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Abstract
Insect swarms are common phenomena in

nature and therefore have been actively pur-

sued in computer animation. Realistic insect

swarm simulation is difficult due to two

challenges: high-fidelity behaviors and large

scales, which make the simulation practice

subject to laborious manual work and excessive

trial-and-error processes. To address both

challenges, we present a novel data-driven

framework, FASTSWARM, to model complex

behaviors of flying insects based on real-world

data and simulate plausible animations of flying

insect swarms. FASTSWARM has a linear time

complexity and achieves real-time performance

for large swarms. The high-fidelity behavior

model of FASTSWARM explicitly takes into

consideration the most common behaviors of

flying insects, including the interactions among

insects such as repulsion and attraction, self-

propelled behaviors such as target following

and obstacle avoidance, and other characteris-

tics such as random movements. To achieve

scalability, an energy minimization problem

is formed with different behaviors modelled

as energy terms, where the minimizer is the

desired behavior. The minimizer is computed

from the real-world data, which ensures the

plausibility of the simulation results. Extensive

simulation results and evaluations show that

FASTSWARM is versatile in simulating var-

ious swarm behaviors, high fidelity measured

by various metrics, easily controllable in

inducing user controls and highly scalable.
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Keywords: insect swarm simulation, data-
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1 Introduction

Insects are ubiquitous in both the real and virtual

worlds, and many of them present collective be-

haviors for efficient and collaborative work. In

the real world, flying insect swarms can exhibit

a great variety of behaviors such as aggrega-

tion, mating, migration and escaping [1], where

the individual behaviors are often correlated in

various ways, from collaborative to competitive

or even adversarial. Simulating realistic insect

swarms are in the interest of many areas. In

robotics, research of insect swarms has led to

new algorithms for robots’ collective jobs on in-

formation transfer, decision-making, task par-

titioning or transport [2, 3]. In computer ani-

mation, insect swarms have been used to create

wondrous natural phenomena and interesting vi-

sual effects [4, 5]. However, simulating scalable

collective behaviors of insect swarms with high-

fidelity remains challenging.

Existing methods for simulating flying insect

swarms mainly fall into two categories: empir-

ical and data-driven. Empirical methods aim

to abstract swarm behaviors into mathematical

models and deterministic systems, such as the

rule-based methods [6], the field-based methods

[4], or a combination of the field-based with the

force-based methods [5]. One limitation of such

methods is that the simulated trajectories are of-



ten too regular and lack of visual diversity, due

to their determinism nature. In contrast, data-

driven methods tend to rely on real-world data,

such as using computer vision techniques to cap-

ture 3D trajectories of swarms [7, 8, 9] for simu-

lation [10, 11, 12]. However, due to the intrinsic

limitations of optical sensors (e.g. occlusions),

the motion capture is set up in massively simpli-

fied laboratory environments, and there are still

excessive tracking errors where only short track-

lets can be relatively reliably obtained. This cre-

ates tremendous difficulties in simulating flying

insect swarms with the desired high-fidelity and

scalability. First, the captured trajectories can-

not be relied upon to extract all behaviors of fly-

ing insects. Second, the generalizability of the

model based on simple data is limited by both

the environment complexity and the swarm size.

In this paper, we propose a novel data-driven

framework (FASTSWARM) to address the chal-

lenges for simulating flying insect swarms. Our

framework models insects as agents, and the

swarm behavior computation as an energy min-

imization problem. A variety of important be-

haviors identified in numerical analysis [13] and

empirical observations are captured by different

energy terms, including the interaction among

agents, the self-propulsion of agents and the mo-

tion noise of agents, so that the minimizer leads

to realistic behaviors. Besides, our framework

also model user-defined behaviors by employ-

ing user-control energy terms. The total energy

function is constructed in the way that it can

be optimized quickly to achieve scalability and

real-time performance.

During optimization, instead of seeking a

minimizer by pure mathematical optimizations

which would make the minimizer only ideal in

theory, we seek the minimizer by referencing a

motion characteristic dataset generated from the

real-world data, so that the simulated behaviors

mimic the real data. However, this means that

the motion characteristics we rely on in the ref-

erence dataset has to be reliable. In the real-

world data, although excessive noises exist and

whole trajectories can rarely be obtained, ve-

locity is much more reliable as it can be esti-

mated from short tracklets [14]. In our simula-

tion framework, both velocity and acceleration

are regarded as the motion characteristics for

generating the reference dataset, and we there-

fore optimize for the velocity to update the mo-

tion states of the agents. In addition, we use an

implicit Euler scheme to improve the stability.

Formally, the contributions of the paper in-

clude:

• A novel data-driven 3D swarm simulation

framework which captures a variety of bio-

logically important behaviors.

• An optimization method that maximally

makes use of real-world data to ensure the

simulation fidelity for flying insect swarms.

• A scalable model for large swarm simula-

tion with straightforward user control.

The remainder of this paper is organized as

follows. After briefly introducing related work

in Section 2, we give a pipeline overview of our

approach in Section 3. In Section 4, we explain

our optimization-based data-driven model. We

show simulation results and evaluations of our

method in Section 5, and discuss the limitations

and future work in Section 6.

2 Related Work

Data-Driven Simulation. In graphics, data-

driven methods have been proposed to simulate

behaviors of crowds and traffics. Given trajec-

tories (or tracklets) extracted from crowd data,

example-based methods can blend them to gen-

erate new animations [15], use a “clone and

paste” technique to generate larger crowds [16],

or cluster them into groups and update the mo-

tion of an agent based on the actions of its near-

est patch or associated group [17, 18, 19].

In data-driven traffic simulation, Chao et al.

[20] present a video-based approach to learn the

specific driving characteristics of drivers to re-

construct or simulate traffic flows. By taking

the spatio-temporal information of traffic flows

as a 2D texture, a texture synthesis technique

is developed to populate virtual road networks

with realistic traffic flows [21]. In addition,

deep learning can also be used to learn the latent

patterns of vehicle trajectories for intersectional

traffic simulation and editing [22]. Recently,

an interactive data-driven optimization approach

[14] has been proposed to simulate traffic sce-

narios with heterogeneous agents.
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Figure 1: Overview of our data-driven approach for simulating flying insect swarms.

Although these methods can generate plausi-

ble crowd or traffic animations, they focus on

2D simulation and cannot be easily extended to

3D flying insect swarms because the motion dy-

namics of insects are significantly different.

Insect Swarm Simulation. There has been

an interdisciplinary effort in the research of col-

lective behaviors of insects. Researchers in agri-

culture proposed an insect migration trajectory

simulation method to accurately predict the des-

tinations of insect migration and achieve effec-

tive early warning to reduce the impact of pests

on agriculture [23]. Public health researchers

proposed an indoor flight behavior model of

host-seeking mosquitoes for selecting bed nets

that can effectively reduce the spread of the

virus from mosquitoes [24]. In swarm robotics,

swarm behaviors can be used to control collab-

orative robots, such as the insect-based biobots

for search and rescue [25], unmanned aerial ve-

hicle quadrotors emulating insect swarm behav-

iors [26], and the task allocation algorithm based

on ant colonies [27].

In graphics, methods have been proposed to

simulate collective behaviors of ants [28, 29].

However, it is non-trivial to extend these meth-

ods to simulate flying insect swarms because

of their significant differences in motion dy-

namics. Data-driven methods have been devel-

oped to simulate flying insect swarms. Li et

al. [10] present a framework to simulate fly-

ing insect swarms by sampling the statistical

information from real datasets. However, it is

not general enough because a new local steering

model is needed whenever the data changes, and

it is hard to simulate complex scenarios where

agents should interact with dynamic stimulus

in the environment by using a predefined den-

sity field. Different from the prior work, we

present a general framework which is maximally

data-driven, able to simulate complex swarm be-

haviors and automatically adaptive to data, and

therefore is not tied to specific data. Recently,

data-driven noise models and force-based mod-

els are introduced in [11, 12] to generate bio-

logically plausible animations of flying insect

swarms. However, they do not generalize well to

more complex scenarios because they are prone

to numerical errors during generalization.

Except for data-driven methods, a hybrid

model combining potential fields and curl-noise

[30] is developed in [4] to simulate various be-

haviors of flying insect swarms. However, such

a forced-based and field-based method often

generates trajectories that look too regular be-

cause all agents share similar motion patterns.

For the special effect simulation application,

Chen et al. present a flock morphing method

of flying insect swarms with pre-defined shape

constraints [5]. Instead of pre-defined morph-

ing, our framework can generate plausible ani-

mations based on real-world motions to satisfy

user-defined constraints.

3 Methodology Overview

As illustrated in Figure 1, FASTSWARM can

be conceptually described as a three-phase pro-

cess: the data processing stage, the initializa-

tion stage, and the real-time simulation stage.

Our simulation algorithm makes full use of the

dataset extracted from the data processing stage

to compute the trajectories of the agents in the

swarm. At the data processing stage, the raw

data are noisy tracklets [7, 9]. For each type of

insects, we generate a reference dataset that con-

tains the motion characteristics specific to that

type. Each data sample consists of two items:

velocity and acceleration, estimated using for-

ward differencing. We organize the data by the



speed, similar to [14], for fast indexing. At

the initialization stage, we initialize the motion

scenario, the number of insects, and the initial

motion state of each agent. The motion state

of an agent includes its position, velocity, mo-

tion randomness, and control direction. During

simulation, we employ a data-driven approach

to update the motion state for each agent. For

every time step, our model selects a velocity

from the reference dataset that minimizes an ob-

jective function which models the interactions,

self-propulsion, and user-specified controls.

4 Data-Driven Optimization

Model

The reference data is denoted as D = ∪vdv,
where dv = [v,a], v is the velocity, and a is the
acceleration. For a swarm with N agents at time
t, the state of agent i (i = 1, ..., N) is denoted

as si,t = [pi,t,vi,t, v̂
n
i,t, v̂

cd
i,t], si,t ∈ R

12, where

pi,t ∈ R
3 is the current position, vi,t ∈ R

3 is the

current velocity, v̂n
i,t ∈ R

3 is the noise direction,

and v̂cd
i,t is the user-defined control direction. We

further use St = ∪isi,t to represent the motion
state of the whole swarm at t. Then, the motion
dynamics of agent i is formulated as:

vi,t+1 = argmin
vi,t+1∈dv∈D

E(i,v,a,St),

pi,t+1 = pi,t + vi,t+1∆t,

v̂n
i,t+1 = fN (si,t),

v̂cd
i,t+1 = fCD(si,t, ENVt),

(1)

where the velocity vi,t+1 ∈ dv ∈ D minimizes
the objective function E, a is the acceleration
in dv, ∆t is a timestep, and pi,t+1 is the posi-
tion at t + 1. After updating the velocity and
position of each agent, we update the noise di-
rection v̂n

i,t+1 and the user-defined control direc-

tion v̂cd
i,t+1 using fN and fCD, respectively. The

objective function E is defined as:

E(i,v,a,St) = Ei,int+Ei,sp+Ei,n+Ei,user, (2)

where Ei,int is an interaction term to model

the interactions among agents, Ei,sp is an self-

propulsion term to control the motion of agents,

Ei,n is an noise-induced control term to model

the randomness of agents’ movements, and

Ei,user is the user-control term to enforce user-

defined constraints.

For each agent i, the minimization of E aims

to update vi,t+1 by selecting a v ∈ dv ∈ D. For

simplicity, we use the selected velocity v and v̂

to represent vi,t+1 and its direction in the fol-

lowing definitions of the energy terms.

4.1 Interaction among Agents

Insects move in coordination with each
other and aggregate without collisions. In
FASTSWARM, such coordination is modeled
as interactions which include repulsion for
collision avoidance and attraction for aggrega-
tion. The interaction energy Ei,int is therefore
defined as:

Ei,int = Ei,rep + Ei,att, (3)

where Ei,rep and Ei,att represent the repulsion

energy and the attraction energy, respectively.

4.1.1 Repulsion

An agent avoids collisions with other agents that
are too close to it. Based on the zonal interaction
model, which dictates that an insect has a short-
range repulsion within a circular distance-based
zone [13], we describe the repulsion zone using
a spherical kernel function, centered at the agent
with a predefined cut-off radius drep (see Fig-
ure 1 for the 2D representation), and an agent
will avoid collisions with its neighboring agents
within the repulsion zone. Assuming that agent
i will move in a timestep using velocity v in
the data term dv and it’s repulsive neighbor j
will hold its current velocity vj,t in a timestep,
then the distance-based repulsion energy Ei,rep

is calculated as follows:

p′
i,t+1 = pi,t + v∆t,

p′
j,t+1 = pj,t + vj,t∆t,

Ei,rep =wrep·

1

|RN |

∑

j∈RN

e
ρ

(

1−
‖p′

i,t+1
−p

′
j,t+1

‖2

drep

)

,

(4)

where wrep ≥ 0 is the weight of the repulsion

energy, RN is the set of neighbor agents, |RN |
is the number of the repulsive neighbors, ρ > 0
is a constant used for the scaling of the energy,

and p′
i,t+1 and p′

j,t+1 are the predicted positions

of agent i and its neighbor j.

4.1.2 Attraction

Attraction exists between agents, and also be-
tween every agent and the center of the swarm



[13]. The attraction energy Ei,att therefore con-
sists of both the attraction from the neighbors
and the attraction from the swarm center:

Ei,att = Ei,oa + Ei,cos, (5)

where Ei,oa is the energy of attraction from the
neighbors, and Ei,cos is the attraction energy
from the center of the swarm. As shown in
Figure 1, the attraction zone of an agent to its
neighbors is also formulated as a spherical ker-
nel function with two cut-off radii, one inner
datt,1 and one outer datt,2: The attraction energy
from the other agents Ei,oa is defined as:

Ei,oa = woa ·
1

|AN |

∑

j∈AN

e
ρ

(

‖p′
i,t+1

−pj,t‖2

datt,1
−1

)

,

(6)

where woa ≥ 0 is the weight of the energy term,

AN is the set of the attraction neighbors of agent

i, and |AN | is the number of attraction neigh-

bors. The attraction energy on agent i is normal-

ized by the total number of the neighbor agents.
For the attraction to the swarm center on agent

i, we use v̂i,center, the direction that points from
the agent’s current position to the swarm center,
as the desired direction of the chosen velocity
v̂. The attraction from swarm center Ecos

i is de-
fined as:

Ei,cos = wcos · e
ρ‖v̂−v̂i,center‖2 , (7)

where wcos ≥ 0 is the weight of the energy term.

4.2 Self-Propulsion

Besides being reactive, insects are also self-
propelled. We therefore define a self-propulsion
energy term, not only to drive the agents to keep
moving similar to the reference trajectories, but
also to response to external stimuli in environ-
ments. For agent i, the self-propulsion energy
includes the internal propulsion term Ei,vel to
drive the agent to generate new trajectories sim-
ilar to the data, and the reaction term Ei,env to
drive the agent to react to external stimuli:

Ei,sp = Ei,vel + Ei,env. (8)

4.2.1 Internal Drive

We assume that the internal drive ensures the
motion smoothness, which is formulated con-
sidering the first-order and second-order deriva-
tives of motions:

Ei,vel = Ei,dir + Ei,acc, (9)

where Ei,dir = wdir · eρ‖v̂−v̂i,t‖2 is the direc-
tional continuity energy, and wdir ≥ 0 is the
weight. We also consider the continuity of its
acceleration,

Ei,acc = wacc · (Ei,adir + Ei,amag) , (10)

where wacc ≥ 0 is the weight. We use a′ =
v − vi,t to compute the predicted accelera-

tion so that if a dv is selected, and a is the

corresponding acceleration in dv. In Equation

10, Ei,adir = eρ‖â
′−â‖2 is designed for the

continuity of the direction of acceleration, and

Ei,amag = |‖a′‖ − ‖a‖| is designed for the con-

tinuity of the magnitude. Overall, Ei,dir min-

imizes the direction changes and Ei,acc mini-

mizes the acceleration changes compared to the

real data. The regularization on both motion

derivatives leads to smooth motions.

4.2.2 Response to Environment

Insects can react quickly to external stimuli,
e.g. following a target, or escaping from an ap-
proaching predator. To model one stimulus, the
energy of response to it is defined as:

Ei,env = wenv · e
ρΨ, (11)

where wenv ≥ 0 is the weight, and the function
Ψ is defined as:

Ψ =











‖v̂ − v̂i,sti‖2, attracted,

1−
‖p′

i,t+1 − psti,t‖2

ddanger
, startled,

(12)

where psti,t is the stimulus’ position, v̂i,sti is the

direction pointing from the agent’s current po-

sition to the stimulus. In addition, as Figure 1

shows, an agent is startled if a potential danger

is within a range defined by ddanger.

4.3 Noise

As the movements of swarms show strong ran-
domness, we introduce a noise-induced control
term to generate plausible trajectories. We in-
troduce the curl noise [30], which has been used
in force-based models to generate more accurate
simulation results [11, 12], to model the motion
randomness. The function fN denotes the curl
noise function for generating a noise direction
v̂n
i,t. Similar to the calculation of the energy of

direction continuity in Equation 9, the energy of
noise-induced direction control is defined as:

Ei,n = wn · eρ‖v̂−v̂
n
i,t‖2 , (13)

where wn ≥ 0 is the weight of the energy term.



4.4 User-Defined Motion Control

Besides the behavioral modeling of swarms, it is
necessary to induce user-control for the purpose
of animation. We model user-control as a direc-
tion control signal and introduce an energy term
to constrain an agent to follow predefined user-
defined trajectories. For agent i, the user-control
energy is calculated as:

Ei,user = wuser · e
ρ||v̂−v̂

cd
i,t||2 , (14)

where wuser ≥ 0 is the weight and v̂cd
i,t is the

control direction of the agent for generating spe-

cific trajectories.

5 Results and Evaluations

The implementation is done in C++ and the

experiments were run on a PC with an In-

tel (R) Core (TM) i7 4.00 GHz CPU, 32 GB

RAM, and an NVIDIA Geforce GTX 1060

GPU. We provide both qualitative and quantita-

tive evaluations to demonstrate the performance

of FASTSWARM. Due to the space limit, we

only show representative results and refer the

readers to the supplementary materials for more

details. In all our experiments, we set ρ = 2.5,

and the weights of the energy terms for the test

scenarios are shown in Table 1.

5.1 Qualitative Results

We first show qualitative results. The results are

divided into two parts: natural behaviors and

user-controlled behaviors, the former showing

the high visual realism and the latter showing

controllability.

5.1.1 Collective Behaviors

We use the reference dataset from [7] to generate

the aggregation, mating, and escaping behaviors

of flying insect swarms. The results show that

FASTSWARM is capable of simulating a variety

of natural behaviors with good visual quality.

Aggregation. Our approach can generate the

aggregation behavior of insect swarms in differ-

ent scales (see Figure 2). Figure 2(a) and Figure

2(b) respectively shows two swarms of different

sizes in the aggregation scenario of the reference

dataset with an unchanged swarm center.

(a) 37 insects (b) 300 insects

Figure 2: Aggregation behavior of insect

swarms in different scales.

Mating. Figure 3 shows the mating behavior

of insects generated by our approach. 100 male

agents (the cyan ones) are attracted by a female

(the red one) insect and run after the female.

Escaping. Our approach can also generate

the escaping behavior of insect swarms. In Fig-

ure 4, 100 flying insects are startled by a sud-

den obstacle, and try to escape from the ob-

stacle. During simulation, the obstacle will

pass through the swarm, and the insects in the

swarm escape from the danger and then aggre-

gate again.

Figure 3: Mating be-

havior.

Figure 4: Escaping

behavior.

5.1.2 User-Defined Shape Constraint

To evaluate the controllability, we ask the users

to draw different 3D shapes which are used

as constraints. Figure 5 shows two shape-

constrained examples to constrain the agents to

move following different 3D curves. We regard

the 3D curve as a bidirectional curve with sev-

eral keypoints (Figure 1: User-Defined Control).

Each agent is randomly initialized near a key

point with a random velocity selected from the

referenced dataset. Then, it is assigned a task

to traverse the keypoints. During simulation, we

update the control direction v̂cd
i,t of agent i as the

direction from the agent’s position pi,t to the po-



sition of the goal keypoint p
goal
i,t :

Vi,goal = p
goal
i,t − pi,t,

v̂cd
i,t = V̂i,goal,

(15)

where V̂i,goal is the directional vector of Vi,goal.

The goal keypoint will be updated to the next

keypoint when the agent reaches its current goal.

(a) 500 flying insects form

a heart shape.

(b) 500 flying insects form

a star shape.

Figure 5: Two shape-constrained flocking ex-

amples. There are 11 key points in (a)

and 10 key points in (b).

5.2 Quantitative Evaluations

5.2.1 Time Performance

To quantitatively test the scalability, we evalu-

ate FASTSWARM with an increasing number

of insects in an aggregation scenario, similar

to Section 5.1.1. Table 2 shows the time per-

formance of the test scenarios in Section 5.1.

Figure 6 shows the time performance of our

method against different swarm scales. Theo-

retically, the time complexity is O(kN) where

N is the number of insects and k is data sam-

ple size in the reference data. In our experi-

ments, k = 300 is enough to generate all behav-

iors. The linear time complexity guarantees the

high-performance of FASTSWARM. We further

accelerate the computation in three ways: fast

indexing, reduced search space and paralleliza-

tion. For fast indexing, we discretize the space

into a 3D grid and index the neighborhood of ev-

ery agent for only local search and computation

during simulation. For reduced search space, we

sort the reference dataset by the speed and di-

vide the dataset into groups, and our algorithm

only traverses the corresponding group and the

groups with similar speeds for a new velocity for

an agent. Besides, our algorithm is highly paral-

lelizable and can be concurrently computed for

multiple agents.

Figure 6: Time performance of our approach.

The computation cost is linear w.r.t the

number of insects.

5.2.2 Comparisons

We compare FASTSWARM with the two state-

of-the-art data-driven methods in [10, 11]. Un-

like [10] which calculates waypoints for fly-

ing insects by sampling the length of trajec-

tory segment and the turning angle from a ref-

erence dataset, our method significantly differs

in modelling individual behaviors, such as at-

traction, repulsion, etc, which gives better gen-

eralization on data. On the one hand, the local

steering behavior in our method is mainly gov-

erned by the repulsion behavior and can work

with any data, while a new local steering algo-

rithm for collision avoidance has to be chosen

in [10] whenever data changes. On the other

hand, our method is able to simulate complex

scenarios with different behaviors and still pro-

vide easy control to the user, while in [10], the

global motion control needs a predefined density

field which defines the preference of the choice

of the waypoints, making it hard for the swarm

to interactively respond to dynamic stimulus in

the environment, e.g. mating behaviors.

We compare our method with the method in

[11] and the ground-truth under different met-

rics. Specifically, the compared method in [11]

is a combination of the data-driven technique

and the force-based model and uses different

forces to model the key behaviors of flying in-

sects, and the ground-truth are the real track-

lets in [9]. In both comparisons, the scenes are

the same aggregation scenario in a box as the

ground-truth [9], and the swarms are initialized

by randomly selecting one frame from the real

data. Since directly comparing individual tra-



Scenario wrep woa wcos wdir wacc wenv wn wuser

Aggregation

(N = 37 / 300)
1 1 0.05 1 1 0 0.2 0

Mating 1 1 0.05 1 1 1 0.5 0

Escaping
Aggregation

1
1 0.2

1 1 2 0.3 0
In danger 0 0

Shape Constraint

(Heart / Star)
1 0.5 0 1 1 0 1 1

Table 1: The weights for our implementation in Section 5.1.

Scenario N Time (s/f)

Aggregation
37 0.0003

300 0.0025

Mating 100 0.0159

Escaping 100 0.0107

Shape Constraint

(Heart / Star)
500 0.0037

Table 2: Time performance of the simulation re-

sults shown in Section 5.1.

jectories is not possible, the evaluation metrics

include distributions of density, velocity and ac-

celeration, as they capture both the state and

the motion dynamics. Similar to previous work

[14], we use minimum-distance to describe the

density. Results are shown in Figure 7. The

distributions of velocity, minimal distance and

acceleration of FASTSWARM are much closer

to those in the ground-truth than [11]. This is

true for both motion dynamics (velocity in Fig-

ure 7(a) and acceleration in Figure 7(c-d)) and

states (density in Figure 7(b)). The better mo-

tion dynamics shows that FASTSWARM is su-

perior in capturing realistic behaviors.

For comparing the density, in [11], the density

of the swarm is controlled simply by a distance-

based attraction force, and the homogeneous

distance control results in the relatively uniform

density of the swarm as the agents aggregate

around the attraction boundary. Addressing this

issue, we control the aggregation of agents by

combining the distance-based attraction among

agents with a direction control that drives the

agents to move towards the swarm center, and

Figure 7(b) shows that our method performs bet-

ter in controlling the density of the swarm to be

similar to the reference dataset.

5.2.3 Trajectory Synthesis

Given only trackelets (instead of whole trajec-

tories) are avaiable, FASTSWARM provides a

possible avenue to recover them for animation

applications. Although it is difficult to exactly

recover the trajectories or even compute their

numerical accuracy, due to the lack of ground-

truth data, our recovered trajectories can achieve

global visual similarities. As shown in Figure 8,

we extract the trajectory segments of 37 agents

from the real-world dataset of [7] (Figure 8(a)).

By taking these trajectory segments as the ini-

tial trajectories of a swarm with 37 agents, our

method can be used to predict the subsequent

trajectories (Figure 8(c)).

Our method can also synthesize plausible in-

sect swarm animations by mixing the trajecto-

ries from the real-world dataset with the syn-

thetic trajectories. As Figure 8(d) shows, in

the real-world trajectories in 8(b), we add 100

agents that are simulated by FASTSWARM.

6 Conclusion

We have presented a general and scalable data-

driven optimization framework to simulate fly-

ing insect swarms in real time. Our optimiza-

tion method is capable of generating natural col-

lective behaviors of flying insects by utilizing

a motion characteristic dataset extracted from

real data. The generated animations are plau-

sible and have high visual realism. We have

validated our approach using extensive experi-

ments through qualitative and quantitative anal-

ysis. Our method also provides a means to gen-

erate interesting shape-constrained swarm be-

haviors controlled by users, which benefits com-

puter animation. Moreover, our method can be

used to predict the missing trajectories in the

captured dataset and augment the dataset with
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Figure 7: Comparisons of the distributions of the velocity (a), minimum distance (b), and acceleration

(c-e for x, y and z direction) between our method, the real data, and [11].
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Figure 8: Results of trajectory synthesis. (a)

shows the captured intermittent trajec-

tories of 37 agents. (b) shows the

real trajectories of the following 500

frames where exist lots of intermittent

segments. (c) shows our prediction

result of (a) by extending the initial

trajectories to 500 frames. (d) shows

the blending trajectories of 100 virtual

agents with (b).

different number of insects while maintaining

the global visual similarity to the real data.

Limitations and Future Work. Our method
relies on the quality of the reference dataset.
However, as our reference dataset is extracted
from imperfect trajectories captured using com-
puter vision techniques, which contain noises
and erroneous data, our result may replicate the
defects in the input data. In the future, we are
interested in exploring a more general frame-
work so that it can simulate any types of mo-
tion (not restricted to insects) with limited cap-
tured trajectories from real world or created by
animators. We are also planning to employ the
Long Short-Term Memory (LSTM) networks to
explore the latent representations of trajectories
to further enhance our results.
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