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Abstract

Many larger and more complex viruses deviate from the capsid lay-
outs predicted in the seminal Caspar-Klug theory of icosahedral viruses.
Instead of being built from one type of capsid protein, they code for mul-
tiple distinct structural proteins that either break the local symmetry of
the capsid protein building blocks (capsomers) in specific positions, or
exhibit auxiliary proteins that stabilise the capsid shell. We investigate
here the hypothesis that this occurs as a response to mechanical stress.
For this, we construct a coarse-grained model of a viral capsid, derived
from the experimentally determined atomistic positions of the capsid pro-
teins, that represents the basic features of protein organisation in the viral
capsid as described in Caspar-Klug theory. We focus here on viruses in
the PRD1-adenovirus lineage. For T' = 28 viruses in this lineage, that
have capsids formed from two distinct structural proteins, we show that
the tangential shear stress in the viral capsid concentrates at the sites of
local symmetry breaking. In the 7' = 21,25 and 27 capsids, we show that
stabilizing proteins decrease the tangential stress. These results suggest
that mechanical properties can act as selective pressures on the evolution
of capsid components, offsetting the coding cost imposed by the need for
such additional protein components.

1 Introduction

Viral capsids are protein containers that encapsulate and thus protect the ge-
nomic material between rounds of infection. In the majority of cases, viral
capsids are organised with icosahedral symmetry, and their architectures can be
modelled in terms of the polyhedral models in Caspar-Klug’s quasiequivalence
theory. Smaller viruses, that typically have capsids assembled from multiple
copies of a single type of capsid protein (CP), are fairly well described by this
theory. By contrast, for larger and more complex viruses, such as those in the
PRD1-adenovirus lineage, multiple deviations from these models have emerged.



In some viruses, the hexagonal sites are occupied by different compositions of
distinct types of capsid proteins, thus breaking the local symmetry of the hex-
americ positions in the surface lattice. In others, there are additional protein
components in specific positions, whose existence and locations cannot be ex-
plained in the context of Caspar-Klug theory. Here we investigate our hypothesis
that these deviations from Caspar-Klug theory can be related to the mechanical
properties - specifically, the built-in stresses - of the capsid shell. The impor-
tance of the residual stress in many functions of the viral capsid has already
been demonstrated, for instance in [1]. In our work, using the Caspar-Klug
models as a starting point, we compute the stress distribution across the cap-
sid with reference to these models. We show that the local symmetry breaking
and the occurrence of additional protein components can be correlated to the
mechanical properties and curvature of these capsid shells.

A number of studies of the mechanical properties of viral capsids have pre-
viously been performed, both theoretically and experimentally (cf. the review
papers [2, 3]). This includes all-atoms molecular dynamics simulations (cf., e.g.,
[4]), continuum models based on shell theory (cf., e.g., [5]), and coarse-grained
models, in which whole proteins, or groups thereof, are represented by rigid or
elastic bodies ([6], [7], [8], [1], [9]), or, finally, models in which the discrete nature
of the shell is taken into account by suitable triangulations of the surface [10, 11].
As capsids are intrinsically discrete structures, the details of the tessellation, as
well as the local organization into monomers, dimers, trimers, pentamers or
hexamers have an impact on the mechanical properties of the capsid. Hence, it
seems appropriate to use either molecular dynamics or coarse-grained models,
since continuum models cannot take such details of the CP organization into
account.

Here we use the coarse-grained model by Zandi and Reguera [6], a simple
scheme in which the hexamers and pentamers are represented by spheres in-
teracting with their neighbours via a Lennard-Jones potential. This model is
able to capture the arrangement of the capsid building blocks (capsomers) as
described by Caspar-Klug theory, and has proven to be useful to investigate a
number of general features of viral capsids, such as buckling in dependence of
the shape [8], or resistance to cracking [6].

According to Caspar-Klug theory, the arrangement of the CPs follows the
principle of quasiequivalence: CPs must locally have similar environments, and
group as 12 pentamers and a variable number of hexamers. The capsid can
therefore be represented as a surface with a close-packed tessellation of pentag-
onal and hexagonal building blocks. Note, however, that the actual mechanical
and assembly units, the capsomers, need not be pentamers and hexamers, but
can also be single proteins, dimers or trimers [12]. Pentamers must have 5-fold
symmetry, because they are located on the particle 5-fold symmetry axes. By
contrast, hexamers do not need to have local 6-fold symmetry, but can occur in
distinct conformations formed from smaller units, thus violating the principle
of quasiequivalence. We explore here the mechanical reasons that may account
for such non-quasiequivalent architectures.

In particular, we focus on the distribution of the residual shear stress in



medium-sized capsids in the PRD1-adenovirus lineage (Figure 1), spanning T' =
21 to T = 28 architecture in size, because they exhibit a wide spectrum of
different deviations from Caspar-Klug theory and are therefore ideal to test our
hypothesis.

Figure 1: Examples of viruses with non-quasiequivalent architectures. Top row
from left to right: Pseudoalteromonas virus PM2, Pseudomonas virus PRD1,
and the Mimivirus-dependent Sputnik virus (PDB-ID: 2w0c, 1gw7, 3j26) . Bot-
tom row from left to right: Haloarcula hispanica SH1 virus (SH1), Thermus
phage P23-77, Haloarcula hispanica icosahedral virus (HHIV-2) and Haloarcula
californiae icosahedral virus (HCIV-1) (PDB-ID: 6qt9,EMD-1525EMD-0172,
6h9c). PDB data for P23-77 are not available. All capsids are viewed along a
5-fold axis.

The capsids of these viruses fall in two classes: either they have a different
organization of the major coat proteins at some of the hexameric positions at
and around the 2-fold axes, or they have ancillary cementing proteins that re-
inforce the shell, again near the 2-fold axes. Our analysis suggests that, in all
viruses in the first class, the concentration of shear stress at these axes may be
responsible for the local deviations from quasiequivalence. For viruses in the
second class, the situation is less definite, in that in some cases the loci of stress
concentration do not coincide with the sites at which reinforcing proteins are
located. This could be, because we are using coarse-grained models that are
built from the atomic positions of the capsid proteins, and thus implicitly con-
tain contributions from any auxiliary proteins at the inner capsid surface, that
are not captured by a simple model of the capsid shell. We therefore use a dif-
ferent strategy in this case. We compare the model derived from the biological
data with a mathematical model of the capsid shell in isolation, showing that



there is a significant stress reduction relative to ideal spherical or icosahedral
mathematical rendering of the capsids, that we are attributing to the presence
of the auxiliary components. We also show that there is a correlation between
the location of the reinforcing proteins and the sites at which curvature is con-
centrated, suggesting that these additional protein components may, at least in
part, also be a response to curvature-related stresses. However, the latter is not
dealt with explicitly here, as this is not possible in the context of our model due
to the intrinsic limitations of Lennard-Jones interactions. Indeed, our model is
appropriate to capture the local interactions between neighbouring capsomers
when the curvature is small, and works better for capsid with small deviations
from sphericity, and where icosahedral edges are smooth. In summary, our anal-
ysis demonstrates that non-quasiequivalent components in complex viral capsid,
either in the form of local symmetry breaking of the hexamers, or the occurrence
of additional protein components at the inner capsid shell, can be rationalised,
at least in part, as a consequence of mechanical stress.

2 A coarse-grained capsid model

The coarse-grained model for spherical capsids introduced by Zandi and Reguera
in [6] is designed for capsids conforming to Caspar-Klug theory, for which pen-
tamers and hexamers (capsomers in what follows) are the basic mechanical
units. The capsid is idealized as a surface S, and the capsomers are represented
as small spheres with centers on S (Figure 2), that interact via Lennard-Jones
forces. The total energy is given as the sum of all pairwise interaction potentials,
and the stress is measured by the virial stress at zero temperature. All hexam-
ers are modelled as indistinguishable and have the same size and mechanical
properties, and the same holds for the pentamers.

Figure 2: The coarse-graining procedure illustrated for the example of a T' = 28
capsid. Hexamers in the PDB structure of the viral capsid (left) are replaced by
spheres centred at the centres of mass of the atomic positions of each capsomer
(right).

In the original model of Zandi and Reguera (cf. also Aznar et. al. [8]),
the surface S is given either by a sphere or a regular icosahedron. Indeed, a



classical scaling argument (cf. [5]) supports the idea that small capsids are
nearly spherical, whilst large capsids are in a good approximation icosahedral.
More refined theoretical arguments (cf. [13]), however, suggest that capsids
exhibit a larger variety of shapes, and are often multi-faceted or even slightly
concave. The fact that many capsids of intermediate sizes do not fit well into the
‘sphere vs icosahedron’ dichotomy is also substantiated by the best-fit analysis
of viral shapes in [8].

As using central force potentials in the presence of edges and corners would
be inappropriate, we have based our analysis here on a point set obtained by
computing the centroids of the actual hexamers and pentamers from experimen-
tal data (PDB files of the atomic positions in viral capsid proteins), and have
benchmarked our results against computations based on idealised spherical and
icosahedral models. The calculations were performed with the software "UCSF
Chimera’ [14] and MATLAB.

In our mathematical models of viral capsids, we denote by X = {@;}i=1,...~
a capsid configuration, that is defined as the set of points representing the
centroids of the capsomers. We assume, without loss of generality, that the
points are indexed so that the pentamers have indices ¢ = 1,...,12, and the
hexamers ¢ = 13,...,N. For the models based on the Zandi and Reguera
approach, X C S, where S is either a sphere or an icosahedron, while for the
structures obtained from the PDB data here, we denote by S the triangulated
surface whose nodes are the points in X.

The adjacency matrix of a configuration is defined as follows. For fixed § > 0,
we say that two points x; and x; are adjacent, if their Euclidean distance is less
than 6, and write

A — { 1 1f|$z—CIJJ| <9,
71 0 otherwise.

The parameter ¢ is chosen of the order of the distance between the centers of
two neighbouring capsomers, i.e., twice the radius of a typical hexamer. Note
that a pentamer is adjacent to five hexamers, whilst a hexamer is adjacent to
six capsomers (pentamers or hexamers).

We follow [6] and approximate the interaction between two capsomers in-
dexed by ¢, 7 by a Lennard-Jones potential of the form

12 6
04 044
vij<mi7wj>=v;j<nj>=eo((T{) —z(ri)) riy =l —al. (1)
7] iJ

Here, 0;; denotes the equilibrium distance between the centers of the capsomers
(cf. Appendix A.1), and ¢y a positive constant.
Departing slightly from [6] and [8], we write the total energy of the system

as
N

E(X) = Z AijVij(rij), (2)

i,j=1
and, as a measure of the interaction forces at equilibrium, we take the static
part of the local virial stress tensor at point x; (cf. e.g., [6], [8] and formula



(A.27) in [15]):

TZ(X 2|S| Z flj QTij, Tij =T; — Ti, (3)
J#i
where 1 dv
fi; re; dr (rij)AijTi (4)

is the interaction force between capsomers i and j, and |S| is the area of the
capsid surface. The virial stress (here in its static version) is a common tool
in the study of many-particle systems in molecular dynamics simulations. It is
the analogue of the Cauchy stress for discrete media. As such, it is a measure
of the interaction force between contiguous portions of a material across their
common boundary. In our context, we can interpret is as a tool to study how
the interaction forces tend to deform the bonds between the hexamers. This
interpretation is discussed in some detail in the following section.

The forces {fij}jzlw,N are internal to the capsid, being the interaction
forces from all adjacent capsomers j # i on capsomer ¢, and, in general, are
not balanced, i.e., > ; fi; # 0. In the equilibrium configuration of the capsid,
as captured by the pdb file of the experimentally determined coordinates, these
forces are balanced by the external forces (such as electrostatic interactions
between the capsomers and the genomic material or membrane proteins, osmotic
pressure or steric forces due to the confinement of the genome inside the capsid).
Only the internal forces, however, contribute to the Virial (or Cauchy) stress
which, by its very definition, is a measure of the contact forces internal to a
material body.

2.1 Maximum tangential shear stress

The stress T'; can be decomposed into a part T'; that is tangential to the surface
S, and a part that is normal to it, as discussed in Appendix A.2. The stress
tensor measures the contact interactions between different portions of a body
across their common boundary. Here, the role of the body is played by the
2-dimensional surface S as follows. Consider a curve dividing two portions of S,
and denote by v; the unit normal to this curve in the tangent plane to the surface
at ;. As sketched in Figure 3, Tiui is the traction across the curve. The shear
stress is the component of this traction tangential to the curve and, intuitively,
is the response to the sliding of the two portions of the surface relative to each
other. The component of T;v; normal to the curve is the tension along the
direction v;. Clearly, both components depend on the direction along which
they are computed.

If we label the centroids, as in Figure 3, that correspond to the capsomers
surrounding @;, counter-clockwise as 5 = 1,...,6. Then, assuming that the
forces are balanced and f,; = —f; ;1 3, 7ij = —7; j4+3 for j = 1,2, 3, we obtain:

i fz i j fz Q@ Tij #O
2|S|§f o |S|ZJ :



Note that this holds even though Zj# fi;=0.

Figure 3: Schematics describing the relation between the forces acting on a
hexamer, the virial stress and the shear stress in a planar arrangement of the
deformed hexamers. (a) Interaction forces acting on the centroid x; of the
central hexamer ¢ due to the surrounding hexamers. In this example, the forces
are balanced, i.e., they add to zero. (b) Given a separating curve at x; with
unit normal v; in the tangent plane to the capsid, T,;v; is the traction across
the curve, and the shear stress corresponds to the component of the traction
tangential to the curve.

Indeed, ’1~“Z is a symmetric tensor, and we denote its eigenvalues by Amax,is Amin,s-
These are the so-called principal stresses at @;, and correspond to the maximal
and minimal tension along all possible directions v;. The lateral stress A; at
point x; is defined as the mean tension:

1
Ai = §(>\max,i + )\min,i)a (5)

and the maximum tangential shear stress at point x; is given by

1
Tmax,i — §<)\max,i - Amin,i)7 (6)

which is attained along the direction forming a 7/4 angle with the eigenvectors
of T';. More explicit representations of the lateral and maximum shear stresses
are derived in Appendix A.3.

2.2 Shape analysis and curvatures of the capsid

Lennard-Jones interactions are not designed to penalize curvature and, as such,
our approach is not appropriate for the study of the stress distributions in
capsids with sharp edges, such as perfectly icosahedral shells. Hence, in order
to validate our results, it is useful to analyse the curvature of the capsids we
discuss here. For a surface the curvature is measured by the so-called second
fundamental form, whose invariants are the Gaussian and mean curvatures. In
broader terms, the Gaussian curvature at a point measures how 'peaky’ a surface



Figure 4: Illustration of the differences between the three discrete curvature
measures used for the shape analysis: (a) Gaussian curvature; (b) mean curva-
ture; (c¢) true curvature.

is at that point, whilst the mean curvature can be viewed as a measure of the
bending of the surface.

The advantage of using these curvature measures is that they can be gener-
alized to triangulated surfaces, which is the case here. We use the definitions of
[16]: the Gaussian curvature for a triangulated surface is a function that asso-
ciates to each node i of the triangulation (here the centroids of the capsomers)

the number
Ki =27 — Z 9J,
J

where J label the triangles with a vertex in¢ (J=1,...,6 and J =1,...,5 for
i a hexamer and a pentamer, respectively), and 8; are the internal angles at ¢
of these triangles (Figure 4(a)).

The mean curvature of a triangulated surface is a function defined on the
edges of the triangulation, and is defined in terms of the angle between the
normals of two triangles that meet at that edge:

6”-
5

Hij = 2Tij sin 5

where 7 and j are adjacent vertices, and 6;; is the exterior dihedral angle along
the edge, defined by cos§;; = n1-no. Here, n; and ny denote the unit normals
to the triangles, pointing outward from S (Figure 4(b)). For an icosahedron,
the Gaussian curvature is concentrated at the vertices, and the mean curvature
at the edges, while for a sphere both curvatures are constant.

In this paper, we also use a different notion of discrete curvature, that mea-
sures the angle between the capsomers. It is an analogue to the mean curvature,
in that it is a function that assigns to each edge a measure of the angle between
the capsomers (hexamers and pentamers) that meet at that edge. We define

~ 0. .
Hij = 2’/‘1‘]‘ sin %,

where i and j denote adjacent vertices as before, and éij is defined by cos éij =
N1 - ny. Here, n; and ny denote the unit normals to the capsomers pointing
outward from S (Figure 4(c)).



We shall use this curvature measure only for the discrete surfaces derived
from the PDB data, since the software Chimera allows us to compute the ori-
entation of the median planes of the capsomers. For the surfaces generated by
the Zandi-Reguera procedure, there is no information about the orientation of
the capsomers, and the true curvature is therefore not defined.

3 Applications to non-quasiequivalent viral ar-
chitectures in the PRD1-adenovirus lineage

In order to determine the influence of the tangential shear stress on the struc-
tural features of the capsid, we perform a case-study of viruses in the PRD1-
adenovirus lineage, because they cover capsid architectures that deviate from
the quasi-equivalence principle in Caspar-Klug theory in different ways. Viruses
in this lineage infect organisms from all three domains of life, and exhibit similar
structural features, such as a common capsid architecture and coat protein folds
[17]. These viruses either have two major capsid proteins, whose arrangement
violates the Caspar-Klug paradigm in a number of hexamers, as is the case for
viruses with T' = 28 capsids, or they exhibit cementing and other minor stabil-
ising structural proteins (as in the T' = 21, T' = 25 and T = 27 capsids) whose
locations at special positions in the capsid cannot be explained via Caspar-Klug
theory. We address here the hypothesis that the non-uniform structure of the
capsid could be a means of accommodating the excess residual stress at special
locations, and thus constitute an evolutionary response to stress concentrations
at specific sites in the capsid shell.

3.1 Non-quasiequivalent hexamers in 7' = 28 capsid archi-
tectures

We first consider capsids formed from two different types of major capsid pro-
teins, that exhibit distinct types of hexamers in the capsid surface. We direct
our investigations to Haloarcula hispanica SH1 virus (SH1), Thermus phage
P23-77, Haloarcula hispanica icosahedral virus (HHIV-2) and Haloarcula cali-
forniae icosahedral virus (HCIV-1), see Figure 1(d,e,f). The overall organisation
of these capsids can be described in terms of Caspar-Klug theory (Figure 5(b,c).
According to the quasiequivalence paradigm of Caspar and Klug [18], every pro-
tein in the capsid has approximately the same environment, and the geometric
structure of a virus can be modelled by superimposing the planar layout of an
icosahedral surface onto a close-packed hexagonal tessellation made of repeated
copies of a single protein. The way in which the icosahedron is superimposed
onto the planar tessellation determines the so-called T-number, that is defined
as T = h? + hk + k2, where h and k are positive integers, one possibly being
zero. This defines a planar embedding of an icosahedral surface into a hexagonal
lattice as illustrated in Figure 5(b,c). T' corresponds to the number of proteins
in the fundamental domain of the representation of the icosahedral group in this
construction.



.Q'... 98- 09:09 08509 095 ®

S 38"3‘.‘33"3‘.‘338'33338'3.‘83'

\‘.0 '\‘ .0 .\‘. . -
'Q'/ N~ '

" & o
SENS o' s' o s

\ 'o"'o\"o"'o\"o’
‘.o',o: g.o? LSNAS e

O~ 'Q .' .. NS
NTIAS 'g.o,,.s '33'30'3\' o
's /'8-'8- 08¢ 'to '

Figure 5: Caspar-Klug models of virus architecture. The T-number identifies
different ways of superimposing an equilateral triangle on a hexagonal grid;
(a) the examples T =1 (h =1, k =0; red), T = 3 (h = 1, k = 1; blue),
and T = 4 (h = 2, k = 1; green) are shown. (b) Each triangle is defined
by its edge length, that is characterised by steps between hexagonal midpoints
along two lattice directions h and k at a counterclockwise m/3 angle; the case
(h,k) = (2,4), corresponding to a T = 28 dextro capsid, is shown. (c) 20 such
triangles define an icosahedral surface, and its embedding into a hexagonal grid
shows the organisation of hexagonal faces, each representing 6 proteins in the
viral surface lattice of the T' = 28 capsids.

The Caspar-Klug scheme, however, does not fully explain the structures of
the capsids in Figure 1(d,e,f), as the hexameric positions are occupied by two
different types of proteins, that form dimers and monomers and are therefore
not quasiequivalent. In particular, all viruses in Figure 1(d,e,f) have a pseudo
T=28 dextro surface lattice. However, the two types of capsid protein break
the local symmetry of the hexamers. There are two distinct ways in which this
occurs (cf. Figure 6): the two types of capsid protein form a heterodimer, and
one of the capsid protein types also occurs as a monomer; or, one type of capsid
protein occurs as a homodimer, and the other one as a monomer. These are
discussed as case 1 & 2 below.

Scenario 1 (Figure 6(c)): ITn HHIV-2, HCIV-1 and SH1, the major capsid
proteins VP4 and VP7 form dimers (heterodimers in what follows, because they
are made of two different proteins, cf. Figure 6(a)) that in turn combine to form
pseudo-hexameric capsomers with three or two towers [19]. All three viruses
have the same protein organisation within the icosahedral fundamental domain,
consisting of a copy of a penton protein at the 5-fold axis (magenta), 12 copies
of VP4 (yellow), and 15 copies of VP7 (green). The two types of hexamers, one
with two towers and the other with three (called type II and type III hexam-
ers), are formed from heterodimers and monomers as illustrated in Figure 6(b).
Three-tower hexamers are built from three copies of the heterodimer VP7-VP4,
while the two-tower hexamers are made by two heterodimers and two unpaired
VP7 subunits (VP4 bears the tower, while VP7 has none). Hexameric units are
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Figure 6: Maps outlining the protein positions in the T=28 capsids in the
PRD1-adenovirus lineage. (a),(b),(c): SH1, HCIV-1, and HHIV-2. VP4 and
VPT7 correspond to tiles coloured in yellow and green, respectively. (a) The
capsid building blocks: (top) a VP7 monomer (bottom) a VP4-VPT heterodimer.
(b) (top) A capsomer bearing three turrets, and (bottom) a capsomer with only
two turrets. (¢) The two distinct local protein configurations are shown on two
icosahedral faces. The hexamers with two turrets (shaded hexagons) are located
adjacent to (and at) the 2-fold axes. A 2-fold axis is indicated by a black ellipse,
and 3-fold axes by black triangles. (d), (e), (f): P23-77. VP16 and VP17 are
coloured in yellow and green, respectively. (d) The capsid building blocks, (top)
a VP17 monomer and (bottom) a VP16 homodimer. (e) The two different types
of hexamers. (f) Two icosahedral faces: the 3 hexamers adjacent to, and at, the
2-fold axes are shaded.

non-quasiequivalent, because they can have two different types of organisations
(whilst, by contrast, all hexamers in a classical Caspar-Klug capsid must be
indistinguishable). The ninety two-towered capsomers sit in special symmet-
ric positions at the 2-fold axes (shaded capsomers in Figure 6(c)). Note that
the type II hexamers are adjacent to and located at the 2-fold axes and their
structures are distinct from those of the other hexamers. Type III hexamers
stick together by two strong peg-in-hole interactions at each hexamer interface,
whilst type II hexamers have many fewer interactions. They are therefore per-
haps better suited to absorbing the build up of shear stress, thus explaining
their occurrence in specific positions in the hexagonal surface lattice. We will
show below that these hexamers indeed are located at hot spots of tangential
shear stress (red / orange in Figure 8(a,b,c)).

Scenario 2 (Figure 6(f)): The major capsid proteins of HHIV-2 and HCIV-1
are structurally similar, regardless of their scarce sequence similarity, to the ones
of Thermus phage P23-77 and the individual §-barrels of the double g-barrel
major capsid protein in marine bacteriophage PM2, which is considered to be
the most ancient member of the PRD1-adenovirus lineage.

We use P23-77 in order to illustrate the second layout according to which
capsid proteins can be organised in the capsid shell. The P23-77 capsid is made
from pseudo-hexameric units formed from two major capsid proteins VP16 and
VP17, that give the shell a typical crenelated appearance [20]. VP16 and VP17
have a high structural homology with the major capsid proteins in HHIV-2: in
particular, VP17 contains two domains that sit atop each other, as in VP4, while
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the small VP16 contains just one domain. VP16 does not exist as a single protein
in the capsid, but its native state is that of a dimer of intertwined sub-units.
All the VP16-VP16 homodimers in the capsid sit across the boundaries of the
hexameric units. These display four copies of VP16 (yellow) and two of VP17
(green) that attach to one VP16 in the hexamer via a specific site (cf. Figure
6(d)). Since the dimer does not have a turret domain, in contrast to VP17,
all the hexameric units bear two turrets each. However, their arrangement is
different in the hexamers in special symmetric positions at the icosahedral 2-fold
axes, in that the hexamers have 2-fold rather than a lack of rotational symmetry
(cf. Figure 6(e)).

Note that the major capsid proteins of P23-77 have structural similarities
with those of SH1 in Scenario 1 above, but the arrangement of the turrets differs
between the two capsids [21]. In fact, SH1, besides having two-tower capsomers,
also has capsomers with three turrets, giving the shell a crenellation different
from that of P23-77. Even though the protein organisation within individual
hexamers is different from Scenario 1, the capsid of P23-77 also has the second
hexamer type at the positions where the tangential shear stress concentrates
(cf. Figures 6(f) and 8(d)). Indeed, both capsid architectures exhibit two types
of hexameric protein clusters, with, as we shall see, one type located at the
positions of maximal shear stress.

3.2 Capsid architectures with auxiliary proteins

We next consider those members of the lineage for which the arrangement of
the major capsid proteins satisfies the quasiequivalence principle, but for which
minor or cementing proteins are present that are not explained by the Caspar-
Klug scheme.

The first example we consider is the marine lipid-containing bacteriophage
PM2 (Figure 1(a)), which is an icosahedral pseudo T' = 21 virus in the PRD1-
adenovirus lineage [24]. The major capsid protein P2 forms the capsomer, which
corresponds to three copies of interlocking subunits, each of them displaying a
double B-barrel fold. This organisation gives the hexamer pseudo 6-fold sym-
metry (Figure 7(a,b)).

Protein P1 contributes to the pentons at the 5-fold axes, while P3 to P10
are membrane-associated proteins connecting the capsid to the lipid bilayer that
encloses the genome. In particular, the arrangement of the proteins P6 and P3
obeys icosahedral symmetry and could help stabilize the capsid. P6 is located
adjacent to the two hexamers closest to the 2-fold axes (Figure 7(c)).

As a second example we consider PRD1 (Figure 1(b)), which gives the name
to the lineage. PRD1 is a bacteriophage containing a membrane that encapsu-
lates a double-stranded DNA. The major capsid protein P3 coincides with the
hexamers and arranges in a pseudo-T = 25 shell, whereas protein P31 forms
the pentamers at the 5-fold axes (Figure 7(d)). The remarkable feature of this
capsid is the presence of sixty copies of a so-called tape-measure protein (P30),
that extends from the pentons along the edge of the facets towards the 2-fold
axes as shown in Figure 7(d), thus stabilizing the capsid [22], [23].
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Figure 7: Surface architectures of PM2, PRD1 and Sputnik. (a) Schematic
representation of the subunit given by the major capsid protein. (b) A sketch
of the hexamer formed from three copies of the major capsid protein. (c) PM2:
the locations of hexamers with respect to two icosahedral faces. Red dots denote
the sites at which the cementing proteins P6 are anchored to the lipid membrane
underneath the capsid. The hexamers adjacent to the 2-fold axes are indicated
by shading, and pentons coloured in purple as before. (d) PRD1: two positions
of the hexamers with respect to two icosahedral faces. The red lines indicate the
locations of the tape measure proteins that reinforce the capsid. The hexamers
adjacent to the 2-fold axes are shaded. (e) Sputnik: positions of the hexameric
units with reference to two icosahedral faces. Red lines denote the sites at which
the cementing proteins are anchored to the capsid proteins. The three hexamers
around the 3-fold axes are shaded.

The third example is the pseudo T = 27 capsid of the Sputnik virus (1(c)),
which is formed from 12 pentons sitting at the icosahedral 5-fold axes and by
several pseudo-hexameric capsomers, displaying three copies of a double g-barrel
monomer as in the previous examples.

Here the multiple copies of a minor capsid protein are located at the bound-
aries of the hexamers [25], as shown in Figure 7(e).

4 Results

Structural features that cannot be explained with Caspar and Klug’s quasiequiv-
alence theory present themselves in two principally different ways: either via
symmetry breaking within hexamers, or via additional structural proteins that
stabilise the capsid. These two distinct types of exceptions to quasiequivalence
theory require different interpretation of our results.

In Subsection 4.1, we focus on capsids made of two different major capsid
proteins, such as those described in Section 3.1. In these cases, hexamers have
similar overall shapes but distinct internal compositions due to the different
ways in which monomers are arranged. As the Lennard-Jones model cannot
account for the internal structures of the hexamers, our computed stress dis-
tribution only captures the arrangement of the hexamers in the capsid, and
not their different material responses. However, since the two types of hexam-
ers have approximately the same shape, the stress distribution we compute -
notwithstanding the simplicity of the model - is a reasonable approximation of
the actual stress distribution in the capsid due to the overall geometry (in terms
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of the T-number of the capsid). The fact that the hexamer structure is different
exactly at those points where there is a high stress concentration, thus suggests
that this different internal structure is a response to the need of the hexamers
to accommodate the excess stress, and points to a strong correlation between
structure and residual stress.

Figure 8: First row: distribution of the maximum tangential shear stress for
the T' = 28 capsids of (a) SH1, (b) HCIV-1, (¢) HHIV-2, (d) P23-77 viewed
along a 2-fold axis. The concentration of shear stress at the three hexamers
at, and near, the 2-fold axes in (a), (b), (c) is apparent (compare with Figure
6). Recall that the capsid in (d) is obtained by the distribution of points on a
sphere instead of the actual PDB file. The stress units are arbitrary. Second
row: Lateral stress for the T' = 28 capsids of (e) SH1, (f) HCIV-1, (g) HHIV-2,
(h) P23-77 viewed along a 2-fold axis. The stress units are arbitrary. Black
ellipses and pentagons denote 2-fold and 5-fold axes, respectively. Notice that
the maximum value of the shear stress is almost twice the maximum value of
the lateral stress.

In Subsection 4.2, we consider capsids in which all hexamers have the same
structure, thus strictly following Caspar-Klug’s quasiequivalence theory in the
capsid, but in which additional reinforcing proteins, such as those introduced
in Section 3.2, occur that are not explained by Caspar-Klug theory. However,
since the computed stress distribution is a function the geometry of the capsid,
it already takes into account the modification of the capsid geometry due to
the effect of the reinforcing proteins. Therefore, concentration effects in this
distribution cannot be used to argue that these are a response to Lennard-
Jones forces. Indeed, care has to be taken when interpreting the results, and we
adopt the following strategy: as experimental data for the capsid in the absence
of the reinforcing proteins is not available, we compare the stress distribution
computed based on the structural data, i.e. in the actual capsids, with spherical
and icosahedral models of capsids. A comparison reveals that there is a stress
reduction in the actual structures, allowing us to conclude indirectly that the
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auxiliary structural proteins result in stress reduction in the capsid shell.

4.1 Non-quasiequivalent hexamer positions in response to
shear stress

In this subsection we focus on the T = 28 capsids of SH-1, HCIV-1, HHIV-
2 and P23-77, see Section 3.1. In order to support our conjecture that the
internal structure of the hexamers is a response to the concentration of the
shear stress, we computed the maximum shear stress and the lateral stress for
the capsid configurations obtained from the PDB files, as illustrated in Figure
8. Since for the P23-77 capsid there is no PDB file available in the literature,
our computations for that capsid were instead based on the spherical codes with
icosahedral symmetry of Hardin, Sloane and Smith [26]. According to [8], the
best choice among the spherical codes is given by the arrangement of points
on a sphere that maximizes the volume of their convex hull, since these point
sets (see [26]) approximately minimize the Lennard-Jones energy. This assertion
has been verified numerically in [8] via Monte-Carlo methods, and we have also
independently tested it. The high sphericity of the P23-77 capsid is indeed
implied in Table C1 of Aznar [8] (form factor 0.61) and confirmed by, among
others, [27].

Note, moreover, that all 7' = 28 capsids studied here exhibit a high degree
of sphericity. This is supported by the curvature analysis in Figure 13: The
Gaussian curvature concentrates at the 5-fold vertices that protrude from the
capsid, and neither are the faces flat, nor does the mean curvature strongly con-
centrate at the icosahedral edges, as would be the case in perfectly icosahedral
capsids (cf. Figure 14). This validates our approach based on Lennard-Jones
forces. In spherical surfaces, the curvature effects are smoothed out over the
whole surface, so that Lennard-Jones interactions are appropriate to capture the
nearest-neighbour interactions between the capsomers, that involve compression
or extension tangential to the surface.

Our first main result is that the values of the shear stress are consistently
much larger than the values of the lateral stress, as shown in Table 1. This
confirms that the tangential shear stress should be more important than the
lateral stress for the structure and mechanical properties of the capsid. Hence,

SH-1 HCIV-1 | HHIV-2 | P23-77
lateral stress: max; |A;] 2.9013 | 1.7044 | 1.6271 | 3.5817
shear stress: max;(Tmax,;) | 3.8703 | 4.3264 4.3217 | 4.3881

Table 1: Comparison between the maximum shear stress and the maximum
lateral stress for the T" = 28 capsids. The maxima are computed over all cap-
somers.

it is reasonable to investigate the distribution of the tangential shear stress in
relation to the positions of capsid features violating quasiequivalence. The plots
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Figure 9: Gaussian, mean and true curvatures of the capsids of PM2, PRD1 and
Sputnik. Notice the concentration of mean and true curvature at the icosahedral
edges of PRD1 and PM2, respectively. The Gaussian curvature peaks at the
5-fold axes, as expected. Notice that the icosahedral faces are almost flat (dark
blue) only for PRD1. The distribution of curvature of the Sputnik is compatible
with the shape of a pentakis-dodecahedron. The Gaussian curvature is measured
in radiants, while the mean and true curvature are measured in Angstrom.

in Figure 8 show the stress distributions, where the colour code indicates the
magnitude of the stress. In all cases, the maximum shear stress concentrates at
the hexamers with a different internal structure, suggesting that such deviations
from quasiequivalence might occur as a means of counteracting shear stress.

4.2 Auxiliary proteins breaking icosahedral capsid sym-
metry

In this subsection we focus on the T" = 21, 25 and 27 capsids of PM2, PRD1, and
Sputnik, see Section 3.2. For these capsid architectures, the correlation between
the stress and the deviation from quasiequivalence is much weaker than for the
T = 28 capsids. We therefore investigate in these cases whether the positions
of the additional structural proteins correlate with bending. We first focus on
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the T' = 21 capsid of PM2. The curvature plots (Figure 9 - top row) reveal that
the Gaussian curvature concentrates at the 5-fold axes, as expected, while the
mean curvature is indeed larger at the icosahedral edges than at the faces, even
though it does not fully vanish there. This means that the actual capsid shape
is neither spherical nor icosahedral, but an interpolant between these extremal
options. Interestingly, the true curvature concentrates more strongly than the
mean curvature at the icosahedral edges, while it is uniform on the icosahedral
faces. Since the true curvature measures how much two neighbouring hexamers
are bent relative to each other, this suggests that the cementing proteins sitting
at the 2-fold axes play the role of reinforcing the hexamer-hexamer attachment
at sites where they tend to be strongly bent.

T21 PM2 T21 icosahedral T21 spherical
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n
I L ) . I
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Figure 10: Histograms of the stress distribution for the 7' = 21 capsid, showing
the number n of capsomers in each interval of stress values (in arbitrary units).
Note that the actual capsid (left) exhibits a lower stress concentration than the
corresponding icosahedral (middle) and spherical (right) shapes.

The analysis of the stress distributions in Figure 15 does not show a signifi-
cant stress concentration at the 2-fold axes. However, there is a clear reduction
of the overall stress relative to the idealised icosahedral and spherical models
(Figure 10). The histogram representation of the stress shows that the actual
capsid structure of PM2 has fewer or no sites at which the stresses take extreme
values, since the tails of the stress distribution are shorter for PM2 in compar-
ison with the icosahedral and spherical structures. This indicates that stress
reduction may be an important determinant of capsid shape.

For the T = 25 PRD1 structure, the mean curvature concentrates at the
icosahedral edges, suggesting that the shape is close to icosahedral (Figure 9 -
middle row). However, both the Gaussian and the mean curvatures are invariant
under the full (120 elements, containing also reflections) icosahedral symmetry,
as in a conventional 7" = 25 Caspar-Klug structure. The true curvature, how-
ever, is not reflection-invariant. The hexamers bend, following the same pattern
as the tape measure protein that is located at the inner capsid surface. Figure
7(d) suggests that the positions of the tape measure proteins may be a response
to curvature stresses. In addition, the shear stress concentrates at the 2-fold
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Figure 11: Histograms of the stress distribution for the T' = 25 capsid, showing
the number n of capsomers in each interval of stress values (in arbitrary units).
Note that the actual capsid (left) exhibits a lower stress concentration than the
corresponding icosahedral (middle) and spherical (right) shapes.

axes, again suggesting a possibly strong correlation with the positions of the
tape measure proteins. The latter could therefore play a role in reinforcing the
capsid in the regions that must support higher stresses. Further, we observe a
substantial stress reduction in the actual structure relative to the icosahedral
and spherical capsids (Figure 16), as well as an overall reduced stress concen-
tration (Figure 11).

Finally, in the T' = 27 capsid of Sputnik, there is a substantial concentration
of the true curvature along three bands joining the 3-fold axes to the 5-fold axes.
These appear to correlate with the positions of the cementing proteins (Figures
9 - bottom row - and 7(e)). Hence, the same considerations as before apply also
here. Even though the distribution of the stresses does not directly correlate
with the locations of the cementing protein (Figure 17), we again observe the
absence of strong loci of stress concentration in the model of the Sputnik capsid
derived from the PDB data, in contrast to the idealised icosahedral and spherical
models (Figure 12). As before, this suggests that the presence of the cementing
proteins, whose effect on capsid architecture is taken into account implicitly via
the PDB-data but is absent in the idealised models, makes a contribution to
stress reduction in the capsid.

5 Discussion

Our model suggests a deep connection between the mechanical properties of viral
capsids, in particular the distribution of the residual stresses, and the structural
organization of the capsid proteins, consistent with earlier studies (cf. [6] and
[8]). Our analysis reveals that tangential shear stress is particularly important
for the T' = 28 viruses in the PRD1-adenovirus lineage, suggesting a possible
explanation for the occurrence of different types of hexamers with distinct types
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Figure 12: Histograms of the stress distribution for the 7" = 27 capsid. The
same comments as in Figures 10 and 11 apply here.

of internal organisation at specific locations in the capsid. In particular, the
shear stress provides a possible explanation for the observed symmetry breaking
and deviations from Caspar-Klug’s quasiequivalence theory. Interestingly, the
T = 28 viruses discussed here are the only known viruses displaying this pseudo
T-number capsid architecture, suggesting that only viruses with distinct types
of capsid proteins can realise such capsid geometries, due to shear stress.

For the other viruses in the same lineage, that are characterized by the
occurrence of additional protein components stabilising the capsid, there is a
clear relation between the decrease of residual stress and the presence of these
additional proteins. However, contrary to the T' = 28 case, our model cannot be
used directly to explain the location of the stabilizing proteins. This is because
in the PDB-data of the atomic positions of the capsid proteins, that form the
basis of our models, the impact of such components on capsid organisation is
implicitly contained. In this case, a comparison of our models derived from the
experimental data (PDB-data), and the idealised models lacking such effects
from additional components, has enabled us to probe their impacts indirectly.
This again revealed a possible role of these auxiliary structural proteins in stress
relief.

Recently, a new classification scheme for virus structure has been introduced
[28], that models capsid architecture via a wider range of surface lattices, and
contains the capsid geometries of Caspar-Klug theory as special cases. This
extended scheme is in particular required for viruses with capsids formed from
more than one type of capsid protein. For example, this includes capsid archi-
tectures in which structural proteins occupy not only hexameric positions as in
the examples discussed here, but for which there are in addition smaller capsid
proteins occupying trimeric positions. In Herpes Simplex virus 1 (HSV-1) [29],
for example, these trimeric positions are occupied by heterotrimers, consisting
of a dimer and monomer formed from different types of minor capsid proteins.
This local symmetry breaking within the heterotrimer is akin to that of the hex-
americ positions discussed here. It is therefore likely that the stress distribution
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across the capsid could also explain such heterotrimer arrangements. This would
also be consistent with the fact that the hexamers in HSV-1 are identical and
stabilised by another structural protein, and therefore cannot absorb the stress
as in the examples discussed here. The proteins at the trimeric positions, on
the other hand, would be able to do this.

In any case, mechanical stress provides a possible explanation for why such
viruses code for more than one type of capsid protein, exhibiting heterogenic
hexamers, or in the case of HSV-1 trimers, despite the additional demands on
coding capacity. It appears that the need to relieve mechanical stress, in partic-
ular the concentration of tangential stresses, could be a driver for the evolution
of such additional structural proteins, outweighing coding costs. Our analysis
also begs questions regarding the evolution of viral capsid architectures over
larger time scales. If mechanical stress is an evolutionary pressure impacting on
the types and numbers of the capsid proteins, as our study suggests, then it is
perhaps not surprising to see only a limited number of different capsid protein
morphologies. Phylogenetic classification based on capsid protein homology, ir-
respective of the level of sequence homology as proposed by Bamford and Stuart
[30], therefore captures such essential evolutionary drivers.
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A Appendix

A.1 Equilibrium intercapsomer distances

The values for o;; are assigned as follows: for the model based on the PDB
data, and 7, j corresponding to distinct hexamers, these are the averages, over
all hexamers, of the distances between the centroids of adjacent capsomers,
ie., 0ij = opn = ﬁzwpu Apglzy — 4], where M = N(N —1)/2 — 60
is the number of links between adjacent hexamers. For ¢, j corresponding to a
hexamer and a pentamer, on the other hand, we compute the minimum distance
between the pentamer centroid and the centroids of the adjacent hexamers, i.e.,
Oij = Opp = MiNp<i12 g>12 |€p — &4|. For the spherical and icosahedral models,
the capsomers are approximated by spheres with different radii according to
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whether they are pentamers or hexamers. Following [6], we assume that the
equilibrium distances between the centers of two adjacent capsomers are the sum
of the radii of the corresponding inscribed spheres. Taking the computed value
of opp/2 for the radius of a hexamer, then o;; = op, and o5 = (1 + X)own/2,
for 4,5 both hexamers, or a hexamer/pentamer pair, respectively, and A\ =
tan(w/6)/ tan(mw/5).

SH-1 HCIV-1 | HHIV-2 | P23-77 PM-2 PRD-1 | Sputnik

onn | 85.4080 | 86.0775 | 85.9620 | 85.6209 | 72.9759 | 71.8629 | 76.1052
Onp | 72.3427 | 73.1553 | 74.0641 | 76.8300 | 63.4528 | 64.8080 | 77.1863

Table 2: Inter-capsomer distances: ojp and opy, correspond to the average dis-
tances in A between adjacent hexamers and pentamers, respectively.

A.2 Tangential projections

When S is a sphere or an icosahedron, the unit normal to .S is well defined away
from the edges and corners. However, when S is a triangulated surface, the
outward unit normal to S, that in turn defines the tangent plane to S, is only
defined on the triangular faces. In that case, we choose a different approach:
for each capsomer, we compute its habit plane from the PDB data, and define
the outward unit normal to S at the capsomer centroid as the unit normal to
the habit plane of the capsomer.

In any case, denoting by m; a choice of the outward unit normal to S at
point x;, the tangential part of the stress is defined to be T = P;—TZ-PZ-, with
P, =1 —n; ®n; the projection onto the plane orthogonal to n;.

A.3 An alternative expression for the lateral and maxi-
mum tangential shear stresses

In order to obtain a more explicit representation of the maximum shear stress,
fix a basis (E; 1, E;2) for the tangent plane to S at point x;, and represent T';

in this basis by the matrix
a; B
Bi v )’

with o; = (TZ-~E¢,1)2, Yi = (Ti-Ei,2)2, Bi = (TIE“)(TZEZQ) The tangential
shear stress across the surface curve with unit normal v; = cos0F; 1 +sin6FE; 5
is given by the expression

- 1
vi - Tw; = fB;cos(20) + 5(% — ;) sin(26),

14- = —sinfF; 1+cos0FE; 2. Then the maximum shear stress is computed

1 7
Tmax,i — 5 4/812 + (71 - ai)za
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coinciding with the expression given in [6] and [8] for a; = ;. The direction
of the line across which the tangential shear stress is maximal is defined by the
angle 0pnax ; such that:

(i) for a; < i, Bi > 0, Omax,; = %arctan (%2;@""),

i) for ;i <, B; <0, Omax,; = 3 arctan (7%2?3@1) +35;

2p;
iv) ;i >, B; <0, bax,; = 3 arctan (72;0’) + 3.

(
(iii) for oy > i, Bi > 0, Omax,; = %arctan ('“_O‘) + m; and
(

A.4 Invariance under icosahedral symmetry

We prove here that, under suitable assumptions on the interaction energy, the
lateral stress and the maximum tangential shear stress have icosahedral sym-
metry as specified below.

We say that a configuration X is icosahedral if it is invariant under the
icosahedral group Z C SO(3). In this case, we can characterize the configuration
as the union of orbits of Z. The action of Z can then be expressed in terms
of a permutation representation as follows. For every Q € Z there exists a
permutation p on N elements such that

Q:Bi:.’ljp(i), VZ':L...,N. (7)

We write this permutation representation as Z — ¥ C Sy, with Sy the permu-
tation group on NN elements. Note that the 12 distinguished points at the 5-fold
axes representing the pentamers must belong to a single orbit.

Let V;;(r;j) be an interaction energy between points x; and «;, depending
only on the their distance (not necessarily the Lennard-Jones energy (1)), and
assume that it is icosahedrally invariant, i.e.,

Vo) To@ypi)) = Vij(rig), — Vi,j=1,...,N and ¥p € %,
which, given (7), is equivalent to the simpler requirement
Vp(i)p(j)<r) = V;j(r), Vi,j=1,...,N and Vp € &, (8)

with r € (0,400). Then the Lennard-Jones energy (1) is icosahedrally invariant.

We now show that the Cauchy stress is invariant under the icosahedral group,
in the sense that, for every icosahedrally invariant configuration X, and every
Q € 7, with associated permutation p,

T,»(X) =QT:(X)Q". (9)

In fact, letting p be the inverse permutation of p, using (8), (7) and the fact
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that the icosahedral group is orthogonal, we obtain

1 1 dV, (0)j
T,»(X)=-35 —— 2 (1o@3)T (i) @ Tl
i#ps) PO
1 1 dVr( )
=-3 2 (in())QTist) ® QTisy)

i | P

1 1 dVy;
EE—— g 77“-- J (Tij)Qrij ® Q’I’ij,
g#i Y

2 dr

which is equivalent to (9).
An immediate consequence of (9) is that all orthogonal invariants of the
stress are also icosahedrally invariant. This, in turn, implies that

Ap(i) = A'ia Tmax,p(i) = Tmax,i> VP €X.

A second consequence of icosahedral invariance is that pentamers cannot sup-
port shear stresses, since T' is proportional to the identity tensor, so that the
eigenvalues of T' are equal and the maximum tangential shear stress vanishes.
The same conclusion holds if there are points (hexamers) at 3-fold axes. Both
assertions follow from the elementary fact that, if Qx; = x; for some Q, i.e., if
Q is in the isotropy group of ;, then QT; = T'Q, and the only 2 x 2 matrices
commuting with 3- and 5-fold rotations are proportional to the identity.

This result implies that the shear stress cannot concentrate at 3- and 5-fold
axes. Note also that the components «, 8 and v of the tangential stress with
respect to a given basis are not icosahedrally invariant.
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