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Abstract 

Cold spray (CS) coating technique is being studied as a potential solution for repairing aircraft 

Ti-6Al-4V components. This work is focused on the restoration of damaged components due 

to wear induced by vibrations. It is known that Ti-6Al-4V CS deposition shows difficulties to 

obtain non-porous coatings due to the high strength of this material, that is detrimental for 

wear resistance. In this sense, performing a post-heat treatment leads to lower porosity CS Ti-

6Al-4V coatings and improves their mechanical properties, and thus, a better tribological 

behaviour is also expected. Therefore, the objective of this study was to determine the effect 

of a post-heat treatment on the wear resistance of Ti-6Al-4V coatings deposited by the CS 

technique. Ti-6Al-4V CS coatings were used, which have been sprayed with nitrogen as 

process gas at a temperature of 1100 °C and a pressure of 50 bar. The coatings were subjected 

to a solution heat treatment followed by a precipitation heat treatment. Oscillating and 

unidirectional sliding wear experiments were conducted on the coatings at room temperature 

and at 450 °C. A pin on disc configuration was used with a bearing steel counterbody. The 
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results were compared to those obtained on the substrate (which represents the material to be 

repaired) and on the as-sprayed coating, which were derived from a previous work. The heat 

treated coating presented improved wear behaviour as compared to the substrate as well as to 

the as-sprayed coating, particularly during the high temperature tests. Wear at high 

temperature was dominated by material transference from the counterbody to the Ti-6Al-4V 

coating. 

Keywords: Ti-6Al-4V titanium alloy; Cold Spray; Coating; Heat treatment; Tribology 
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1. Introduction 

The cold spray (CS) technique is a thermal spray method for the deposition of coatings where 

particles of the material to be deposited are heated at temperatures lower than its melting point 

and accelerated by means of a carrier gas reaching supersonic velocities. The particles impact 

on the substrate getting the joint between them through a process of plastic deformation. The 

microstructure of the particles is retained in the deposited coating because the spraying 

temperatures are lower than the melting point of the sprayed material. In addition, the 

temperature gradients between the substrate and the coating and between the successive layers 

of deposited material are limited, so that the residual stresses are also restricted. All these 

features result in coatings with low porosity, controlled microstructure and high thicknesses 

[1]. This last property makes this spraying technique an ideal alternative to repair damaged 

components. This possibility becomes especially important in those components with high 

added value and high cost. 

Titanium alloys, as lightweight structural materials, are of interest for applications at room 

and moderately elevated temperature environments. For that reason, several applications of 

titanium alloys are focused on the aeronautical and medical industry. Specifically, the Ti-6Al-

4V alloy is the most widely used titanium alloy due to its good machinability and excellent 

mechanical properties and corrosion resistance. Elements of aircraft engines (discs, blades, 

shafts and casings), or parts of the airframes (fasteners, landing gear trucks, large wing 

beams) are made of Ti-6Al-4V [2], [3]. During the life cycle of the aircraft, these elements 

will be subjected to continuous damage processes because of mechanical stresses, vibrations, 

and corrosion. The response of this alloy to mechanical and corrosion requirements has been 

extensively studied [4], [5]. Additionally, the damage induced by vibration, i.e. wear by 

fretting, has been also reported in previous works [6]. 
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These damage processes, which are revealed during the life of the aircraft, require 

maintenance works that usually involve the replacement of the component when the damage 

is higher than a threshold value. Due to the high cost of these Ti-6Al-4V alloy components, 

their replacement with a new one highly increases the maintenance costs. In an attempt to 

reduce these maintenance costs, the repair of damaged surfaces through the deposition of Ti-

6Al-4V coatings is presented as an alternative capable of achieving this objective. 

The methods for Ti coating deposition can be classified in two categories. These are 

techniques where the feedstock powder is heated at temperatures above its melting point, and 

other techniques where the deposition temperature is lower than the melting point of the 

material. The first category includes conventional techniques like HVOF [7], laser cladding 

[8] or plasma spraying [9]. CS is the only technique which is included in the second category. 

Coatings deposited by the techniques of the first category are characterized by high 

temperature gradients. The microstructure of the coatings is different from that of the sprayed 

particles and the residual stresses are significant. Consequently, the coatings have different 

properties from those of the particles used in the deposition process and the coatings thickness 

is limited. Therefore, CS deposition has clear advantages over the techniques included in the 

first category from the repairing point of view [10]. However, a coating deposition technique 

is a reliable repairing technique when the coatings generated on the damaged area have 

similar properties to those of the bulk material. Because of that, it is necessary to study the 

mechanical properties, the corrosion behaviour and the wear resistance of the coatings 

deposited by CS. Previous works have reported results concerning the wear resistance of Ti-

6Al-4V coatings deposited by CS. In this sense, there are still few works related to the wear 

resistance of CS Ti-6Al-4V coatings because of their relatively recent development. 

Furthermore, as wear processes are influenced by a number of conditions and parameters 

within the system of study, there is a need of a larger investigation about the wear behaviour 

of these coatings. Besides that, the studies to date have shown interesting results. For 
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example, Khun et al. [11] deposited Ti coatings onto Ti-6Al-4V substrates by CS and they 

showed that the wear behaviour of the CS Ti coatings was improved compared to the bulk 

alloy. Additionally, to the authors knowledge, the oscillating wear in CS Ti-6Al-4V coatings 

has only been reported in studies conducted by the authors [12], [13]. The authors have 

studied the wear resistance of Ti-6Al-4V coatings deposited by CS on substrates of the similar 

Ti alloy [12]. Two different spraying temperatures were selected: 800 °C and 1100 °C. 

Oscillating and unidirectional sliding wear tests were conducted on the CS Ti-6Al-4V 

coatings against a bearing steel counterbody at room temperature (RT) and 450°C. The work 

concluded that the coating sprayed at 800 °C showed a poor wear resistance compared to the 

bulk material. However, the coating deposited at 1100 °C exhibited comparable or even better 

wear resistance to that of the substrate under oscillating movement. The porosity analysis 

reported values of 18% and 4% for the Ti-6Al-4V coatings deposited at 800 °C and 1100 °C, 

respectively. Then, it seems that, the lower the porosity of the coating, the better the wear 

resistance. Following this reasoning, it is worth asking whether the wear resistance of the 

coatings deposited at 1100 °C could be improved by increasing the cohesion strength of the 

coating, for example performing a heat treatment. 

Sometimes, CS coatings show intersplat boundaries which are not metallurgically bonded. 

The non-bonded interfaces may act as crack nuclei under tensile loading. This deficiency 

could be alleviated by appropriate post heat treatments to induce recovery and 

recrystallization. The heat treatment at elevated temperatures could increase both tensile 

strength and ductility due to the increase in the metallurgically bonded area between the 

deposited particles. Wong et al. [14] studied the effect of the heat treatment of the resulting 

coatings on the mechanical properties of CS Ti-6Al-4V alloy. Nitrogen gas was used during 

the coating deposition process and the propellant gas temperature and pressure values were 

selected to maximize the particle impact velocity. The coatings were annealed at 600 and 800 
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°C. They observed through micro tensile tests an increase in the cohesion strength of the 

coatings treated at the highest temperature. 

Moreover, Vo et al. [15], studied the effect of different heat treatments onto CS Ti-6Al-4V 

coatings deposited on Ti-6Al-4V substrates. Nitrogen and helium were used as propellant 

gases for the coatings deposition, working at a pressure of 4 MPa, and at 800 and 350 °C 

temperatures, respectively. Post-spray processing consisted of annealing the specimens in an 

argon atmosphere at different times and temperatures that ranged from 200 °C to 1025 °C. 

Among all of the heat treated (HT) nitrogen-sprayed coatings, they reported that those 

annealed at 1000 °C showed the larger increase in tensile strength. Thus, this result indicated 

that the increase in annealing temperature provides coatings with high metallurgical bonding. 

Besides, a study by Molak et al. [16] also reported good results after heat treating Ti-6Al-4V 

coatings deposited by warm spray thermal technique. They sprayed coatings at different 

pressures, from 1 to 4 MPa, and controlling the temperature of the propellant gas by diluting 

the combustion flame with nitrogen. Additionally, they conducted three different heat 

treatments that are recommended for Ti-6Al-4V in order to study their effect on the 

mechanical properties of the CS coatings [17]. They conducted a mill annealing, where the 

Ti-6Al-4V coatings were first heated at 750 °C for 1 h and subsequently cooled to RT. 

Recrystallization annealing was also performed, where the coatings were heated at 940 °C for 

4 h, then furnace cooled to 760 °C at a rate of 1 °C/min, further cooled to 480 °C at a rate 

about 5 °C/min in the furnace, and finally cooled outside the furnace to RT. In addition, a beta 

annealing was done, where coatings were first heated at 1025 °C for 1 h and then cooled to 

RT at a rate higher than 85 °C/min. Finally, a subsequent annealing was performed at 760 °C 

for 2 h and followed by a cooling outside the furnace. After the mill annealing, they observed 

a significant decrease in microhardness. However, the samples treated by recrystallization and 

beta annealing showed a noticeable increase in microhardness. Additionally, they obtained 

that the tensile strength and the Young’s modulus for all the heat-treated samples were 
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enhanced regarding to the as-received materials. These results are in agreement with those 

previously obtained by other researchers [18], [19]. 

Consequently, it seems that performing a post-heat treatment improves the mechanical 

properties of Ti-6Al-4V coatings deposited by CS. Several relationships between mechanical 

properties of materials and wear behaviour have been reported [20]. One of the most widely 

used is the Archard model [21], where a relationship between hardness and wear rate is 

established. This model predicts an increase in wear resistance of the material when so does 

its hardness. Therefore, a better tribological behaviour is expected when post-heat treatments 

are carried out on Ti-6Al-4V coatings deposited by CS. 

Thus, the objective of this work has been to determine the effect of a post-heat treatment on 

the wear resistance of Ti-6Al-4V coatings deposited by the CS technique. This work is a 

further study from our previous study on the CS Ti-6Al-4V coatings wear behaviour under 

oscillating conditions [12].The wear resistance investigation of the same coating with a 

subsequent heat treatment is done here. The results of this work could provide a way to 

improve the behaviour of the CS Ti-6Al-4V coatings, from the tribological point of view, 

extending the useful life of the cold spray repaired components. 

2. Materials 

The materials studied in this investigation were CS Ti-6Al-4V coatings deposited on Ti-6Al-
4V substrates with a following heat treatment. The microstructure, mechanical and 
tribological behaviour of the as-sprayed coating have been reported in our previous works 
[12], [22] and thus, the experimental procedure for the coatings deposition has already been 
detailed there. A gas atomized Ti-6Al-4V powder (supplied by LPW (United Kingdom)) was 
used for spraying. Table 1 shows the chemical composition of this powder. The particles 
presented a spherical morphology and a size of (-25+15) µm. This powder exhibits a 
martensitic α’-Ti microstructure [22]. The substrates were commercial Ti-6Al-4V plates 



8 
 

which presented an equiaxed and lamellar microstructure of α-Ti grains with β-Ti phase at the 
grain boundaries. The substrate was prepared before spraying by grinding with 120 grit. The 
coatings were sprayed with a commercial CGT Kinetiks 4000 series CS system using the 
deposition parameters reported in Table 1 Chemical composition of the Ti-6Al-4V used for 
the cold spray deposition [22]. 

Ti6Al4V Powder 

        
Element (wt. %)  

Ti C O N H Fe Al V Other (each) Other (total) 

Balance 0.01 0.16 0.02 0.002 0.2 6.5 3.9 <0.1 <0.4 

 

Table 2. The as-sprayed coatings were deposited with a nitrogen gas pressure of 50 bar and a 

temperature of 1100 °C (Table 2). 

After the spraying process, some coupons were heat-treated. A strengthening heat treatment 

was selected because it provides excellent strength properties combined with ductility [23], 

[24]. The choice of this heat treatment was based on the need of high strength materials for 

the aeronautical industry. The response of the solution treating and aging cycle is reported to 

increase the strength of α-β alloys, as the Ti-6Al-4V alloy. The treatment was done on the as-

sprayed coating following a two-step process. Firstly, a solution heat treatment was performed 

at ~1000 °C for 1h in high vacuum (lower than 10-7 torr), with a heating rate of 10 °C/min and 

followed by argon quenching to RT. The second stage was a precipitation heat treatment, 

which was conducted at 537 °C for 4 h, heating with a rate of 10 °C/min and followed by 

furnace cool. 

Table 3 presents the porosity, thickness and roughness of the as-sprayed and HT coatings, 

which have already been reported [22]. Porosity values that are referred in this work were 

calculated using ten micrographs at x20 magnifications from the transversal section of the 

coatings. The hardness and elastic modulus were measured in our previous study [22].The 
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measurements were conducted by nanoindentation on the polished surfaces of the materials. A 

hardness of 3.86 ± 0.33 GPa was obtained on the HT coating, which was slightly lower, but 

similar, to that of the as-sprayed coating, 3.94 ± 0.36 GPa [22]. Both hardness values were 

higher than the Ti-6Al-4V feedstock particles hardness which was 3.01 ± 0.40 GPa. The 

elastic modulus was higher in the HT coating (117.0 ± 4.9 GPa) than in the as-sprayed coating 

(107.2 ± 3.4 GPa) because of the changes in microstructure after the heat treatment [22]. 

3. Methods 

3.1. Microstructural characterization of the coating 

A microstructural characterization by scanning electron microscopy (SEM) of the HT sample 

has been previously reported by the authors [22]. This microstructural analysis is completed 

here with XRD analyses which were performed by means of a Philips PW3040/00 X’Pert 

MPD/MRD diffractometer using Cu (Kα) radiation with λ= 1.54 Å. The diffraction patterns 

were recorded with an angle from 10 to 115 °. The step of angle for recording was of 0.02 °. 

The WebPDF 4+ software was used for the analysis with the database of the International 

Centre Diffraction Data (ICDD). 

3.2. Wear tests 

The wear tests were conducted following the same methods and testing parameters as those 

reported in [12], [13]. The experiments were performed with a Wazau TRM1000 tribometer 

using two different tests configurations: one applying a unidirectional sliding movement and a 

second one with an oscillating movement. The first type of motion was selected as a reference 

for the tests, while the second one was selected to simulate the oscillating tangential 

movements occurring between aircraft components subjected to vibrations. The oscillating 

tests consisted on a slow rotation of the counterbody with a superimposed high frequency 

vibration, as described elsewhere [12]. This configuration was the most similar to the 



10 
 

oscillation motion that was allowed by the tribometer. Therefore, the unidirectional sliding 

tests were only defined by the sliding speed of the rotation, and, in the oscillating tests, the 

rotation was defined by the sliding speed, while the oscillations were defined by the 

amplitude and frequency of the oscillating cycles. 

A 100Cr6 steel (760 ± 17 HV, Ra= 0.62 ± 0.07 μm) was used as the counterbody, which was 

cleaned with soap and acetone before the test. The choice of the 100Cr6 steel for the 

counterbody was based on the application under study. Titanium can be found in contact with 

this material in some aircraft parts subjected to vibrations, such as in landing gears. Pins with 

a surface section of 2.5 X 6 mm were obtained from the coating samples and they were 

cleaned by means of an ultrasound bath in acetone for 10 min before the tests. The pins were 

weighed before and after the tests to obtain the weight difference, Δm. This value was then 

used to calculate the wear rate (δm) as the ratio of the weight loss of the pins (Δm) by the test 

time (Δt): 

δm=Δm/Δt          (1) 

The coefficient of friction (COF) was also obtained during the tests. The experimental 

parameters were selected to recreate the more severe wear conditions that could be found in 

titanium aircraft components. The unidirectional sliding experiments were performed at RT 

and at 450 °C, both with a sliding velocity of 0.26 m/s and a normal pressure between the pin 

and the counterbody of 30 MPa. The tests were stopped when the wear depth reached the limit 

of 600 μm, because the coatings thickness was ~670 μm. The oscillating tests were also 

performed at RT and at 450 °C, being fixed the sliding velocity at 0.0026 m/s, the normal 

pressure at 30 MPa, the oscillation amplitude at 596 µm and the oscillation frequency at 40 

Hz. The test time in these experiments was limited by a maximum number of oscillating 

cycles of 100 000 as well as by the wear depth limit of 600 μm. 

3.3. Wear mechanisms evaluation 
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The wear mechanisms evaluation was done through microstructural investigation by means of 

SEM using a Hitachi S3400N microscope. This analysis was conducted by the examination of 

the worn surfaces as well as the transverse section of the near surface of the pins after being 

cleaned within an alcohol ultrasound bath. The sliding direction is pointed out using black 

arrows in the micrographs showing worn surfaces in this manuscript. The cross sectional 

samples were metallographically prepared up to a final polishing of 0.04 μm (colloidal silica 

suspension, OP-U). Thus, the sliding direction corresponds to the perpendicular direction to 

the shown plane in all the cross-sectional images in this paper. Secondary electron (SE) and 

backscattered electron (BSE) micrographs were acquired. Energy dispersive X-ray 

microanalyses were also performed with a Bruker XFlash 5010 detector to examine possible 

variations in chemical composition at the contact surface. 

Transmission electron microscopy (TEM) was also conducted in representative samples with 

a Jeol 2010F and a Jeol JEM -Z3100R05 microscopes. Bright field (BF) and dark field (DF) 

micrographs were acquired. EDX microanalyses, scanning transmission electron microscopy 

(STEM) and electron energy loss spectroscopy (EELS) and selected area electron diffraction 

patterns (SADPs) were also used for the study. The samples were prepared to examine the 

near surface at a transverse section to the sample surface. A FEI Helios Nanolab G3 UC 

focused ion beam (FIB/SEM) was used for the sample preparation. 

The FIB specimens were prepared to analyse the perpendicular section of the near surface of 

the worn samples up to about 5 µm in depth. They were obtained by milling trenches around 

three sides of a previously deposited platinum strip (25×2.5×2.5 μm) on the sample surface. 

The milling was done using a beam current of 21 nA. Then, a micromanipulator needle was 

attached to the specimen surface to do the lift-out. The fourth side, by which the specimen 

was still attached to the sample, was milled and the specimen was lifted out. Finally, the 

sample was attached to a copper grid and it was conducted the final thinning of the specimen 
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using a decreasing current beam from 0.5 nA to 100 pA and an energy of 20 kV. The thinning 

was done down to a thickness < 100nm. 

4. Results and discussion 

4.1. Microstructural characterization of the coating 

Figure 1 shows the XRD analyses conducted on the as-sprayed and on the HT coating. The 

main structural phase identified on the as-sprayed coating was the α-Ti phase (hexagonal 

closed packed (hcp), P63/mcm space group, a=b= 2.920 Å and c=4.700 Å). The structural 

phases formed on the surface of the HT coating were examined in its as-received state and 

after removing several microns by mechanical polishing (Figure 1). The XRD pattern from 

the coating in its as-received state revealed the formation of various structural phases on the 

most superficial surface. α-Ti structural phase was the main phase. Additionally, secondary 

phases were identified as TiO (face centred cubic (fcc), Fm-3m space group, a= 4.293 Å) and 

α2-Ti phase (Ti3Al, hcp, P63/mmc space group, a=b= 5.793 Å and c= 4.649 Å). The 

diffraction peaks obtained from the polished surface of the coating were indexed as α-Ti 

phase and β-Ti phase (Ti0.7V0.3, bcc, Im-3m space group, a= 3.211 Å). It was also observed 

that the XRD peaks were slightly broader in the as-sprayed coating diffractogram as 

compared to that of the HT coating. This result will be explained in the light of the SEM 

study. 

Figure 2 shows the microstructure of the as-sprayed coating that has also been reported in a 

previous work [22]. The microstructure consisted of splats generated by the CS process as can 

be seen in Figure 2a. In addition, a martensitic microstructure was observed within the splats 

(Figure 2b). As the powder microstructure was also martensitic [22], this result indicated that 

the coating microstructure was not altered during the spraying. 
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Figure 3 presents a cross-section general view of the HT coating (Figure 3a) and higher 

magnification images of the etched cross section showing different areas of the coating: the 

top surface (Figure 3b), an intermediate area (Figure 3c), and the interface with the substrate 

(Figure 3d). This coating presented a porosity of 1.37 ± 0.62 % which was lower with regard 

to the as-sprayed coating (3.83 ± 0.39 %) (Table 3). Regarding the microstructure, SEM 

examination revealed that the characteristic splat structure of the as-sprayed coating (Figure 

1b) had disappeared. The microstructure was formed by equiaxed grains surrounded by a 

secondary phase which corresponded to the α-Ti and β-Ti phases respectively. In addition, the 

cohesive strength of the as-sprayed and HT sample have been previously tested under tubular 

coating tensile (TCT) tests [25] following the developed method by HSU University [26]. The 

cohesive strength of the heat treated coating was ~1200 MPa, and it was significantly higher 

than that of the as-sprayed coating, ~350 MPa. 

This fact means that the recrystallization and grain growth have occurred. This β-Ti phase, 

enriched in vanadium, precipitated in the intergranular areas (Figure 3c) and may promote a 

solid-state densification process during the post heat treatment, decreasing the porosity and 

favouring a metallurgical bonding between the deposited particles. This point was previously 

reported in other studies[27]–[30]. Consequently, this heat treatment has proven to be capable 

of generating a coating with improved cohesion regarding to as-sprayed one. Nay et al. [28] 

prepared Ti6Al4V coatings on commercial Ti-6Al-4V substrates by cold spray process. The 

coatings were heat treated in air at different temperatures, between 400 and1000 °C, for 6 h 

and then the oven was switched off to cool down the samples until RT. The effect of heat 

treatment temperature on the microstructure, mechanical and tribological properties was 

studied. They obtained that the diffusion between the sprayed Ti-6Al-4V particles was 

promoted when the heat treatment temperature was about 600 °C. Also, they reported 

recrystallization of the sprayed particles in the 800 °C HT samples, while grain growth was 

found in the microstructure of the 1000 °C HT coating. They concluded that a rapid cooling 
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from 1000 °C to RT would result in the formation of a martensitic phase in this coating. This 

effect was observed in the HT samples of the present study, as can be seen in Figure 3c. Some 

acicular grains were observed within the retain β-Ti grains, which probably consisted on 

martensitic α’-Ti. This result was associated to the argon quenching performed at the end of 

the first step in the heat treatment process. Rapid cooling and subsequent martensitic 

transformation can improve the performance of many titanium alloys [31]. However, because 

of the small lattice distortion of acicular martensitic structure in titanium alloy, the 

strengthening effect is slight [32]. The formation of this martensitic phase within the β-Ti 

grains explains the hardness values of the as-sprayed and HT coating. The as-sprayed coating 

hardness was shown to increase as regard to that of the powder due to the work hardening 

effect during the CS deposition as it was reported [22]. Thus, the recrystallization during the 

heat treatment was expected to lower the coatings hardness. As it was pointed, the HT coating 

presented a slightly lower value, but quite near to that of the coating before the treatment. 

Moreover, the recrystallized α-Ti grains generated during the heat treatment also explain the 

finding related to the XRD peaks width. The as-prayed coating presented broader peaks due to 

the smaller grains in its microstructure. This coating was mainly constituted by martensitic 

grains, which consists on fine laths (Figure 2b). Conversely, the HT coating microstructure 

was mostly formed by recrystallized α-Ti grains. 

A thin layer measuring 1.9 ± 0.6 μm was generated at the top surface of the coating (Figure 

3b). This layer was related to the TiO phase which was detected by XRD analysis in the as-

received sample, without polishing. In addition, the presence of retained β-phase was shown 

to be reduced at the upper region of the coating, below the above-mentioned layer. This 

feature is usually observed when oxygen diffusion occurs during Ti oxidation near the surface 

and it is known as α-case [24]. The reduction in β-phase is caused because oxygen is an α-

stabilizing element. 
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The interface of the coating with the substrate was also modified with regard to the coating 

without HT (Figure 3d) [22]. A metallurgical bonding was generated by diffusion with no 

distinguishable interface line. The lower porosity, as well as the metallurgical bonding 

enhancement between the splats and at the interface with the substrate, were especially 

interesting characteristics for improving the CS coating wear resistance. 

4.2. Wear tests  

4.2.1. COF and wear rate results 

Figure 4 shows the COF and the wear rate (δm) results of the wear experiments on the HT 

coating. The obtained results on the substrate and on the as-sprayed coating, that were 

reported in our previous work [12], have also been included to facilitate the comparison. 

Regarding the HT coating, the COF and δm value were shown to be lower during the 

oscillating tests than those observed during the unidirectional sliding experiments (Figure 4). 

This result suggested the activation of different wear mechanisms between the two types of 

motion. On the one hand, during the oscillating tests in this coating, a COF of ~0.1 was 

obtained when testing at both RT and 450 °C temperatures. However, in spite of the similar 

COF values, the δm was different. The pin mass was increased after the test conducted on the 

HT coating under oscillating conditions at 450 °C. For this reason, the δm value of this test is 

not shown in the graph. This finding was related to a major contribution of counterbody 

material transfer to the pin under the mentioned testing conditions, and it will be further 

discussed later in the text. On the other hand, the unidirectional sliding experiments 

performed on the HT coating, showed different COF values when testing at RT and at 450 °C, 

being ~0.3 and ~0.45 respectively. The increase in COF at 450 °C for this coating was 

accompanied by a δm reduction from 0.027 to 0.006 mg/s. 
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Considering first the unidirectional sliding tests, the comparison of the obtained results in the 

HT coating with those observed in the substrate and in the as-sprayed coating, indicated that 

the COF and δm values presented similar trends (Figure 4). However, it should be noted that 

the wear resistance of the HT coating in the unidirectional sliding tests was improved with 

regard to the as-sprayed coating when testing at RT and with regard to the substrate and the 

as-sprayed coating when testing at 450 °C (Figure 4b). The wear resistance enhancement in 

RT tests was also observed by Khun et al. [28] as a consequence of heat treating a Ti-6Al-4V 

CS coating.  They studied the effect of heat treatment temperature on microstructure and 

mechanical and tribological properties of cold sprayed Ti-6Al-4V coatings. After the spraying 

process, the coatings were HT at different temperatures of 400–1000 °C. The tribological 

properties of the coatings were measured against a 100Cr6 steel ball of 6 mm in diameter in a 

circular path of about 2 mm in diameter for about 189 m at a sliding speed of 3 cm/s under a 

normal load of 1 N. They obtained that the heat-treated coating at 1000 °C showed similar 

COF values to the as-deposited coating and that its specific wear rate was lower than that 

obtained on the as-deposited coating. 

On the other hand, the trends observed during the oscillating tests differed between the 

materials (Figure 4). While the wear rates of the substrate and the as-sprayed coating were 

increased when increasing the testing temperature, the wear rate was decreased in the case of 

the HT coating (Figure 4b). Negative wear rates were even measured for these experiments in 

the HT coating. Therefore, while the as-sprayed coating presented an improved wear 

resistance with regard to the substrate during the RT tests, the HT coating has shown an 

enhancement of the wear resistance at 450 °C. These findings will be clarified by the 

microstructural investigation. 

4.2.2. Wear mechanisms 
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The COF variability measured in these tests suggested that different wear mechanisms were 

being activated by the different testing conditions. Thus, the wear mechanisms have been 

analysed by means of the microstructural examination of the tested samples. 

Figures 5a and b show the worn surface of the HT coating tested under unidirectional sliding 

conditions at RT, where abrasive grooves and debris particles were found. The debris was 

found as loose particles and generating agglomerates, which could measure several hundreds 

of microns in size. An example of these particle agglomerates is shown in the inserted image 

in Figure 5b, which was formed by a mixture of Ti-6Al-4V and counterbody particles as 

revealed by EDX microanalyses (Figure 5c). Counterbody particles were also found adhered 

to the surface. In addition, cracks were generated on the surface of the sample as a 

consequence of the high stresses occurring during the test. Moreover, the investigation of the 

cross section of the sample revealed that a mechanically mixed layer (MML) was generated 

(Figures 6a and b), which was similar to that formed under the same experimental conditions 

in the other materials [12]. The MML consisted on a mixture of Ti-6Al-4V alloy with traces 

of counterbody particles as revealed by EDX map microanalyses (Figure 6b). No oxides were 

found in the MML. The layer was developed discontinuously and with a variable thickness 

along the cross section. A maximum thickness of ~40 μm was measured along the studied 

cross section. Additionally, the MML microstructure includes debris agglomerates highly 

deformed in the sliding direction 

The morphology of the worn surface of the HT coating after a unidirectional sliding test at 

450 °C presented a smoother appearance as compared to the sample tested at RT, as can be 

seen in Figures 5d and e. EDX microanalysis revealed that oxides were formed on the surface. 

The surface appeared to be particularly oxidized at the sites where a higher content of Fe from 

the counterbody was present, as can be distinguished in the BSE micrographs and EDX 

microanalyses (Figures 5e and f). A continuous MML was observed at the top surface of a 

studied cross section of this sample (Figure 6c). The MML was around 20 µm thick and it was 
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extended up to 50 µm in some regions. A mixture of Fe oxides and Ti-6Al-4V formed the 

MML generating large layers parallel to the surface as can be seen in the EDX maps in Figure 

6d, indicating high plastic deformation.  

The presence of residual scratches on the worn surfaces (Figures 5a and c) combined with 

delamination processes, allowed identifying the abrasion and adhesion as the main wear 

mechanisms involved during the unidirectional sliding tests. Moreover, a high plastic 

deformation was shown to be promoted by the unidirectional sliding motion. Regarding the 

inclusion of Fe oxides in the MML, found during the 450 °C tests (Figures 6c and d), this result 

has let to identify the contribution of an oxidative wear during the high temperature tests. 

In addition, the generated MMLs on the HT coating during the unidirectional sliding tests were 

shown to provide a slight improvement in wear resistance as compared to that in the as-sprayed 

coating (Figure 4b). This fact was mainly associated with the MML characteristics and it could 

also be related to the lower degree of porosity of the HT coating and to the enhanced interface 

with the substrate of this coating. Moreover, the lower δm observed in the HT coating could be 

also associated to the initial TiO layer generated on the surface, as will be discussed later. 

Furthermore, the HT coating δm was decreased when the testing temperature was increased 

(Figure 4b), as it has been observed in the substrate and in the as-sprayed coating [12]. This 

finding was related to the presence of oxides in the MML which were shown to provide a 

protective effect against wear. The presence of oxides has also been found before in the MML 

generated on substrate and as-sprayed coating samples tested under the same experimental 

conditions [12]. 

Figures 5g and h present micrographs of the worn surfaces generated after an oscillating test 

at RT on the HT coating. Abrasion grooves and debris particles (loose or agglomerated) 

dispersed on the surface were observed. Some debris particles presented a higher content of 

oxygen indicating the possible formation of Ti or Fe oxides during the process (EDX 1, 
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Figure 5i). The presence of transferred material from the counterbody was also observed on 

the surfaces (EDX 2, Figure 5i). The microstructural study by SEM of the RT oscillating test 

sample revealed the formation of an MML at the top surface of the sample (Figure 6e) which 

was discontinuously distributed along the cross section and presented a maximum thickness 

of ~8 µm. As can be seen in Figures 6e and f, delamination of the MML was found at some 

regions of the cross sectional cut. The MML consisted of a mixture of the Ti alloy of the 

coating with some traces of Fe rich phases from the counterbody as it is shown in the EDX 

maps presented in Figures 6e and f. 

Comparing the MML of the unidirectional sliding and oscillating tests (Figures 6a and e), it 

can be observed that there was a higher plastic deformation in the generated MMLs during the 

unidirectional sliding tests (Figures 6a and c). Conversely, fragmented particles were 

observed on the worn samples after the oscillating tests (Figure 6e and g). It can thus be 

suggested that there was a third body action during the oscillating tests. This may justify the 

lower COF and dm values obtained in the oscillating tests regarding to the sliding ones 

(Figure 4). 

A subsequent TEM investigation of the near surface region of this sample has shown that the 

microstructure of the MML was nanocrystalline. Figure 7 shows a TEM micrograph of the 

top surface of this sample. At the most superficial region of the sample, the grains presented 

small sizes with equiaxed morphologies. The DP acquired from that region consisted of a ring 

diffraction pattern indicating the formation of a nanostructured grain region. Below this 

nanostructured region, it can be seen that the grains were larger in size. These larger grains 

presented equiaxed morphologies as well as elongated shapes, oriented parallel to the surface, 

indicating that they could have been deformed. The composition of the grains was identified 

as the Ti-6Al-4V alloy by EDX analysis along the entire TEM sample. STEM EDX map 

analysis showed the presence of a secondary phase enriched in V, the β-Ti phase, which was 
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previously identified in the microstructural characterization of this sample. This phase was 

observed generating bands with different morphologies and its formation in the coating was 

associated with the heat treatment. A large band of this phase measuring several microns in 

length was observed in the FIB sample (not shown). But there were also observed smaller 

bands of the V rich phase at the top region of the sample, within the nanograin structure 

(Figure 8). These smaller traces appeared to be fractions from the β-Ti phase which might 

have been broken during the test. These results indicated that the MML had been created 

through the formation of transfer particles that are detached by adhesion and their following 

mechanical mixing [33], [34]. 

Regarding the worn sample after the 450 °C oscillating test (Figures 5j, k and l), a relatively 

large quantity of counterbody material was found adhered on its surface covering areas of 

hundreds of microns. This result indicated that the material transfer from the counterbody was 

important during the oscillating test performed at 450 °C in this coating. The MML, which 

was observed on the studied cross sectional cut of this sample, is presented in Figures 6g and 

h. In a similar way to the features observed in the plan view surface, a considerable layer of 

transferred material was created at the top surface of the sample. The layer was continuous, 

and its thickness was ~25 µm and at some regions it was extended up to ~36 µm. The EDX 

maps included in Figure 6h indicated that a thick layer of oxidized counterbody material was 

adhered to the coating’s surface. On the other hand, as it can be seen in the figure, almost no 

wear of the coating was observed. Instead, a significant counterbody material was adhered to 

the surface. Moreover, it can be distinguished a thin layer of about 2 µm in thickness between 

the Ti-6Al-4V coating and the oxidized transferred material, which appeared to be constituted 

of Ti oxide which could be associated with the oscillating test conditions. 

The MML that was observed by SEM was also analysed through the TEM study. Figure 9 

shows a TEM sample of the near surface microstructure. In the figure, there could be 
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distinguished an MML generated at the upper region of the sample, which was constituted of 

small grains. The thickness of this layer measured ~0.6 μm. The chemical composition was 

identified as Fe, O and Cr and a smaller amount of Ti and Al elements as shown in the EDX 

microanalysis (Figure 9c). In the EELS spectrum of the MML which is reported in Figure 10, 

the shape of the O-K edges and Fe-L2,3 edges appeared to be similar to the ones associated to 

the FeO or Fe3O4 [35]. On the other hand, the α-Ti matrix of the coating was identified under 

the oxide layer. The formation of this MML is therefore related to an adhesive wear process in 

which the counterbody material is transferred to the pin. This result was not expected, because 

the counterbody material was originally harder than the pin. In addition, the oxidized state of 

the transferred material also suggested that the oxidation wear mechanism was also involved 

in the process. It should be noted that the studied FIB sample did not show the 2 µm TiO layer 

that was identified by SEM. This implies the TiO layer was not continuous between the 

coating and the transfer layer, and the FIB sample was obtained from a region of the worn 

surface in which this TiO layer was absent, possibly due to wear. 

The most surprising result to emerge from the HT coating wear study was that the wear 

process of the system at 450 °C under oscillating motion was opposite to the expected and to 

that observed in the as-sprayed coating, as it was pointed above. Since the counterbody 

material was harder than the coating, it was expected that the coating should have been more 

abraded by the counterbody asperities rather than the opposite [36]. However, the coating 

appeared marginally worn and the MML, which was found on the surface of the pin, was 

primarily based on counterbody material. This result was also deduced from the negative 

weight differences obtained from the weight measurements of the pins before and after the 

tests. The pins were shown to increase in weight, and this fact could only be explained if 

material from the counterbody was adhered to the pin’s surface. A possible explanation for 

this result may be related to an external TiO layer which could be generated during the 

oscillating wear tests. Waterhouse et al. [37] reported that Ti alloys develop oxides at 600 °C 
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that are thin, very protective and not disrupted by the fretting action. Matikas et al. [38] 

predicted temperature variations near the fretting path for Ti alloys in the 800 to 1000 °C 

region. Alyabev [39], however, reported temperatures above 400 °C near the fretting path. 

Consequently, in the oscillating tests carried out in this work, temperatures of 600 °C (to take 

an average of the two reported values) could be reached in the contact, justifying the 

formation of the TiO layer. This protective layer may have had a decisive role in the wear 

rate, limiting the wear of the Ti alloy and promoting the wear of the counterbody. This oxide 

layer was probably harder than the oxidized counterbody. In fact, the EDX maps (Figure 6h) 

of a worn sample have indicated that this layer had remained unworn in some regions of the 

sample. Previous studies on Ti [40], [41] or Ti-6Al-4V [42], [43] wear behavior have reported 

an enhancement in wear resistance when the samples were oxidized because the oxidized 

samples presented higher hardness. For example, TiO2 presents a hardness value in the range 

of 1000 to 1500 HV [44], which is significantly higher than the untreated Ti. The oxidation of 

the counterbody was also considered because some iron oxides, as the Fe3O4 (450 to 550 HV) 

or FeO (250 to 350 HV) [45], are softer than the steel alloy used for the experiments (760 

HV). However, this effect was not observed in the tests conducted in the as-sprayed coating or 

in the substrate. Therefore, the findings point to a possible influence of the TiO layer which 

resulted harder than the Fe oxides. Moreover, the MML did not show the deformed layers 

generated during the unidirectional sliding experiments. Some particle fragmentation was 

observed instead in the MML (Figure 6g). It is therefore likely that a third body wear was also 

occurring during the oscillating tests at 450 °C. 

Therefore, the wear process in oscillating tests at RT and 450 °C was mainly produced by a 

third body action. This justifies that in both cases the COF was similar (Figure 4a). However, 

in the case of RT tests, the wear process may be mainly produced in the coating, while at 450 

°C it seems that this process may occur on the counterbody. This could explain the differences 

observed in the coatings wear rates (Figure 4b). 
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Finally, it should be noted that the differences found between the COF and δm values of the 

unidirectional sliding and the oscillating tests seemed to be caused by a higher plastic 

deformation generated by the unidirectional sliding motion. The samples tested under 

unidirectional sliding motion have shown features, as greater cracks on the surfaces and 

thicker MMLs with clear plastic deformation signs that were not observed after the oscillating 

tests. As could be observed in Figure 6, it seems that the wear process involves delamination 

of the surfaces in contact. Some of this debris was retained in the contact between the surfaces 

forming the MML. Therefore, it seems that the behaviour of the tribological system could be 

conditioned by the morphology and deformation capacity of the MML. The MML has a 

morphology characterized by high deformation (Figures 6a and c). However, in the oscillating 

tests, this MML showed a different morphology. It did not show a high plastic deformation 

(Figures 6e and g). The wear process appeared to be more dominated by a third body action 

what led to a reduction in COF and wear rates (Figure 4). Therefore, the differences observed 

in the morphology and composition of the MML could explain the differences between the 

unidirectional sliding and the oscillating tests in the wear resistance (Figure 4b). 

5. Conclusions 

The aim of this investigation was to evaluate the wear response under oscillating motion of 

Ti-6Al-4V CS coatings sprayed at a process gas temperature of 1100 °C and a pressure of 50 

bar with a following heat treatment. Oscillating wear experiments were performed at two 

different testing temperatures: RT and 450 °C. Unidirectional sliding experiments were also 

conducted at similar experimental conditions as a reference. The results of this study indicate 

that: 

- The HT Ti-6Al-4V CS coating has shown an enhanced wear resistance as compared to 

the as-sprayed coating and the bulk material under high temperature environment (450 

°C). This result was associated to the microstructure of the samples. The 
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microstructure of the HT coating presented a lower porosity and enhanced interfaces 

between the splats and at the interface with the substrate with regard to the as-sprayed 

coating. In addition, a TiO layer was generated during the HT which was shown to 

provide wear protection particularly testing under oscillating high temperature 

environment. 

- A higher plastic deformation was shown to be promoted during the unidirectional 

sliding experiments, while wear in the oscillating tests seemed to be more dominated 

by a third body action. These mechanisms variability between both types of motion 

experiments led to lower COF and wear rates in the Ti-6Al-4V coatings tested under 

the oscillating conditions. 

- The wear mechanisms during the unidirectional sliding experiments at RT were a 

combination of abrasion and adhesion. Moreover, the high plastic deformation 

induced by the mode of motion led to the formation of highly deformed debris layers 

in the MML. The same wear mechanisms plus oxidative wear were observed when 

testing at 450 °C. The activation of the oxidative wear led to a COF increment and a 

lower wear rate in the process. 

- Regarding the oscillating tests, the wear mechanisms at RT were also abrasion and 

adhesion. The MML presented in this case less signs of plastic deformation, the debris 

particles seemed to be fragmented instead. During the 450 °C experiments, oxidative 

wear was activated and it led to a higher wear in the counterbody material than in the 

coating. 
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Table 1 Chemical composition of the Ti-6Al-4V used for the cold spray deposition [22]. 

Ti6Al4V Powder 

        
Element (wt. %)  

Ti C O N H Fe Al V Other (each) Other (total) 

Balance 0.01 0.16 0.02 0.002 0.2 6.5 3.9 <0.1 <0.4 

 

Table 2 CS process parameters for the coatings deposition [22]. 

CS parameters  

Substrate surface preparation Ground (120 grit) 

Process Gas Nitrogen 

Process Gas Temperature 1100 °C 

Process Gas Pressure 50 bar 

Spraying distance 50 mm 

Traverse speed 500 mm/s 

Number of Passes 4 

Track spacing 1 mm 

Spraying angle 90º 

Powder feeder wheel rotational speed 3 rpm 

Nozzle type SiC, water-cooled 

 

Table 3 Porosity, thickness and roughness (Ra, arithmetical mean roughness) of the Ti-6Al-

4V CS coating before (as-sprayed) and after being heat treated (HT coating) [22]. 

  Porosity (%) Thickness (μm) Ra (μm) 

As-sprayed coating 3.83 ± 0.39 684 ± 27 7.92 ± 0.32 

HT coating 1.27 ± 0.62 677 ± 25 8.11 ± 0.30 
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List of figure captions: 

Figure 1 XRD patterns acquired from the surface of the as-sprayed CS coating and from the 
as-received and the polished surface of the HT Ti-6Al-4V coating. 

Figure 2 a) SE image showing the etched cross section of the as-sprayed coating and b) a 
higher magnification image from the up-right area on (a) showing a detail of the martensitic 
microstructure within a splat. 

Figure 3 a) BSE image showing the etched HT coating cross section; and SE images showing 
b) the top surface, c) the equiaxed grain structure of the coating and d) the interface of the 
coating with the substrate. 

Figure 4 Comparative graphs showing the obtained results of the COF and the δm 
(logarithmic scale) of the substrate and the as-sprayed and HT coatings. 

Figure 5 SE, BSE and EDX microanalysis, acquired from the sites indicated in the BSE 
images, from the worn surfaces of the HT coating tested under unidirectional sliding 
conditions at RT (a, b and c) and at 450 °C (d, e and f), and under oscillating conditions at RT 
(g, h and i) and at 450 °C (j, k and l). The inserted micrographs in (b) and (e) are magnified 
images from the centre of those images. 

Figure 6 BSE images (on the left) showing cross sections of worn HT coating samples and 
the corresponding Ti Kα, O K and Fe Kα EDX maps (on the right) from the squared detail of 
the cross section. The figures correspond to the samples tested under unidirectional sliding 
conditions at RT (a and b) and at 450 °C (c and d), and under oscillating movement at RT (e 
and f) and at 450 °C (g and h). 

Figure 7 BF micrograph of a HT coating sample that have been tested at RT, applying a 
normal pressure of 30 MPa and an oscillation amplitude of 596 μm. A SADP and the EDX 
microanalysis acquired from the region indicated as R1 are included in the figure. Cu 
detection in the EDX analysis comes from the grid. 

Figure 8 Annular dark-field (ADF) image and the Ti-Kα, Fe-Kα, Al-Kα, V-Kα, Cr-Kα, and 
Cr-Kβ STEM maps acquired from the area. The images were acquired from a HT coating 
sample tested at RT, applying a normal pressure of 30 MPa and an oscillation amplitude of 
506 μm. 

Figure 9 BF micrograph of the near surface of a HT coating sample tested at 450 °C, 
applying a normal pressure of 30 MPa and an oscillation amplitude of 596 μm. The EDX 
from the regions indicated by arrows are included. The EDX pattern on the right also showed 
peaks of Cu Kα, Cu Kβ and Pt Lα at higher energies. Pt was used for protecting the sample 
during the FIB preparation. Cu was the material of the grid where the FIB sample was stuck. 

Figure 10 a) EELS spectrum acquired from the MML generated in the upper region of the 
sample presented in the above figure and magnifications of the regions related to the b) O-K 
and b) Fe-L2,3 edges. 
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Figure 2  

 

Figure 3  
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Figure 4  

 

c)

20 μm 10 μm

10 μm10 μm

Ti-Kα

d)

Fe-KαO-K

5 μm

5 μm

10 μm

5 μm

Ti-Kα

f)

Fe-KαO-K

e)

Ti-Kα

h)

Fe-KαO-K

10 μm

10 μm10 μm

20 μm

g)

Ti-Kα

b)

Fe-KαO-K

5 μm

5 μm5 μm

10 μm

a)

Unidirectional Sliding test at RT

Unidirectional Sliding test at 450 ºC

Oscillating test at RT

Oscillating test at 450 ºC

50 μm

50 μm

50 μm

50 μm



35 
 

 

Figure 5 
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