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MEC-Assisted Immersive VR Video Streaming over

Terahertz Wireless Networks: A Deep

Reinforcement Learning Approach
Jianbo Du, F. Richard Yu*, Fellow, IEEE, Guangyue Lu*, Junxuan Wang*, Jing Jiang, and Xiaoli Chu

Abstract—Immersive virtual reality (VR) video is becoming
increasingly popular owing to its enhanced immersive experience.
To enjoy ultra-high resolution immersive VR video with wireless
user equipments such as head-mounted displays (HMDs), ultra-
low-latency viewport rendering and data transmission are the
core prerequisites, which could not be achieved without a
huge bandwidth and superior processing capabilities. Besides,
potentially very high energy consumption at the HMD may
impede the rapid development of wireless panoramic VR video.
Multi-access edge computing (MEC) has emerged as a promising
technology to reduce both the task processing latency and
the energy consumption for HMD, while bandwidth-rich THz
communication is expected to enable ultra-high-speed wireless
data transmission. In this paper, we propose to minimize the
long-term energy consumption of a THz wireless access based
MEC system for high quality immersive VR video services
support by jointly optimizing the viewport rendering offloading
and downlink transmit power control. Considering the time-
varying nature of wireless channel conditions, we propose a
deep reinforcement learning based approach to learn the op-
timal viewport rendering offloading and transmit power control
policies and an asynchronous advantage actor-critic (A3C) based
joint optomization algorithm is proposed. Simulation results
demonstrate that the proposed algorithm converges fast under
different learning rates, and outperforms existing algorithms in
terms of minimized energy consumption and maximized reward.

Index Terms—Computation offloading, virtual reality, THz
communication, deep reinforcement learning, asynchronous ad-
vantage actor-critic.

*This work was supported in part by the Natural Science Foundation of
China under Grant 61901367, in part by the Natural Science Foundation of
Shaanxi Province under Grant 2020JQ-844 and 2019JM-442, in part by the
Science and Technology Innovation Team of Shaanxi Province for Broadband
Wireless and Application under Grant 2017KCT-30-02, in part by the National
Natural Science Foundation of China under Grant 61871321, 61901381,
61901370, in part by the National Key Research and Development Program
of China (2018YFE0126000), in part by the key research and development
plan of Shaanxi province (2017ZDCXL-GY-05-01), in part by the Xi’an Key
Laboratory of Mobile Edge Computing and Security (201805052-ZD3CG36).
(Corresponding author: F. Richard Yu, Guangyue Lu, and Junxuan Wang.)

J. Du, G. Lu, J. Wang, and J. Jiang are with Shaanxi Key Laboratory
of Information Communication Network and Security, School of Com-
munications and Information Engineering, Xi’an University of Posts and
Telecommunications, Xi’an 710121, China. (Email: dujianboo@163.com;
tonylugy@163.com; wangjx@xupt.edu.cn; jiangjing@xupt.edu.cn)

F. Richard Yu is with Systems and Computer Engineering, Carleton
University, Ottawa, ON, Canada. (e-mail: Richard.Yu@carleton.ca).

X. Chu is with Department of Electronic and Electrical Engineering,
The University of Sheffield, Mappin Street, Sheffield, S1 3JD, UK. (Email:
x.chu@sheffield.ac.uk).

I. INTRODUCTION

In the last few years, the rapid development of fast video

processing and omnidirectional cameras has bred a new media

form, known as the immersive (3600, or panoramic) virtual

reality (VR) video [1]. Using user equipment (UE), such as

head-mounted displays (HMDs), smartphones, and personal

computers, immersive VR video can provide a 3600 omni-

directional immersive experience of, e.g., concerts, exhibitions,

sports, etc [2]. The realization of immersive VR video relies

on extremely large amount of data processing and transferring.

Current VR systems depend largely on wired transmission,

which restricts its applications, while wireless VR can poten-

tially unleash its potential to the maximum [3], [4]. Moreover,

processing computationally intensive tasks for immersive VR

video on HMDs will result in excessive heat, short battery life,

and high unit prices.

In order to deliver immersive VR video over wireless

networks, three fundamental challenges need to be urgently

addressed. The first challenge lies that it is hard for the

current cellular networks to provide sufficient high wireless

transmission rate and thus to support the extremely high data

rate requirement of immersive VR video transmission [3], e.g.,

350 Mbps [5]. The second major challenge lies in the heavy

energy consumption in HMDs. The portion of an immersive

VR video that a user is watching needs to be projected to a

2D plane referred to as the viewport. This portion mapping

is called viewport rendering [6], which requires mapping

the spherical VR video signal to the viewport pixel-by-pixel

on an HMD, where complex matrix computation is needed

and a large amount of energy will be consumed from the

HMD’s battery. The third challenge lies in the strict latency

requirements (e.g., no more than 20 ms) imposed on the total

delay of immersive VR video decoding, wireless transmission

[7], and viewport rendering. The video decoding and viewport

rendering operations typically take about 6 − 100 ms, while

wireless transmission will take 100− 200 ms. The large end-

to-end latency will degrade the QoE of interactive immersive

VR video playback significantly [5], [8].

To overcome the challenge in supporting very high data

rates, terahertz (THz) communication (0.1-10 THz) [9], [10]

has been proposed as a promising enabler of super-high data

rate, ultra reliable, and low delay applications [3], such as

immersive VR video. Meanwhile, as an powerful supplement

and enhancement of cloud computing [11], multi-access edge

computing (MEC) enables HMDs to offload their energy-
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demanding viewport rendering tasks to MEC servers (MECSs)

[12], [13], and consequently offers an opportunity to tackle the

last two challenges [14]. However, since the problem of task

offloading decision optimization is usually coupled with re-

source management, making the problem usually non-convex

and NP-hard [15], [16]. Moreover, in fast time-varying and

highly dynamic mobile wireless networks, it is challenging to

make optimized decisions for binary [17] task offloading and

resource allocation at all times. Recently, deep reinforcement

learning (DRL) [18], [19] has been employed as an effective

tool to obtain optimized solutions to non-convex and so-

phisticated optimization problems in highly dynamic wireless

environments, especially the problems with continuous state

and action spaces. Motivated by their respective benefits, it

is quit interesting and inspiring to apply THz communication

with MEC to support immersive VR video for QoE promotion,

and employ DRL for further performance improvement in

problem solving. However, this is a brand new area, and is full

of opportunities and challenges, which promote the study of

this paper. The main contributions are summarized as follows.

• We propose a THz wireless access based MEC system to

support high quality immersive VR video services, where

THz communication is employed to achieve low-latency

for the elephant immersive VR video data downlink trans-

mission. The MECS will perform proactive immersive

VR video content caching, real-time transcoding, and

pixel-by-pixel viewport rendering on behalf of HMD,

depending on the viewport offloading decision.

• We formulate a novel optimization problem to minimize

the long-term averaged energy consumption of an HMD

by jointly optimizing the binary viewport rendering of-

floading decision for each immersive VR video chunk

and the downlink transmit power of the MECS, with data

queue stability guaranteed.

• Considering the complexity, the joint optimization prob-

lem is solved by employing asynchronous advantage

actor-critic (A3C) algorithm, where multiple deep neu-

ral networks are trained asynchronously using gradient

descent method, and the optimal viewport rendering

offloading decision and transmit power control policy

can be obtained with a fast convergence speed and good

performance compared with other existing algorithms.

The remainder of this paper is organized as follows. Related

works are presented in Section II. Section III introduces the

system model and Section IV presents the problem formula-

tion. In Section V the problem is solved efficiently employing

A3C based algorithm. Simulation results are provided in

Section VI. Finally, the paper is concluded in Section VII.

II. RELATED WORKS

With the rapid development of VR, MEC, THz commu-

nication, and DRL, the attempt of using DRL to imporve

the performance of MEC, and the idea of using MEC and

THz communication to support wireless VR, have attracted

increasing attention.

The combination of MEC and DRL has become a hot

topic in recent years. The authors in [20] considered task

offloading among neighboring vehicles in a vehicular edge

computing systems. Based on the multi-armed bandit theory,

they proposed a learning based task offloading algorithm

where vehicles could learn the offloading delay information

from their adjacent vehicles in the process of task offloading,

and thereby to minimize the average offloading latency. In

[21], the authors studied a scenario where multiple edge

devices acted as the MECS, and one energy harvesting enabled

IoT device could offload its task to one of the edge devices.

According to the battery level, previous radio transmit rate,

and the predicted amount of harvested energy, they presented

a reinforcement learning based offloading scheme to obtain

the optimal offloading decision for the IoT device. In order

to minimize the service delay, the authors in [22] investigated

the joint optimization of computation resource allocation and

network resource assignment in an integrated software-defined

MEC system, and proposed a Deep Q Network (DQN) based

algorithm for adaptive resource allocation optimization. The

authors in [23] considered the task offloading problems in

a blockchain-empowered MEC system where the offloading

decisions of both mining tasks and data processing tasks

were jointly optimized to minimize the long-term cost in task

offloading. Leveraging DRL, the optimal offloading decision

was obtained based on past experience, and the convergence

was sped up by integrating genetic algorithm in the exploration

process of DRL where useless exploration was discarded. In

[24] the authors investigated the joint computation resource

allocation and task offloading in a space-air-ground integrated

network, where unmanned aerial vehicles (UAVs) served as

the MECS and satellites acted as the remote cloud center. To

address the system dynamics and the complex control process,

they leveraged DRL to learn the optimal offloading decision

and actor-critic algorithm to accelerate the learning process.

With the increasing popularity of VR/AR, combining VR-

releated services with other technologies for performance

improvement is a fairly new and valuable area. To support

immersive VR video stream processing and transmission, the

authors in [5] proposed an MEC platform operating in both

mmWave and sub-6 GHz bands that could maximize the

wireless bandwidth utilization and the mobile device’s energy

efficiency by jointly optimizing the link adaptation, video

chunk quality adaptation, and viewport rendering optimization.

In [3] the authors studied the elephant data transmission of VR

services in a THz cellular network, derived the PDF of the

transmission delay, and showed that THz band wireless com-

munication can support the elephant VR data flow with a high

reliability and high data rates. In [25], the authors considered

a data correlation-aware resource allocation problem in a VR

system in order to maximize the VR users’ successful data

transmission probability, and developed a Q-learning based

algorithm to find the optimal resource allocation scheme,

which could adapt to different users’ VR content requests and

data correlation. In [26], the authors studied a VR system

where VR users sent their requests to the BS for downlink

3600 image transmission, and formulated a problem that

jointly optimizes the image transmission and image rotation

to maximize the users’ successful transmission probability.

To solve this optimization problem, they proposed a transfer
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learning algorithm based on liquid state machine, which could

transfer the learned successful transmission into a new one in

order to increase the convergence speed.

The above studies have provided some insightful ideas about

using DRL to obtain the optimal offloading decision and/or

resource allocation in MEC systems [20]–[24], or support

VR service from some certain aspects, e.g., using MEC to

support VR services for more powerful processing [5], using

THz/mmWave to support the elephant VR data flow [3], and

using reinforcement learning to make full use of resources

in VR supporting [25], [26]. However, as an increasingly

important and highly resource-demanding application nowdays

and in the near future, VR still needs to be supported from

multiple aspects in order for better quality of experience

(QoE). To achieve this goal, some important technologies

in 5G/6G can play their own roles from different aspects,

where THz can provide extremely high date rate for VR data

transmission, MEC can provide VR with stronger processing

capability, and DRL algorithms can obtain the optimal solution

and thus to further improve the performance of using THz

and MEC for VR, where A3C is an effective and outstanding

algorithm among the DRL family [27], [28]. Motivated by the

above considerations, in this paper, we use MEC and THz

to improve the performance of VR, and develop an effective

algorithm based on A3C for optimal viewport rendering of-

floading decision making and downlink transmit power control

for THz wireless link.

III. SYSTEM MODEL

The proposed system is composed of an MECS and an

HMD user, with a THz cellular network connecting the two

entities. The MECS is located at the THz base station and

is connected to the content provider where the compressed

original immersive VR video resources are stored through

wired fiber links. In our system, all immersive VR videos

that the user requests are cached at the MECS [12] and the

case when the requested content is not cached and should

be retrieved from the content provider is out of the scope of

this paper. Next we will introduce the MECS and the THz

downlink communication model with detail.

A. MEC Server

The MECS contains a transcoding module, a decision

maker, a information acquisition module, and a computing

module [5], [29].

Originally, immersive VR video is encoded into space-

partitioned tiles, and then each tile is further partitioned into

chunks temporally in order to facilitate viewport rendering

operation [5], [6]. The small data chunk can be used to

avoid large motion-to-photon latency in HMD when HMD’s

viewport changes rapidly during the interactive of immersive

VR video. The transcoding module in MECS is used for

decompressing each chunk from the original compressed im-

mersive VR video stream including viewport tiles and non-

viewport tiles, and provides the uncompressed full-resolution

immersive VR video to HMD [30]. The output chunk data

stream from the transcoding module is first assembled into a

series of chunks where each chunk is with a duration of one

group of pictures (GOP) and consisting of four frames, and

then transmitted over high-speed THz link to the HMD [5].

For full-resolution videos, the tiles within the viewport

region are called viewport tiles, which are with high resolution

and need the above aformentioned viewport rendering opera-

tion, while the tiles outside the viewport are called standby

tiles, which is with low quality and are not necessary to

be rendered. When the viewport video data could not be

able to keep pace with the rapid variation of viewport in

HMD, the low-quality standby tiles will be mapped to the

viewport at HMD for smoothing viewport viewing experience.

Viewport rendering can be performed at different places. Fig.

1 (A) illustrates local rendering where the uncompressed full-

resolution immersive VR video data are first transmitted to

HMD and viewport rendering will be performed locally at

the HMD. Fig. 1 (B) shows the situation where viewport is

rendered on the MECS, and then the rendered viewport as

well as the uncompressed standby tiles are then transmitted

to the HMD. If viewport rendering is conducted by MECS,

the computing module in the MECS will work and perform

viewport rendering operation for the HMD.

The information acquisition module is in charge of col-

lecting the power and the viewport information of the HMD,

and estimates the THz downlink quality information from the

uplink reference signals broadcasted by the HMD.

According to the collected link quality information, and

HMD’s viewport information, the decision maker performs

optimization under given latency constraints. The optimization

terms include downlink transmit power control, and viewport

rendering offloading optimization, i.e., should the viewport be

rendered on the MECS and then be transmitted to the HMD,

or first be transmitted to HMD and then rendered there.

B. THz Band Channel Model

In this section, we present some basic knowledge and the

characteristics of THz band channel.

The THz wireless propagation model is a multipath model

including LOS and the reflected path rays. Since the scattered

and diffracted rays play insignificant roles on the received

signal, similar to [9], they are not taken into consideration

in our system model. In our system, time is slotted where the

length and the index of a time slot are denoted as △t and t,
and the set and number of time indexes are denoted as T and

T , respectively. We consider a quasi-static scenario, where the

environment keeps static at each time slot but varies between

different time slots.

For a distance d at time slot t, supposing there are total-

ly Ud(t) THz subwindows1 [9] and the uth subwindow is

composed by Nref (t) reflected rays, the multipath channel

1In the THz band, the basic unit of wireless resource allocation is called
a subwindow, and the available bandwidth and the number of subwindows
changes with the variation of distance d.
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response model can be given by [9]

hd
u(t) = αd

u,LOS(t)δ(t− τdu,LOS(t))1
d
u,LOS(t)

+

Nref (t)
∑

q=1

αd
u,q(t)δ(t− τdu,q(t)), (1)

where 1(·) is the indicator function and 1
d
u,LOS(t) equals to

1 or 0 denotes the presence of LOS path or not. The terms

αd
u,LOS(t) and αd

u,q(t) are attenuation factors indicating the

attenuation of the LOS path and the qth reflected ray of the

uth frequency subwindow, and τdu,LOS(t) and τdu,q(t) are the

propagation delay of the LOS path and the qth reflected ray,

respectively. The set and number of all multipath components

for the uth subwindow is denoted byN d
u (t) and Nd

u(t), and we

have Nd
u(t) = 1

d
u,LOS(t)+Nref (t). In this paper we suppose

Nref (t) = 2. In HMD side, the received signal is constructed

by a superposition of the LOS and the reflected rays, and the

material parameters are available and could refer to [10].

Invoking the Wiener-Khinchin theorem [10], the attenu-

ations of the LOS and the qth reflected rays of the uth

subwindow can be given by [10]

αd
u,LOS(t) = |HLOS(fu, t)|,

αd
u,q(t) = |Href,q(fu, t)|, (2)

where fu is the center frequency of the uth subwindow, and

HLOS(fu, t) and Href,q(fu, t) are the corresponding transfer

functions, which are functions of fu.

The transfer function of LOS channel HLOS(fu, t) com-

poses the spreading loss function Hspr(fu) and the molecular

absorbtion loss function Habs(fu), which is given by [10]

HLOS(fu, t) = Hspr(fu) ·Habs(fu) · e−j2πfuτ
d
u,LOS(t)

=
c

4πfd
· e− 1

2k(fu)d · e−j2πfuτ
d
u,LOS(t), (3)

where c is the speed of light, d is the distance between the

THz base station (the transmitter) and HMD (the receiver),

τdu,LOS(t) =
d
c

is the time-of-arrival of the LOS ray, and k(fu)
is the frequency-dependent medium absorption coefficient

which depends on the material of the transmission medium

at molecular levels.

The transfer function of the reflected path can be obtained

as follows. Denote dq,1 as the distance between the THz base

station and the reflector, and dq,2 as the distance between the

reflector and HMD, and dq as the distance between the THz

base station and HMD, then the transfer function of the qth

reflected ray, Href,q(fu, t), is given by

Href,q(fu, t) =
c

4πfu(dq,1+dq,2)
· e−j2πfuτ

d
u,q(t)−

1
2k(fu)(dq,1+dq,2) ·Ru,q(fu),

(4)

where τdu,q(t) = τdu,LOS(t)+(dq,1+dq,2−dq)/c is the time-of-

arrival of the reflected ray, and Ru,q(fu) is the rough surface

reflection coefficient. According to Kirchhoff scattering theory

[10], Ru,q(fu) can be obtained by multiplying the smooth

surface reflection coefficient ηu,q(fu) with the Rayleigh rough-

ness factor ρu,q(fu) as follows

Ru,q(fu) = ηu,q(fu) · ρu,q(fu)

= −exp
(

−2cos(θq)
√

n2
t − 1

)

· exp
(

−8π2f2
uσ

2cos2(θq)

c2

)

, (5)

where θq is the angle of the qth reflected ray and can be

obtained by θq = 1
2cos

−1
(

d2
q,1+d2

q,2−d2
q

2dq,1dq,2

)

, and nt is referred

to as the refractive index which depends on the frequencies

and the transmit medium [10], and σ is a parameter called the

rough surface height standard deviation coefficient [10].

C. Transmit Rate of THz Channel

To obtain the THz transmit rate, we first derive the ex-

pression of SINR in downlink THz wireless transmission. For

a distance d in slot t, there are Ud(t) subwindows can be

used for data transmission. Here the number Ud(t) is the

ratio between the total available bandwidth and the bandwidth

of a general subwindow [10]. In the THz band, the number

of subwindows for a general distance d is at the order of

multiple tens. As in [10], the bandwidth of each subwindow

can be set as Bg = 10 GHz, which is less than the coherence

bandwidth and therefore the inter-symbol interference (ISI)

[31] can be eliminated and narrowband communication on

each subwindow can be enabled. However, severe interband

interference (IBI) caused by the power leakage from the

adjacent subwindows occurs and could not be ignored. In

[10], the authors have shown that the IBI from adjacent

subwindows can be approximated as a Gaussian distributed

random variable, and the distribution of the IBI on the uth

subwindow follows

Idu(t) ∼ N



0,

∫
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Ud(t)
∑

v,v ̸=u

Pv(t)

∣
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Gv(fu)
∑

m∈Nu

αd
v,m(t)

∣
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2

dfu



, (6)

where Gv is the waveform, Pv(t) denote the transmit power

allocated on the vth subwindow, and the path attenuation

vector is given by

α
d
v(t) = {αd

v,m(t), m ∈ Nu}

=

[

αd
v,LOS(t), α

d
v,1(t), ..., α

d

v,N
(v)
ref

(t)

]

. (7)

Based on the above defined channel response hd
u(t) and

interference Idu(t), the instantaneous SINR γd
u(t) can be given

by

γd
u(t) =

Gt(t)Gr(t)|hd
u(t)|2Pu(t)

Gt(t)Gr(t)Idu(t) +Bgn0
, (8)

where n0 is the power spectral density of Gaussian white

noise. In THz band, the noise mainly comes forme the molec-

ular absorption, which is frequency-dependent [32]. Another

major noise source results from the receiver and depends on

the production technology. As in [10], we suppose the noise

can be approximated as Gaussian white noise. Moreover, let ϵu
denote the bit error rate (BER) on the uth subwindow, and for
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Fig. 1: MEC based immersive VR video transcoding framework.

a given BER, the transmit rate of each Hz on the subwindow

u in slot t (in bit/Hz) is given by [33]

kdu(t) = log2

(

1− 1.5γd
u(t)

ln(5ϵu)

)

, (9)

where the expression in log(·) stands for the maximum sup-

ported constellation of MQAM. Consequently, the data rate of

each subwindow at distance d in slot t can be given by

Rd(t) = Bg

Ud(t)
∑

u=1

kdu(t). (10)

Remark 1: The potential of using THz frequencies to

support super high data rate applications, including immersive

VR video, while ensuring ultra reliable, low latency commu-

nications has been demonstrated in [2], [3]. By analyzing

the delay and reliability, the authors demonstrated that it

is feasible to provide satisfactory immersive VR services by

operating on THz cellular networks. Standing on the shoulders

of giants, we build our MEC system on THz frequency, and

shows our system performs well in energy minimizing in the

simulations.

IV. PROBLEM FORMULATION

In this section, we first analyze the latency and energy

consumption in different scenarios, based on which we give

our problem formulation. Finally we transform our problem

into a new form that is easy to solve.

A. Latency and Energy Consumption Models

As was mentioned, we suppose all the requested immersive

VR video tiles have been cached at the MECS, so the delay

and energy consumption during data delivery from the content

provider to the MECS does not need to be considered. Recall

that the computational-intensive immersive viewport rendering

process can be performed on the HMD as in Fig. 1 (A) or on

the MECS as in Fig. 1 (B). We use a binary variable η(t) to

indicate where viewport rendering is performed, i.e., η(t) = 1
indicates viewport rendering is offloaded to the MECS, and

η(t) = 0 means the viewport is rendered locally at the HMD.

Next we will analyze the energy consumption under different

scenarios.

1) Viewport Rendering at HMD Locally: In this case, the

task requesting session includes the following steps: decoding

the original data representation by the MECS, transmitting the

uncompressed immersive VR video chunks including viewport

tiles and standby tiles to HMD over the THz link, and

rendering the viewport on the HMD.

In order to prepare the requested data of a chunk, MECS

first needs to decode the original cached immersive VR video

data. Assume the playback duration of a chunk equals to the

length of a time slot △t, and denote the bitrate of one original

full-resolution video chunk as b (in bps), then we need to

decode b ·△t bits in order to obtain the uncompressed original

data. Denote the size of the the uncompressed original data

as xv(t) + xs(t) bits, where xv(t) (in bit) and xs(t) (in bit)

are the data volume of viewport tiles and the standby tiles,

respectively. Denote the MECS’s decoding speed as vde (in

bps), and then it needs b·△t

vde seconds for the MECS to perform

data decoding. To transmit the decoded original uncompressed

immersive VR video chunk over the THz band from MECS

to HMD requires
xv(t)+xs(t)

Rd(t)
seconds. Then HMD need to

perform viewport rendering. Denote the processing capability

of HMD as zl (in CPU cycles/s), and let the data volume that

one CPU cycle can process as bzl (in bits/cycle), then local

viewport rendering will consume
xv(t)
zl·bzl

seconds. Consequently,

the overall energy consumption of HMD in local viewport

rendering is given by

El(t) =
b · △t

vde
· Pid +

[xv(t) + xs(t)]

Rd(t)
· Pb +

xv(t)

zl · bzl
· ξ, (11)

where Pid (in Watt) is the idle power of HMD, and b·△t

vde ·
Pid is the energy consumed by HMD in waiting for the data

when MECS performs viewport rendering. Denote the data

receiving power of HMD as Pb (in Watt), then the energy for

receiving the original uncompressed immersive VR video is
[xv(t)+xs(t)]

Rd(t)
· Pb. Moreover, denote ξ (in W) as the power of

HMD in task processing, then the required energy for local

viewport rendering can be calculated as
xv(t)
zl·bzl

· ξ.

In addition, HMD maintains a first in first out (FIFO) data

buffer for caching the not yet rendered tasks. At the beginning

of time slot t, the queue length of HMD’s buffer is Ql(t) (bits),

i.e., the amount of tasks that have not yet been executed till

the beginning of solt t, then Ql(t + 1) varies dynamically

according to

Ql(t+ 1) = [Ql(t) + (1− η(t)) · (xv(t)− zl · bzl · △t)]+, (12)
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where [x]+ = max(x, 0).
2) Viewport Rendering on MEC Server: When viewport

rendering is performed on MECS, MECS should first decode

the original data with the viewport data volume as xv(t) and

the standby data volume as xs(t), which is the same as in local

rendering, and then render the viewport data, and the volume

of the rendered viewport data is denoted as xr(t). Then, the

standby data together with the rendered viewport data will be

transferred to HMD through the THz link. The only task that

HMD should implement is to receive those data. However,

extra energy will be consumed when HMD waiting for the

MECS to decode the original data and perform viewport

rendering. Denote the computation capability of MECS as zf
(in CPU cycles/s), and the data volume one CPU cycle can

process as bzf (in bits/cycle), the overall energy consumption

of HMD in MECS viewport rendering is given by

Ef (t) = [
b · △t

vde
+

xr(t)

zf · bzf
] · Pid +

xr(t) + xs(t)

Rd(t)
· Pb. (13)

Similarly, MECS maintains a data queue Qf (t), which

evolves according to

Qf (t+ 1) = [Qf (t) + η(t) · (xr(t)− zf · bzf · △t)]+. (14)

B. Problem Formulation and Transformation

Our objective is to minimize the long-term averaged energy

consumption while ensuring the QoE of the HMD, by a joint

optimization on the viewport rendering offloading decision

η = {η(t), t ∈ T } and the downlink transmit power control

Ptx = {Ptx, t ∈ T }. Our problem is formulated as

(P1) : min
η,Ptx

1

T

∑

t∈T

(1− η(t))
[

El(t) + ωlHl(t)
]

+ η(t)
[

Ef (t) + ωfHf (t)
]

s.t. (C1) : η(t) ∈ {0, 1}, t ∈ T ,
(C2) : Ptx ∈ (0, Pmax], t ∈ T . (15)

In problem (P1), Hl(t) and Hf (t) are the punishment

terms on HMD’s energy consumption in local-rendering and

MECS-rendering, respectively, which are used to avoid the

long latency casued by HMD/MECS accepting tasks when

their queues are too long to process. The two coefficients ωl

and ωf (in J/bit) are the corresponding punishment factors. At

the end of each time slot t, when the queue is non-empty, the

energy consumption of HMD will gain a punishment ωlHl(t)
or ωfHf (t). Thus, Hl(t) and Hf (t) represent the amount

of the backlogged data, i.e., the data has not been executed

by HMD and MECS at the end of time slot t, respectively.

According to their meanings, we have Hl(t) = Ql(t + 1)
and Hf (t) = Qf (t + 1). Consequently, at the end of each

time slot t, once the queues are not empty, the HMD’s

energy consumption will gain a punishment ωlHl(t) in local

rendering, or a punishment ωfHf (t) in MECS rendering,

respectively. The two punishment terms can avoid the HMD or

the MECS to accept excessive viewport rendering tasks, and

can avoid queue overflow effectively, and thus to guarantee

fluent playback of immersive VR videos on HMD [34].

V. DRL BASED JOINT OPTIMIZATION

In this section, we first introduce some basics about DRL

and the newly emerging DRL algorithm A3C, then we propose

an A3C based joint viewport rendering offloading decision and

transmit power control algorithm to solve it.

A. Deep Reinforcement Learning

Reinforcement learning (RL) [35] is a learning framework

where an agent interacts periodically with the environment,

by continuously making decisions, observing the rewards, and

then automatically adjusting its parameters, finally to obtain

the optimal policy that can maximize the long-term expected

cumulative reward that the agent could get. However, the learn-

ing process of RL converges too slow since it has to explore

and obtain knowledge of the entire system. Recent years,

deep learning [36] is introduced and deemed as a promising

technique to break the curse-of-high-dimensionality when used

in RL, which is known as DRL. DRL employs Deep Neural

Networks (DNNs) as the function approximator [37] to train

the learning process and updating parameters, so it could not

only improve the poor performance of traditional RL methods

in dealing with high dimension state space or large action

spaces, and especially, DRL could also manage continuous

state and action spaces effectively. As a consequence, DRL has

been adopted in broad areas, such as robotics, VR, computer

vision, etc.

In the area of wireless communications and networking,

DRL has also been employed as an effective technique to

handle various issues and challenges. Modern wireless com-

munication networks become more large-scale, heterogeneous,

high-dynamic, and complicated, and need to provide vari-

ous services and make decisions for large quality of user

equipments, to achieve different goals of different networks.

However, the heterogeneity, high dynamic and uncertainty

of wireless networks makes conventional approaches such

as dynamic programming, value iteration, etc., for decision

making and resource management inefficient or even inap-

plicable, since complete and perfect system knowledge are

required by these algorithms; on the other hand, since the

decision making problems are usually with both integer and

continuous variables, along with the large-scale and high

complexity, making traditional RL impotent and powerless. As

a result, DRL has been developed as an alternative solution to

overcome the challenges and has been widely used in various

communication systems, where superior performance could be

obtained [18], [38].

Remark 2: In the following elaboration of A3C, the time

indexes are represented using subscript instead of being put

in parentheses for notational simplicity. For the notations that

have appeared above, we still use the same notations to keep

consistent.

B. A3C Algorithm

DRL algorithms are realized by a combination of RL

algorithms with deep neural networks and are unstable since

online RL updates are strongly correlated, which can be
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solved by experience replay as in Deep Q-Network (DQN)

[37]. However, experience replay consumes more memory and

requires off-policy learning policies, and update is performed

based on the data generated by an older policy. Asynchronous

execution is a promising way to replace experience replay,

where multiple agents work in parallel employing different

exploration policies to learn from the environment, so asyn-

chronous execution can decorrelate data since parallel agents

will experience different states and thus can stabilize the

training process of DRL.

Actor-Critic (AC) [27], [39] algorithm is proposed based

on policy-based model-free algorithms, and meanwhile also

combines the advantage of value-based algorithm. In AC

algorithm, policies are directly parameterized as π(at|st; θ)
and the parameter θ is updated by gradient ascent on the

difference between the expected accumulated return Rt and

the learned value function V (st, θv), i.e., Rt − V (st, θv),
under the policy π(at|st; θ). The actor is the learned policy

function π(at|st; θ), under which the action that can obtain

the maximum reward will be picked out and performed. The

action will trigger changes in the environment, and meanwhile

the agent will receive corresponding reward. Based on the

difference between the reward and the learned value function

V (st, θv), i.e., the TD-error, the critic will evaluate the policy

and update the parameter θ of the actor network in order

to improve the probability of choosing actions that generate

higher reward and meanwhile, update the parameter θv of the

critic network so as to receive more accurate estimation value.

As thus, AC algorithm learns the policy and the value function,

in the process of iteration, the critic could obtain more accurate

estimation and the actor could make more judicious decision

untill the system converges.

A3C [27] was proposed based on AC algorithm. Different

from Actor-Critic method with only one agent, A3C employs

multiple agents with different policies concurrently to train the

DNNs asynchronously, thus can explore different parts of the

environment, so that the updates are less correlated than using

a single agent as Actor-Critic does, and the training time are

significantly reduced. Similar to other asynchronous strategies,

there’s a global network that stores the network parameters.

Each time once the agent updates its parameters of the actor

and the critic networks, it submits the parameters to the global

network, based on which the global network updates the global

parameters and then sends them to the agents in order to make

sure that all the agents can share a same policy. This process

repeats until a terminal state or the maximum action index

tmax is reached.

A3C has many advantages over other existing DRL algo-

rithms. Compared with value based algorithms such as Q-

learning, DQN [37], SARAS [38], etc., where optimization

relies on value functions and the optimal policies is obtained

only when all the states are traversed, leading to high complex-

ity when the state and action space is large. Meanwhile, when

the state space and/or action space is continuous, value based

algorithms could not play their effects [40]. A3C based on

policy based method where policies are directly parameterized,

so it can deal with continuous state and/or action spaces, and

can learn policies directly and effectively in discrete systems

with large numbers of states or actions. Compared with policy

based algorithms such as REINFORCE [38], where updating

are performed based on episode, A3C employs step-based

updating, so the efficiency is improved significantly. Compared

with AC, the multiple agents parallel training brings less

training delay and more effective exploration.

Next we will explain how A3C algorithm works. At each

time slot t, the environment is in state st, which has an estimat-

ed state value V (st; θv) with parameter θv . Under st, the agent

performs a feasible action at according to policy π(at|st; θ)
with parameter θ, and then the environment may transfer to

an attainable following state st+1 by certain probabilities, and

receives a feedback in the form of an immediate reward rt.
The state value function of A3C is defined as

V (st; θv) = E [Gt|s = st, π]

= E

[

∞
∑

k=0

γkrt+k

∣

∣

∣
s = st, π

]

, (16)

where Gt is the discounted accumulated return of step t,
and γ ∈ [0, 1] is called the discount factor, reflecting the

importance of immediate reward and future rewards. When

γ = 0, only the next following reward is considered, and

when γ = 1, all the future rewards are equally important no

matter how soon they occur.

A3C employs k-step reward for parameter updating, where

both the policy and the value function will be updated after

every tmax actions or when a terminal state is reached. The

k-step reward is defined as

Rt =

k−1
∑

i=0

γirt+i + γkV (st+k; θv), (17)

where k is upper-bounded by tmax. The A3C algorithm is

based on AC architecture and also defines the advantage

function At as the difference between the real reward Rt and

the estimated value function V (st; θv). The advantage At can

be given by A(st, at; θ, θv) = Rt − V (st; θv), which is used

to measure how favorable a function at is compared with

the value of the current state, from the standpoint of long-

term expected reward. Using advantage At could improve

the agent’s learning capability so as not to overestimate or

underestimate the quality of the action, and thus to enhance

the decision making capabilities.

Based on the advantage function, the loss function [28] for

policy (or for actor) can be given by

fπ(θ) = log π(at|st; θ)(Rt − V (st; θv))

+ βH(π(st; θ)), (18)

where H(π(st; θ)) is an entropy term which is used for

exploration during the training process and thus to avoid

possible premature convergence to suboptimal policies, and

β is used to control the strength of the entropy regularization

term, which could help to manage exploration and exploitation

in training, and higher β tends to exploration. Based on fπ(θ),
the accumulated gradient of policy loss functions is given by

dθ ← dθ +∇θ′ log π(at|st; θ′)(Rt − V (st; θv))

+ δ∇θ′H(π(st; θ
′)), (19)
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Fig. 2: Structure of the A3C based optimization algorithm.

according to which the actor network can be updated.

The loss function for the estimated value function (i.e., for

critic) is defined as

fv(θ) = (Rt − V (st; θv))
2, (20)

based on which the accumulated gradient of actor’s loss

functions is given by

dθv ← dθv +
∂(Rt − V (st; θv))

2

∂θ′v
, (21)

and according to which the critic network can be updated.

In the above updating equations (19) and (21), θ′ and θ′v are

the thread-specific actor and critic network parameters of each

agent, and θ and θv are the parameters of the global actor and

critic network, respectively.

Next, we use the standard non-centered RMSProp algorithm

to perform training for both actor and the critic. By minimizing

the two loss functions, parameters are updated based on the

above accumulated gradients. The estimated gradient under

RMSProp can be given by [27], [41]

g = αg + (1− α)△θ2, (22)

where α is the momentum, and △θ is the accumulated

gradients of the policy or value loss function.

Based on the obtained g, update is performed according to

θ ← θ − η
△θ√
g + ϵ

, (23)

where η is the learning rate, and ϵ is a tiny positive number

used to avoid errors when denominator equals to 0 [27], [41].

The algorithm structure of the A3C based optimization in

this paper is illustrated in Fig. 2.

C. A3C Based Viewport Rendering Offloading and Transmit

Power Control

We consider the MECS as the decision making agent, which

interacts with the immersive VR video environment. The goal

is to select actions in a fashion that maximize the cumulative

future reward. The detailed information is given as follows.

1) System State: The system state at the tth time slot, denot-

ed st ∈ S where S is the state space, represents a set of states,

including the distance D(t) = {dt, dq,1(t), dq,2(t)}, q ∈ Nref ,

the attentuation α(t), the number of subwindows Ud(t), the

lengths of the task queues Q(t) = {Ql(t), Qf (t)}, and is

described by s tuple st , {D(t),α(t), Ud(t),Q(t)}. The

system state st ban be observed at the beginning of the tth
time slot.

2) Actions: At each time slot t, the action at ∈ A
includes the viewport rendering offloading and the downlink

power allocation and can be given by at , {η(t), ptx(t)}.
Accordingly, the available actions for the tth time slot are

given as {η,Ptx}.
3) Actor-Critic Network: We use two deep neural networks

with weights θ and θv to approximate the stochastic policy

function (actor) and the value function (critic). The output

layer that estimates the stochastic policy using a Softmax

function. A total of six workers are trained concurrently and

optimize their individual weights using gradient descent. Each

worker calculates its own successive gradients during each

episode. At the end of each episode, each worker updates the

global network and then collects the new state of the global

weights. The loss functions for the actor and the critic employ

that defined in eqs. (18) and (20), respectively. The parameters

θ and θv are optimized using gradients defined in eqs. (19) and

(21), respectively.

4) Reward Function: rt is the immediate reward, which is

defined as

rt =
1

(1− η(t))
[

El(t) + ωlHl(t)
]

+ η(t)
[

Ef (t) + ωfHf (t)
] . (24)

5) Policy: The policy of the formulated MDP is a mapping

π(at|st; θ) : S → A.

Based on the defined system states, the actions, the reward

function, the policy, and the update equations in (19) and

(21), the proposed A3C based viewport rendering offloading

decision optimization and downlink transmit power control

algorithm is detailed in Algorithm 1 [27], [28], [35], [42].

D. Implementation of Algorithm 1

As was mentioned in Section III-A, there’s a decision maker

in MECS to make optimization decisions, and the core of

the decision maker is actually our A3C based optimization

algorithm. In Algorithm 1, there’s a central brain and some

agents. Both the central brain and each agent are composed

by an actor and a critic. In each time slot t, each agent first

synchronous its parameters by global parameters of central

brain as in line 8, and then interacts with the environment

simultaneously and independently, by choosing actions, i.e.,

the viewport rendering offloading decision and transmit power

control, under its current policy. When actions are taken, each

agent obtains a reward and the system transforms to the next

state. The process repeats until a final state is reached, as

in lines 10-14. Then each agent updates the parameters of

its actor and critic networks as in lines 16-20, and sends its

corresponding updated parameters to the actor and the critic of
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Algorithm 1 A3C Based Viewport Rendering Offloading and

Transmit Power Control Algorithm

Initialization:
1: Initialize the global actor network and global critic network with

parameters θ and θv .
2: Initialize global shared counter as T = 0 and thread-specific

counter as t = 1.
3: Initialize the thread-specific actor and thread-specific critic net-

work parameters θ′ and θ′v .
4: Initialize Tmax, η, α, ϵ, γ, and tmax, respectively.

Iteration:
5: while T < Tmax do
6: for each agent do
7: Set gradients of two global networks: dθ = 0, dθv = 0.
8: Synchronous thread parameters by global parameters θ′ =

θ and θ′v = θv .
9: obtain the system state st.

10: for t ≤ tmax do
11: Perform at according to policy π(at|st; θ

′) in thread
actor network.

12: Obtain reward rt and new state st+1.
13: t = t+ 1.
14: end for
15:

R =

{

0, for terminal state st,
V (st, θ

′

v), for non− terminal state sM .

16: for t = tmax, t ≥ 1 do
17: R = rt + γR.
18: Obtain accumulate gradient wrt θ′ based on (19);
19: Obtain accumulate gradient wrt θ′v based on (21);
20: end for
21: Asynchronous update θ and θv according to (23), respec-

tively.
22: T = T + 1.
23: end for
24: end while

central brain asynchronously as in line 21. With time elapses,

the above process repeats until the algorithm converges and the

final time slot reaches, and then the optimal policy [25], [27]

that can maximize the long-term expected cumulative reward

can be obtained.

VI. SIMULATION RESULTS AND DISCUSSIONS

In this section, we provide simulations to verify and discuss

the performance of our proposed joint optimization algorithm.

We consider an indoor system where MECS locates in the

center, serving an area with the radius being 20 m. The usable

bandwidth and number of subwindows refers to the Fig. 1 (b)

in [10], and it can be know that when the distance rises from

1 m to 20 m, the total bandwidth shrinks from 0.94 THz to

0.78 THz nearly linearly [10]. Based on this observation, we

can obtain the decreasing rate of the total usable bandwidth

is approximately 8.42 GHz/m. The relationship between the

two can be approximately as B ≈ 984.42 − 8.42d GHz, so

Ud(t) = ⌊ 984.42−8.42d
Bg

⌋, t ∈ T . We consider the IBI leakage

of 17.47% to the neighboring subwindows in (6), for the

rectangular waveform [9]. Regarding the content, we use 4K

immersive VR video clips from MPEG [43]. All the videos

are in 3840 × 1920 resolution at 30 frame-per-second (fps),

TABLE I: Simulation Parameter Settings

Parameter Value

Length of a time slot, △t 0.133 s [5]

HMD’s data receiving power, Pb 0.01 W

HMD’s power of local viewport rendering, ξ 0.8 W [5]

HMD’s computation capability, zl 0.5 G cycles/s [5]

Data volume HMD’s 1 CPU cycle process, bzl 0.05 Kbit/cycle

MECS’s computation capability, zf 1000 G cycles/s [5]

Data volume MECS’s 1 CPU cycle process, bzf 10Kbit/cycle

BER on the uth subwindow, ϵu 10−4

Transmit/receive antenna gain, Gt, Gr 0-20 dBi [10]

Gaussian noise power spectral density, n0 -174 dBm/Hz

The refractive index, nt 1.2-2.8 [10]

Rough surface height standard
deviation parameter, σ 0.05-0.15 [10]

Medium absorption coefficient, k(fu) 0.0016/m [3]

Distance, d 1-20 m [9]

Local punishment factors, ωl 5 ∗ 10−5 J/bit

MECS punishment factors, ωf 1 ∗ 10−5 J/bit

Learning rate of actor, la 0.01

Learning rate of critic, lc 0.01

Discount factor, γ 0.9

Bitrate each original full-resolution video chunk, b 3 Gbps

MECS’s decoding speed, vde 300 Gbps

The idle power of HMD, Pid 0.0001 W

with a bit depth 8 bit. Each chunk contains 4 frames. The

size of viewport is 856 × 856. Detailed default parameters

are summarized in Table II, they will keep unchanged unless

otherwise specified.

A. Convergence of Algorithm 1

We first illustrate the convergence of our proposed algorithm

under different learning rates. Fig. 3 shows the convergence

under different actor’s learning rate, with the critic’s learning

rate set as the default value lc = 10−2, and Fig. 4 shows

the convergence under different critic’s learning rate, while

the actor’s learning rate takes the default value la = 10−2.

As can be seen from the two figures, the system reward first

increase sharply, and converges at nearly the 50th episode

under different learning rate combinations, demonstrating our

proposed algorithm converges considerably fast.

B. Performance Evaluation of Algorithm 1

Next, we evaluate the performance of our proposed algo-

rithm by comparing it with the following two algorithms: (i)

Local rendering, which is shorted as “Local” in the following

context. In Local, there’s no rendering offloading decision

optimization, so the MECS will first decode all the original

data into uncompressed immersive VR video chunks including

viewport tiles and standby tiles, and then deliver them over the

THz link to HMD, and then the HMD will render the viewport

by itself. (ii)Actor-Critic based algorithm, which is denoted as

“Actor-Critic”. The only difference between this method and

our proposed algorithm is our proposed algorithm is based on

A3C, and “Actor-Critic” is based on AC.

Remark 3: As was mentioned, the reward is defined as

the reciprocal of our objective function, i.e., the energy con-

sumption of the HMD. So in the following, we can consider

either the system reward or the HMD’s energy consumption as

our performance metrics when we evaluate the performance

of the algorithms. For a certain algorithm, the larger system
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Fig. 3: System reward under different learning rate of the actor
network.
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reward, or the smaller the energy consumption of the HMD the

algorithm could achieve, the better performance the algorithm

could obtain.

In Fig. 5, we show how the system reward changes under

HMD’s different basic circuit power consumption Pb. As can

be seen, the system reward decrease with Pb increase, which is

the same for the four algorithms. This is easy to be understood,

when Pb increase, the data receiving energy consumption will

increase, so the reward will decrease. Moreover, it can be

observed that our proposed A3C based algorithm performs

the optimum, followed by Actor-Critic method. Since Actor-

Critic also employ THz as the wireless channel, the only

difference between it from our proposed algorithm lies in the

DRL methods they adopt. Moreover, as a result of multi-agent

concurrent training, A3C performs better than AC which is

adopted by Actor-Critic, so Actor-critic performs worse than

our proposed A3C based algorithm. For Local method, since

energy-demanding viewport rendering is always performed

locally, and large quality of energy is consumed, it performs

the worst among all the algorithms.

Fig. 6 plots the system reward versus HMD’s local task

processing power ξ. (i) At first when ξ = 0.001, i.e., the local

processing power is very small, all the methods will choose

local viewport rendering, i.e., the uncompressed original data

will be transmitted to HMD, and the viewport data will be

rendered by HMD in all the four methods. Thus, the energy

consumed in viewport rendering is the same for all the four

algorithms. The since the three algorithms all adopt the larger

capacity THz link in wireless data transmission, so the energy

consumed in data receiving is all the same for the three

algorithms. Therefore, when ξ = 0.001, the reward of our pro-

posed A3C based algorithm, Actor-Critic, and Local method

nearly perform all the same. (ii) When local task processing

power ξ increases from 0.001 to 0.2, the energy consumed in

local viewport rendering increases quickly, making the energy

consumption of all the algorithms increase significantly. And

therefore, the system reward decrease quickly, wherein Local

decrease the sharpest, this is because all viewport data will be

rendered by HMD in Local method, while in other algorithms,

the viewport is not always rendered in HMD, and therefore
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the decrease in reward is not so sharp. (iii) When ξ continues

to increase from 0.2 to 1.2, MECS rendering becomes more

suitable. Since Local method always chooses local viewport

rendering even if this is not so appropriate, the reward of Local

method keeps droping gradually. The other three algorithms

will choose MECS rendering by offloading decision optimiza-

tion, so their reward nearly keep unchanged. From Fig. 6, we

also can find that our proposed A3C based algorithm always

performs the optimum.

In Fig. 7, we plot the effect of BER ϵu on the system

reward, where BER takes its values from 10−7, 10−6,...,10−1,

respectively. As the required BER increases, the wireless rate

increase, leadomg to a decrease in energy consumption, and

consequently the reward will increase. It can be also known

that our proposed algorithm performs the best, followed by

Actor-Critic, and Local, respectively.

Fig. 8 plots how the distance between HMD and MECS

affects the energy consumption of the four algorithms. First,

we can find that our A3C based algorithm consumes the

least energy, followed by Actor-Critic, and Local method.

Moreover, it can also be find that the distance nearly has

no effect on the energy consumption for each method, since

their energy consumption nearly keep unchanged with distance

grows. This is because in our system model, we consider the

simple one user scenario, so the wireless resource will be

exclusively used by this HMD user, and the wireless resource

is sufficiently abundant in all the methods, no matter how far

the user is. By the way, the general case with multiple users

will be one of our future work, and then we will also show the

effect of distance on the energy consumption of the multiple

HMD users.

VII. CONCLUSIONS

In this paper, we have proposed a THz access based MEC

system to support wireless immersive VR video services. We

have formulated a joint viewport rendering and THz downlink

transmit power control problem to investigate the HMD’s

long-term energy consumption minimization. Based on A3C

deep reinforcement learning algorithm, we developed a low-

complexity algorithm to obtain the optimal solution to view-

port rendering offloading decision making and transmit power

control. Simulation results have verified the convergence of

our algorithm, and have demonstrated that our algorithm

could perform much better than other algorithms in energy

consumption minimization or system reward maximization.
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