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A novel unambiguous strategy of molecular
feature extraction in machine learning assisted
predictive models for environmental properties†

ZihaoQ2 Wang, a Yang Su, a Saimeng Jin, a Weifeng Shen, *a Jingzheng Ren,b

Xiangping Zhang c and James H. Clark d

Environmental properties of compounds provide significant information in treating organic pollutants,

which drives the chemical process and environmental science toward eco-friendly technology.

Traditional group contribution methods play an important role in property estimations, whereas various

disadvantages emerge in their applications, such as scattered predicted values for certain groups of com-

pounds. In order to address such issues, an extraction strategy for molecular features is proposed in this

research, which is characterized by interpretability and discriminating power with regard to isomers.

Based on the Henry’s law constant data of organic compounds in water, we developed a hybrid predictive

model that integrates the proposed strategy in conjunction with a neural network framework. The struc-

ture of the predictive model is optimized using cross-validation and grid search to improve its robustness.

Moreover, the predictive model is improved by introducing the plane of best fit descriptor as input and

adopting k-means clustering in sampling. In contrast with reported models in the literature, the developed

predictive model demonstrates improved generality, higher accuracy, and fewer molecular features used

in its development.

Introduction

Environmental properties of compounds play a crucial role in

many fields such as sustainable chemistry,1–3 process

design,4,5 environmental remediation and evaluation of chemi-

cals’ environmental behaviours.6–8 Environmental benefits

drive the development of green solvents, chemical synthesis

and molecular design toward eco-friendly technology,9–11

because environmental properties provide valuable infor-

mation on the absorption, distribution and metabolism of

compounds and direct the treatment of organic pollutants

which may pose serious threats to humans and wildlife.12

However, reliably measuring the environmental properties for

compounds is a costly task and sometimes tedious, especially

for those compounds with very low vapour pressure, low

aqueous solubility or high risk. Therefore, different

approaches have been proposed in the open literature to

predict properties for various types of chemical compounds.

Empirical relationship method is one of the popular

approaches for property estimation, in which different physico-

chemical properties (e.g., critical temperature, vapour pressure,

and aqueous solubility) serve as input parameters to

calculate target properties of compounds.7,13,14 For instance,

Gharagheizi et al.14 developed a fairly accurate empirical

model to predict Henry’s law constant values of organic com-

pounds relying on several basic properties (e.g., normal boiling

point temperature and critical pressure). This model can be

easily applied for rapid estimation and it exhibits an absolute

average deviation of about 10% with respect to 1816 organic

compounds. However, empirical relationship approaches

heavily depend on the availability and accuracy of the required

input properties. Thus, it is not practical to use if one of the

inputs is unavailable (or cannot be estimated).

Another popular type of the predictive tools has focused on

the application of quantitative structure–property relationship

(QSPR) models, in which the physicochemical properties are

supposed to be related to molecular structures. A number of

studies have made great contributions in this regard.15–21 In

addition, several QSPR models were put forward based on
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group contribution (GC) methods.12,22–24 In such models,

molecules of interest are divided into various groups (e.g.,

atoms and substructures containing atoms and chemical

bonds), and each group is assigned a specific contribution

value. Afterwards, the target property of a compound can be

given by summarizing the contributions of groups. The GC

methods therefore are regarded as multiple linear mathemat-

ical models. Whereas, the same groups in different GC

methods have distinct contribution values and the definitions

of groups are not entirely the same. Thus, different GC

methods work in a similar way though exhibit different

results. A classic GC method is the three-level GC estimation

approach proposed by Marrero and Gani,25 in which a total of

370 kinds of groups were defined for recognizing molecular

structures. Attributed to its superior performance, the three-

level GC method has been extensively applied for estimating

various physicochemical properties such as critical properties,

standard enthalpy of vaporization, and the octanol–water par-

tition coefficient.26–28

GC methods are characterized by simple models, quick and

fairly reliable estimations. Based on a comprehensive literature

review, three typical shortcomings of the traditional GC

methods have often emerged in applications:

(a) Difficulties in understanding the definitions and

structures of complex groups;

(b) Computational error and time consumption due to

complexities in recognizing groups and calculating the

property;

(c) Scattered predicted values for certain groups of com-

pounds resulting from different feasible strategies appearing

in the structure recognition.

With the rapid development of artificial intelligence and

computational power, many QSPR models have been investi-

gated with the aid of artificial neural networks (ANNs) and

have gained popularity for estimating physicochemical

properties.29–36 Because of their ability to model and repro-

duce nonlinear processes, ANN-GC hybrid models have pre-

sented accurate predictive tools mainly with the aim of allevia-

tion of the problems in the traditional GC methods.37–39 As

such, the assistance of computer-aided technologies enables

the ANN-GC models to readily correct these shortcomings (a)

and (b). Meanwhile, the shortcoming (c) can also be removed

by predefining the priority rules of available strategies or devel-

oping new GC methods. However, the priority rules or the

defined groups need to be updated when new chemicals and

chemical structures are introduced.

In this research, an unambiguous strategy is proposed to

rapidly recognize molecular structures, extract molecular fea-

tures, and transfer features into identifiers according to

encoding rules. The feature extraction algorithm for accom-

plishing these works is developed and is introduced in

detail. Moreover, using the proposed strategy, a QSPR model

is developed to predict property values for organic com-

pounds in water, based on their experimental data and mole-

cular structures. For this, adopting machine learning algor-

ithms, a simple four-layer ANN is constructed to generate a

predictive model which is expected to exhibit the following

features:

(a) Using fewer molecular features to achieve more accu-

rate predictions compared to the available models in the

literature;

(b) Avoiding various feasible strategies appearing in struc-

ture recognition to prevent the scattered predicted values for

certain groups of compounds;

(c) Enhancing the generality of the model with respect to

the types of the organic compounds.

Methodology

Herein, a strategy is proposed to rapidly recognize molecular

structures and to extract molecular features without ambiguity

followed by a neural network specially built for producing a

predictive model to estimate physicochemical properties of the

compounds of interest. Henry’s law constant (HLC) for com-

pounds in water is employed as a case study in this research. It

is the air–water partition coefficient which describes the equili-

brium distribution of a chemical between air and water, and it

can be expressed as the ratio of partial pressure above water to

the amount of dissolved gas in water.40,41 The HLC is an indi-

cator of the chemical’s volatility. It is important in describing

the distribution and transport of chemicals between aquatic

ecosystems and the atmosphere, which determines the fate of

chemicals in environment. Compounds displaying higher HLC

values, especially the lower molecular weight compounds, are

more likely to volatilize from aqueous solutions, they must be

handled carefully to improve air quality and avoid short- and

long-term adverse health effects. Fig. 1 illustrates the pro-

cedure of model development as follows:

Step 1: Data collection.

The experimental data42 of organic compounds is essential

for the development of a QSPR model. In addition, simplified

molecular-input line-entry system (SMILES) string is also

treated as a key parameter to the presented model, which

expresses fundamental information of molecular structures.

Fig. 1 The procedure for developing a predictive model to predict the

log HLC values of organic compounds.

Paper Green Chemistry

2 | Green Chem., 2020, 00, 1–10 This journal is © The Royal Society of Chemistry 2020

1

5

10

15

20

25

30

35

40

45

50

55

1

5

10

15

20

25

30

35

40

45

50

55



Step 2: Feature extraction.

To ensure that the information of molecular structures can

be processed by the neural network, molecular features are

extracted with the proposed strategy and later converted to

numeric vectors which are generated in a unique manner

relying on built-in encoding rules. In this way, the molecular

information can be introduced to the neural network and be

correlated to the value of the target property.

Step 3: Neural network design.

On the basis of the experimental data and molecular

feature vectors, a fully connected neural network is con-

structed to develop the predictive model. The structural para-

meters required in the design of neural network are optimized

using cross-validation and grid search in order to provide

stability and reliability in model training.

Step 4: Model training.

Having received the feature vectors describing molecular

structures, the neural network establishes a complex math-

ematical model and then produces the estimated property

values. The training process runs repeatedly aiming to obtain

a better predictive model which could provide more accurate

predictions for HLC values of organic compounds in water.

All the above steps are achieved with a series of programs

written in Python. The program has been run successfully on a

desktop computer with Intel Core i3-8100 processor under

Windows 10 operating system.

Data collection

To ensure the reliability of the predictive model, the experi-

mental HLC values at 298.15 K are gathered from one of the

most reliable and comprehensive databases.42 The HLC is

commonly reported in units of atm m3 mol−1 (mole fraction

basis) but here it is represented as its decimal logarithmic

form (log HLC) because it spans over many orders of magni-

tude with regard to the collected massive samples. In this

research, a number of irrelevant compounds (e.g., inorganic

compounds and ionic compounds) and the compounds pro-

vided with estimated HLC values have been discarded.

Therefore, the model is applicable only to organic compounds

and its reliability is significantly improved. As a consequence,

the HLC values of 2566 diverse organic compounds in water

are kept and assembled as the dataset for developing the pre-

dictive model. The compounds span a wide class of molecular

structures including aliphatic and aromatic hydrocarbons,

alcohols and phenols, heterocyclic compounds, amines, acids,

ketones, esters, aldehydes, ethers, and so on. The distribution

of the treated log HLC values is displayed in Fig. 2.

The other input for the development of the QSPR model is

the information of molecular structures. The SMILES is a spe-

cification in the form of a line notation for describing the

structure of chemical species, and it can be used to build two-

or three-dimensional structure of a molecule.43,44 As a chemi-

cal language, the SMILES string is sufficient to provide struc-

tural information for molecules required in model develop-

ment. Thus, SMILES strings have been widely employed in the

literature for developing QSPR-based models and cheminfor-

matics software. Additionally, having learned the simple

encoding rules of the SMILES strings, one can readily and cor-

rectly give the SMILES string of a compound from its mole-

cular structure.

PubChem45 is a massive open repository which provides

over 200 million kinds of compounds with chemical infor-

mation such as molecular formula, SMILES string, and so

forth. It should be noted that there are two types of SMILES

strings, canonical SMILES and isomeric SMILES. The former

one is available for all the existing compounds, whereas the

latter one is only provided for isomers since the isomeric

SMILES strings contain isomeric information of molecules.

The SMILES strings for these investigated compounds have

been collected from the PubChem database. In order to pre-

serve the isomeric information, the isomeric SMILES string

has been adopted if it is available for a given compound;

otherwise the canonical SMILES string is employed. Therefore,

the experimental data and SMILES strings of the investigated

2566 organic compounds have been prepared for the corre-

lation of molecular structures and properties.

Feature extraction

To be provided to the neural network, all types of data need to

be translated into the numeric form contained in vectors.

Accordingly, the molecular information of each compound

needs to be converted and included in a numeric vector. For

this purpose, an unambiguous strategy is proposed and pro-

gramed to rapidly recognize molecular structures and extract

molecular features. In the proposed strategy, each molecular

feature represents a molecular substructure that only contains

single non-hydrogen atom accompanied with its connected

hydrogen atoms and chemical bonds. Therefore, only one

strategy is feasible in subdividing a molecule into several sub-

structures, and it avoids scattered predicted values. These fea-

tures are created with built-in encoding rules in which various

traditional chemical information (such as type of the non-

hydrogen atom, number of hydrogen atoms, and formal

charge46) of substructures is taken into consideration. In

Fig. 2 The distribution of the collected experimental log HLC values for

2566 organic compounds.
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addition, the types of chemical bonds between the substruc-

ture and its connected substructures in the molecule are con-

sidered in the encoding rules for creating molecular features,

and meanwhile, stereoisomers are also identified by the

encoding rules and the stereo-centres are recorded in the

molecular features. In this way, molecular features are

extracted with the encoding rules and similar substructures

can be distinguished to the greatest extent. On this basis,

molecular structures have been converted to numeric vectors

according to the frequency of each feature. Therefore, similar

to GC-based methods, the proposed strategy is characterized

by good interpretability as molecule are the combination of

fragments.

In order to preserve molecular information and specify dis-

tinct molecular features, the RDKit cheminformatics tool has

been adopted for implementing the encoding rules to present

the features with identifiers. The definitions of the characters

incorporated in identifiers are provided in Table S1 of ESI.†

The procedure for the feature extraction and vectorization of

molecular structures is comprised of the following three steps

as depicted in Fig. 3.

Step 1: The molecular features are extracted from the mole-

cular structures of organic compounds of interest which have

been already expressed with identifiers using the pre-defined

encoding rules. The process covers all the atoms and chemical

bonds in a molecule to acquire the information of molecular

structures without omissions.

Step 2: The molecular features represented with identifiers

are assembled into a list and the duplicates are removed to

ensure that each feature only appears once in the list. Then, all

the remaining molecular features in the list are sorted in

increasing lexicographic order (according to the Python func-

tion of “sorted”) to fix the location of every feature in the list.

Step 3: For any individual compound, the feature extraction

is performed again following step 1. Afterwards, the frequency

of each feature in the molecule is assigned to the numeric

vector according to its corresponding location in the feature

list. Therefore, the final vectors include the required molecular

information for all of the compounds presented in the

database.

In this way, molecular features are extracted and molecular

vectors are generated. Attributed to the chemical information

incorporated in molecular features, the proposed strategy is

able to differentiate isomers, and whereas, part of structural

isomers cannot be distinguished. Therefore, plane of best fit

(PBF),47 a rapid and amenable method for describing the 3D

character of molecules is employed to retain the molecular

information omitted in the proposed feature extraction strat-

egy. The proposed strategy is improved with the introduction

of PBF, and both structural and geometric isomers are well

identified.

Neural network design

The input parameters to the developed predictive model are

transferred from the first layer of neural network (the input

layer) to its last layer (the output layer) through specific math-

ematical relations (neurons) and, accordingly, results in the

predicted HLC values.

Layer is the basis to determine the architecture of a neural

network. In this research, the neural network has been built

with four layers including one input layer, two hidden layers

and one output layer. The number of neurons in the input

layer matches the number of numeric values in the input

vector so that all extracted molecular features are completely

loaded. In addition, the output layer only contains one neuron

for producing predicted values for the target property. The

network is fully connected which means that each neuron in a

layer is connected to all neurons in the previous layer (see

Fig. S1 of ESI†).

The four-layer neural network has been developed using

Python as follows:

(i) PyTorch is an open-source machine learning library

for Python which is rising in popularity, and it is used to build

different structures of the neural network in a flexible way;48

(ii) Root mean square error measures the differences

between predicted and experimental values, and it is adopted

as the loss function to quantify the performance of the devel-

oped model;

(iii) Adam algorithm49 is an optimization method to

update the weights and biases of the neural network, and it is

applied to optimize the predictive model because of its high

computational efficiency;

(iv) Back-propagation algorithm, a supervised learning

procedure commonly used to train neural networks, is

employed to update the weights and biases of neurons by cal-

culating the gradient of the loss function.

The parameters of the neural networks are generally

divided into two categories: model parameters and hyper-para-

meters. Model parameters (e.g., weights and biases) are auto-

matically tuned or optimized by calculating the gradient of the

loss function during training. On the other hand, model

hyper-parameters are commonly set by the operators in

advance before the neural network is functional. With the aim

of efficiently controlling the training process and generating a
Fig. 3 The procedure of the feature extraction and vectorization for

molecular structures.
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robust model, the hyper-parameters are herein optimized

using the approaches of cross-validation and grid search.

Learning rate is set to 1.00 × 10−3 to control the rate of conver-

gence for the neural network. Activation functions map inputs

to outputs and enhance the ability of neural networks in

handling complex tasks. Two types of activation functions,

“sigmoid” and “softplus” (corresponding equations are pro-

vided in Table S2 of ESI†), are introduced to hidden layer 1

and 2, respectively. Moreover, the application of the ANN-

based predictive model is illustrated in the ESI† (page S9).

Model training

During iterative training of the neural network, one epoch rep-

resents one forward pass (regression process from input layer

to output layer) and one backward pass (back-propagation

process from output layer to input layer) for all the data of a

dataset. As per the batch size of training set, an epoch is

divided into several iterations. The weights and biases of

neurons are updated after every iteration completed so that the

model can be optimized multiple times during one epoch.

The predictability of the neural network is generally verified

with an external dataset which is not involved in the training

of neural network. Herein, the collected dataset (including the

HLC values measured in water for 2566 compounds) has been

divided into two subsets: a modelling set and a test set,

holding 80% and 20% of the whole dataset by using a random

selection routine or k-means clustering method (i.e., random

sampling and cluster sampling). Data points might be distrib-

uted very non-uniformly in the input space, and therefore,

adopting the k-means clustering in the data partitioning

would lead to better training, validation and test sets than

simply using randomization. The modelling and test sets are

employed to, respectively, build the predictive model and

evaluate the predictability of the developed model. The best

set of hyper-parameters are determined by the five-fold cross-

validation. In the five-fold cross-validation, the dataset is

equally partitioned into five subsets and the model training is

carried out five times. During each training process, one of the

five subsets is regarded as the validation set and the remaining

four subsets are assigned to the training set. Therefore, each

subset is used for training four times and for validation once.

After training five times, the model performance is finally eval-

uated with the results from five independent validation sets.

During training the neural network, the error in the vali-

dation set is compared with that in the training set. Usually

where both learning curves meet the tolerance is the point at

which training should stop. The error is measured with the

adopted loss function, and the tolerance is set to 1.00 × 10−3.

Results and discussion
Feature vector

58 types of molecular features have been extracted from the

molecular structures relying on the proposed unambiguous

strategy, and they are summarized in Table S3 of ESI.† These

features are represented by identifiers involving various chemi-

cal information. For instance, the molecular feature “[CH0]-#”

indicates an aliphatic carbon atom attached with zero hydro-

gen atoms, a single bond, and a triple bond.

Afterwards, the extracted molecular features are sorted in

increasing lexicographic order as mentioned earlier. On this

basis, the frequency of each feature appeared in a molecule is

computed. Integers represented the frequencies of features are

assigned in the corresponding locations of a numeric vector.

In this way, the numeric vector containing 58 nonnegative inte-

gers is generated to describe the structural information of the

molecule. Three small molecules (ethane, propane, and 1-pro-

panol) are taken as examples to illustrate the production of

vectors as shown in the Fig. 3. Once the numeric vectors have

been prepared, they act as input parameters for the neural

network to correlate the relationship between structures and

properties.

Training process

The numeric vectors characterizing molecular information are

introduced as input parameters to the neural network. The

number of neurons in the input layer is equivalent to the

number of numeric values in the feature vector, and thus, all

the molecular information can be completely loaded to the

neural network. During training of the model presented in this

research, the loss function of training set has been minimized

by the optimizer to search for a fairly accurate predictive

model to describe the relationship between the molecular

structures and the target property. Once a batch passes

through the neural network, the molecular information tra-

verses all the neurons from the first to last layer, and the

neural network produces predicted values for this batch.

Subsequently, the deviations between experimental and pre-

dicted values are calculated, and then the weights and biases

of the neurons are updated from the output layer to the input

layer with the back-propagation algorithm.

In order to improve the robustness of the neural network,

the numbers of neurons in two hidden layers are optimized

using the five-fold cross-validation and grid search method.

Four models are investigated considering two different input

vectors (i.e., feature vector and feature vector supplemented

with PBF) and two different sampling methods (random

sampling and cluster sampling). As highlighted in Fig. 4, the

optimal set of structural parameters for each model is deter-

mined by the lowest loss function value, and for four dis-

cussed schemes, the numbers of neurons in hidden layers are

7 and 10, 13 and 12, 10 and 7, and 15 and 6, respectively. It is

worth mentioning that the number of cluster centres in cluster

sampling is optimized by calculating Calinski–Harabasz

index,50 and the results show that the clustering is better when

four cluster centres are given (see Fig. S7 of ESI†). Moreover,

the model performance is directly compared with the number

of cluster centres as discussed in the ESI† (pages S10–S12).

The learning curves of these models with optimal sets of struc-

tural parameters are provided in Fig. S2 of ESI,† which

compare the errors in the training and validation sets for pre-
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dictive models trained with different input vectors and dataset

dividing methods.

Model performance

The problem of over-fitting in the neural network eventually

leads to the loss of the model’s predictability. In the tra-

ditional methods for property prediction, the whole dataset is

employed to train and test the predictive models. Thus, these

traditional prediction models may have weak predictability in

predicting properties for new compounds of interest.

The four-layer fully connected neural network with given

parameters is in fact a correlation between molecular struc-

tures and log HLC values. Based on the modelling and test

sets, the predictability of the developed predictive model is

measured by estimating log HLC values from the molecular

structures. The numeric vectors of structure features of the

independent compounds (not used in training and validation

steps) are fed into the neural network and the estimated

values are given based on the developed model.

The statistical analysis for the modelling and test sets is

carried out with three indicators based on the experiment

value (xexp), predicted value (xpre) and number of data points

(N). The first is the root mean squared error (RMSE) which

measures the standard deviation of differences between esti-

mated and experimental values. The second is mean absolute

error (MAE) which indicates the magnitude of differences

between estimated and experimental values. Another is coeffi-

cient of determination (R2) which provides information about

the quality of the model fit.

The statistical parameters for four predictive models in

Table 1 reveal that these models have satisfactory predictability

and can make accurate prediction on the new data. In com-

parison, the model trained using feature vector supplemented

with PBF under cluster sampling (i.e., Scheme 4) is signifi-

cantly better than others, which indicates that introducing

PBF descriptor as input and adopting k-means clustering in

sampling lead to better predictive performance. The log HLC

values calculated with Scheme 4 versus the corresponding

experimental data is illustrated in Fig. 5. Moreover, the weight

and bias matrixes for this predictive model are provided in

Table S4 of ESI.†

Comparison with reported models

The ultimate objective of developing the predictive model is to

accurately estimate log HLC values in water for organic com-

pounds. Although a number of predictive models have been

reported in the literature for this purpose, different models

need be compared using the same experimental dataset.

Fig. 4 The optimization and determination for the numbers of neurons

in two hidden layers (n1 and n2) trained using (a) feature vector under

random sampling (Scheme 1); (b) feature vector under cluster sampling

(Scheme 2); (c) feature vector supplemented with PBF under random

sampling (Scheme 3); (d) feature vector supplemented with PBF under

cluster sampling (Scheme 4).

Table 1 The statistical analysis for the subsets and whole dataset in

log HLC prediction using different input vectors and sampling methods

Predictive model Dataset Na RMSEb MAEc R2 d

Scheme 1 Modelling set 2052 0.3197 0.1686 0.9824
Test set 514 0.6469 0.2553 0.9453
Whole dataset 2566 0.4069 0.1860 0.9732

Scheme 2 Modelling set 2052 0.2886 0.1579 0.9866
Test set 514 0.5683 0.2558 0.9467
Whole dataset 2566 0.3623 0.1775 0.9787

Scheme 3 Modelling set 2052 0.2875 0.1535 0.9858
Test set 514 0.5619 0.2410 0.9587
Whole dataset 2566 0.3596 0.1710 0.9791

Scheme 4 Modelling set 2052 0.2592 0.1399 0.9888
Test set 514 0.4188 0.2121 0.9741
Whole dataset 2566 0.2981 0.1544 0.9856

aNumber of data points. b RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P

N

n¼1
ðx

exp
n � xestn Þ2=N

s

.

cMAE ¼ 1
N

P

N

n¼1
x
exp
n � xestn

�

�

�

�. d R2 ¼ 1�
P

N

n¼1
ðx

exp
n � xestn Þ2=

P

N

n¼1
ðx

exp
n � μÞ2

� �

(where μ ¼ 1
N

P

N

n¼1
x
exp
n ).

Fig. 5 The scatter plot of experimental and predicted log HLC values

for the modelling and test sets.
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Herein, the performance of the developed neural-network-

assisted predictive model based on feature vector sup-

plemented with PBF under cluster sampling (i.e., Scheme 4) in

this research (represented as NN model) is compared with a

few of available models in the literature. An empirical relation-

ship method14 (represented as ER model) is picked in contrast

with the NN model to measure the predictive power of the

developed model. A comprehensive comparison shows that

over 80% compounds (1475 out of 1816) used in the ER model

are included in the development of the NN model, which

proves that both models have employed similar datasets.

As far as the 1475 organic compounds are concerned, both

models exhibit satisfactory predictive accuracy. As displayed in

Fig. 6, it is clear that the NN model produced relatively small

deviations. In other words, the NN model has a better agree-

ment between the predicted and experimental values in terms

of the overlapped 1475 organic compounds.

From the view of statistics, residual (experimental value

minus estimated value) of each compound is calculated to

compare the residual distribution plots of both ER and NN

models (see Fig. S3 of ESI†). With respect to the residual distri-

bution, the residuals produced by the NN model are more

densely gathered around the zero value which indicates that

the proposed NN model perfectly estimated the log HLC values

for more compounds than the conventional ER model.

On the other hand, several statistical indicators such as

RMSE, MAE, and R2 are analysed based on the same data

subset as shown in Table 2. For the overlapped 1475 organic

compounds, the RMSE and MAE of the NN model are signifi-

cantly lower than those of the ER model which means that the

NN model generated smaller errors in predicting log HLC.

Meanwhile, the R2 of the NN model is closer to 1.0000 which

donates that the predicted values given by the NN model are

better fitted with the experimental values. All these statistical

results further confirmed the conclusion drew with the

residual distribution, and it demonstrated the stronger predic-

tive capability of the NN model.

Except for the empirical relationship method, a hybrid

method coupling the GC method and the neural network was

proposed to develop a predictive model (represented as GN

model) for estimating log HLC values of organic compounds.37

In the GN model, 107 functional groups are extracted from

1940 compounds, and on this basis, a four-layer neural

network was built to produce a nonlinear model for property

estimation. In comparison with previous studies, it covered a

lager dataset and showed a lower RMSE value.

Although different approaches for structure representation

are used in the GN and NN models, the neural network is

adopted as a tool to develop predictive models for estimating

log HLC. Accordingly, it is necessary to evaluate the predictive

performance of NN model in contrast with the GN model. A

thorough comparison reveals that over 80% organic com-

pounds (1567 out of 1940) employed in the GN model are used

to develop the predictive model in this research. In terms of

the overlapped 1567 compounds, the predictive capabilities of

both GN and NN models are visualized in Fig. 7 with the

scatter plots of estimated values versus experimental values.

From the scatter plots, it is observed that both models

exhibit satisfactory predictive accuracy although some data

points represent relatively large deviations. In this regard, it is

hard to conclude that which model is better in estimating

log HLC for organic compounds. Thus, analysis is carried out

in the statistical perspective to evaluate the predictive perform-

ance of both models. From the residual distribution plots dis-

played in Fig. S4 of ESI,† almost all the residuals produced by

GN and NN models are within ±0.5 log units from the zero

value. Accordingly, with respect to the overlapped 1567 com-

pounds, both models made accurate estimation for log HLC.

However, there are no obvious differences between the distri-

butions of the residuals produced by the GN and NN models.

Fig. 6 The scatter plots of experimental and predicted log HLC values for (a) ER model and (b) NN model.

Table 2 The comparison for statistical results of the ER and NN models

in log HLC prediction

Predictive model N RMSE MAE R2

ER model (Gharagheizi et al.14) 1475 0.4400 0.2898 0.9660
NN model (this research) 1475 0.2124 0.1069 0.9921
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Thus, their predictive performances are further quantified

with several statistical indicators as shown in Table 3.

The consistency of these indicators for both models

suggested that they have similar predictive performance in this

task. Diving into this situation, NN model has a slightly lower

RMSE and MAE together with a bit higher R2. These subtle

differences in statistical results prove that the NN method is

slightly better than GN method in predictive accuracy for the

(overlapped 1567) organic compounds.

From the above, the developed neural-network-assisted pre-

dictive model based on feature vector supplemented with PBF

under cluster sampling (i.e., the NN model) exhibits a distinct

advantage over the empirical model (i.e., the ER model) in the

predictive accuracy and application scope. On the other hand,

the NN model is slightly better than the GC-based neural

network model (i.e., the GN model) with the aid of the pro-

posed feature extraction algorithm. Nevertheless, the GN

model extracted 107 functional groups to develop the predic-

tive model, whereas the NN model only adopted 58 molecular

features. In other words, the NN model achieved a higher pre-

dictive accuracy with fewer molecular features. Moreover, the

predictability of the developed model is further evaluated with

compounds outside the adopted dataset as presented in the

ESI† (page S13).

Another point is worth mentioning that the proposed

neural-network-assisted predictive model is developed relying

on a large dataset of 2566 organic compounds with a R2 of

0.9856. In the available predictive models, the largest dataset

for model development contains 1954 pure compounds and

the model exhibits an R2 of 0.9828.16 Therefore, the developed

predictive model is considered to be the most comprehensive

model for predicting log HLC. Accordingly, using the neural

network and the proposed algorithm for extracting molecular

features, the developed predictive model is able to provide

accurate and reliable prediction for log HLC of organic

compounds.

Conclusions

This research proposes an unambiguous feature extraction

strategy to avoid different feasible strategies in the characteriz-

ation of molecular structures. It therefore can overcome some

shortcomings of GC-based methods, such as the scattered pre-

dicted values for certain groups of compounds. A four-layer

neural network is then constructed to correlate the molecule

structures with target property values for organic compounds.

With the frequencies of molecular features as inputs, the

neural network is trained with the acquired experimental data

and evaluated with a test set which is not involved in the train-

ing process. During the training process, the numbers of

neurons in the neural network are optimized to achieve a

robust model using the five-fold cross-validation and grid

search. As such, a hybrid predictive model is obtained with the

combination of the proposed strategy and machine learning

algorithm.

With respect to the log HLC values of pure organic com-

pounds in water, the predictive model is built based on the

experimental values of 2566 organic compounds in water.

Moreover, the introduction of the PBF descriptor and two

dataset dividing methods are investigated in regard to the

model performance. As it turns out, four predictive models are

characterized by good predictability and predictive accuracy.

The statistical analysis indicates that the predictive model

developed with feature vector supplemented with PBF under

cluster sampling shows significantly better predictive ability. It

proves that the introduction of the PBF descriptor and adopt-

ing k-means clustering in sampling enhanced the model

performance.

Fig. 7 The scatter plots of experimental and predicted log HLC values for (a) GN model and (b) NN model.

Table 3 The comparison for statistical results of the GN and NN

models in log HLC prediction

Predictive model N RMSE MAE R2

GN model (Gharagheizi et al.37) 1567 0.3283 0.1356 0.9822
NN model (this research) 1567 0.2187 0.1123 0.9921
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In contrast with the reported predictive models in the litera-

ture, the developed predictive model demonstrates higher pre-

dictive accuracy although fewer molecular features were used

in its development. Moreover, it exhibits enhanced generality

and covers more diverse organic compounds than reported

models with respect to the employed comprehensive database.

Therefore, the proposed strategy and model development

methods can serve as a promising and effective approach to

develop property predictive models, directing the reduction of

pollutants in environment and the development of greener sol-

vents. We can reasonably expect them to be further popular-

ized to use for some other important environmental properties

such as water solubility and the bioconcentration factor, which

reveals their vital potential in the development of green

chemistry.
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