζ)ϕ̂1 − ik

Ra
∗
Pr

Ω
θ̂1

+
(

D2 − k2
)

θ̂1 + 2Θ′
1(x)Dθ̂1,

(43)

σ
(

D2 − k2
)

ϕ̂2 = −ikRa∗Pr θ̂2

+ Pr
(

D4 − 2k2D2 + k4
)

ϕ̂2 +
L2
⊥Ω

L‖
ϕ̂2,

(44)

σθ̂2 = ik (Θ′
2(x) + ζ) ϕ̂2 −ik

Ra
∗
Pr

Ω
θ̂2 +

(

D2 − k2
)

θ̂2

+2Θ′
2(x)Dθ̂2 −

1

N2(x)

Ω

L‖
θ̂2 +

L2
⊥

L‖
ϕ̂2.

(45)

Boundary and separatrix conditions (37)�(39) become

ϕ1 = D2ϕ1 = θ1 = 0 at x = −1, (46)

Dϕ2 =
(

D2 − k2
)

ϕ2 = Dθ2 = 0 at x = δ, (47)

ϕ1 = ϕ2, Dϕ1 = Dϕ2,
(

D2ϕ1 + k2ϕ1

)

=
(

D2ϕ2 + k2ϕ2

)

,
(

D3ϕ1 − 3k2Dϕ1

)

=
(

D3ϕ2 − 3k2Dϕ2

)

,

θ1 = θ2, Dθ1 = Dθ2 at x = 0. (48)

Equations (42)�(45), subject to boundary and separatrix
conditions (46)�(48), constitute an eigenvalue boundary
value problem. We solve the eigenvalue problem nu-
merically using the shooting method27; we shoot from
the boundaries with matching imposed at x = 0. We
are interested in the onset of instability: thus for each
wavenumber k, we seek the density di�erence ∆n for
which Re(σ) = 0. Having done this, we then identify
the minimal, critical, density di�erence ∆nc, and the ac-
companying critical wavenumber at which this minimum
is attained.
Before proceeding with the analysis of results, it is

helpful to utilize the analogy with the thermal convec-
tion problem18 in order to gain insight about a necessary
condition for the onset of instability in the plasma prob-
lem. The linear two-dimensional convection equations for
the �uid streamfunction ψ and temperature perturbation
θ are

∂∇2ψ

∂t
= −Ra∗Pr

∂θ

∂y
+ Pr∇2∇2ψ, (49)

∂θ

∂t
=

dT

dz

∂ψ

∂y
+∇2θ. (50)

A necessary condition for instability in convection is
dT
dz < 0 � i.e. an unstable temperature strati�cation.
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In the classical convection problem, dT
dz is negative and

uniform. Motion is driven by a combined e�ect of the
buoyancy drive term and the advection of the basic state
temperature gradient (respectively the �rst terms on the
right hand side in (49) and (50)). In the absence of
a temperature gradient, or when the temperature in-
creases with height (stable strati�cation), convective mo-
tions will not ensue. Invoking the analogy between the
plasma problem and thermal convection, and thus com-
paring (50) with (34) and (36), we recognize that (Θ′+ζ)
is an analogue of dT

dz . Therefore, a necessary condition for
instability is that (Θ′ + ζ) is negative somewhere. As we
shall see in the following section, the nature of the basic
state density distribution is such that (Θ′ + ζ) changes
sign within the domain. Thus the domain of the plasma
problem contains regions of unstable strati�cation adja-
cent to regions of stable strati�cation.

IV. ONSET OF INSTABILITY

A. The case of equal region widths (δ = 1)

We begin with the case where the core region and the
SOL are taken to be of equal width, i.e. δ = 1, and con-
sider �rst the e�ect of varying the ion viscosity µ. Fig-
ure 3 shows the variation of the critical density di�erence
∆nc and the critical wavenumber kc with respect to µ at
�xed values of Dn. In the governing equations, (30) and
(31), the relevant parameters are Pr and Ra∗Pr ; as can
be seen from (21), changing µ changes Pr, while keeping
the combination Ra∗Pr unchanged. Thus, on reducing
µ, the coe�cient of the viscosity term in the vorticity
equation decreases. This lessens the stabilizing in�uence
of viscosity and is consistent with the universal trend ob-
served in Fig. 3a: on reducing the ion viscosity, the criti-
cal density di�erence required for the onset of instability
decreases.
Variation of the critical wavenumber (shown in Fig. 3b)

is less straightforward. Two features are apparent: the
�rst is the increase in critical poloidal wavenumber kc as
µ is decreased from O(1) values; the second is the non-
monotonic behavior of kc in the case of Dn = 10−3. We
focus �rst on the universal trend, i.e. the initial increase
with kc as µ is decreased, postponing the discussion of
the departure from this trend until the end of the section.
The shift of the preferred poloidal mode toward smaller
cells can be understood with reference to the structure
of the solution at the onset of instability. Figure 4 shows
contour plots of the critical modes of potential ϕ, vortic-
ity ω, and log-density θ perturbations, at �xed Dn = 0.1
and decreasing values of µ; for each case, the values of
∆nc and kc follow from Fig. 3. Note that the solutions
are periodic in the y direction with wavelength 2π/kc.
For comparison of cell structures in the related Figs. 4,
6, 11, 12, we have chosen to illustrate a portion of the do-
main of length 2π in the y direction, which encompasses
more than one wavelength (but is not periodic). Also

plotted are the underlying basic state log-density gradi-
ent Θ′ pro�les for each case, in which the convectively
unstable region is highlighted. When µ = 1, the per-
turbations take the form of large cells whose wavelength
is comparable to the width of the convectively unstable
region. This can be seen in Fig. 4a: contours of the po-
tential perturbation ϕ, and thus the �uid motion, are
con�ned to within the range of the convectively unsta-
ble region. Note, however, that the density perturbation
extends slightly into the quiescent region owing to dif-
fusion. Decreasing µ leads to a decrease in ∆nc, which,
broadly speaking, shifts the basic state gradient Θ′ up-
wards, thus narrowing the extent of the convectively un-
stable region (compare the bottom row of Fig. 4). This,
in turn, reduces both the radial and poloidal scales of
the cells; this narrowing of the cells is re�ected in the in-
crease of the critical wavenumber. When µ is decreased
below some critical value, a second stable region appears
and the convectively unstable region becomes localized
near the separatrix, sandwiched by convectively stable
regions (Fig. 4c). This drastic narrowing of the unstable
region is accompanied by a pronounced increase in kc,
which re�ects a change to smaller cells localized near the
separatrix.

The variation of ∆nc and kc with respect to Dn, at
�xed values of µ, is shown in Fig. 5. While µ directly
a�ects only one of the coe�cients in the governing equa-
tions, the explicit dependence on Dn is more widespread.
In particular, variation of Dn a�ects the coe�cients of all
the terms on the right hand side of the vorticity equation
((33), (35)), of which the interchange term is destabi-
lizing, and the viscous and damping terms are stabiliz-
ing. Furthermore, Dn comes into the coe�cients of two
terms in the density equation: the diamagnetic �ow term
(Ra∗Pr/Ω)∂yθ and the parallel dissipation term (Ω/L‖)θ,
both of which are stabilizing. As Dn is varied, the co-
e�cients of all of the stabilizing terms vary as ∼ D−1

n ,
while the coe�cient of the destabilizing interchange term
varies like ∼ D−2

n . Thus as Dn is decreased from unity,
the coe�cient of the interchange term increases substan-
tially faster than the coe�cients of the stabilizing terms,
and hence the critical density di�erence required for the
onset of instability decreases, as seen in Fig. 5a.

The variation of kc with respect to Dn, shown in
Fig. 5b, follows a similar pattern to that with respect to
µ (Fig. 3b); note, however, that varying Dn also changes
the shape of the basic state gradient. In particular, as
Dn is reduced, the transition betweenΘ′

1 andΘ′
2 becomes

sharper. This additional factor plays a role in a�ecting
the structure of the critical modes. This is most clearly
visible in contours of θ in Fig. 6. When Dn = 1 the un-
stable region covers all of the core region as well as the
majority of the SOL, and θ perturbations penetrate the
entire domain (Fig. 6a). As seen in Fig. 6b, on reducing
Dn, the width of the unstable region narrows, and with it
the extent of θ perturbation, which now penetrates only
slightly the convectively stable SOL. As we decrease Dn

further (Fig. 6c), a second stable region appears, and θ
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FIG. 3: Variation of (a) the critical density di�erence ∆nc, and (b) the corresponding critical wavenumber kc at the
onset of instability with respect to the ion viscosity µ, for di�erent values of Dn and δ = 1.

perturbations become localized near the separatrix where
the basic state is convectively unstable.
Figure 7 shows the variation of the frequency at the

onset of instability. The frequency is negative, which
implies propagation of convective cells in the positive y
direction. Generally, the magnitude of the frequency in-
creases as Dn is decreased (at a �xed µ). This is con-
sistent with our expectations from our analysis of the
single region plasma problem18, where we found that the
frequency at the onset of instability varies roughly like
γ ∼ −µD−2

n . Following this we would expect the mag-
nitude of the frequency to decrease as µ is decreased.
This indeed seems to be the overall trend, although for
small Dn (e.g. Dn = 0.001 in Fig. 7b) this decrease is not
monotonic.
Thus far, we have explained the increase in wavenum-

ber as the di�usion coe�cients are decreased. It now re-
mains to address the departure from this trend in cases
when µ and Dn are decreased below a certain value (see
curves Dn = 10−3 and µ = 10−3 in Figs. 3b, 5b respec-
tively). Intuitively, one can expect that this transition is
a result of changes in the dominant balance of terms in
the governing equations. To explore this issue, we calcu-
late the root mean square (r.m.s.) value of a quantity fj
as

f rms
j = ‖fj‖ =

(

∫

Xj

fj · f̄j dx

)1/2

, (51)

where overbar denotes the complex conjugate, the index

j = 1, 2 indicates core and SOL regions respectively, and
the corresponding regions of integration are X1 = [−1, 0],
and X2 = [0, δ]. Furthermore, we normalize all calculated
r.m.s. values by ϕrms

1 . This then leads to a convenient
graphical representation for the magnitudes of all of the
terms in (33) � (36) in terms of bar charts.
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(a) µ = 1 (b) µ = 0.05 (c) µ = 10
−3

FIG. 4: From top to bottom: contours of potential ϕ, vorticity ω, log-density θ perturbations, and the underlying
basic state log-density gradient Θ′ pro�les with the convectively unstable region highlighted. Particle di�usivity is

�xed at Dn = 0.1, ion viscosity µ decreases from left to right: (a) µ = 1, (b) µ = 0.05, (c) µ = 10−3.
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FIG. 5: Variation of (a) the critical density di�erence ∆nc, and (b) the corresponding critical wavenumber kc at the
onset of instability with respect to the particle di�usivity Dn, for di�erent values of µ and δ = 1.
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(a) Dn = 1 (b) Dn = 0.04 (c) Dn = 2× 10
−3

FIG. 6: From top to bottom: contours of potential ϕ, vorticity ω, log-density θ perturbations, and the underlying
basic state log-density gradient Θ′ pro�les with the convectively unstable region highlighted. Ion viscosity is �xed at

µ = 0.1, particle di�usivity Dn decreases from left to right: (a) Dn = 1, (b) Dn = 0.04, (c) Dn = 10−3.
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FIG. 7: Variation of the frequency of oscillation associated with the critical mode with respect to (a) the particle
di�usivity Dn, and (b) ion viscosity µ.
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Figure 8 shows the r.m.s. values of all terms in (33) �
(36) for µ = 10−3 and decreasing values of Dn. In the
SOL region, the di�usion and parallel loss terms dom-
inate in both the vorticity and density equations in all
three cases plotted. On the other hand, in the core, on
decreasing Dn there is a marked change in the domi-
nant balance. In particular, on going from Dn = 10−1

(Fig. 8a) to Dn = 10−3 (Fig. 8c) there is a shift from
a state where there is a clear balance between just two
terms in each equation to a state where all terms (or all
but one in the density equation) become comparable in
magnitude. While a �rst principles explanation of this
behavior is elusive, we can gain some understanding by
identifying de�nite trends in the nature of the numeri-
cal solution. We can also develop some intuition about
the system by exploiting the analogy with thermal con-
vection. In the convection problem, described by eqns.
(49), (50), time derivatives vanish at onset and there is a
simple relation between the streamfunction and the tem-
perature perturbation: ψ ∼ Ra

∗ θ. Given the oscillatory
nature of the instability in the plasma problem, as well as
the presence of the non-constant coe�cients and a num-
ber of other modi�cations, the relation between the mag-
nitudes of ϕ and θ will conceivably be more complicated.
Nevertheless, the analogy between the two problems pro-
vides us with a crude, yet informative, rule of thumb:
since 1/Ra∗ ∼ Dnµ we can expect the ratio ‖θ‖/‖ϕ‖ to
decrease as Dn and µ are decreased. Indeed, this has
been veri�ed in numerical solutions.

In the case with Dn = 10−1, shown in Fig. 8a, the
balance in the vorticity equation in the core region is
between the interchange term and the di�usion term.
On reducing Dn, the r.m.s. values of all three terms in
the vorticity equation increase. Crucially, on going from
Dn = 10−1 to Dn = 10−3, the time derivative term grows
to become comparable in magnitude with the interchange
and di�usion terms. This e�ect can be attributed to
the increase in the magnitude of the frequency at onset
(see Fig. 7a). The coe�cients of the interchange term,
Ra

∗
Pr ∼ D−2

n , and of the di�usion term, Pr ∼ D−1
n , also

increase as Dn is decreased. We note that although the
magnitude of θ itself decreases, the interchange coe�-
cient grows more rapidly � in particular, on varying Dn

between 1 and 10−3, ‖θ‖/‖ϕ‖ decreases only by a factor
of 10. It is thus understandable that the r.m.s. values
of the interchange and di�usion terms in the vorticity
equation should also increase on decreasing Dn.

The change in the nature of dominant balance in the
density equation in the core region can be explained
using the arguments laid out above. In the case with
Dn = 10−1, the balance is between the term describing
advection of the basic state density distribution and the
di�usion term. Decreasing Dn increases the frequency
at onset as well as the coe�cient Ra∗Pr/Ω ∼ D−1

n , with
both of these quantities increasing faster than θ dimin-
ishes. Thus, the term representing advection of density
by the diamagnetic �ow (Ra∗Pr/Ω)∂yθ grows together
with the time derivative term until ultimately all terms,

apart from −2Θ′∂xθ (which remains sub-dominant for all
parameters studied here), are of comparable magnitude.
We note that this change in the nature of the domi-

nant balance in the equations governing the core region
coincides with the turning point in the critical k curve.
The behavior of kc as Dn is decreased changes when sub-
dominant terms grow su�ciently large to a�ect the dom-
inant balance.
The variation of the r.m.s. values of all terms in (33) �

(36) for Dn = 10−3 and decreasing values of µ is shown
in Fig. 9. Note that the case with Dn = µ = 10−3 is com-
mon to Figs. 9c and 8c. Unlike in the cases presented in
Fig. 8, where a clear balance in the SOL between di�u-
sion and parallel loss terms persisted for all values of Dn,
here the SOL balance is spread out across all terms with
the exception of the time derivative term in the vorticity
equation and the −2Θ′∂xθ term in the density equation.
In terms of the balance in the core region, broadly speak-
ing, the pattern depicted in Fig. 9 is similar to that in
Fig. 8: on reducing the value of the di�usion coe�cient,
there is a shift from a state where there is a clear balance
between a few terms to a state where all (or nearly all)
terms become comparable in magnitude. Starting with
µ = 10−1 (Fig. 9a), the dominant terms in the vorticity
equation are the interchange and di�usion. In the den-
sity equation, with Dn = 10−3, the frequency γ and the
factor Ra∗Pr/Ω are large, and thus the dominant balance
is between ∂tθ and (Ra∗Pr/Ω)∂yθ. On decreasing µ, the
r.m.s. values of the dominant terms in both the vorticity
and density equations decrease until they become com-
parable with those of the formerly sub-dominant terms.
The reduction in the r.m.s. values of the interchange term
Ra

∗
Pr∂yθ in the vorticity equation, as well as ∂tθ and

(Ra∗Pr/Ω)∂yθ in the density equation, can be attributed
to the diminishing magnitude of θ. At the same time, the
magnitude of the di�usion term in the vorticity equation
decreases on account of diminishing Pr.

B. The case of unequal region widths (δ 6= 1)

We now consider the case where the two regions are
of di�erent width. Figure 10 shows the variation with
respect to δ of the critical density di�erence ∆nc, critical
wavenumber kc, and frequency γc at the onset of insta-
bility for a few select (Dn, µ) parameter cases. Evidently,
∆nc is decreasing with δ (Fig. 10a). Furthermore, as δ
is decreased toward 0, we expect ∆nc to increase with-
out limit. From equation (27), we see that as δ → 0,
A1 → 0, and the basic state density tends to a uniform
distribution N1 → 1 + ∆n. In the absence of an adverse
basic state density gradient, the necessary condition for
instability cannot be satis�ed, and the system is linearly
stable for arbitrarily large ∆n. The frequency γc of the
critical mode increases (i.e. becomes less negative) as δ
is decreased. In particular, note that in the case with
Dn = 0.1, µ = 0.01 the frequency changes sign, from
negative to positive, as δ is decreased. This implies a
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FIG. 8: Root mean square values of individual terms in (33)�(36), normalized with respect to ‖φ1‖, for �xed
µ = 10−3 and decreasing values of Dn: (a) Dn = 10−1, (b) Dn = 10−2, (c) Dn = 10−3. Panels on the left show

magnitudes of the terms in the vorticity equation in the core and SOL regions, equations (33) and (35), respectively.
Similarly, the panels on the right show magnitudes of the terms in the density equation in the core and SOL regions,

equations (34) and (36), respectively.

reversal in the direction of propagation of perturbations.
It also implies that there exists (at least for this case)
a value of δ where the instability is non-oscillatory i.e.
γ = 0.

As δ is decreased from unity, we also observe a ten-
dency of the instability to favor perturbations with larger
wavelength, as evidenced by decreasing critical wavenum-
ber for su�ciently small δ (Fig. 10b). In two of the cases
(Dn = 0.1, µ = 0.01 and Dn = 1, µ = 0.01) this decrease
in the critical wavenumber is monotonic, whereas in the
other (Dn = 0.01, µ = 0.1) it is preceded by a small in-
crease in kc. In the two former cases, this change in the
preferred length scale could be attributed to the narrow-
ing of the convectively unstable region. Figure 11 shows

contour plots of potential ϕ, vorticity ω, and log-density θ
perturbations, along with the underlying basic state log-
density gradient Θ′ pro�les, for Dn = 1, µ = 0.01 and
decreasing values of δ. As seen in the bottom two rows of
Fig. 11, as δ is decreased, the extent of the convectively
unstable region grows in proportion to the total width
of the domain, thus favoring perturbations with larger
wavelength.

Contour plots of the critical mode for the case that ex-
hibits non-monotonic variation of kc with respect to δ are
shown in Fig. 12. Clearly, the structure of the solutions
in this case is markedly di�erent to that described im-
mediately above. For a start, the underlying basic state
density is such that the convectively unstable region is
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FIG. 9: Root mean square values of individual terms in (33)�(36) for �xed Dn = 10−3 and decreasing values of µ:
(a) µ = 10−1, (b) µ = 10−2, (c) µ = 10−3.

localized near the separatrix, sandwiched between two
stable regions (see bottom row of Fig. 12). For δ = 0.6
(before the peak in Fig. 10b), the �uid motion is con�ned
to the core region and the density perturbations are lo-
calized near the separatrix, as seen in the contours of ϕ
and θ in Fig. 12a. Recall from Fig. 10b that as δ is de-
creased, the critical wavenumber increases initially to a
maximum, beyond which further decrease in δ leads to
an abrupt decrease in kc. Contour plots of the critical
modes near the maximum of kc (δ = 0.15) and beyond
(δ = 0.12) are shown in Fig. 12b and 12c respectively.
There, we observe that the �uid motion is no longer con-
�ned to the core region, but instead extends over the
whole width of the domain. Moreover, the critical mode
is now characterized by non-zero �ow velocities on the
x = δ boundary. The peak of the density perturbation
is no longer in the region where the basic state is con-

vectively unstable, but instead is localized to the thin
SOL.
Finally, we observe that as δ is increased, the critical

density di�erence, the critical wavenumber and the fre-
quency quickly tend toward asymptotic values associated
with the limit of δ → ∞. In this limit the problem re-
duces to something akin to convection in a layer of �uid
bounded from one side by an in�nite expanse of stably
strati�ed �uid.

V. DISCUSSION

In this paper we have performed a comprehensive lin-
ear stability analysis of a simple core-SOL model of in-
terchange motions in the plasma edge of magnetic con-
�nement devices. We have investigated how the stability
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FIG. 10: Variation of (a) the critical density di�erence, (b) the corresponding critical wavenumber, and (c) the
frequency at the onset of instability with respect to the width ratio δ. In (c), square markers indicate positive

frequency, i.e. −γ < 0.

threshold and the structure of the critical mode change
as functions of particle di�usivity, ion viscosity, and the
ratio of the widths of the two regions.

We �nd that decreasing the values of the di�usion pa-
rameters lowers the critical density di�erence at the on-
set of instability, thus leading to a more unstable sys-
tem. Furthermore, we identify two distinct regimes at
onset: one where the critical modes span the entire re-
gion of the core in the model, and even extend into the
scrape-o� layer; and the other where the critical modes
are localized in a thin region at the separatrix. The emer-
gence of these two regimes is linked to the nature of the
underlying basic state density gradient (see Figs. 4, 6).
In the �rst � which occurs when neither the (normal-
ized) ion viscosity nor particle di�usivity are particularly
small � the form of the basic state gradient results in
the domain being divided into a convectively unstable re-
gion and a convectively stable region. The perturbations
take the form of cells whose radial extent and poloidal
wavelength are comparable to the width of the unstable
region. In the second regime, the basic state gradient
splits the domain into three parts: a convectively unsta-
ble region in the vicinity of the separatrix, sandwiched
by convectively stable regions. The additional stable re-
gion appears when either the ion viscosity or the particle
di�usivity are decreased below some critical values. The
resulting drastic narrowing in the extent of the convec-
tively unstable region leads to an increase in the critical
wavenumber, indicating a change to smaller cells local-
ized near the separatrix.

As the width ratio of the two regions δ is increased
from unity, the stability threshold quickly becomes inde-
pendent of δ (see Fig. 10). On the other hand, decreasing
δ from unity signi�cantly a�ects both the onset of insta-
bility and the structure of the most unstable mode (see
Fig. 12). Speci�cally, as δ is decreased, the system be-

comes increasingly more stable. This is expected, since
in the limit of δ → 0 the basic state density gradient
vanishes, and thus the necessary condition for instability
cannot be satis�ed. It is, however, worth noting that our
model inherently relies on the presence of both core and
SOL regions, and hence the limit of δ → 0 should not be
thought of as a core-only model.

The analysis included in this paper opens up a number
of avenues for further investigation, both in terms of the
linear stability problem and also the nonlinear develop-
ment of the instability. The model under consideration
here contains a number of simplifying assumptions. Re-
taining the 2D slab geometry, it would be of interest to
understand how the onset of linear instability is a�ected
by the relaxation of the Boussinesq approximation and
the assumptions of isothermal electrons and cold ions.
Our detailed investigation of the nature of the onset of
instability paves the way for a systematic exploration of
the nonlinear evolution. Having nailed down the stability
threshold, we are in a position to assess the degree of su-
percriticality of any nonlinear computation and, indeed,
to determine whether subcritical solutions are feasible.
In the nonlinear regime, it is of particular interest to
study the evolution of the system in order to investigate
whether the range of distinct behavior at the onset of in-
stability has consequences for transport in the SOL when
the system is driven to a turbulent state. Furthermore,
whereas drift wave modes are linearly damped, and hence
play no important role in the current study, they may be
signi�cant in terms of the nonlinear evolution. As dis-
cussed by Scott 28 , drift waves, which are subcritical, can
sustain �nite amplitude turbulence, and hence their dy-
namics must be considered in concert with the nonlinear
evolution of interchange modes.
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(a) δ = 2 (b) δ = 1 (c) δ = 0.5

FIG. 11: From top to bottom: contours of potential ϕ, vorticity ω, log-density θ perturbations, and the underlying
basic state log-density gradient Θ′ pro�les, with the convectively unstable region highlighted. Ion viscosity and

particle di�usivity are �xed at Dn = 1, µ = 0.01; width ratio is (a) δ = 2, (b) δ = 1, (c) δ = 0.5.
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(a) δ = 0.6 (b) δ = 0.15 (c) δ = 0.12

FIG. 12: From top to bottom: contours of potential ϕ, vorticity ω, log-density θ perturbations, and the underlying
basic state log-density gradient Θ′ pro�les, with the convectively unstable region highlighted. Ion viscosity and

particle di�usivity are �xed at Dn = 0.01, µ = 0.1; width ratio is (a) δ = 0.6, (b) δ = 0.15, (c) δ = 0.12.
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