
This is a repository copy of Automatically identifying potential regressions in the layout of
responsive web pages.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/163400/

Version: Published Version

Article:

Walsh, T.A., Kapfhammer, G.M. and McMinn, P. orcid.org/0000-0001-9137-7433 (2020)
Automatically identifying potential regressions in the layout of responsive web pages.
Software Testing, Verification and Reliability, 30 (6). e1748. ISSN 0960-0833

https://doi.org/10.1002/stvr.1748

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the
authors for the original work. More information and the full terms of the licence here:
https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Automatically identifying potential regressions in the layout of
responsive web pages

Thomas A. Walsh1 , Gregory M. Kapfhammer1 and Phil McMinn2,*,†

1Department of Computer Science, The University of Sheffield, Sheffield, UK
2Department of Computer Science, Allegheny College, Meadville, PA USA

SUMMARY

Providing a good user experience on the ever-increasing number and variety of devices being used to
browse the web is a difficult, yet critical, task. With responsive web design, front-end web developers design
web pages so that they dynamically resize and rearrange content to best fit the dimensions of a device’s
screen. However, when making code modifications to a responsive page, developers can easily introduce
regressions from the correct layout that have detrimental effects at unpredictable screen sizes. For instance,
the source code change that a developer makes to improve the layout at one screen size may obscure a
page’s content at other sizes. Current approaches to testing are often insufficient because they rely on
limited tools and error-prone manual inspections of web pages. As such, many unintended regressions in
web page layout often go undetected and ultimately manifest in production websites. To address the
challenge of detecting regressions in responsive web pages, this paper presents an automated approach that
extracts the responsive layout of two versions of a page and compares them, alerting developers to the dif-
ferences in layout that they may wish to investigate further. We implemented the approach and empirically
evaluated it on 15 real-world responsive web pages. Leveraging code mutations that a tool automatically
injected into the pages as a systematic simulation of developer changes, the experiments show that the
approach was highly effective. When compared with manual and automated baseline testing techniques,
it detected 12.5% and 18.75% more injected changes, respectively. Along with identifying the best param-
eters for the method that extracts the responsive layout, the experiments show that the approach surpasses
the baselines across changes that vary in their impact, but works particularly well for subtle, hard-to-
detect mutants, showing the benefits of automatically identifying regressions in web page layout. © 2020
John Wiley & Sons, Ltd.

Received 2 April 2020; Accepted 19 June 2020

KEY WORDS: layout failures; regression testing; responsive web design; responsive layout graph;
web testing

1. INTRODUCTION

Before the advent of smart mobile devices being used to access the web, the main problem facing
front-end web developers was the time-consuming task of ensuring that their web pages displayed
correctly on different browsers [1]
However, the explosion and continuing proliferation of mobile devices has since drastically ex-

acerbated this problem, as developers sought to support the myriad of different screen sizes associ-
ated with each unique device.
As mobile devices continue to integrate further into the daily lives of many people (notably, more

than half of Google searches originate from mobile devices [2], while mobile devices now account

*Correspondence to: Phil McMinn, Department of Computer Science, The University of Sheffield, 211 Portobello,
Sheffield S1 4DP, UK.

†E-mail: p.mcminn@sheffield.ac.uk

© 2020 The Authors. Software Testing, Verification & Reliability published by John Wiley & Sons Ltd

SOFTWARE TESTING, VERIFICATION AND RELIABILITY
Softw. Test. Verif. Reliab. 2020;e1748
Published online in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/stvr.1748

for nearly 70% of cumulative digital media consumption [3]), it is critical for developers to ensure
that their websites display correctly and offer a good interaction experience on the significant vari-
ety of devices currently in use.
To tackle the problem of device proliferation, responsive web design (RWD) is a widely used de-

sign approach that allows developers to build websites with the aim of providing an optimal user
experience regardless of individual device constraints, including screen size [4].
With RWD, a page’s design ‘responds to’ the device’s viewport (i.e. the viewable portion of a

page in a device’s browser), such that web elements dynamically resize and rearrange to ‘fit’ to
the device’s viewport width.
The page can extend vertically off the bottom of the viewport by as much as required, meaning

that users will still need to scroll up and down to access content that cannot be displayed on a screen
all at once, but prevents them having to awkwardly pan and zoom pages originally intended for
desktop browsers when rendered on considerably smaller devices, such as mobile phones.
Developers build web pages using Hypertext Markup Language (HTML) elements, which struc-

ture text, images, forms and other content.
They then employ Cascading Style Sheets (CSS), which specify rules that visually style and lay

out those elements.
The HTML and CSS code required to implement a responsive design is often complex, with

potentially many hundreds of lines of CSS interacting with a significant number of different
HTML elements.
Notably, this inherent complexity presents challenges when web developers first learn the skills

of their field [5,6] and continues as they become professionals who must regularly ask their peers
questions about topics such as responsive web development [7].
Ultimately, well-trained developers can make mistakes in which web page elements are not re-

sponsive and thus fail to layout correctly at a certain viewport widths.
In our previous work, we identified some representative ways in which RWD layouts can ‘fail’.
For instance, a web page can exhibit a layout failure when its elements do not fit horizontally

alongside one another at certain viewport widths and, as a consequence, protrude off the edge of
a page, overlap with one another or incorrectly wrap to the next line.
We presented techniques to identify these issues and implemented them into a tool called

‘REDECHECK’ (REsponsive DEsign CHECKer, pronounced ‘Ready Check’) [8,9].
This prior work, however, does not address a different, yet critically important, problem: detect-

ing the regressions from a correct responsive layout that occur when a developer makes modifica-
tions to web pages’s responsive design.
During the creation of a responsive website, a developer will make small, seemingly insignificant,

incremental changes to web pages’ source code that are intended for a particular viewport width (or a
particular range of widths), but yet which can introduce unintended side effects to the page’s layout
at other, seemingly unrelated, viewport widths. These regressions from the correct layout can
sometimes result in serious presentational issues [10]. Because well-designed websites can have a
positive psychological influence on end users, leading to increases in the perceived usability of
the site [11] and improved loyalty towards the website itself [12], identifying these potentially
damaging regressions in web pages’ layout before it goes live is a critical task for developers.
Regrettably, detecting these layout regressions quickly and accurately is difficult. Existing

approaches for tackling this problem, which include ‘spotchecking’ techniques, are insufficient.
Spotchecking involves a developer manually checking web pages’ layout at a series of individual

viewport widths, usually those pertaining to devices in popular use.
Even though developer tools such as RESPONSIVEPX [13], RESIZER [14] and WRAITH [15] and

browser-based tools such as ‘Responsive Design Mode’ for Firefox and ‘Device Mode’ for Chrome
provide a certain amount of limited support when they automatically resize the browser for devel-
opers to check pages, unintended layout issues introduced by a change can manifest themselves at
unpredictable viewport widths.
These regressions may be hard to find because they often only affect a small number of widths

out of a large range that accommodates the smaller screens found on mobile phones to larger desk-
top displays.

2 of 46T. A. WALSH ET AL.

© 2020 John Wiley & Sons, Ltd. e1748Softw. Test. Verif. Reliab. 2020;e1748
DOI: 10.1002/stv

If a web developer does not check an offending viewport width, then the web pages may be de-
ployed with these undetected and unresolved issues.
Moreover, as many modern web pages display a significant amount of complex content, devel-

opers may fail to spot non-obvious, yet potentially damaging, regressions from the correct layout
—even if they do check problematic viewport widths through manual inspections aided by the
aforementioned spotchecking tools.
Recognizing the importance of detecting regressions in responsive designs, and the shortcomings

of current practices used by developers to detect such issues, this paper presents an automated ap-
proach to alerting a developer to the unseen layout regressions arising from changes to the HTML
and CSS of responsive web pages.
The foundation of the approach is the responsive layout graph (RLG), a model of a web page’s

responsive design.
The approach extracts ‘before’ and ‘after’ RLGs from versions of a web pages and differences the

two RLGs, reporting any discrepancies to the web developer.
This reduces the testing burden placed on the developer, who now only needs to inspect the list of

differences automatically discovered by the technique and verify if any of them were unintentional
side effects. We implemented this technique as a special ‘regression mode’ of our REDECHECK tool,
which we refer to throughout this paper as ‘REDECHECK-RM’.
This paper is an extension of a short, six-page, ‘new ideas’ conference paper presented at the In-

ternational Conference on Automated Software Engineering (ASE 2015) [16]. That paper originally
introduced the RLG, which our technique extracted from a web page by sampling its layout at in-
tervals throughout the range of viewport widths that the page might be viewed at by users. It pre-
sented two CSS mutation operators, designed to inject mutations capable of inducing regression
changes to the layout of RWDs, and evaluated whether RLG differencing was capable of detecting
these regressions in the layout of five web pages.
This journal version expands and deepens the technical details of our ASE 2015 approach.
It furnishes a complete description of how the RLG of web pages is extracted, according to three

different methods: the original interval sampling method of the ASE paper and two additional ap-
proaches, one that combines interval sampling with additional viewport widths referenced in the
CSS code and a method that exhaustively examines the layout of web pages at each viewport width
in a specified range.
To more thoroughly evaluate the RLG differencing method in REDECHECK-RM, we developed

six new HTML and CSS mutation operators to create a larger set of web page modifications with
which to evaluate our technique.
We adopted two spotchecking procedures for use as a baseline with which to compare the

method: a typical manual approach and an automated approach that we developed especially for
the purposes of our empirical evaluation.
Correspondingly, this journal version expands the empirical study of the original ASE 2015 ‘new

ideas’ paper by extending the set of web pages from five in that paper to 15 subject pages in this
journal version, with the new, larger set of 15 pages representing a wide range of domains and com-
plexity levels. We experimentally evaluate REDECHECK-RM against the two aforementioned man-
ual and automated spotchecking procedures, finding that it is superior at detecting regressions with
higher accuracy. We also introduce a new research question that explores the performance of our
approach on layout changes that affect differing ranges of viewport widths. The results show that
REDECHECK-RM is more effective than both spotchecking methods, particularly for the more ‘sub-
tle’ changes that only occur at a small number of viewport widths. Finally, we conduct an analysis
of how the different RLG extraction methods influence the effectiveness and efficiency of the ap-
proach, allowing us to recommend a set of configuration parameters that are likely to enable
REDECHECK-RM to perform well on a wide variety of web pages in future work.
In summary, the contributions made by our original short, six-page conference version of this pa-

per published in the ‘new ideas’ track at ASE 2015 [16] were as follows:

C1. (a) The RLG, (b) an outline of the interval sample method for extracting it from a responsive
web page and (c) the original RLG differencing approach.

3 of 46 AUTOMATICALLY IDENTIFYING POTENTIAL REGRESSIONS—RESPONSIVE WEB PAGES

© 2020 John Wiley & Sons, Ltd. e1748Softw. Test. Verif. Reliab. 2020;e1748
DOI: 10.1002/stv

C2. An experimental evaluation of RLG differencing on five web pages with changes induced
by two different mutation operators.

The further contributions made by this extended journal version are as follows:

J1. In support of an automated approach to automatically identifying regression changes in re-
sponsive web pages, algorithms that can extract RLGs from web pages and compare them
against one another to highlight differences. These algorithms incorporate two new RLG ex-
traction methods: one that can also sample viewport widths from the references found in CSS
and one that exhaustive analyses web page layout in a predefined range (Section 3).

J2. Used to empirically evaluate the presented methods, six new HTML/CSS mutation operators
that systematically add potential regressions into responsive web pages (Section 4.2).

J3. An automated spotchecking method that checks the layout of a responsive web pages at in-
dividual viewport widths, thereby serving as a suitable baseline for comparison with the RLG
differencing approach implemented in REDECHECK-RM (Section 4.3).

J4. An extensive empirical evaluation, involving the use of an extended subject set comprising
15 web pages, yielding answers to research questions (Section 4.7) showing that:
(a) When comparing REDECHECK-RM with two spotchecking approaches, the RLG
differencing technique implemented into REDECHECK-RM automatically reveals the most
layout regressions, with the greatest number of true positives and true negatives.
(b) When evaluating how REDECHECK-RM performs with respect to the number of viewport
widths affected by a change, RLG differencing is found to be more effective than
spotchecking for ‘subtle’ changes affecting small numbers of viewport widths.
(c) When evaluating the RLG extraction method and the parameters with the best failure
detecting–efficiency trade-off, interval sampling with an interval size of 80pixels combined
with viewport widths mined from CSS code is the best overall method and should therefore
enable our technique to perform well on a range of new web pages.

The paper is organized as follows. First, Section 2 begins by reviewing the important background
concepts in RWD, further highlighting the challenges involved in testing the layout of a responsive
web pages. Importantly, this section also uses a motivating example to introduce the problem of this
paper: automatically detecting regression changes to the layout in responsive web pages. Section 3
introduces the presented approach for modelling responsive web page layout and automatically de-
tecting these changes, while Section 4 presents its empirical evaluation using real-world subjects.
The paper then discusses related work in Section 5, while finally, Section 6 concludes the paper
and suggests important and further novel directions for future work.

2. BACKGROUND, PROBLEM STATEMENT AND MOTIVATING EXAMPLE

This section begins by discussing RWD in more detail, describing how its various component tech-
niques are implemented. It then introduces the problem addressed by this paper: detecting regres-
sion changes in the layout of responsive web pages. Finally, the section introduces the alignment
graph, a data structure that supports the automated detection of layout issues in cross-browser
web page testing. The alignment graph introduces some concepts that are key to this paper and that
inspired the RLG and our own automated approach for detecting regressions from correct respon-
sive web page layout, which we introduce in Section 3.

2.1. Responsive web design

Figure 1 furnishes an example of a responsively designed web pages, called ‘Shield’, which is an
open-source template available under the Creative Commons Attribution 3.0 License. These three
screenshots showcase the dynamic changes to the page’s layout at three different viewport widths
that are similar to those of the three most common types of devices (i.e. a smartphone, a tablet
and a desktop computer). In the narrow viewport width of part (a), the design stacks all major con-
tent in a single, narrow column, while the navigation links are part of a drop-down list that is hidden
from the user until they interact with it. Next, part (b) shows the slightly widened resolution where

4 of 46T. A. WALSH ET AL.

© 2020 John Wiley & Sons, Ltd. e1748Softw. Test. Verif. Reliab. 2020;e1748
DOI: 10.1002/stv

the single column layout for the main content remains, albeit with more horizontal space that allows
the design to replace the drop-down list with a navigation bar at the top of the page. As the viewport
width further expands to the largest one shown in part (c), the design spreads out the previously
stacked content into a three-column layout, making use of the extra space afforded to the page.
Responsive web design consists of three ‘ingredients’: a grid-based layout, flexible images and

media queries [4]. The former two focus on the resizing of various web page elements in order to
best fit the viewing environment. In the context of Figure 1(c) as an example, a developer would
traditionally use static width declarations such as ‘width:380px’ to implement the row of con-
tent tiles. In contrast, grid-based layouts and flexible media use ‘fluid’ width declarations, in which
an element’s width is defined as a percentage of its container (e.g.‘width:33.3%’). This allows
the web pages to handle both narrower and wider viewports more effectively. Applying this meth-
odology to all relevant HTML elements builds the foundations for a responsive web page, as each
element will be rendered at a size appropriate for the screen size.
The final ingredient of RWD, media queries, is a module of CSS3 that allows a developer to ac-

tivate a set of CSS rules if and only if a specific set of conditions are met. While the media queries
specification [17] provides a wide range of options, the most commonly used approach inspects the
width of the viewport using either the min-width or max-width query. For instance, the afore-
mentioned fluid width declaration would be placed into the media query ‘@media(min-
width:1200px)’, so that the web pages only lays the tiles out in a single row at larger viewport
widths where there is enough room to do so.
In the aforementioned media query, the viewport width of 1200pixels is an instance of a

‘breakpoint’ [4] that, in the context of RWD and CSS, is some value whereby different CSS rules
will apply to particular element(s) on either side of the pixel boundary. The use of breakpoints al-
lows developers to implement different styles of layout that make the best use of the space afforded
by the device in use, and developers often set them based on the viewport widths of common de-
vices or device classes (i.e. mobile phones, tablets and desktops).
Even with these three ingredients, creating an easy-to-use and aesthetically pleasing responsive

website is a challenging process because both the HTML and the style sheet must be carefully con-
structed to ensure that the correct rules are applied to the intended elements for all of the various

Figure 1. The ‘Shield’ template for a responsively designed web page (https://www.blacktie.co/demo/
shield), showing how the layout of a responsive page adjusts to different viewport widths: (a) 420pixels
wide, (b) 768pixels wide and (c) 1200pixels wide. The Shield site is an open-source template, also used as
an experimental subject in this paper, which employs the Bootstrap responsive web design framework
available under the Creative Commons Attribution 3.0 License. (This figure originally appeared in the

six-page ASE 2015 ‘new ideas’ conference version of this paper [16].)

5 of 46 AUTOMATICALLY IDENTIFYING POTENTIAL REGRESSIONS—RESPONSIVE WEB PAGES

© 2020 John Wiley & Sons, Ltd. e1748Softw. Test. Verif. Reliab. 2020;e1748
DOI: 10.1002/stv

types of devices, thereby producing the intended sizing and layout behaviour. Developers fre-
quently choose to leverage one of the many front-end frameworks, such as Twitter’s Bootstrap
[18] (used by 21% of the top 1 million sites [19] in 2017) or Zurb’s Foundation [20] (used by or-
ganizations such as Dropbox and SlideShare [21]). These frameworks provide CSS rules for an ini-
tial set of reusable and common layout components, such as a flexible grid-based layout system and
responsive navigation options, thus often making the creation of a responsive website much easier.
Yet these frameworks for RWD are also complex. According to the SCC tool that counts lines of

source code [22], a recent version of Bootstrap has about 4500 lines of HTML, 17 800 lines of CSS
and 41 500 lines of JavaScript—and is therefore potentially difficult for developers to fully
understand. Additionally, while these frameworks are useful, they only represent starting points
for a mobile-friendly design and thus require customization to ensure a unique, yet cohesive, look
and feel.
As with all other forms of software, responsive web pages must be tested to ensure their designs

are free of issues and that they display correctly. Unfortunately, responsive web pages present sev-
eral fairly unique and well-documented problems. For instance, one quality assurance team identi-
fied three main challenges: the testing environment (i.e. there is a great number of devices and
browsers), the difficulty of testing responsive web pages (i.e. testers may not have training in testing
this new type of site) and the lack of an effective and usable test automation framework, thereby
making testing both time consuming and error prone [23]. In the next subsection, we illustrate a par-
ticular, but common, problem that we address in this paper with an automated technique, namely,
that of detecting the layout regressions following changes to responsively designed web pages.

2.2. The problem addressed by this paper: detecting regressions in the layout of responsive web

pages

The example in Figure 2 demonstrates how changes to web pages’ CSS rules can result in undesir-
able side effects (i.e. regressions) in the page’s layout that are not intended by the developer and
often manifest at unexpected viewport widths. If these regressions go unnoticed and more changes
are made to the page, then developers may struggle to recall the initial CSS modification(s) that
caused the problem, thereby requiring extra effort to diagnose and fix them. This example under-
scores the challenge of tweaking a responsive design without the support of the automated tech-
nique presented in this paper: each time a change is made, all resolutions need to be manually
and fully rechecked for unintended side effects due to the interplay between elements as the
viewport size changes, which is a time-consuming and error-prone process. When checking web
pages at many viewport widths—and potentially performing a lot of vertical scrolling on websites
designed as single pages—developers can easily miss regression issues during manual inspections,
which can have wide-ranging detrimental impacts if they make it onto the live website.
Suppose that a developer is modifying the web pages in Figure 2, focusing on improving the

widescreen layout shown in part (a-iii). Noticing the unused space on either side of the navigation
links (i.e. li[1]–li[5])—and considering a design change involving the addition of icons to the
existing text—they modify the width declaration for the navigation links so that it increases from
140 to 150pixels. This CSS change is shown in part (b-i) of Figure 2, with the new appearance of
the web pages at the widescreen layout shown by part (b-iii). Because the developer’s main priority
with this code change is the widescreen layout, they observe the widened links, thus confirming the
tweak had the intended effect while, perhaps, assuming that it did not introduce inadvertent changes
to the page’s layout. Depending on the viewport widths at which the developer chooses to test, they
may not become aware of regressions caused at other viewport widths. Systematically reducing the
viewport width until the navigation links are too wide to fit in a single row will lead to the discovery
that the code change had a previously unseen and unintended side effect: now, the last link wraps
onto a second row. While the developers did preserve the page’s functionality, as li[5] can still
easily be clicked, the regression from the correct layout of the web pages could detrimentally influ-
ence a person’s ability to easily navigate the site and their perception of the site’s quality. Other lay-
out regressions could be more severe, such as unintentionally obscured text or unclickable buttons,
impacting the functionality of web pages and having potentially costly repercussions.

6 of 46T. A. WALSH ET AL.

© 2020 John Wiley & Sons, Ltd. e1748Softw. Test. Verif. Reliab. 2020;e1748
DOI: 10.1002/stv

Because, at least in part, of the relative dearth of automated testing tools, developers of
mobile-friendly web pages are often limited to performing regression tests in the form of a
‘spotcheck’ that involve checking a site at several viewports under the assumption that any layout
issues would manifest themselves in at least one of those chosen for inspection. Spotchecking is of-
ten used to cover as many devices as possible while minimizing effort, or to target specific popular
devices identified through techniques such as web analytics. As such, the widths chosen by a tester
often correspond to particular device types, such as the three viewport widths shown in Figure 1,
which represent three common device types (e.g. smartphone, tablet and desktop/laptop). However,
as the viewport widths at which unintended side effects are observable are often unpredictable and
not associated with any common devices, spotchecking is highly unlikely to be a reliable means of
detecting them.
As such, this paper presents and evaluates an automated technique for addressing the problem.

The basis of this approach is a model of the dynamic layout of the web page, called the RLG. This
model is inspired, in part, by a prior modelling approach to web pages at single-viewport widths,
known as the alignment graph, which we discuss in the next subsection.

2.3. The alignment graph

As part of a technique for automatically detecting cross-browser issues, where two browsers render
the same web page differently, Choudhary et al. [24] proposed the alignment graph. An alignment
graph models the relative alignments of web page elements with one another. Choudhary et al.’s
technique extracted the alignment graphs of the web page rendered in two browsers and compared
the two graphs to automatically detect differences in page layout.

Figure 2. A mock-up of a responsive web page shown at three different resolutions. (a) The original version
of the web page, with li elements making up a list of menu items and div elements making up content
panels: (a-i) 400pixels wide, (a-ii) 800pixels wide and (a-iii) 1200pixels wide. (b) The result of a change to

the CSS code (b-i) that increases the width of the menu items and is intended to only influence the
1200-pixel viewport width (b-iii). However, the CSS modification unintentionally causes a layout issue at
the 800-pixel viewport width (b-ii) such that the menu items are now too wide to fit on one line and the last
element (i.e. li[5]) incorrectly wraps to the next line. (This figure originally appeared in the six-page ASE

2015 ‘new ideas’ conference version of this paper [16].)

7 of 46 AUTOMATICALLY IDENTIFYING POTENTIAL REGRESSIONS—RESPONSIVE WEB PAGES

© 2020 John Wiley & Sons, Ltd. e1748Softw. Test. Verif. Reliab. 2020;e1748
DOI: 10.1002/stv

In the alignment graph, each page element forms a node. Edges exist between nodes of the
graph if their respective web page elements are in one of two relationships—the parent–child re-
lationship, where when one element the parent, the direct container of another element, the child;
or the sibling relationship, where two elements have the same parent. The alignment graph models
the relative alignment of each pair of elements in a parent–child or sibling relationship with a set
of alignment attributes, which label the edges of the graph. For instance, if a child element may
be centre justified within its parent, the set of attributes for the edge in the alignment graph would
include the CJ attribute; if it were left or right justified, then the set would include the LJ or RJ
attribute, respectively. Meanwhile, a sibling above or below another would be labelled with either
the A or B attribute, respectively, or L or R if it was situated to the left or right.
A browser represents the structure of each page it renders through its Document Object Model

(DOM), a World Wide Web Consortium standard [25]. A developer can query or change the struc-
ture, style or content of a web page using JavaScript. The DOM uniquely identifies each HTML el-
ement with an XPath (XML Path Language), a special syntax for selecting nodes in an XML
document [26].
The cross-browser issue-identification technique of Choudhary et al. [24] extracts an alignment

graph by querying the DOM of a page. It first finds the nodes of the graph by discovering which
HTML elements are present on the page. Using the XPaths of each element, it then finds their po-
sitions, widths and heights, discovering their minimum bounding boxes. Using this information, the
technique can ascertain layout relationships (i.e. parent–child or sibling) in order to create edges be-
tween nodes and the alignment attributes to assign to each edge.
Choudhary et al. formally define an alignment graph as a five-tuple AG¼ðE; R; T; Q; FÞ,

whereE is the set of nodes of the graph (i.e. web page elements) andR ⊆ E�E is a set of element
pairs in one of the relationships inT¼fpc; sg (i.e. parent–child or sibling).Q is the set of alignment
attributes featuring in the graph (e.g. A, above, and L, left of), andF:R→2Q is a function that maps
edges to their attribute types.
For example, Figure 3 shows the alignment graph of the page of the motivating example shown

by Figure 2, and the specific layout of the page at 400pixels wide. The graph involves nodes cor-
responding to elements that are not apparent to the end user (i.e. body, nav and main) and so do
not appear in the wireframe of the page shown by Figure 2(a-i), but yet form a crucial part of the
page’s HTML structure and hence its DOM. The root node of the graph is the overall containing
element of every HTML page, known as the body element. Within the body element are the
nav navigation bar, containing the single button element visible at this viewport width, and
the main element, devoted to the main content of the page, containing the three divelements,
div[1]–div[3]. Solid edges between nodes represent parent–child relationships between ele-
ments, while dashed edges denote sibling relationships. Each edge is labelled with relative align-
ment attributes for the elements concerned. For example, the button is right justified in regard to
its parent container, nav, so the edge between these elements has the RJ label; while other child
elements are centre justified in their containers, and so their respective edges have the CJ attribute.
In terms of sibling edges, nav is above main, and so the dotted edge between the nodes

Figure 3. An example alignment graph of the web page’s layout featured in Figure 2. This alignment graph
is at a viewport width of 400pixels wide, as shown by the wireframe of part (a-i) of that figure.

8 of 46T. A. WALSH ET AL.

© 2020 John Wiley & Sons, Ltd. e1748Softw. Test. Verif. Reliab. 2020;e1748
DOI: 10.1002/stv

corresponding to these elements has the A attribute, and likewise for div[1] and div[2], and
div[2] and div[3]. Note that, for ease of presentation, the alignment graph in this figure does
not include reciprocal or transitive sibling edges (e.g. main to nav, and div[1] to div[2],
respectively).
As shown by this example, the alignment graph only models the layout of web pages at a

single-viewport width, which is the 400-pixel width layout of the web pages in Figure 1. It
cannot simultaneously model the differing layouts at 800 and 1200pixels wide, making it
insufficient, on its own, for accurately representing the responsive layout of web pages. However,
in Section 3 of this paper, we build on the concepts of the alignment graph, ultimately
presenting an approach that extracts and models the range of layouts possible with a responsively
designed web page at different viewport widths, leveraging a representation that we refer to as
the RLG.

3. REDECHECK-RM: AN AUTOMATED APPROACH TO IDENTIFYING REGRESSIONS FROM
CORRECT RESPONSIVE WEB LAYOUTS

As the foundation of our automated approach to identifying web page layout regressions, this paper
presents a representation that models the dynamic layout of a responsive web pages, called the
RLG. The RLG takes account of the two critical aspects of RWD: the changing visibility and chang-
ing relative alignment of web page elements. This graph was inspired, in part, by the modelling of
the relative layout of elements in the alignment graph of Choudhary et al. [24], as introduced in the
last section.
However, while Choudhary et al. showed the alignment graph to be highly effective at both

modelling the layout of web pages and detecting differences in that layout across different web
browsers at a single resolution, it provides no support for representing the dynamic nature of re-
sponsive web pages, such as elements appearing/disappearing and rearranging as the viewport
changes. This makes the alignment graph less than suitable for this paper’s problem domain
and the core reason why this paper presents the RLG, which comprehensively models web pages’
dynamic layout across all viewport widths in a predefined range.
After formally defining the RLG in Section 3.1, the remainder of this section explains the process

of extracting the RLG of web pages and presents the method that highlights changes to a page’s
layout—that may be regressions from the correct layout—by comparing ‘before’ and ‘after’ ver-
sions of an RLG, a process that we refer to as RLG differencing.
Figure 4 illustrates a potential scenario for the use of our approach in a real-world development

environment, which we link to the various parts of our motivating example as shown in Figure 2
and described in Section 2.2. In this scenario, the developer is working on the stable version of
the web pageWcurr (i.e. part (a) of Figure 2). They then make a change to the page’s source code
(part (b-i) of Figure 2). This change results in the modified web pagesWmod (whose layout at two
viewport widths is seen in parts (b-ii) and (b-iii) of the same figure). Our approach takes the two
versions of the page (i.e. Wcurr and Wmod) as input. As shown by Figure 4, the RLG Extraction

component of our approach analysesWcurr andWmod to produce modelsRLGcurr andRLGmod,
respectively, before the RLG Differencing component compares the two RLG models. Once the
approach has generated and output its report, the developer must manually analyse each RLG dif-
ference the report highlights and decide whether it represents an unintended side effect of the
source code modification, rather than an intentional change to the page’s layout. The manual ef-
fort required is potentially significantly reduced in comparison with a user resizing their browser
window and manually searching for layout issues. If any such issues exist, then the developer
must fix them before moving on and repeating the process shown by the figure. If the developer
decides that there are no unintended layout changes, then Wcurr can be updated to Wmod, as any
subsequent code changes need to be checked against the most recent version of the web pages.
Ultimately, this iterative process stops when the web developer no longer needs to change the
HTML and CSS source code of Wcurr and there are no layout issues that the developer needs
to then go on to repair.

9 of 46 AUTOMATICALLY IDENTIFYING POTENTIAL REGRESSIONS—RESPONSIVE WEB PAGES

© 2020 John Wiley & Sons, Ltd. e1748Softw. Test. Verif. Reliab. 2020;e1748
DOI: 10.1002/stv

3.1. Definitions and an example

Given a set of nodes, E, representing the elements contained within web pages W, we define two
types of constraint that are used to describe the layout of W:

Definition 1. VISIBILITY CONSTRAINT. A visibility constraint vc, for some node n ∈ E, is a pair
(x1,x2), where x1 is a lower viewport width and x2 is an upper viewport width (i.e. x2>x1),
representing an inclusive range of viewport widths for which n is present in the DOM of the web
page and has properties making it visible when the web pages is rendered in a browser.
The next definition of the alignment constraint draws on previously described relative layout

concepts originally due to the alignment graph, as introduced in Section 2.3. These include the no-
tion of relationship types between web page elements, and the setT = {pc, s}, where pc and s sig-
nify a parent–child and sibling relationship, respectively, and the set of attributes P defining the
specifics of the relative layout of two elements with respect to one another. Alignment constraints
are used to represent the dynamic nature of responsive web pages, as multiple alignment constraints
can exist between a pair of web page elements, describing how their relative layout adapts to the
changing constraints induced by different viewport widths.
Definition 2. ALIGNMENT CONSTRAINT. An alignment constraint ac, for a pair of nodes n1,

n2 ∈ E, is a 4-tuple ðx1; x2; t; PÞ, where t ∈ T¼fpc; sg denotes the relationship type (parent–
child or sibling) and P ∈ 2Q is a set of alignment attributes that describes the relative layout of
n1 and n2 between the viewport range of x1 and x2, where x1 and x2 represent the inclusive lower
and upper viewport widths of the range, respectively (i.e. x2>x1). (See Section 3.2.2 for a full dis-
cussion of attributes that alignment constraints support.)
Web pages are, by nature, hierarchical, with the <body> tag representing the ‘root’ of the web

pages and therefore containing all subsequent elements. Because of this, the RLG is also hierarchi-
cal in nature, forming a tree-like structure with visibility constraints added to individual nodes and
alignment constraints being added to the edges linking the nodes.

Figure 4. The main usage scenario of this paper’s approach to automatically identifying the layout regres-
sions in a responsive web page. In this diagram, the presented approach is contained within the dotted

rectangle, inputs and outputs are shown as parallelograms, the decision is depicted as a diamond, and au-
tomated and manual processes are shown as rectangles with and without rounded corners, respectively (i.e.
‘RLG Extraction’ is automated and ‘Analyze Report’ is manual). This iterative process stops when the de-
veloper of a responsively designed web page is done fixing faults, finished making modifications to the
page’s HTML and CSS, and the report suggests that there are no layout regressions. The dotted section

corresponds to the internal working of REDECHECK-RM, which we expand in Figure 6.

10 of 46T. A. WALSH ET AL.

© 2020 John Wiley & Sons, Ltd. e1748Softw. Test. Verif. Reliab. 2020;e1748
DOI: 10.1002/stv

Figure 5 shows a snippet of the RLG for the wireframe example of web pages presented in
Figure 2. Each web page element is represented as a node in the graph. The node labels shown
in fixed-width font identify each element, as the full unique XPath expressions have been omitted
to make the diagram easier to interpret.
The root node of the graph is that corresponding to the body element, the container for all other

elements of the page. This element is the parent of the nav element, which contains all navigational
elements, including the unordered list element ul and its children li[1] through li[5], which
serve as the menu items at wider viewports. At narrower viewports, this list is replaced by the
button element. The body element is also the parent of the main element, which contains all
of the content of the web pages, represented by the elements div[1] through div[3].
The visibility constraints for each element are displayed above the node labels. The variables

wmin and wmax represent the minimum and maximum viewport widths taken into account by the
RLG, and therefore, elements that are constantly present in the web pages have the visibility con-
straint (wmin, wmax). Meanwhile, the nodes representing the navigation list (which only appear when
the viewport is wide enough) have the visibility constraint (768, wmax), and the drop-down button
element that disappears at wider viewport widths has a visibility constraint of (wmin, 767).
The directed edges between nodes in the example graph represent the relationships between ele-

ments described previously, with each edge containing one or more alignment constraints describ-
ing the relationship. For instance, the alignment constraints (wmin, 767, s, {A}) and (768, wmax, s,
{L}) between nodes div[1] and div[2] represent div[1] being above (labelled ‘A’)

Figure 5. An example of an RLG for the web page, shown in the wireframe example of Figure 2, over a
range of viewport widths between wmin and wmax. For ease of presentation, we omit some edges and con-
straints. The constraints on the edge li[1] to li[5] represent the relative layout of the two elements in
Wcurr and Wmod, respectively, where the difference is the unseen side effects caused by the code change, in

which li[5] is forced to wrap onto a new row. The boldfaced annotation is for the code change in
Figure 2.

11 of 46 AUTOMATICALLY IDENTIFYING POTENTIAL REGRESSIONS—RESPONSIVE WEB PAGES

© 2020 John Wiley & Sons, Ltd. e1748Softw. Test. Verif. Reliab. 2020;e1748
DOI: 10.1002/stv

div[2]at narrow viewport widths, before shifting to a side-by-side alignment in which div[1] is
left of (labelled ‘L’) div[2] once the viewport is wide enough to allow it.
The RLGs for parts (a) and (b) of Figure 2 are almost identical, with the only difference being

the sibling relationships between li[5], which wraps onto a second row, and its neighbours, which
are shown in bold. For simplicity and space reasons, only the edge between li[1] and li[5] is
shown in the figure. For example, in part (a), the edge from li[1] to li[5] has a single alignment
constraint (768, wmax, s, {L}), whereas in part (b), the layout failure results in two different
alignments being found, corresponding to li[1] initially being above li[5] as li[5] wraps,
and then to the left of it, once the viewport is wide enough to fit all five links in a single row.
Formally, we define the RLG as a 4-tupleRLG¼ðE,R,FVC,FACÞ, where E is the complete

set of nodes, one for each web page element, which is displayed for at least one viewport width be-
tween wmin and wmax, and R ⊆ E� E is the set of edges for pairs of nodes for which at least one
alignment constraint exists. Next,FVC : E→2VC is a function mapping an element to a set of vis-
ibility constraints where∀e ∈ E, jFVCðeÞj ≥ 1 (i.e. each element is visible for at least one viewport
width); and∀e ∈ E and∀vca¼ðx1a, x2aÞ ∈ FVCðeÞ and∀vcb¼ðx1b, x2bÞ ∈ FVCðeÞ, if vca≠vcb, then
x1a > x2b ∨ x2a < x1b (i.e. for a particular viewport width, there is at most one visibility constraint
for a web page element).
Finally,FAC :R→2AC is a function that maps an edge to a set of alignment constraints, such that

∀r ∈ R and ∀aca¼ðx1a, x2a, ta,PaÞ ∈ FACðrÞ and ∀acb¼ðx1b, x2b, tb,PbÞ ∈ FACðrÞ, if aca≠acb,
then x1a > x2b ∨ x2a < x1b. That is, for a particular viewport width, there is at most one alignment
constraint for a pair of web page elements.

3.2. Automatically extracting the responsive layout graph

Algorithm 1 describes the high-level process of extracting an RLG for a given web page, specified
as the procedure EXTRACTRESPONSIVELAYOUTGRAPH. The EXTRACTRESPONSIVELAYOUTGRAPH

procedure takes as input web pages W, and a series of further configuration parameters, which are
passed directly into the GETSAMPLEWIDTHS procedure on line 2.

The GETSAMPLEWIDTHS procedure, which we elaborate on further in the next section (Section
3.2.1), determines a series of viewport widths S to use as a sample of the responsive layout of
the page.
The algorithm then calls the EXTRACTALIGNMENTGRAPHS procedure (line 3), which we discuss in

detail in Section 3.2.2. EXTRACTALIGNMENTGRAPHS extracts the DOM of the web page at each
viewport width w in S, captures an alignment graph g of the relative alignment of HTML elements
at that viewport width and places each pair (w, g) into the list G.
The algorithm then extracts the visibility constraints map FVC of the RLG through a call to the

procedure EXTRACTVISIBILITYCONSTRAINTS (line 4), which we discuss in more detail in Section
3.2.3. The algorithm later uses the domain of theFVCmap to assign the nodes of the RLG, denoted
E (line 6).
After extracting visibility constraints, the algorithm then extracts the alignment constraints map

of the RLG,FAC, through a call to the EXTRACTALIGNMENTCONSTRAINTS procedure (line 5), which
we discuss in more detail in Section 3.2.4. The algorithm later uses the domain of theFAC map to
assign the edges of the RLG, denoted R (line 7).
Finally, the algorithm assembles the RLG from its constituent parts and returns it (lines 8 and 9).

12 of 46T. A. WALSH ET AL.

© 2020 John Wiley & Sons, Ltd. e1748Softw. Test. Verif. Reliab. 2020;e1748
DOI: 10.1002/stv

3.2.1. Sampling the target web page. For responsively designed web pages, the relative alignment
of HTML elements changes with the viewport width. In order to build an accurate RLG, the
EXTRACTRESPONSIVELAYOUTGRAPH function needs a set of viewport widths that is representative
of the different ways in which the page lays out its elements in response to the space available.
Obtaining this set of widths from an arbitrary web pages is a non-trivial task. This is the job of
the GETSAMPLEWIDTHS procedure, called from line 2 of Algorithm 1. Because each web page is dif-
ferent, the set of widths characterizing each of its different layouts will also be different.
One possibility is to use every width in the range covered by the RLG. However, this method has

the potential to be time consuming, resulting in a technique that is costly for developers to run in the
usage scenario depicted by Figure 4. An alternative is to sample widths at intervals throughout the
viewport range from wmin and wmax.
However, if the interval is too large, the technique may ‘skip over’ some important changes to the

page’s layout. A third possibility is to investigate widths corresponding to breakpoints programmed
into the page’s CSS files (e.g. the 768-pixel breakpoint illustrated in Figure 2).
On its own, however, this is likely to be insufficient to correctly extract the full responsive layout,

because although breakpoints explicitly define the viewport widths at which the layout of a page
changes, the dynamic resizing of elements in accordance with RWD principles can subsequently
cause changes in the alignment of elements at viewport widths not explicitly defined by the web
pages’ cascading style sheets.
Therefore, this paper evaluates three different methods: (1) the exhaustive approach, which we

refer to as EXTRACT-COMPARE-EXHAUSTIVE; (2) the interval sampling approach, which we refer
to as EXTRACT-COMPARE-INTERVAL; and finally (3) interval sampling combined with viewport
widths either side of breakpoints defined by the page’s CSS code, which we refer to as EX-
TRACT-COMPARE-INTERVAL-BREAKPOINTS. Each method involves calling the GETSAMPLEWIDTHS

function (called from line 2 of Algorithm 1), called for web pagesW, but with different parameters.
While the wmin and wmax parameters are set for each method, representing the minimum and
maximum widths of a range of viewports to investigate, respectively, wstep represents an interval
size that is 1 for EXTRACT-COMPARE-EXHAUSTIVE, and a configurable value greater than 1 for
EXTRACT-COMPARE-INTERVAL and EXTRACT-COMPARE-INTERVAL-BREAKPOINTS. Finally,
use_breakpoints is a flag that instructs GETSAMPLEWIDTHS to include widths at either side of
breakpoint values found in the CSS code of the page.
When use_breakpoints is set to true, the GETSAMPLEWIDTHS function parses the HTML ofW to

extract the set of all referenced CSS files. It then parses each CSS file and analyses each of its
media queries to determine breakpoint boundary values. For example, given a media query
‘@media(min-width:992px)’, the two boundary values added to S would be 991 and
992pixels.
This is because 992pixels is the smallest viewport width to trigger the rule, while 991pixels is the

largest width notto trigger it. The output of any one of the three aforementioned sampling proce-
dures is a series of width values, assigned toS in the EXTRACTRESPONSIVELAYOUTGRAPH procedure
of Algorithm 1.
For instance, given the media query ‘@media(max-width:768px)’ appearing in a page’s

CSS, a wstep value of 60, and wmin and wmax values of 400 and 1400, respectively, the set of widths
S returned by GETSAMPLEWIDTHS for the EXTRACT-COMPARE-INTERVAL-BREAKPOINTS method is
{400, 460, 520, …, 760, 768, 769, 820, …, 1340, 1400} and would therefore be the set of widths
assigned to S by Algorithm 1 on line 2. As we explain in Section 4.5, the values for wmin and wmax

used in this example are the same as those used in our experiments, and the value of wstep (i.e. 60) is
the step size value used for our first two research questions.

3.2.2. Generating single-viewport page layout graphs. Called on line 3 by Algorithm 1, the
EXTRACTALIGNMENTGRAPHS procedure takes the web pages W and set of viewport widths S ,
and, for each width inS, extracts the DOM of the page to generate an alignment graph of its layout
at that particular viewport. It does this using the bounding boxes of each element, which have co-
ordinates (x1, y1, x2 and y2). To illustrate this process, we revisit the motivating example in Figure 2.

13 of 46 AUTOMATICALLY IDENTIFYING POTENTIAL REGRESSIONS—RESPONSIVE WEB PAGES

© 2020 John Wiley & Sons, Ltd. e1748Softw. Test. Verif. Reliab. 2020;e1748
DOI: 10.1002/stv

The EXTRACTALIGNMENTGRAPHS procedure beings by organizing elements into a graph structure
with either ‘parent–child’ or ‘sibling’ edges connecting them. The procedure generates parent–child
edges when, through querying the DOM (as described in Section 2.3), an element ec is contained
within the bounding box of some other element ep. The procedure then generates sibling edges
for elements sharing the same parent.
Consider the layout shown by part (a-i) of the figure. Suppose the elements div[1], div[2]

and div[3] are contained within another HTML div element, which we will refer to as main.
The EXTRACTSINGLEVIEWPORTLAYOUTGRAPHS function generates parent–child edges between
main and div[1], div[2] and div[3] and generates sibling edges between each of
div[1], div[2] and div[3].
The procedure then inspects the DOM coordinates of each pair of connected nodes to extract any

alignment attributes.
Child elements may be left (LJ), right (RJ) or centre justified (CJ) within their parents and may

also be top (TJ), bottom (BJ) or middle justified (MJ). Sibling attributes fall into two categories, po-
sitioning and alignment. Positioning labels describe the location of one element in relation to the
other, while alignment labels describe how the borders of each element align with each other. If
an element is either left of (L) or right of (R) its sibling, it may also be aligned on its top (TE)
and/or bottom edge (BE). Similarly, if an element is above (A) or below (B) its sibling, it may also
be aligned on its left (LE) and/or right edges (RE).
As examples of parent–child alignments, div[1] through div[3] have the same

horizontal midpoints as their container, resulting in the EXTRACTALIGNMENTGRAPHS procedure
applying the alignment attribute CJ applied to the edges between themselves and their parent
(main).
As example of sibling edge labelling, div[1] is above div[2] (div[1]’s y2 value is greater

than div[2]’s y1 value), and so the EXTRACTALIGNMENTGRAPHS procedure annotates the edge
with the A attribute.
Relationships between web page elements are symmetric in nature, especially those of the sibling

type, as two edges representing X is above Y and Y is below X, respectively, are intuitively identical.
Thus, for simplicity and efficiency, the procedure only adds one of the two possible edges.
The EXTRACTALIGNMENTGRAPHS procedure returns a list G pairing each viewport width w in S

with its associated alignment graph g. Algorithm 1 then proceeds to extract visibility and alignment
constraints to complete the RLG using G, which we next discuss in detail.

3.2.3. Determining visibility constraints. The process for extracting visibility constraints is de-
scribed by Algorithm 2, and the EXTRACTVISIBILITYCONSTRAINTS procedure, which takes as input
the sequence of viewport width-alignment graph pairs, G , arranged in order of ascending
viewport width.
The algorithm begins by taking the first alignment graph inG(line 3) using it to initialize visibility

constraints for each element e in the graph—which will become part of the eventual RLG—via a
call to the procedure ADDNEWVISIBILITYCONSTRAINT. This procedure takes the (initially empty) vis-
ibility constraints map,FVC, an element e, and its lower viewport width x1. It constructs a new vis-
ibility constraint inFVC for e using x1 and a placeholder for x2, its upper viewport width, which is
unknown at the point at which the constraint is created.
The EXTRACTVISIBILITYCONSTRAINTS procedure updates FVC as it processes each subsequent

alignment graph inG in the main loop of the algorithm (lines 6–15). The algorithm obtains the next
alignment graph gc (line 7) in G and then iterates over two sets of elements. The first set (line 8)
involves all elements that are present in the current alignment graph gc but not the previous graph
gp. These are elements that have ‘appeared’ between the viewport widths of the current and last
alignment graph considered, so the procedure performs a binary search between these two widths
to establish the exact point the element ‘appeared’. Using the viewport width found by the binary
search, the procedure creates a new visibility constraint withinFVC for the element, using the pre-
viously described ADDNEWVISIBILITYCONSTRAINT procedure. The second set (line 11) involves all
elements present in the previous alignment graph gp but not the current graph gc. These are elements
that ‘disappeared’ between the viewport widths of the two alignment graphs. Again, the algorithm

14 of 46T. A. WALSH ET AL.

© 2020 John Wiley & Sons, Ltd. e1748Softw. Test. Verif. Reliab. 2020;e1748
DOI: 10.1002/stv

performs a binary search between the two widths, this time to find the exact point at which the el-
ement ‘disappeared’. This width is then used to complete the previously added visibility constraint
with an upper bound by the COMPLETEVISIBILITYCONSTRAINT procedure.

When the algorithm reaches the last alignment graph in the sequenceG, it completes the visibility
constraint for each element still visible with an upper viewport width corresponding to the viewport
width of that last alignment graph (lines 16 and 17), thereby signifying their presence at the last
viewport width represented by the extracted RLG.

3.2.4. Determining alignment constraints. Algorithm 3 extracts alignment constraints for the RLG
in a similar style to the visibility constraints extraction algorithm (Algorithm 2), iterating through
the sequence of alignment graphs G at ascending viewport widths. However, instead of being con-
cerned with the visibility of the elements, the algorithm examines how neighbouring elements are
laid out relative to one another. Throughout the execution of the EXTRACTALIGNMENTCONSTRAINTS

procedure, the algorithm builds up the map of alignment constraints, FAC , which are eventually
returned to the main RLG extraction algorithm and form part of the final RLG. In a similar fashion
to Algorithm 2, EXTRACTALIGNMENTCONSTRAINTS begins by taking the alignment graph gp for the
first viewport width in the sequenceG (line 3) and creating partial constraints with a lower viewport
width (line 5). The algorithm creates alignment constraints with a lower width for each edge that it
observes in the graph. Algorithm 3 then moves through the sequence of layout graphsG in the loop
starting at line 6, taking the next layout gc.

15 of 46 AUTOMATICALLY IDENTIFYING POTENTIAL REGRESSIONS—RESPONSIVE WEB PAGES

© 2020 John Wiley & Sons, Ltd. e1748Softw. Test. Verif. Reliab. 2020;e1748
DOI: 10.1002/stv

The algorithm then follows a series of steps depending on whether it can match an edge in the
current alignment graph gc with the previous graph gp. The algorithm analyses edges appearing
in both graphs (lines 9–12). If the edge has the same parent/child relationship between its nodes,
and the same alignment attributes, then the procedure does not need to be take any action. Other-
wise, the relative alignment of the nodes of the edge has changed, meaning that the alignment con-
straints for the edge need updating. First, the algorithm performs a binary search to establish the
point between the two viewport widths of the last two graphs that the change first occurred. It uses
this value to complete the previously created alignment constraint for the edge with an upper
viewport width (through a call to COMPLETEALIGNMENTCONSTRAINT, on line 11), while creating
a new constraint, with the new layout attributes, using the value as the lower viewport width for
the constraint (through a call to ADDNEWALIGNMENTCONSTRAINT on line 12).
Edges may ‘disappear’ in gc that were present in gp, or appear in gc when they were not present in

gp, because of the changing visibility of edges. When edges ‘appear’ (lines 13–15), the algorithm
conducts a binary search to find the viewport width where the edges are initially present and creates
a new alignment constraint in FAC using the width as the lower viewport width of the constraint.
Conversely, when edges ‘disappear’ (lines 16–18), the algorithm completes their alignment con-
straints with the upper viewport width, which it finds through a further binary search.
On termination of the main loop, the algorithm sets the upper bound of any outstanding uncom-

pleted alignment constraints inFAC with the viewport width of the last layout graph inG (lines 22
and 23) and returns FAC back to the EXTRACTRESPONSIVELAYOUTGRAPH procedure, so that the
alignment constraints can form part of the overall RLG.

3.3. Differencing two responsive layout graphs

As previously described in Section 2, the RLG of a responsive web pages can change after mod-
ifications to its either HTML or CSS code. Algorithm 4 therefore takes as input two RLGs,
RLGcurr and RLGmod, and produces as output a list of differences between the two, along with
the viewport widths at which the differences are observable. Intuitively, if this algorithm deter-
mines that RLGcurr and RLGmod are not the same, then it presents those differences to the de-
veloper of the web pages because they may be unseen side effects of changes to the web pages’
source code.
The comparison performed by Algorithm 4 begins with a call to the DIFFRLGS procedure with

the two RLGsRLGcurr andRLGmod. This procedure starts by finding the set of nodes not present

16 of 46T. A. WALSH ET AL.

© 2020 John Wiley & Sons, Ltd. e1748Softw. Test. Verif. Reliab. 2020;e1748
DOI: 10.1002/stv

in both RLGs, by taking the asymmetric difference of their node sets (line 2). A node in one RLG
matches a node in another RLG if the absolute XPaths of the nodes’ elements are identical. Any
unmatched nodes are reported using the REPORTUNMATCHEDNODE procedure.
Following this, the algorithm compares visibility constraints for each node present in the

two RLGs (line 4), taking the asymmetric difference of their visibility constraint sets (line 5)
and reporting any unmatched constraints as visibility differences via a call to the
REPORTUNMATCHEDVISIBILITYCONSTRAINT procedure (line 6).
The algorithm then proceeds to find unmatched edges in the two RLGs (lines 7 and 8).

It then continues by comparing alignment constraints in the two graphs, comparing constraints in
RLGcurr but not RLGmod (lines 10 and 11) and vice versa (lines 12 and 13). The algorithm
outsources the comparison of individual alignment constraints to the
COMPAREALIGNMENTCONSTRAINT procedure, which specifically tries to determine whether two
non-matching constraints partially match, but differ by their viewport widths (a bounds difference),
their parent/child relationship and/or alignment attributes (an attributes difference), or both (a com-
pound difference).
For a bound difference (lines 16 and 17), the set of non-matching viewport widths calculated by

the REPORTBOUNDSDIFFERENCE procedure is the symmetric difference of the two sets of viewport
widths for the two respective constraints (i.e. the set of widths at which only one of the constraints
hold true).
For an attribute difference (lines 18 and 19), the set of non-matching viewport widths calculated

by the REPORTATTRIBUTESDIFFERENCE procedure is an inclusive set of the bounds of the unmatched
alignment constraints.
For compound differences (lines 20 and 21), as no partial match has been found, the viewport

widths reported by REPORTCOMPOUNDDIFFERENCE are simply the inclusive range of widths
encompassed by the non-matching constraint’s viewport range.
To illustrate the whole differencing process, we revisit the motivating example from Figure 2 and

the respective RLG example from Figure 5. To begin, all of the nodes and their visibility constraints
are correctly matched, before all the alignment constraints are matched, with the exception of the

17 of 46 AUTOMATICALLY IDENTIFYING POTENTIAL REGRESSIONS—RESPONSIVE WEB PAGES

© 2020 John Wiley & Sons, Ltd. e1748Softw. Test. Verif. Reliab. 2020;e1748
DOI: 10.1002/stv

edge between li[1] and li[5]. For this edge, the ‘before’ RLG, RLGcurr , maps to a single
alignment constraint, (768,wmax,s,{L}), while the ‘after’ RLG, RLGmod, contains two constraints,
(768811,s,{A}) and (812,wmax,s,{L}). Given these constraints, the RLG comparison algorithm will
report two model differences to the user as potentially unseen side effects. The first is a bound error,
as the comparison algorithm will detect a partial match between (768,wmax,s,{L}) from RLGcurr

and (812,wmax,s,{L}) fromRLGmod, as the two constraints contain identical attribute sets, but dif-
fering x1 values. This difference represents the change in the range of viewport widths for which the
two elements are laid out in a row. As the number of alignment constraints mapped to this particular
edge differs between the two versions (one inRLGcurr and two inRLGmod), at least one edge will
always remain completely unmatched. In this example, it is the constraint (768811,s,{A}) from
RLGmod , representing the regression in which li[5] wraps onto a new line following the code
change made by the web developer.

3.4. Implementation of the presented approach in REDECHECK-RM

We implemented our approach into our prototype tool, called REDECHECK [27], which is written in
the Java programming language. Because REDECHECK implements a number of algorithms for test-
ing responsive web pages [8,27], and to disambiguate this paper’s RLG extraction and differencing
approach from our prior work, we specifically refer to the implementation of this ‘regression
checking mode’ in REDECHECK as ‘REDECHECK-RM’.
REDECHECK-RM is structured in a similar way to the envisaged tool featured in the usage sce-

nario of Figure 4. It consists of three core modules, the organization of which is shown in Figure 6.
The first, the RLG Extractor, is responsible for extracting the RLG for a chosen web pages, as

described by Section 3.2 and Algorithms 1–3. To simplify the process of discovering parent–child

and sibling relationships, and relative alignment attributes, our tool uses an implementation of an
R-tree (‘rectangle tree’) data structure provided by the JSI (Java Spatial Index) RTree Library.1Our
tool populates the R-tree using the coordinates of the minimum bounding boxes of elements, as ex-
tracted from the DOM of the page.
The second component of REDECHECK-RM, the RLG Differencer, executes the RLG differencing

procedure of Section 3.3 and formalized in Algorithm 4.
Each call that Algorithm 4 makes to a ‘REPORT…’ procedure adds to a running set of differences,

denoted Freg, betweenRLGcurr andRLGmod, and the respective viewport width sets at which they
occur. The third module of the REDECHECK-RM tool, the Report Generator, analyses the differ-
ences and determines the faulty viewport widths, which it then outputs to the web developer in a
report. REDECHECK-RM uses Selenium version 2.53.1 [28] to drive and interact with the 2.1.1 ver-
sion of PhantomJS [29], a headless web browser commonly used for automated web page naviga-
tion, screen capture and general web testing. REDECHECK-RM also uses Selenium to query the
DOM and extract the layout of each web page, as rendered in PhantomJS.
Figure 7 presents a snippet of the report produced by REDECHECK-RM for the example in

Figure 2. This report aims to help guide and direct the manual analysis performed by the developer,
rather than them having to manually scan the page at selected viewport widths for potential
problems, a process that is likely to lead to regressions being missed. We evaluate the benefits of
REDECHECK-RM compared with this traditional manual inspection of a page in the next section.

Figure 6. An overview of the high-level components comprising REDECHECK-RM, implemented as a special
regression checking mode of our REDECHECK tool. This figure extends the enclosed dotted section of the

usage scenario diagram of Figure 4 that corresponds to the automated operation of the tool.

18 of 46T. A. WALSH ET AL.

© 2020 John Wiley & Sons, Ltd. e1748Softw. Test. Verif. Reliab. 2020;e1748
DOI: 10.1002/stv

4. EMPIRICAL EVALUATION

To evaluate the effectiveness and efficiency of Section 3’s automated approach to detecting the po-
tential regressions in a website’s layout, we applied our implementation of it, REDECHECK-RM, to
15 responsive web pages, with respect to the following three research questions:

RQ1. (a) How accurate is the presented approach at detecting the various types of changes

made to the source code (i.e. the HTML and CSS) of a responsive web page? (b)

How does the presented approach compare to alternative baseline methods? This
question evaluates the effectiveness of our technique and its use of the RLG as a model
for accurately detecting potential layout regressions in a responsive web page.

RQ2. How does the ‘subtlety’ of a layout change influence the effectiveness of the ap-

proach? This question investigates how effective our technique is at detecting the subtle
regressions in web pages’ layout that manifest themselves at comparatively few viewport
widths.

RQ3. How do different parameter values change the approach’s efficiency and effective-

ness?Because the algorithms in REDECHECK-RM may be sensitive to their configuration,
this question investigates whether changing the parameters used to control the RLG ex-
traction algorithm influences the efficiency and effectiveness of our approach to testing re-
sponsive web pages.

4.1. Subject web pages

In order to answer the aforementioned research questions, we selected 15 responsive websites,
using the home pages of each site for the experiments. We chose the subjects for our study by fol-
lowing a similar methodology to that of Mahajan et al. [30], that is, producing a sample of web
pages that use a mix of different implementation technologies, involve a range of complexities
and coding styles, have a variety of different layout styles and are collated from a diverse set of dif-
ferent sources. We therefore harvested subjects from the showcases of popular CSS frameworks
(Bootstrap [18] and Foundation [20]), web pages linked from sites with aim of exhibiting examples
of ‘good’ responsive design to other developers, while also selecting the web pages of well-known
companies and organizations. As such, the final collection of web pages is diverse in terms of do-
main, size and coding style, with some of them developed with the assistance of a CSS framework
and others using bespoke CSS and HTML to support a responsive layout. For instance, the Shield
subject uses Bootstrap version 3, while the Treehouse subject uses bespoke CSS styling rules. The
15 websites selected were as follows: ‘Aftrnoon’, a website for a design studio; ‘Annette’s Crea-
tions’, an online shop; ‘Ashton Snook’, the home page of a visual designer; ‘Bootstrap’, the home
page for the popular web design framework; ‘Coursera’, the well-known provider of massive open
online courses; ‘Denon’, a manufacturer of high-end headphones and DJ equipment; ‘ISSTA 2016’,
the website for a software testing conference; ‘Name Mesh’, a site that suggests suitable web do-
mains; ‘Pay Demand’, a website for businesses to compare rates for credit card processing;
‘Rebecca Made’, a web developer’s showcase; ‘Reserve’, the website of a mobile application that
performs restaurant reservations; ‘Responsive Process’, an educational website about RWD;
‘Shield’, the site of the responsive template presented in Section 2.1; and finally, ‘Treehouse’, a plat-
form for technology training. In summary, these websites come from a wide variety of application

Figure 7. A snippet of a report produced for the example in Figure 2. The ‘differing bounds’ section shows
how the range of viewport widths for which li[1] is to the left of li[5] differs between the two RLGs,
while the ‘unmatched in RLG_mod’ line shows how for the faulty viewport widths li[1] is above
li[5] as li[5] wraps. Report content of the form ‘768 -> 1400’ denotes a range of viewport widths.

19 of 46 AUTOMATICALLY IDENTIFYING POTENTIAL REGRESSIONS—RESPONSIVE WEB PAGES

© 2020 John Wiley & Sons, Ltd. e1748Softw. Test. Verif. Reliab. 2020;e1748
DOI: 10.1002/stv

domains, thus ensuring the representativeness of this paper’s empirical results. To support the rep-
lication of this paper’s experiments, we have made all of the subjects and the layout regressions
available in a GitHub repository at https://github.com/redecheck/jstvr-webpages.
Table I shows summary statistics for each of the subject web pages, including the number of lines

of code contained within the associated HTML and CSS files. To obtain faster page loading times
for their end users, many developers of websites apply ‘minification’ to the site’s CSS code, thereby
removing all unnecessary characters and reducing the amount of data that must be transferred from
the web server to the client. This process, along with the different developer coding styles for both
the HTML and CSS, means that calculating and comparing the amount of code comprising each
web page is challenging. To account for these inconsistencies, we used the tools available at
https://www.dirtymarkup.com to format all the HTML and CSS files in a uniform and consistent
manner, thereby supporting a fair comparison of the size and complexity of the sites.
Table I also presents the number of DOM nodes in each web page, an established metric of size.

Additionally, we report the number of lines of CSS code, the total number of CSS blocks (i.e. col-
lections of individual CSS declarations applied to certain HTML elements though a CSS selector)
and the total number of distinct CSS declarations. Because many responsive websites are imple-
mented using frameworks (e.g. Bootstrap and Foundation) that contain many lines of CSS code,
the table also presents in parentheses the number of blocks and declarations, respectively, that are
actually used by the page. In other words, the parenthetic values in Table I only give the count of
the CSS blocks and declarations that are applied to at least one HTML element on the page at some
viewport width considered in this paper’s experiments.
The two sets of numbers reflect different aspects of the complexity of the CSS for a particular

web page. While the number of ‘used’ blocks reflects a smaller subset of the overall CSS needed
to style a particular page, a developer will still need to understand, use and navigate through all
of the CSS rules defined for the website when modifying a particular page.
As seen from these summary values, our selection of web pages represents a range of HTML and

CSS style sheet sizes, with the number of DOM nodes ranging from 106 to 472 and the number of
CSS blocks ranging from as few as 166 to a maximum of 5958, of which we found that a range of
31 to 158 blocks are explicitly used by our subjects.

Table I. Responsive web pages used in the empirical study of the REDECHECK-RM tool.

HTML CSS

Website name URL LOC DOM nodes LOC Blocks Declarations

Aftrnoon https://aftrnoon.com 204 112 1370 459 (37) 1003 (98)
Annette’s Creations https://annettescreations.com 235 113 7199 1398 (60) 2383 (179)
Ashton Snook https://www.ashtonsnook.com 407 126 8417 1730 (104) 3218 (293)
BitTorrent https://bittorrent.com 830 356 6198 1140 (158) 1907 (406)
Coursera https://coursera.com 646 472 10 829 1958 (83) 4515 (176)
Denon https://denondj.com 281 232 7975 1457 (62) 3244 (189)
Bootstrap https://getbootstrap.com 292 147 8550 1757 (61) 3199 (152)
ISSTA 2016 http://issta.cispa.saarland 230 196 8185 1912 (84) 3209(237)
Name Mesh http://namemesh.com 598 217 2675 2356 (66) 3725 (171)
Pay Demand http://paydemand.com 181 106 10 961 2471 (56) 4942 (92)
Rebecca Made http://rebeccamade.com 274 150 3645 1094 (34) 1755 (59)
Reserve http://reserve.com 229 125 6452 1375 (31) 2537 (71)
Responsive Process http://responsiveprocess.com 266 142 956 166 (34) 379 (115)
Shield http://www.blacktie.co/demo/shield 606 336 7637 1747 (98) 2999 (287)
Treehouse http://teamtreehouse.com 1053 406 34 951 5958 (111) 12 122 (358)

In the column headings, ‘LOC’ refers to lines of code after a standard formatting process, as described in Section 4.1. Addition-
ally, a CSS block (i.e. ‘Blocks’) is a group of individual declarations (i.e. ‘Declarations’) applied to a group of HTML elements
through a CSS selector. The numbers in parentheses are the count of the category for the subject’s main page, as a CSS file can be
applied to multiple pages within a website. Finally, REDECHECK-RM calculated the number of nodes in the DOM of the web
pages (i.e. ‘DOM Nodes’) by using PhantomJS, a headless web browser commonly used to support the automated testing of
websites.

20 of 46T. A. WALSH ET AL.

© 2020 John Wiley & Sons, Ltd. e1748Softw. Test. Verif. Reliab. 2020;e1748
DOI: 10.1002/stv

4.2. Using mutation operators to create potential regressions in web page layout

Figure 4 illustrated the main usage scenario for our approach, in which a web developer modifies
the source code of web pages and then uses REDECHECK-RM to compare the two versions of the
page, thereby discovering any issues introduced by the code changes. As the usage scenario of
the presented approach focused on the development stage of the software life cycle, obtaining real
examples of incrementally modified versions of web pages is problematic. Therefore, we designed
mutation operators to introduce small changes into the code of the subjects, as the means of
obtaining potential regressions from the original layout with which to evaluate our approach. To
generate as wide a variety of potential layout changes as is possible, the set of mutation operators
we designed target both the HTML and CSS source code of web pages. Table II describes these op-
erators and furnishes examples of the changes that they make to the page’s HTML and CSS code.
The first four mutation operators listed by the table apply to a page’s HTML. We discuss these first,
followed by the second four operators, which apply to a page’s CSS. Developers often choose to
use the predefined classes from responsive design frameworks (e.g. Bootstrap and Foundation) to
enhance the style of the elements on their web pages. These classes provide CSS code for a range
of styling aspects, from responsive sizing to typography and colouring, thereby making it a chal-
lenge to ensure that the correct classes are applied to the desired elements. When developers do this
incorrectly, they can cause regressions in the layout of a page. In observance of this trend, we cre-
ated three operators focusing on the assignment of these classes to web page elements: Class Addi-
tion, Class Deletion and Class Modification. For instance, as shown by Table II, the Class Addition
operator might add Bootstrap’s ‘col-sm-6’ class to a page element, while Class Deletion could
lead to the removal of ‘col-xs-12’, and Class Modification may replace the class ‘col-xs-
12 col-sm-6’ with ‘col-xs-12 col-sm-4’.2Additionally, as web developers often need to
update the content of a web pages rather than just its visual appearance or layout, a fourth operator,
Textual Content, modifies the text contained within an HTML element. This content modification
can change how the browser lays out web pages because the element containing the changed text
may expand or contract, potentially causing a chain reaction of follow-on changes to the relative
positioning of the elements around it or containing it. While many web developers might customize
the CSS supplied by a responsive framework, others may choose to create and enhance their own
CSS. To reflect both of the ways in which a developer could incrementally modify a page’s style
sheet code, we also implemented additional mutation operators targeting general CSS code. The op-
erators are split into two categories, each modifying a different CSS construct. The first modifies
individual CSS declarations, by changing either the value of the declaration (which can be numeric
or textual depending on the CSS property in question), through the Declaration Value operator, or
the declaration’s unit, through the Declaration Unit operator. Our operators adjust numerical values
by ±1–10 at uniform random. For instance, as shown by the examples in Table II, a change made by
the Declaration Value operator could reduce the width of a list item from 75% to 71%. A change
made by the Declaration Unit operator could transform an element’s width from a percentage value
to one in measured in pixels. The second operator category changes the way in which whole groups
of CSS rules are applied by modifying the media queries containing them in the style sheet. Each
operator targets one part of the selected media query. The Query Expression operator changes the
type of the expression (e.g. from ‘min-width’ to ‘max-width’), while the Query Breakpoint op-
erator modifies the media query’s numeric value, thereby changing the breakpoint at which differ-
ent CSS rules are applied to the page.
We implemented these operators into a tool that automatically injects mutations into web pages in

a four-step process, beginning (1) with a static analysis of the web pages’ HTML to identify the
CSS classes that are applied to each element, thereby forming a set of CSS class modification can-

didates for the HTML mutation operators to potentially modify. During this phase, the HTML ele-
ments containing text are also collected to form the candidate set for the Textual Content operator.
Next, (2) the tool parses and filters the CSS to obtain a set of CSS modification candidates for the
CSS mutation operators to potentially modify. By checking the block’s selectors against the set of
selectors identified in the previous phase, the filtering process only considers the CSS blocks that
are applied to at least one element on the web pages. This prevents the code modification from

21 of 46 AUTOMATICALLY IDENTIFYING POTENTIAL REGRESSIONS—RESPONSIVE WEB PAGES

© 2020 John Wiley & Sons, Ltd. e1748Softw. Test. Verif. Reliab. 2020;e1748
DOI: 10.1002/stv

Table II. Descriptions and examples of the mutation operators used in the experiments.

Operator name Description Before modification After modification

Class Addition Adds a class to an element <div class=‘col-xs-12’> <div class=‘col-xs-12 col-sm-6’>
Class Deletion Removes a class from an element <div class=‘col-xs-12 col-sm-6’> <div class=‘col-sm-6’>
Class Modification Replaces a class with another <div class=‘col-xs-12 col-sm-6’> <div class=‘col-xs-12 col-sm-4’>
Textual Content Increases/decreases amount of text in an element <h1>Welcome</h1> <h1>Welcome to my page</h1>

Declaration Value Modifies value of a declaration li { width: 75% } li { width: 71% }
Declaration Unit Modifies the unit of a declaration’s value div { width: 50% } div { width: 50px }
Query Expression Modifies the media query’s expression @media (min-width: 640px) @media (max-width: 640px)
Query Breakpoint Modifies the media query’s numeric value @media (min-width: 992px) @media (min-width: 990px)

In this table, the HTML or CSS source code in the ‘Before’ column corresponds to an example of the original version of the web pages as it was downloaded, while the ‘After’ column’s code is that which
results from applying the specified mutation operator. Note that the first four operators modify the HTML of a page while the final four change its CSS. Section 4.2 explains how we automatically applied
these operators during the experiments.

22
of

46
T.

A
.
W
A
L
S
H

E
T
A
L
.

©
2020

John
W
iley

&
S
ons,

L
td.

e1748
S
o
ftw

.
T
est.

V
erif.

R
elia

b
.
2020;e1748

D
O
I:
10.1002/stv

being injected in a part of the style sheet that is not used by the web pages, resulting in a page that is
identical to the original (i.e. a potential source of ‘equivalent mutants’ [31]). The set of declarations
contained within each block is also pruned to contain only those concerning layout, such as width,
padding and margin, because changing non-layout properties, like background-color,
may affect the visual appearance of the web pages but not its layout.
For as many mutant web pages as required, the tool then (3) selects at random one of the eight

operators and a suitable modification candidate from the relevant candidate set, also at random,
and finally, (4) modifies the chosen candidate, saving the altered web pages, including the modified
HTML/CSS files, to disk.
Suitable for answering RQ2 of our evaluation, this automated approach to web page mutation re-

sults in a wide variety of changes being introduced, from tiny shifts in the position of an element at
few viewport widths to ones with a large visual impact visible at many different viewport widths.

4.3. Baseline comparison methods

As discussed in Section 2.1, there has been almost no work in the literature on testing responsive
web pages, especially work addressing the problem of automatically detecting regression changes
to the layout of a responsive web pages.
The only exception is our previous work [16], of which this paper is an extension. Our recent

work on detecting common layout failures without explicit oracles [8] is not designed to find regres-
sions in layout and instead functions using one RLG rather than two, making it an unsuitable com-
parative approach. As such, there is a lack of baseline approaches against which we can compare
REDECHECK-RM. However, as previously mentioned in Section 2.1, testers often perform
‘spotchecking’ to test their websites, whereby a tester loads a page into a browser, resizes it to series
of common viewport widths and manually checks to ensure that there are no previously unseen lay-
out regressions. We therefore compared REDECHECK-RM with two methods based on this
spotchecking procedure: one performed manually by the authors and an automatic method devel-
oped by repurposing a tool from the literature originally used to detect cross-browser issues.
For both of these two methods, we used six distinct viewport widths to perform the spotchecking

process. These were taken from the preset widths available in two widely used developer tools,
Viewport Resizer [32] and Window Resizer [33], which resize a browser to a desired preset
viewport width at the click of a button. The preset widths used—480, 600, 640, 768, 1024 and
1280pixels—cover widths commonly checked by developers, thereby encompassing a wide range
of devices from small mobile phones and tablets to laptops and desktop computers.

4.3.1. Manual spotchecking technique. Given the visual nature of the task of testing a web page, it
is common for the experimental evaluation of new web testing methods to involve some type of
manual checking by humans [1,24,34,35]. This paper’s manual spotchecking method, a process that
we call SPOTCHECK-MANUAL, involved humans comparing the original and mutated version of web
pages at the aforementioned viewport widths. For the purposes of this paper’s empirical study, man-
ual spotchecking was performed by the authors who used the systematic classification procedure
that we detail in Section 4.4 and visualize in Figure 8.

4.3.2. Automated spotchecking technique. As introduced in Section 2.3, the alignment graph

models web pages at a single-viewport width, with the original purpose of checking web pages
for cross-browser issues. Unlike the RLG, the alignment graph is unsuitable for modelling web
pages over a series of viewport widths. However, it can be used to find differences between two ver-
sions of web pages at a single-viewport width. As such, it may be used as part of an automated ver-
sion of the spotchecking procedure previously described. We therefore modified Choudhary et al.’s
X-PERT tool [24] to create an alignment graph for web pages and its mutated counterpart at the afore-
mentioned viewport widths and report any differences between the two graphs. We refer to this au-
tomated alternative to manual spotchecking as SPOTCHECK-ALIGNMENTGRAPH.

23 of 46 AUTOMATICALLY IDENTIFYING POTENTIAL REGRESSIONS—RESPONSIVE WEB PAGES

© 2020 John Wiley & Sons, Ltd. e1748Softw. Test. Verif. Reliab. 2020;e1748
DOI: 10.1002/stv

4.4. Manual classification procedure

To verify the results of REDECHECK-RM and the SPOTCHECK-ALIGNMENTGRAPH automated base-
line technique, and as a key component of the SPOTCHECK-MANUAL method, we defined a proce-
dure to manually classify whether a page contains observable layout changes or not. The
motivation for us defining such a procedure was to ensure that we performed our manual checking
systematically, rigorously and consistently.
Because both automated techniques might report ‘changes’ that are not observable in practice—

or miss layout changes that are actually observable —each modified web pages used in the exper-
iments needed to be manually inspected against its unmodified counterpart in order to check the
outputs of each.
As shown in Figure 8, our manual classification procedure involves a human web developer ex-

amining a pair of web pages (i.e.Wcurr andWmod, which correspond to the original web page and a
mutant in the setting of our evaluation, respectively) rendered by a browser for a particular viewport
width, and answering questions in the following four categories:

1. Visibility: Does the visibility of any element differ between the two versions of the page? For
instance, at a particular resolution, is an element visible in one version but hidden in the other?

2. Position: Does the positioning of one element in relation to a neighbouring element differ be-
tween the two versions? For example, are two elements rendered side by side in one version of
the web page but are stacked one above the other in the other version?

Figure 8. The manual procedure for determining if a modified web page contains a layout regression. The
individual following this process will ultimately answer yes or no to the question ‘does the modified web
page contain an observable layout change?’ In this diagram, a decision is depicted as a diamond, and a
rectangle denotes a manual step. This iterative process stops when the person performing these steps has
either examined the web page at all of the chosen viewport widths and has not found any changes (thus
answering no) or, alternatively, identifies the first change in the page’s layout (thereby responding with yes).

24 of 46T. A. WALSH ET AL.

© 2020 John Wiley & Sons, Ltd. e1748Softw. Test. Verif. Reliab. 2020;e1748
DOI: 10.1002/stv

3. Alignment: Is a pair of elements that were in alignment on one or more of their edges no lon-
ger aligned? For example, given two elements that were previously aligned on their left edges,
are they no longer aligned in this way?

4. Justification: Is an element no longer justified in the same way within its container? For in-
stance, was an element initially right justified within its container and is now left justified?

Each author undertook the manual procedure to analyse particular web page mutations with re-
spect to the original version of the page.
If, while inspecting the web pages and asking ourselves the questions associated with each of the

four categories, we observed a part of the page that convinced us to answer ‘yes’ to a question
concerning visibility, position, alignment or justification, we recorded this as a potential layout re-
gression and investigated it further. If we answered ‘no’ to all of the relevant questions for the
viewport width currently under inspection, we then repeated the process for each subsequent
viewport width, until we answered ‘yes’. If we manually examined all of the viewport widths and
concluded that there was no difference between the original and modified version of the web pages,
then we classified it as not containing any layout changes.
To mitigate any subjectivity or mistakes when following this manual procedure, we reviewed the

results of each author together as a committee in order to produce a definitive final classification.
It is worth noting that we cannot exclusively align one of mutation operators from Section 4.2

with one of the four questions that we pose in this section. For instance, it is possible that the mu-
tation of a declaration value or unit could change either the visibility of an element (if, for instance,
the element is now positioned outside of the viewport) or the positioning of an element in relation to
another (if, e.g. elements were previously side by side and are now stacked). How a mutant mani-
fests itself as a layout failure depends on how the web page uses the modified HTML or CSS.

4.5. Specific methodology for each research question

To answer the research questions stated at the start of this section, we began by using the approach
described in Section 4.2 to automatically generate 30 modified versions of each subject web page,
thereby producing a set of 450 modifications in total. We then used the implementation of our ap-
proach, REDECHECK-RM (as introduced in Section 3.4), and this set of modified web pages to an-
swer each of the research questions.
We conducted all of the experiments with REDECHECK-RM on an iMac with 8GB of RAM run-

ning the latest version of macOS, thereby demonstrating that this tool can be run on an ‘everyday’
workstation that a web developer might use.
RQ1: (a) How accurate is the presented approach at detecting the various types of changes

made to the source code (i.e. the HTML and CSS) of a responsive web page? (b) How does

the presented approach compare to alternative baseline methods?

To answer part (a) of this research question, we ran the REDECHECK-RM tool on the input of both
the current and the modified version of web pages, configuring it to use a sampling range of 400–
1400pixels, thereby ensuring that the experiments considered viewport widths corresponding to a
wide variety of devices, from smartphones to widescreen desktops. We also set the step size to
be 60pixels because it was shown through preliminary experimentation in the conference version
of this paper to be effective across many different web pages [16]. Because of the effort needed
to manually verify the results of REDECHECK-RM, as we described in the last subsection, we used
a smaller number of modifications chosen from the overall set of 450 modified pages. We randomly
selected four modifications per page, producing a set of 60 mutants in total. We then used
REDECHECK-RM to compare the RLG of each web page with the RLG of each mutated page.
We refer to REDECHECK-RM’s result as a positive if REDECHECK-RM reported a difference. Other-
wise, if the tool did not report a difference, then we refer to it as a negative result. To answer part (b)
of the research question, we applied both the SPOTCHECK-MANUAL and SPOTCHECK-
ALIGNMENTGRAPH methods, as described in Section 4.3, on the same reduced set of web page mu-
tations that we used with REDECHECK-RM. As we discussed in Section 4.3, we derived the six
viewport widths we chose for both manual and automated spotchecking from the preset widths
available in two widely used developer tools, Viewport Resizer [32] and Window Resizer [33].

25 of 46 AUTOMATICALLY IDENTIFYING POTENTIAL REGRESSIONS—RESPONSIVE WEB PAGES

© 2020 John Wiley & Sons, Ltd. e1748Softw. Test. Verif. Reliab. 2020;e1748
DOI: 10.1002/stv

These widths fall within the sampling range of 400–1400pixels that we picked for REDECHECK-
RM to use, thereby allowing us to directly compare the techniques. For the SPOTCHECK-MANUAL

process, each author was provided with screenshots of the two versions of each web page (i.e.
the current and modified versions), which we compared in a side-by-side fashion and applied the
manual classification procedure detailed in Section 4.4 and shown visually by Figure 8. We used
screenshots taken by the PhantomJS headless browser instead of an actual web browser to ensure
that the classification process could be easily replicated, while also accounting for any variability
that might be introduced by the use of different operating systems and web browsers. To further re-
move subjectivity from the process and to mitigate the possibility of mistakes having been made, all
of the authors met as a committee to discuss their individual results and assign a final committee
decision of positive (i.e. the mutant involves at least one observable layout change) or negative
(i.e. it does not) for each mutant studied. Similar to REDECHECK-RM, for the SPOTCHECK-
ALIGNMENTGRAPH technique, we classify a result as positive if it reported a difference, else we
categorized it as negative. In order to classify each individual result of REDECHECK-RM,
SPOTCHECK-MANUAL and SPOTCHECK-ALIGNMENTGRAPH as either a true positive, false positive,
true negative or false negative, it was necessary to know whether each modified page actually
contained an observable change in its layout. It is worth noting that the results of the
SPOTCHECK-MANUAL process cannot form the ‘gold standard’ or the ‘oracle’ in this regard, because
changes may exist at viewport widths that were not manually spotchecked during the analysis, as
they were not part of the pre-specified set of widths. Because of this, SPOTCHECK-MANUAL is sub-
ject to false negatives.
We therefore proceeded as follows. Using the results already categorized as negative for

SPOTCHECK-MANUAL, we continued to perform a full exhaustive examination of the mutant con-
cerned across the full viewport range of 400–1400pixels. On the basis of whether we were able
to observe a layout change (again, following the manual classification procedure) we were able
to complete the final true or false designation (i.e. correct or incorrect) of the result for the mutant
with each technique.
That is, if a method reported a positive result, and a layout change was evident from manually

observing the current and modified pages, then we classify the result as a true positive. Else, if
we did not observe a layout change, we say it is a false positive. Conversely, if no change was re-
ported by a method, and yet we observed a change during the manual analysis, we report the result
as a false negative; else if we could not discern a layout change, we say it is a true negative.
As with the individual results for SPOTCHECK-MANUAL, the final classifications for each mutant

were reviewed as a committee of authors to mitigate against the possibility of the subjectivity of our
results.
To summarize our answers to this paper’s research questions, we report the higher-is-better pre-

cision, recall and accuracy of each technique. Precision is the number of true positives, TP, divided
by the number of true positives and false positives, FP, for a technique, that is, TP÷(TP+FP); while
recall is the number of true positives divided by the sum of true positives and false negatives, FN,
that is, TP÷(TP+FN). Finally, accuracy is the number of true positives and true negatives, TN, di-
vided by the number of all results, that is, (TP+TN)÷(TP+TN+FP+FN).
Finally, we test for statistical significance of the accuracy of REDECHECK-RM compared with the

two spotchecking techniques using Fisher’s exact test, a nonparametric test for categorical data,
comparing the numbers of correct (TP+TN) and incorrect (FP+FN) results for each technique and
using those figures to form the contingency matrix required by the test.
RQ2: How does the ‘subtlety’ of a layout change influence the effectiveness of the

approach?

Depending on the type of modification made to the HTML or CSS source code of web pages,
some layout changes can be harder to detect than others, because of the level of the observable im-
pact made by the code modification on the layout of the page, and the number of viewport widths at
which these changes are observable. While the former may be problematic for a human developer
who is manually inspecting web pages, it should not significantly influence the effectiveness of an
automated approach, such as SPOTCHECK-ALIGNMENTGRAPH or REDECHECK-RM. However, auto-
mated tools may exhibit varying levels of effectiveness depending on the number of viewport

26 of 46T. A. WALSH ET AL.

© 2020 John Wiley & Sons, Ltd. e1748Softw. Test. Verif. Reliab. 2020;e1748
DOI: 10.1002/stv

widths at which a layout change is observable. To further investigate this issue, we used the number
of viewport widths at which the changes are visible as a metric for the subtlety of a layout change,
where the lower the value, the more ‘subtle’ we deemed the mutation to the web page.
To experimentally study how REDECHECK-RM and SPOTCHECK-ALIGNMENTGRAPH compare in

terms of detecting failures of varying subtleties, the subtlety of each mutated web page must be de-
termined. To do this in a reliable and consistent manner, we implemented an automated comparison
approach that began by extracting the DOM of both the original version and mutated version of
each web page at every viewport width in the range used by REDECHECK-RM in the previous
two research questions (i.e. 400–1400pixels). Then for each width, our approach automatically
compared the pair of DOMs (dcurr, dmod), first by attempting to match every element from dcurr
to an element in dmod using each element’s XPath, and then comparing the coordinates of each pair
of matched elements. If, at any viewport width, any elements were unmatched or a matched pair of
elements possessed different coordinates (i.e. it was rendered at either a different size or a different
location), we deem the code change to have an effect on the web pages’ layout. Because we could
fully automated the experiments to answer this research question, we used the full pool of 450 mu-
tants, that is, each of the 30 mutants for each of the 15 subjects.
After determining the number of distinct viewport widths at which the various layout changes

were observable in the web pages’ DOM, a variable denoted as VW, we filtered the pool of changed
web pages by removing those for which VW=0, as the code modification had no impact on the orig-
inal web pages, and thus, the mutated web pages can be said to be ‘equivalent’ to the original [31].
Then, we separated the remaining web pages into different groups depending on their VW value.
That is, we grouped the changed pages according to whether they impacted the DOM for a small
number of viewport widths (i.e. 2–3, 4–5, 6–10 or 11–50) or a large number of widths (i.e. 51–
100, 101–300, 301– 500 or more than 500). Intuitively, a change in a page’s layout is more subtle
if it is observable at fewer viewport widths. To investigate effectiveness, we ran REDECHECK-RM
and SPOTCHECK-ALIGNMENTGRAPH on each modified page according to the same procedure as we
used in RQ1. However, because of the aforementioned increase in the number of modified pages for
this experiment, we did not manually verify these results. Instead, whenever VW>0 for a particular
web page, we regarded any layout differences reported by either the two REDECHECK-RMor
SPOTCHECK-ALIGNMENTGRAPH methods as a ‘correct’ detection of a layout change to a page.
To judge the effectiveness of the two techniques, we calculated its detection rate as the number of

layout changes created by the mutation operators, denoted by L, divided by the number of those
changes a technique could detect, denoted by D, ultimately performing the calculation D÷L.
Finally, we test for statistical significance of the detection results for REDECHECK-RM and

SPOTCHECK-ALIGNMENTGRAPH by again using the Fisher’s exact test. However, this time, we com-
pare the number of detected changes (D) and undetected changes (L�D) for each technique, again
using those figures to create the contingency matrix required by the test.
RQ3: How do different parameter values change the approach’s efficiency and

effectiveness?

In order to aid users in a development scenario like the one depicted in Figure 4, REDECHECK-
RMmust quickly and accurately provide feedback to developers following their modifications to a
web page’s source code. As such, it is prudent to identify the most efficient configuration under
which REDECHECK-RM provides the most effectiveness (i.e. layout change detection capability).
Using the same pool of 450 mutants that we used in RQ2, we answered this research question by

running the REDECHECK-RM tool on each current and modified page under several different param-
eter configurations, using different combinations of step sizes and the different RLG extraction
techniques that we introduced in Section 3.2, that is, EXTRACT-COMPARE-INTERVAL, EXTRACT-
COMPARE-INTERVAL-BREAKPOINTS and EXTRACT-COMPARE-EXHAUSTIVE.
We investigated the effectiveness and efficiency of REDECHECK-RM using combinations of RLG

extraction/viewport width sampling techniques and different step sizes, which control the set of
viewport widths selected for initial sampling, represented by the set S in Algorithm 1. In the pre-
vious research questions, we used 60pixels as the step size. To assess whether or not a 60-pixel step
size appropriately balances the efficiency and effectiveness of the presented method, we
experimented with both smaller and larger values, creating a group of nine step sizes: 10, 20, 40,

27 of 46 AUTOMATICALLY IDENTIFYING POTENTIAL REGRESSIONS—RESPONSIVE WEB PAGES

© 2020 John Wiley & Sons, Ltd. e1748Softw. Test. Verif. Reliab. 2020;e1748
DOI: 10.1002/stv

60, 80, 100, 150, 200 and 500pixels. For each parameter configuration (i.e. the step size and one of
the three aforementioned RLG extraction techniques), we ran the REDECHECK-RMtool and re-
corded three data points: whether the layout modification was correctly detected, the execution time
that REDECHECK-RM needed to run to completion and the number of viewport widths sampled by
the tool. Because this research question necessitated that we run REDECHECK-RM on all 30 ver-
sions of the 15 pages using each of the aforementioned step sizes, these results should reveal a step
size that works well across a wide variety of pages, while also highlighting the cost–benefit
trade-offs associated with the step size and the RLG extraction method.
To further support our response to this research question, we also wanted to determine how

much of an improvement in the number of sampled viewport widths could be attributed to
the EXTRACT-COMPARE-INTERVAL-BREAKPOINTS method’s combined use of both interval and
breakpoint sampling.
To investigate this issue further, we analysed the difference in the number of viewport widths

required by the two techniques for sampling a specific web page by calculating
ðVW IB � VW IBÞ

VW IB

� 100, where VWIB denotes the number of the sampled viewport widths by the

EXTRACT-COMPARE-INTERVAL method and VWIB is the number of viewport widths sampled by
EXTRACT-COMPARE-INTERVAL-BREAKPOINTS.
When this equation computes a positive value, this indicates that EXTRACT-COMPARE-INTERVAL-

BREAKPOINTS is more efficient than EXTRACT-COMPARE-INTERVAL because it samples fewer
viewport widths.
However, when the value computed by this equation is negative, then EXTRACT-COMPARE-IN-

TERVAL is more efficient than EXTRACT-COMPARE-INTERVAL-BREAKPOINTS.
Finally, to analyse the values computed by the aforementioned equation, we tested for statistical

significance using the Mann–Whitney U-test and the Â12 effect size metric of Vargha and Delaney
[36]. We decided to use these nonparametric tests because we cannot make any assumptions about
the normality of our results’ distributions.
For the Â12 values, a score close to 1 can be interpreted as a high probability that using the EX-

TRACT-COMPARE-INTERVAL-BREAKPOINTS method would be more efficient (i.e. require fewer
viewport widths to be sampled) than the EXTRACT-COMPARE-INTERVAL method, values near 0.5
mean that the two methods are similar in their sampling of viewport widths, and values closer to
0.0 suggest that the EXTRACT-COMPARE-INTERVAL method would be more efficient than EX-
TRACT-COMPARE-INTERVAL-BREAKPOINTS.

4.6. Threats to validity

As would be the case with many experiments in the field of software testing, we must consider the
threats to the validity of the presented results [37,38].
One concern is that these results may not generalize to other web pages.
We mitigated this threat by selecting the home page of 15 real-world web pages, which varied in

both complexity and domain, ranging from small personal pages to much larger ones promoting
businesses and mobile applications.
The subjects chosen also used, along with two popular front-end RWD frameworks (i.e. Boot-

strap [18] and Foundation [20]), bespoke cascading style sheets, thereby ensuring that the chosen
web pages represent a wide range of web development strategies.
As mentioned in Section 6, we will further demonstrate the generalizability of REDECHECK-RM

through future experiments with more and more varied web pages.
Because this paper’s experiments used the REDECHECK-RM tool, threats to validity arising from

errors in its implementation must be mitigated as much as possible.
We managed the concern that the testing tool was incorrect by using several techniques, including

regular unit testing of the tool’s individual components.
Additionally, during development of REDECHECK-RM, for several web pages, we inspected both

the individual RLGs it extracts and the reports it generates, thereby establishing a confidence in
their correctness.

28 of 46T. A. WALSH ET AL.

© 2020 John Wiley & Sons, Ltd. e1748Softw. Test. Verif. Reliab. 2020;e1748
DOI: 10.1002/stv

As REDECHECK-RM also uses several third-party tools, such as the JSoup HTML parser [39] and
the JStyleParser tool for CSS manipulation [40], we also thoroughly tested each one to mitigate the
risk of their implementation defects influencing REDECHECK-RM and potentially compromised this
paper’s empirical results.
Finally, it is worth noting that we have released an open-source version of REDECHECK-RM [27],

thereby allowing researchers to check the correctness of the tools that we used for the experiments.
This paper’s experiments evaluated REDECHECK-RM in a realistic setting, as visualized by the

diagram in Figure 4, in which a developer runs the tool after making an incremental modification
to the HTML or CSS of a responsive web pages.
Because we did not have access to the actual changes that a developer made to a responsive web

pages, this paper experimentally simulates them through the use of a tool that mutates a page’s
HTML and CSS code.
As such, the experiments could be compromised if the mutation operators did not introduce re-

alistic changes to the page’s layout.
While it can be argued that we did not insert every type of code modification that developers

make during the development of a responsive web pages, our set of operators produce a wide vari-
ety of modified pages by targeting different HTML and CSS constructs.
By changing both the classes applied to HTML elements and the textual information contained

within them—along with many different alignment and layout CSS attributes and the expressions
and breakpoints of media queries—we generated 30 changes in each of the 15 web pages used in
the evaluation, resulting in a total of 450 modifications representing a wide variety of layout
changes that a developer could potentially introduce into their web pages.
While the design of the code mutation operators was broadly influenced by an investigation into

the HTML and CSS programming challenges commonly experienced by web developers [6], it is
important to note that the primary purpose of this study was not to see if the tool could find
real-world failures but rather to ascertain whether REDECHECK-RM accurately detects potential re-
gressions in the layout of a responsive web pages.
Some of the results in this paper arise from the authors following a manual procedure to

classify some of the web pages according to whether or not they contained a regression from the
original layout.
As with previous work that addresses the problem of presentation issues in web pages
(e.g. Choudhary et al. [24,35], Mesbah et al. [1], Mahajan et al. [41] and Alameer et al. [34]), this

classification can only be performed manually.
As the manual analysis detailed in this paper was not part of a formal user study and therefore

was not conducted under controlled conditions, there is a risk that these results may not be repre-
sentative of the real-world manual testing performed by web developers.
However, while performing manual classification, we followed a procedure, detailed in Section

4.4 and Figure 8, that mirrors a realistic understanding of how practising developers manually test
responsive web pages.
Additionally, because the results of the manual classification can be subjective and error prone,

each individually author completed this process before collectively discussing each modified web
pages to achieve a consensus concerning its final classification.
Finally, the results from the manual analysis are primarily a way to anecdotally establish both the

benefits of using REDECHECK-RM and the challenges and costs of manually testing responsive web
pages.
To support the replication of this paper’s experiments and to enable the inspection of its results by

researchers and web developers, we have made all of the subjects and the mutants generated by our
tool publicly available at https://github.com/redecheck/jstvr-webpages. The REDECHECK tool that
features REDECHECK-RM is also available at https://github.com/redecheck/redecheck.

4.7. Answers to the research questions

RQ1: (a) How accurate is the presented approach at detecting the various types of changes

made to the source code (i.e. the HTML and CSS) of a responsive web page? (b) How does

the presented approach compare to alternative baseline methods?

29 of 46 AUTOMATICALLY IDENTIFYING POTENTIAL REGRESSIONS—RESPONSIVE WEB PAGES

© 2020 John Wiley & Sons, Ltd. e1748Softw. Test. Verif. Reliab. 2020;e1748
DOI: 10.1002/stv

Our manual classification procedure revealed that out of the 60 HTML/CSS code changes made
by our mutation operators, 48 resulted in manually observable layout changes (i.e. simulated regres-
sions), while 12 did not (i.e. could be considered to be equivalent to the original versions of their
respective pages).
Table III presents the results of each technique.
In response to part (a) of the research question, the table shows that REDECHECK-RM tool was

able to correctly detect all 48 layout changes as true positives, with 11 correct true negatives and
only one false positive. Careful manual analysis of this false-positive result revealed that the change
applied by the mutation operator caused no observable difference to the web pages, while the un-
derlying DOM structures were different enough to cause a difference in the generated RLGs. As
shown by Table III, REDECHECK-RM accurately reported layout changes 98% of the time.
In response to part (b) of the research question, Table III also shows that REDECHECK-RM

outperformed both SPOTCHECK-ALIGNMENTGRAPH and SPOTCHECK-MANUAL across the 60 pages
with changed layout. SPOTCHECK-ALIGNMENTGRAPH only correctly classified 39 of the 48 layout
changes as true positives, while SPOTCHECK-MANUAL achieved 42.
This result demonstrates that, for true positives, REDECHECK-RM is 12.5% more effective than

the manual approach and 18.75% more effective than the automated spotchecker that uses the align-
ment graph. REDECHECK-RM also produced fewer false positives that SPOTCHECK-
ALIGNMENTGRAPH and fewer false-negative results than both spotchecking approaches, with
SPOTCHECK-ALIGNMENTGRAPH and SPOTCHECK-MANUAL producing nine and six false negatives,
respectively, while REDECHECK-RM produced no false negatives.
Notably, the false positives for the spotchecking techniques were caused by the layout change

only being visible at a width not examined by either approach.
In contrast, REDECHECK-RM’s sampling approach correctly identifies the layout changes and re-

ports them back to the developer, demonstrating its superiority at finding regressions in a page’s
layout.
Overall, REDECHECK-RM achieves the highest recall and is the most accurate technique, al-

though because of the one false-positive result, has a 0.02 lower score for precision than the careful
manual checking of the authors for SPOTCHECK-MANUAL.
Finally, the results of statistical significance testing using Fisher’s exact test were as follows.

When comparing REDECHECK-RM with SPOTCHECK-ALIGNMENTGRAPH, the p-value is
0.000978, and when comparing REDECHECK-RM with SPOTCHECK-MANUAL, the p-value is
0.114. These p-values indicate that the probability of the spotchecking techniques actually
outperforming REDECHECK-RM in the general case is low, but only significant for the results of
SPOTCHECK-ALIGNMENTGRAPH at a typically used alpha level such as α=0.05. Nevertheless, the
practical advantage of REDECHECK-RM over SPOTCHECK-MANUAL is clear, because the former is
a fully automated technique, whereas SPOTCHECK-MANUAL involves manual effort.
Conclusion for RQ1: Part (a): REDECHECK-RM has an accuracy of 0.98, meaning that it correctly

reported layout changes 98% of the time, with only one misleading false-positive result. Part (b):
REDECHECK-RM, with the greatest number of true positives and true negatives, is a superior
checking option compared with both SPOTCHECK-ALIGNMENTGRAPH and SPOTCHECK-MANUAL,
classifying 12.5% and 18.75% more true positives, respectively. Overall, REDECHECK-RM has

Table III. The results summarizing how the REDECHECK-RM tool, SPOTCHECK-ALIGNMENTGRAPH and
SPOTCHECK-MANUAL detect the mutations in the HTML and CSS of each subject web page.

REDECHECK-RM SPOTCHECK-ALIGNMENTGRAPH SPOTCHECK-MANUAL

True positives 48 39 42
True negatives 11 8 12
False positives 1 4 0
False negatives 0 9 6
Precision 0.98 0.91 1.00

Recall 1.00 0.81 0.88
Accuracy 0.98 0.78 0.90

30 of 46T. A. WALSH ET AL.

© 2020 John Wiley & Sons, Ltd. e1748Softw. Test. Verif. Reliab. 2020;e1748
DOI: 10.1002/stv

the highest accuracy of the three techniques at 0.98, compared with an accuracy of 0.78 and 0.90 for
SPOTCHECK-ALIGNMENTGRAPH and SPOTCHECK-MANUAL, respectively.
RQ2: How does the ‘subtlety’ of a layout change influence the effectiveness of the

approach?

Table IV presents the layout change detection results for both REDECHECK-RM and SPOTCHECK-
ALIGNMENTGRAPH when executed on the larger pool of modified pages. The results are grouped
into ‘buckets’ based on the number of modified viewport widths, with the different buckets listed
in the first column, while the second column, with the label L, shows the number of changed pages
for each bucket. Buckets for which VW is small contain changes considered ‘subtle’, while larger
values represent more ‘obvious’ changes. The table’s results show that REDECHECK-RM outper-
forms SPOTCHECK-ALIGNMENTGRAPH for all buckets, often by a considerable margin. The number
of viewport widths at which there is a layout change is shown to have negligible impact on the per-
formance of REDECHECK-RM, which achieves a detection rate of 0.72 or above for all buckets. In
contrast, the detection rates achieved by SPOTCHECK-ALIGNMENTGRAPH are inconsistent. Criti-
cally, the value of VW appears to influence the change detection capability of SPOTCHECK-
ALIGNMENTGRAPH, with the number of changes successfully detected generally trending upwards
as the value of VW increases. This trend is to be expected, because, intuitively, the more viewport
widths at which a layout change is observable, the more likely is SPOTCHECK-ALIGNMENTGRAPH to
observe and report it.
For pages in which the modification had little subtlety, such as those that manifest themselves at

more than 300 viewport widths, the relative performances of REDECHECK-RM and SPOTCHECK-
ALIGNMENTGRAPH are comparable, with high (>0.80) detection achieved by both. However, be-
cause of the large number of viewport widths at which the layout change is visible, it is likely that
many of these differences would be easily detectable by a human developer. Therefore, ‘subtle’
changes to the web page that are visible at fewer viewport widths are arguably the more important
ones for evaluating the effectiveness of these two tools—as these are more likely to go undetected
and end up manifesting in a production web pages. For modified pages with 10 or fewer modified
viewport widths, the detection percentage of REDECHECK-RM is still very high, with only four out
of 36 layout changes going undetected, and an overall detection rate of 0.89. In contrast, for the
same set of subtle mutants, SPOTCHECK-ALIGNMENTGRAPH failed to detect 20 of the 36 changes
in a page’s layout, resulting in a much lower detection rate of 0.44.
We investigated the changes not detected by REDECHECK-RM and found that, while they intro-

duced changes at the DOM level, three were not significant enough to change the relative alignment
of the elements. Our manual analysis of these changes, as per the procedure of Section 4.4, con-
cluded that they had no observable impact on the web pages. The fourth change did have a

Table IV. The results summarizing how effective REDECHECK-RM and SPOTCHECK-ALIGNMENTGRAPH are
at detecting layout changes that vary according to how ‘subtle’ they are.

REDECHECK-RM SPOTCHECK-ALIGNMENTGRAPH

VW L D Detection D Detection

1 5 5 1.00 1 0.20
2–3 9 9 1.00 4 0.44
4–5 11 8 0.73 2 0.18
6–10 11 10 0.91 9 0.82
11–50 4 4 1.00 3 0.75
51–100 5 5 1.00 3 0.60
101–300 26 22 0.85 20 0.77
301–500 29 26 0.90 24 0.83
501+ 198 176 0.89 176 0.89
Total 298 264 0.89 242 0.81

In this table, VW stands for the set of distinct viewport widths at which the layout change is evident, meaning that a layout change
is less subtle as the magnitude of VW increases as it is visible at a greater number of viewport widths. L represents the total num-
ber of (non-equivalent) layout changes created by the mutation operators, while D is the number of those changes a technique
could detect. We calculated the values in the ‘Detection’ column (i.e. the proportion of layout changes detected) according to
the equation D÷L.

31 of 46 AUTOMATICALLY IDENTIFYING POTENTIAL REGRESSIONS—RESPONSIVE WEB PAGES

© 2020 John Wiley & Sons, Ltd. e1748Softw. Test. Verif. Reliab. 2020;e1748
DOI: 10.1002/stv

detectable impact on the page, but was not reported by REDECHECK-RM. This was because it af-
fected an anchor ‘<a>’ HTML element that is not accounted for by the RLG because it considers
it an ‘inline’ element (similar to text markup elements such as ‘’ and ‘’, which
make characters appear in boldface and italic, respectively, unless programmed to do otherwise
in the CSS of a page). However, in this instance, the change to the element’s properties in the
DOM produced an observable impact on the page. We intend to investigate how we can account
for such ‘corner case’ issues as part of future work, as explained in Section 6.
Overall, however, these results illustrate how important the choice of viewport widths is when

checking the responsive design of web pages, lending strong empirical support for the benefits of
employing the RLG to represent the whole range of viewport widths instead of the static viewport
modelling used by SPOTCHECK-ALIGNMENTGRAPH and other web testing tools.
Finally, we tested for statistical significance with Fisher’s exact test, using the total numbers of

layout changes detected and not detected by each of the two techniques compared in this research
question. The p-value is 0.01594, indicating that the probability of SPOTCHECK-ALIGNMENTGRAPH

outperforming REDECHECK-RM is low, giving a result that is statistically significant at α = 0.05.
Conclusion for RQ2: The results show that the performance of REDECHECK-RM is consistent re-

gardless of the subtlety of a layout change, with good levels of detection observed across all nine
buckets. The results also suggest that the effectiveness of REDECHECK-RM is not correlated to the
value of VW, while also revealing a link between the number of modified viewport widths and
SPOTCHECK-ALIGNMENTGRAPH’s ability to detect the layout changes. Ultimately, this result shows
that the choice of the viewport widths to inspect is of great significance to any single-viewport ap-
proach, like SPOTCHECK-ALIGNMENTGRAPH, and thus lends empirical support to the benefits of
using an RLG to model a web pages after performing a thorough sampling of its responsive layout.
RQ3: How do different parameter values change the approach’s efficiency and

effectiveness?

Table V shows the number of layout changes detected for each of the subject web pages under
each combination of sample technique and step size, along with the number of layout changes

Table V. REDECHECK-RM’s step sizes that vary from 10 to 500pixels.

Web page No. of
10pixels 20pixels 40pixels 60pixels 80pixels 100pixels 150pixels 200pixels 500pixels

EX

changes I IB I IB I IB I IB I IB I IB I IB I IB I IB

Aftrnoon 15 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
Annette’s
Creations

14 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 7 8 8

Ashton
Snook

16 13 14 13 14 12 14 12 14 12 14 12 14 12 14 12 14 11 14 14

Coursera 22
Denon 10 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
BitTorrent 12 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
Bootstrap 29 28 28 28 28 28 28 27 28 28 28 27 28 27 28 27 28 26 28 28
ISSTA
2016

19 12 12 12 12 12 12 12 12 12 12 12 12 11 11 11 11 11 11 12

Name
Mesh

20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20

Pay
Demand

29 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 27

Rebecca
Made

21 20 20 20 20 19 19 20 20 19 19 20 20 20 20 20 20 20 20 20

Reserve 27 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24 24
Responsive
Process

26 19 19 19 19 19 19 19 19 19 19 19 19 18 19 18 19 17 19 19

Shield 23
Treehouse 15

The label ‘I’ stands for the EXTRACT-COMPARE-INTERVAL method, and ‘IB’ denotes the use of the EXTRACT-COMPARE-INTERVAL-
BREAKPOINTS method that combines interval sampling with the use of breakpoints. This table also uses the ‘EX’ label for the
EXTRACT-COMPARE-EXHAUSTIVE method.

32 of 46T. A. WALSH ET AL.

© 2020 John Wiley & Sons, Ltd. e1748Softw. Test. Verif. Reliab. 2020;e1748
DOI: 10.1002/stv

introduced into each subject. The change detection results reveal that, for the pool of changes
considered, the step size used in the initial sampling process has only a very minor impact on
the capabilities of REDECHECK-RM when using either the EXTRACT-COMPARE-INTERVAL-
BREAKPOINTS or EXTRACT-COMPARE-INTERVAL sampling approach and that the two approaches
are almost identical in terms of their change detection ability. There are, however, a couple of
interesting results to note. First, for Ashton Snook and Pay Demand, EXTRACT-COMPARE-
INTERVAL-BREAKPOINTS outperforms EXTRACT-COMPARE-INTERVAL across all step sizes. This
illustrates the benefits of combining the basic interval sampling approach with breakpoint sampling,
as only sampling ‘blindly’ means the approach can fail to model layout changes occurring around
breakpoints coded in the page’s CSS files.
Secondly, in five of the subjects, using a larger step size resulted in a small reduction in fault

detection ability when using EXTRACT-COMPARE-INTERVAL, while EXTRACT-COMPARE-INTERVAL-
BREAKPOINTS demonstrates no reduction in detection ability as the step size increases, furnishing
further empirical support for the inclusion of the extracted breakpoints in the initial sample of
viewport widths.
The results show that EXTRACT-COMPARE-INTERVAL-BREAKPOINTS is better than EXTRACT-

COMPARE-INTERVAL for six of the subjects and that, for all other web pages, the techniques are
equally effective, leading us to recommend the use of EXTRACT-COMPARE-INTERVAL-BREAKPOINTS

over EXTRACT-COMPARE-INTERVAL.
Finally, the results show that employing the EXTRACT-COMPARE-EXHAUSTIVE sampling technique

offers almost negligible additional detection capability, detecting the same number of responsive
layout changes as at least one, and often several, configuration of the other two extraction
techniques.
Ultimately, the results in Table V provide empirical support for the benefits of EXTRACT-COM-

PARE-INTERVAL-BREAKPOINTS’s combined approach to sampling the layout of a responsive web
pages.
These detection results make choosing a step size to recommend easier as it is no longer based on

a compromise between the capability to detect layout changes and execution time and is instead a
decision based primarily on efficiency.
Given that EXTRACT-COMPARE-EXHAUSTIVE provides minimal effectiveness benefit and is

significantly less efficient than either EXTRACT-COMPARE-INTERVAL-BREAKPOINTS or EXTRACT-
COMPARE-INTERVAL, we do not recommend it for use in the iterative development scenario we
envisioned for REDECHECK-RM, as shown in Figure 4. For instance, the execution times for
EXTRACT-COMPARE-EXHAUSTIVE ranged from 89 to 148s, with a mean of 108s. In comparison,
EXTRACT-COMPARE-INTERVAL-BREAKPOINTS and EXTRACT-COMPARE-INTERVAL demonstrated
average execution times of less than 30s for all step sizes.
The main reason for this result is that EXTRACT-COMPARE-EXHAUSTIVE samples every web page

at all 1001 viewport widths in the sample range, regardless of page complexity or how frequently
the relative layout of elements change, resulting in wasted computation and a delay in returning re-
sults to the end user. In comparison, using the other two approaches, RLGs for several subjects
could be extracted by sampling less than 100 viewport widths—a reduction in sampling effort of
over 90%—due to the more ‘intelligent’ sampling that, only when the situation requires it, operates
at a finer granularity and samples at a CSS breakpoint.
It is also important to note that, in RWD, there is an expectation of consistency in layout across

similar viewport widths. Because the results in Table V indicate that REDECHECK-RM and EX-
TRACT-COMPARE-INTERVAL can capture the majority of responsive layout changes, this means that
EXTRACT-COMPARE-EXHAUSTIVE samples web pages at an unnecessarily large number of viewport
widths. Finally, for the usage scenario presented in Figure 4, a mean execution time of nearly 2min,
as observed for EXTRACT-COMPARE-EXHAUSTIVE, is likely to be too high by many web developers,
as it would likely disrupt their workflow and force them to pause their work while REDECHECK-RM
runs, something that we deem unacceptable even though Table V shows that EXTRACT-COMPARE-
EXHAUSTIVE detects one more layout change than EXTRACT-COMPARE-INTERVAL-BREAKPOINTS.
With that said, we allow that EXTRACT-COMPARE-EXHAUSTIVE is a sensible choice when testing

time is not constrained or when a web developer decides that they cannot risk overlooking any

33 of 46 AUTOMATICALLY IDENTIFYING POTENTIAL REGRESSIONS—RESPONSIVE WEB PAGES

© 2020 John Wiley & Sons, Ltd. e1748Softw. Test. Verif. Reliab. 2020;e1748
DOI: 10.1002/stv

responsive layout changes—for example, they are making final changes to a web page or making
changes to a web page that is already live.
After discarding EXTRACT-COMPARE-EXHAUSTIVE as a candidate for recommendation, it is impor-

tant to compare EXTRACT-COMPARE-INTERVAL-BREAKPOINTS and EXTRACT-COMPARE-INTERVAL.
The efficiency results shown by the boxplot in Figure 9 reveal that for both sampling techniques,
using a very small step size such as 10pixels results in, as might be expected, a much larger number
of viewport widths being sampled during the building of the RLGs in comparison with other larger
step sizes. For instance, the mean numbers of required widths for 10pixels were 176 for EXTRACT-
COMPARE-INTERVAL and 180 for EXTRACT-COMPARE-INTERVAL-BREAKPOINTS, while for 20pixels,
it was 129 and 130, respectively. The number of viewport widths required continues to trend to
lower values as the step size in use increases, with a noticeable difference between 20 and 40pixels,
before reaching a plateau at around 60pixels.
Interestingly, there was almost no difference between the values for EXTRACT-COMPARE-INTER-

VAL-BREAKPOINTS and those of EXTRACT-COMPARE-INTERVAL. We expected EXTRACT-COMPARE-
INTERVAL-BREAKPOINTS to result in a reasonable reduction in the number of widths sampled overall
by removing the need for the binary searches that may require sampling at a costly number of
viewport widths. We hypothesized two main reasons for this. The first was that many layout
changes observed during the extraction of the RLG could be at viewport widths not programmed
as breakpoints in the site’s CSS files, meaning that identical searches were performed using both
sampling techniques. The second was that, for most web pages, adding a set of breakpoints into
the initial sample set would result in a considerable initial overhead for the approach, making it
more difficult to obtain an overall improvement in efficiency.
To further investigate this issue, we analysed the difference in the number of viewport widths

sampled on web pages by web pages basis. Figure 10 shows the mean percentage difference for
each web page using each step size, using the equation defined in Section 4.5’s description of the
methodology for RQ3.

Figure 9. Across all 15 subject web pages and for the six studied step sizes, the number of viewport widths
sampled by EXTRACT-COMPARE-INTERVAL (i.e. light grey boxes) and EXTRACT-COMPARE-INTERVAL-

BREAKPOINTS (i.e. dark grey boxes) during the construction of the responsive layout graph. In this plot, each
box represents the inter-quartile range. The whiskers in this plot extend up to 1.5 times the inter-quartile
range, and the line across the middle of the box marks the median value. Additionally, the triangle in the
boxes denotes the mean, and the filled circles extending beyond the whiskers correspond to outliers.

34 of 46T. A. WALSH ET AL.

© 2020 John Wiley & Sons, Ltd. e1748Softw. Test. Verif. Reliab. 2020;e1748
DOI: 10.1002/stv

The most striking results are clearly those of ISSTA 2016, for which EXTRACT-COMPARE-INTER-
VAL-BREAKPOINTS is substantially more efficient than EXTRACT-COMPARE-INTERVAL and for
Treehouse, where the opposite result is observed and EXTRACT-COMPARE-INTERVAL-BREAKPOINTS

sampled significantly more viewport widths than EXTRACT-COMPARE-INTERVAL. Further analysis
revealed this to be due to ISSTA 2016 exhibiting layout changes almost entirely at widths pro-
grammed as breakpoints in its CSS, allowing for the added breakpoints to provide a large boost
in efficiency, while Treehouse had so many breakpoints in its style sheet and therefore in the initial
sample set, that it was challenging for EXTRACT-COMPARE-INTERVAL-BREAKPOINTS to offer effi-
ciency savings over EXTRACT-COMPARE-INTERVAL.
The remaining web pages exhibit much less severe benefits or costs, with the majority indicating

that REDECHECK-RM’s combined sampling with EXTRACT-COMPARE-INTERVAL-BREAKPOINTS of-
fered either equivalent or slightly increased efficiency. Further analysis of these scenarios showed
that sometimes the savings captured by reducing the quantity of binary searches is only sufficient
to cause EXTRACT-COMPARE-INTERVAL-BREAKPOINTS to be equally as efficient as EXTRACT-COM-

PARE-INTERVAL. In these scenarios, using EXTRACT-COMPARE-INTERVAL-BREAKPOINTS, and the
larger initial sample associated with it, would likely result in a more accurate RLG, which better
represents the overall responsive layout of the page, as the initial sample would be less likely to
overlook changes in layout. In contrast, using the smaller sample size from EXTRACT-COMPARE-IN-
TERVAL could potentially fail to sample certain layout behaviours that occur between two consecu-
tive sample widths, producing an RLG that does not accurately model the web pages’ layout. For
this reason, if their efficiencies are equivalent, then we support the use of EXTRACT-COMPARE-IN-
TERVAL-BREAKPOINTS over EXTRACT-COMPARE-INTERVAL.
To further investigate the trends illustrated in Figure 10, we performed statistical hypothesis test-

ing on the data for the various step sizes using two different statistical calculations, using the ap-
proach described in Section 4.5. First, we compared the distributions of the two sampling
techniques for each of the nine step sizes, with the results shown in Table VI. The Mann–Whitney

Figure 10. Following the equation furnished in Section 4.5, the percentage difference between the number
of sampled viewport widths for EXTRACT-COMPARE-INTERVAL-BREAKPOINTS and EXTRACT-COMPARE-IN-

TERVAL. In this graph, a positive value indicates that EXTRACT-COMPARE-INTERVAL-BREAKPOINTS sampled
fewer viewport widths than the EXTRACT-COMPARE-INTERVAL method. Alternatively, a negative value re-
veals that EXTRACT-COMPARE-INTERVAL-BREAKPOINTS sampled more viewport widths than EXTRACT-COM-
PARE-INTERVAL. For each subject web page, the graph plots the percentage difference for each of the nine

step sizes (i.e. 10, 20, 40, 60, 80, 100, 150, 200 and 500pixels).

35 of 46 AUTOMATICALLY IDENTIFYING POTENTIAL REGRESSIONS—RESPONSIVE WEB PAGES

© 2020 John Wiley & Sons, Ltd. e1748Softw. Test. Verif. Reliab. 2020;e1748
DOI: 10.1002/stv

U-test values for eight of the nine step sizes show that there is no evidence to support the statement
that the two techniques demonstrate significantly different efficiencies for the subjects considered in
this study, as their values were higher than the standard threshold value of α=0.05, with the only
exception being 500pixels. The observed values provide further evidence of the small efficiency
benefit of using EXTRACT-COMPARE-INTERVAL-BREAKPOINTS, as the majority of values are above
0.05. Yes, none of these values are large enough to be classified as a significant effect size.
Following on from our previous statistical tests that showed EXTRACT-COMPARE-

INTERVAL-BREAKPOINTS to be slightly, although not significantly, more efficient than EXTRACT-
COMPARE-INTERVAL, we conducted further statistical tests to determine a suitable step size with
which to run EXTRACT-COMPARE-INTERVAL-BREAKPOINTS, the results of which are shown in
Table VI. The results paint a similar picture to the boxplots shown in Figure 9. The negligible
p-value in Table VI resulting from the Mann–Whitney U-test values for the pairs 10–20, 20–40,
40–60 and 60–80pixels are indicative of the number of sampled widths required decreasing as
the step size increases, while the values of 0.335 for 80–100pixels and 0.115 for 100–150pixels
correspond with the plateau at the 80-pixel step size.
Finally, if the values for Â12 are interpreted as probabilities, then we can see that 20pixels is

highly likely, at 75.1%, to outperform (i.e. require fewer sampled viewport widths) 10pixels, while
40pixels will outperform 20pixels with a probability of 64.4%. The comparison between 40 and 60
pixels produced an effect size of 0.542, suggesting that our decision to use 60pixels rather than 40
pixels was sensible, albeit not significantly. However, when comparing 60 and 80pixels, the effect
size of 0.549, which when using the thresholds suggested by Vargha and Delaney [36], indicates the
benefit of using 80pixels instead of 60pixels is nearly classified as having a ‘small’ effect size, in-
dicating that we could have potentially used 80pixels rather than 60pixels. Finally, the values cor-
responding to the 80–100pixels comparisons and onwards are close to 0.5, indicating that the
performance achieved by each technique in the pair of step sizes is nearly equivalent. When we
combine this insight with the plateaus observed in Figure 9, we conclude that there is little benefit
from using a step size of 100pixels rather than the 60pixels we used—or the 80pixels step size that
the statistical hypothesis tests suggest we could also adopt.
Conclusion for RQ3: For the pool of mutated subjects used in this evaluation, neither the sam-

pling technique nor the step size used had a significant impact on the change detection capability
of REDECHECK-RM. With the exclusion of a minimal number of outliers, EXTRACT-COMPARE-IN-
TERVAL-BREAKPOINTS was shown to provide an efficiency benefit over EXTRACT-COMPARE-INTER-
VAL for all but two of the step sizes investigated. The results also support our use of 60pixels as the
step size in the previous research questions, and we therefore recommend it or 80pixels as a global
step size, which should perform well across a wide variety of responsive web pages.

Table IV. REThe left-hand side shows the results of the statistical hypothesis tests and effect size
computations that compare the EXTRACT-COMPARE-INTERVAL-BREAKPOINTS and EXTRACT-COMPARE-

INTERVAL techniques at each step size. The right-hand side shows the comparison of consecutive step sizes
using the EXTRACT-COMPARE-INTERVAL-BREAKPOINTS sampling approach. Section 4.5 explains the
statistical methods used to compute the p-value and the Â12 value shown in both of these tables.

Step size Step size
(pixels) p-value Â12 (pixels) p-value Â12

10 0.820 0.496 10 vs 20 0.000 0.751
20 0.384 0.517 20 vs 40 0.000 0.644
40 0.299 0.520 40 vs 60 0.031 0.542
60 0.611 0.510 60 vs 80 0.010 0.549
80 0.257 0.522 80 vs 100 0.335 0.519
100 0.063 0.536 100 vs 150 0.115 0.530
150 0.399 0.516 150 vs 200 0.419 0.516
200 0.129 0.529 200 vs 500 0.634 0.509
500 0.000 0.426

36 of 46T. A. WALSH ET AL.

© 2020 John Wiley & Sons, Ltd. e1748Softw. Test. Verif. Reliab. 2020;e1748
DOI: 10.1002/stv

4.8. Discussion

Because the results for the SPOTCHECK-MANUAL technique required this paper’s authors to
systematically classify the mutants, following the procedure described in Section 4.4 and illustrated
in Figure 8, this process also affords the opportunity to characterize the mutated pages.
Our review of those mutants that contained layout changes suggests that the mutation operators in

Table II produced mutants with regressions that did, in fact, vary in terms of their subtlety. For in-
stance, while some mutants exhibited layout changes in a navigation bar at many viewport widths,
other mutants had elusive layout regressions that only appeared at a few viewport widths.
We also noticed that many of the mutants that did not have layout regressions were still challeng-

ing to confirm as correct because their designs were nuanced, placing web elements in a way that
was not obviously proper until we inspected multiple viewport widths.
In summary, after studying the responsive layouts of the mutated subjects, we were convinced

that these mutants were representative in nature and thus form a suitable foundation for this paper’s
experiments, an insight that is open to external confirmation because additional details about the
subjects and their mutants are available in a GitHub repository that we have made publicly available
at https://github.com/redecheck/jstvr-webpages.
Although not performed in a controlled environment, our experiments did highlight one of the

major problems with manual web page testing: its labour intensiveness. For example, when the au-
thors operated as web developers performing manual testing for RQ1, we recorded and averaged the
times for taken by each of the three authors for each web page. We found that the shortest mean time
observed was 37s for Annette’s Creations, while the longest was observed while analysing Shield,
where one author took on average more than 10min to perform their manual checks. We observed a
general trend in which checking time increased as the size and complexity of the web pages in-
creased; this is to be expected, as larger web pages not only contain more elements to check but also
can in many cases require considerable manual scrolling up and down the page. The aforemen-
tioned subjects are excellent examples of this, with Annette’s Creations requiring very little
scrolling to view the entire page, even at small viewport widths, while Shield requires a large
amount of scrolling at all but the very widest viewport widths. We also observed considerable dif-
ferences in the time required by the different authors, suggesting that in practice, some web devel-
opers may require considerably more time to perform a manual checking procedure than others.
It is worth noting, however, that REDECHECK-RM was faster than even the fastest human

author/developer during our experiments. As described in Section 4.5, each of the three authors
followed the manual procedure outlined in Section 4.4 before discussing each result as a committee
to produce a final classification.
During this process, we discovered our initial classifications differed for 21 of the 60 modified

pages, highlighting not only the subjectiveness of manual testing, as different developers had vary-
ing concepts of what constituted a layout change, but also its error-prone nature. Notably, in some
instances, at least one developer failed to identify the injected layout change.
This further motivates the technique presented in this paper as it is clear that a reliable, quick and

automated approach to responsive testing is practically beneficial.
In the remainder of this subsection, we discuss additional insights that emerged during the imple-

mentation, use and experimental evaluation of the REDECHECK-RM tool.
While implementing and empirically studying REDECHECK-RM, we observed several qualitative

benefits to using our new method for automatically detecting layout changes in responsive web
pages. First and foremost, it is critical to stress that the automated modelling of web pages obviates
the burden upon the web developer to manually select viewport widths for inspection, or to only
study the widths advocated by current testing tools, which was shown in RQ1 and RQ2 of our eval-
uation to be problematic. In theory, the web developer could also simply select a set of random
widths for inspection in the hope of detecting any layout issues that may have occurred, but this ap-
proach would likely be highly unreliable as there is no guarantee that the change will be observable
in the browser at any of the selected widths, thus meaning many changes could go undetected.
For instance, in one of our previous empirical studies [8], selecting random widths or those

widths advocated by testing tools was shown to miss between 19% and 34% of the verified layout

37 of 46 AUTOMATICALLY IDENTIFYING POTENTIAL REGRESSIONS—RESPONSIVE WEB PAGES

© 2020 John Wiley & Sons, Ltd. e1748Softw. Test. Verif. Reliab. 2020;e1748
DOI: 10.1002/stv

failures investigated, providing further empirical evidence for the shortcomings of either manual or
automated spotchecking. The modelling process of REDECHECK-RM is particularly beneficial be-
cause we observed that changes to a page’s responsive layout frequently manifest themselves at
hard-to-predict viewport widths that are often between the regular breakpoints employed by devel-
opers and RWD frameworks and well away from the default widths suggested by most testing tools.
Our experiences also suggest that REDECHECK-RM’s automatically generated reports will prove

useful to developers as a guide for their in-depth manual inspection of a page. Given its modelling
of dynamic layout changes across a full range of viewport widths, the RLG and the accompanying
DOM-based context presented in the report show not only if a change has been detected but also
where (which elements/relationships), how (what has changed in the responsive layout) and when
(at which viewport widths is the change visible). We anticipate that this detailed information will
usefully accompany any verdict as to whether the tool detected any changes in web pages’ layout.
We also foresee these benefits becoming even more pronounced with further enhancements to
REDECHECK-RM, such as an interactive RLG model with the differing parts of the graph
highlighted for the developer, or a screenshot-based approach showing the modified elements and
relationships. Additional plans for improvements to REDECHECK-RM can be found in Section 6.
While the results of our experiments show that REDECHECK-RM failed to detect a small propor-

tion of the injected layout changes, manual analysis of some of these false-negative results revealed
that the vast majority of them were due to the changes in the underlying DOM representation of the
web pages being too small to produce a difference in the extracted attribute sets. A common exam-
ple of this would be a small shift in the position of an element, something that is highly unlikely to
be observed by a human viewing the web pages, suggesting that the shortcoming in our approach is
minimal.
In summary, our experiences suggest that the REDECHECK-RM tool automatically detects regres-

sions in responsive layout that web developers will deem worthy of further investigation.
Finally, because many modern websites consist of multiple pages, a tester wishing to check for

layout changes across an entire site would need to run REDECHECK-RM on a page-by-page basis.
Because CSS files are almost always shared between pages to preserve a consistent look-and-feel

on a site, it is important to check for layout regressions on all pages, as a CSS modification that
causes no changes on one page could have a dramatic influence on another page.
While this may be cumbersome, the process is fully amenable to automation with the current im-

plementation of the tool.
With that said, we plan, as part of future work, to enhance REDECHECK-RM so that it offers a

more streamlined experience to developers who test sites with many pages.
However, given the increasing prominence of single-page web applications [42], we anticipate

that the current version of the REDECHECK-RM tool will effectively support the testing of many
popular websites.

5. RELATED WORK

Along with reviewing the related work in responsive web testing, this section explains relevant
work in areas such as graphical user interface (GUI) testing, mobile app testing and regression test-
ing. This section also overviews some developer tools for responsive web testing, noting their lim-
itations compared with REDECHECK-RM. Because we used mutation operators to create potential
layout regressions, this section also reviews the related work in the area of web mutation testing.
It is worth noting at the outset of this section that this paper’s authors also described the
REDECHECK tool that automatically determines if a web page exhibits one of several representative
layout failures [8,9]. In collaboration with Althomali, a subset of this paper’s author list also devel-
oped an automated web testing technique, called VISER, that confirms whether or not a layout failure
detected by REDECHECK is visible to humans [43]. Yet this work on REDECHECK and VISER does
not address the problem that REDECHECK-RM handles: detecting regressions from a correct respon-
sive layout that occur when a developer modifies web pages’ responsive design.

38 of 46T. A. WALSH ET AL.

© 2020 John Wiley & Sons, Ltd. e1748Softw. Test. Verif. Reliab. 2020;e1748
DOI: 10.1002/stv

5.1. GUI testing

In the same way that the REDECHECK-RM tool uses the RLG to model a web page’s responsive lay-
out, several prior approaches have used a model for a GUI. For instance, Memon et al. developed a
technique called GUI ripping, which automatically explored the interface of a GUI and created a
‘GUI forest’ to represent its window and elements [44]. Other models of GUIs, like the one pre-
sented by Yang et al., also support various automated testing activities [45]. While representations
like these support the testing of GUI functions, they do not specifically enable the testing of GUI
layout, as the RLG presented in this paper does for web pages. In the same way that the RLG sup-
ports the detection of regressions in the layout of a responsive web pages, these representations of
GUIs can also support regression testing [46]. Finally, much like this paper’s automated approach
for differencing two RLGs, prior work by Xie et al. showed how to use an extracted model of a
GUI to detect differences in versions of a graphical application [47].

5.2. Mobile app testing

Because mobile apps also run on devices with a variety of viewport widths, there are some similar-
ities between this paper’s web-based technique and those that test mobile apps. Leveraging Memon
et al.’s GUI ripping technique, Amalfitano et al. presented a tool that systematically extracts and
explores the interface of an Android app [48].
In addition to testing a mobile app’s behaviour when the device screen orientation changes [49],

other approaches automate testing tasks for those mobile apps that have certain interface design
characteristics [50,51].
Much like this paper, several prior articles presented tools that automatically report either design

violations or potential defects in a mobile app.
Although their focus is not app layout, Hu et al. presented a technique that leverages many phys-

ical or emulated devices to explore an Android app and suggest potential defects [52].
Finally, Moran et al. respectively proposed two approaches that detect and summarize the

changes in the interface to a mobile app [53] and report violations of design guidelines for apps
[54], much in the same way the presented tool works for responsive web pages.

5.3. Need for web testing

Motivating the development of REDECHECK-RM, there is an extensive literature on both the neces-
sity of a suitable website and the challenges of web development. For instance, prior work has re-
vealed the benefits of having a web page with an aesthetically pleasing layout, thereby motivating
the need for the technique presented in this paper. Lee and Koubek also discovered that, while many
aspects of web pages’ design influence perceived usability, its layout was the determining factor for
many people [55]. Moreover, Robins and Holmes showed that people judge web pages as highly
credible if it has polished aesthetics [56]. While Mbipom and Harper found that an aesthetically
pleasing web page was more accessible for individuals with a visual impairment [57], Cyr et al. re-
ported that web pages with a good layout engender greater customer loyalty [12]. Finally, Li et al.
noted that users will stop purchasing products from a website if it contains visible failures [58]. Al-
though these papers show that an organization benefits from having a suitable website, there are in-
herent challenges associated both with learning web development fundamentals [5,6] and keeping
current with the emerging RWD frameworks [7].

5.4. Traditional web testing

Because previous studies of web applications demonstrated that failures in a page’s appearance
make up one of the largest categories of defects in a deployed site [59], many researchers have
created techniques to test web pages. For instance, Wang et al. designed a technique for enhancing
the presentation layer of a web application [60]. Yet, because presentation failures often appear
in production sites—even with use of methods like the aforementioned one—it is important to
subject them to further testing, leveraging approaches that target dynamic web applications,

39 of 46 AUTOMATICALLY IDENTIFYING POTENTIAL REGRESSIONS—RESPONSIVE WEB PAGES

© 2020 John Wiley & Sons, Ltd. e1748Softw. Test. Verif. Reliab. 2020;e1748
DOI: 10.1002/stv

such as the ones presented by Dallmeier et al. [61], Marchetto et al. [62], Milani et al. [63] and
Mesbah et al. [64].
Several prior papers, like that of Halfond and Orso [65] and Halfond [66], emphasize testing the

function calls to the server code in a dynamic web application.
Other work by Sampath et al. [67,68] and Sprenkle et al. [69,70] enhanced web testing tools by

modelling the behaviour of the people who browse a website.
Unlike this paper’s method, those presented by Halfond and Orso, Wassermann and Su, Sampath

et al. and Sprenkle et al. are not tailored to check the responsive layout of a web page.
Finally, while the approach presented by Wang et al. [71] uses a graph to test a traditional web

page, it also does not focus on detecting regressions in responsive layout.

5.5. Graph-based and cross-browser web testing

Although the REDECHECK-RM tool presented in this paper extracts and differences an RLG for web
pages, it is worth noting that there are many program-based techniques that extract and difference
graphs, such as those developed by Apiwattanapong et al. [72] and Raghavan et al. [73]. With that
said, because this paper focuses on automatically checking web pages, the remainder of the discus-
sion only reviews prior work in the domain of web applications. As first discussed in Section 2.3,
Choudhary et al. [24] proposed the alignment graph, as part of the X-PERT tool, which uses a com-
bination of techniques for the automatic detection of cross-browser incompatibilities [24]. A tool
developed by Dallmeier et al., called WEBMATE, also focused on cross-browser testing as it searched
for visual differences and missing functionality, among other issues [61]. Along with the work by
Mesbah et al. that drew attention to the need for cross-browser testing [1], the WEBDIFF tool, created
by Choudhary et al. [35], was one of the first approaches in this area. Finally, Alameer et al. [34]
investigated the detection of presentation failures introduced after the translation of web pages into
a different language, using relative layout as the basis for their model and a layout graph that formed
the foundation of their differencing tool, called GWALI. It is important to note that, unlike the focus
of this paper, all of the aforementioned methods do not consider web pages’ responsive design.
With that said, these examples of related work share one point in common with this paper’s exper-
iments: the use of manual inspection. For instance, Alameer et al. [34], Choudhary et al. [24,35] and
Mesbah et al. [1] all present studies of web testing techniques that incorporate manual inspection.

5.6. Image-based web testing

Leveraging either screenshots or graphical mockups of a web page, other testing techniques surface
presentation failures by detecting the differences between the provided images. For instance, tools
like WEBSEE [30,74] and FIERYEYE [75] use image differencing to compare, for instance, the before
and after screenshots of a web page, reporting any visual differences to a developer who would then
attempt to localize the problem in the page’s HTML and CSS source code. Other tools, like
BROWSERBITE [76], combine image comparison methods with machine learning techniques to de-
tect cross-browser differences in a web page. Developer testing tools, like WRAITH [15], also use
image comparisons to highlight the differences between two versions of web pages and therefore
suffer from the same limitations as WEBSEE and FIERYEYE in the domain of responsive web page
testing. Although not in the domain of web testing, other prior work, like that of Chang et al.,
showed how to use the image comparison methods employed by tools like WEBSEE to test applica-
tions with a GUI [77]. In contrast to REDECHECK-RM, all of the aforementioned tools operate at a
single-viewport width and are therefore not well suited to testing responsive web pages because
they would require a substantial number of screenshots. It may also be difficult for developers to
apply the tools like WEBSEE, FIERYEYE and WRAITH to the task of responsive web page testing be-
cause the results in Section 4 highlight the difficulties that arise when selecting specific viewport
widths at which to inspect a web page’s responsive layout. Finally, it is worth noting that the ap-
proach presented by Mahajan and Halfond also used image comparison, in conjunction with the
same R-tree adopted by REDECHECK-RM, to both detect and automatically localize the HTML el-
ements that are most likely to cause web presentation failures [41].

40 of 46T. A. WALSH ET AL.

© 2020 John Wiley & Sons, Ltd. e1748Softw. Test. Verif. Reliab. 2020;e1748
DOI: 10.1002/stv

5.7. Specification-based web testing

Prior work in web testing also includes specification-based approaches to detecting web presenta-
tion issues. For instance, the CORNIPICKLE [78,79] tool by Hallé et al. requires a tester to define
the intended layout of web pages through the use of a layout specification language. This tool then
notifies the user if any of the layout constraints have been violated during testing. It is important to
note that CORNIPICKLE targets static layout failures and provides no support for specifying a page’s
responsive layout, thus limiting its applicability in this paper’s domain. Moreover, CORNIPICKLE’s
usefulness depends on the quality of the specification written by the web developer. Because the
creation and maintenance of a layout specification for input to CORNIPICKLEmay be a
time-consuming and error-prone process, the REDECHECK-RM tool presented in this paper will con-
tinue to prove useful to many practising web developers.

5.8. Developer tools

While many web developers support testing a page on actual devices [80], this is not always a fea-
sible option given the many available devices. However, there are a wide range of software tools
available as alternatives. For instance, services such as BrowserStack [81] give developers the abil-
ity to remotely check a page on a wide array of devices. Multiple screenshot tools, such as the one
developed by Kersley [82], display web pages at a series of common viewport widths, allowing a
tester to see a page’s responsive behaviour and detect some obvious layout regressions. Viewport
resizing tools, such as RESPONSIVEPX [13], RESIZER [14] and WRAITH [15] and browser-based tools
such as ‘Responsive Design Mode’ for Firefox and ‘Device Mode’ for Chrome support the auto-
mated resizing of a browser, thereby allowing developers to check pages for layout regressions.
While these spotchecking tools can be useful to web developers, they may, unlike the
REDECHECK-RM tool presented in this paper, cause a developer to overlook subtle layout regres-
sions. Finally, Google’s mobile-friendly testing tool [83] checks for common usability issues, such
as too-small fonts and the use of Flash, and returns a verdict on the mobile-friendliness of web
pages. Unlike REDECHECK-RM, it does not provide support for checking web pages’ responsive
layout and is therefore limited for the problem presented in this paper.

5.9. Mutation testing

Frequently used to assess the adequacy of a test suite and to obtain subjects for use in empirical
studies, mutation testing techniques make syntactic changes to a program [31,84]. The mutation
testing techniques for web applications proposed by Praphamontripong et al. [85,86] implemented
operators for HTML, targeting the functional aspects of a page by changing link destinations, rather
than the properties that control the layout of web pages. Instead of focusing on a page’s HTML,
both Mirshokraie et al. [87] and Rodríguez-Baquero and Linares-Vásquez [88] developed mutation
operators for web applications, presenting tools that create mutants for the JavaScript programs
used by a web page. Because none of these mutation methods were suitable for automatically
inserting potential regressions into a web page’s layout, to evaluate REDECHECK-RM, this paper in-
troduced an automated mutation technique that alters the HTML and CSS source code of web
pages, thereby inserting a potential regression in its responsive layout.

5.10. Automated repair of presentation failures

There have also been several recent works devoted to automatically repairing the presentation fail-
ures surfaced by web testing tools. For instance, Mahajan et al. present the XFIX tool [89] and a
search-based technique for automatically fixing cross-browser issues [90]. They also explain how
to fix internationalization presentation failures using a combination of search-based techniques
and style similarity clustering in the IFIX [91] and IFIX++ tools [92]. Alameer et al. [93] improve
the efficiency of these techniques by incorporating constraint solving. Finally, Mahajan et al. [94]
present a search-based approach to repairing mobile-friendly issues, including illegible font sizes,
inadequate tap target spacing and content sizing.

41 of 46 AUTOMATICALLY IDENTIFYING POTENTIAL REGRESSIONS—RESPONSIVE WEB PAGES

© 2020 John Wiley & Sons, Ltd. e1748Softw. Test. Verif. Reliab. 2020;e1748
DOI: 10.1002/stv

6. CONCLUSIONS AND FUTURE WORK

Before people commonly browsed the web with a mobile device, the main problem facing
front-end web developers was the time-consuming task of ensuring that their web pages
displayed correctly on different desktop browsers [1]. Yet the recent proliferation of
web-enabled mobile devices has made it critical for developers to ensure that web pages provide
a good user experience across a wide variety of viewport widths [95,96]. Through the use of
concepts such as grid-based layouts, flexible images and CSS media queries, RWD is an ap-
proach to web development that helps developers to create sites that accommodate the wide va-
riety of viewport widths associated with the commonly used desktops, laptops, tablets and
smartphones [4]. Even though there are clear benefits to making responsive websites [97], cre-
ating a correct web page is inherently challenging [6,7]. In fact, there is evidence to suggest that
practising software developers have many questions about developing mobile-friendly web
pages: as of March 2020, the StackOverflow site hosts 1 416 648 questions tagged with labels
connected to RWD [98].
Because it is often difficult for a developer to ascertain how modification’s to web pages at one

viewport width will influence its layout at other viewports, this paper presents REDECHECK-RM, a
tool that automatically detects regressions in a page’s responsive layout.
The foundation of REDECHECK-RM is the RLG that represents the two critical aspects of RWD:

the changing visibility and changing relative alignment of web pages’ elements [4].
After a web developer modifies a web page’s HTML and/or CSS source code, REDECHECK-RM

extracts ‘before’ and ‘after’ RLGs from versions of web pages and differences them, reporting any
discrepancies. The use of REDECHECK-RM reduces the testing burden placed on the web developer,
who now only needs to inspect the list of differences automatically discovered by the technique and
determine if any of them were unintended regressions in the page’s layout. Without REDECHECK-
RM, a web developer would have to look for layout regressions by either manually spotchecking the
web page or using a tool that inspects the page at a minimal number of viewport widths—both pro-
cesses that are time consuming and error prone and could ultimately allow incorrect layouts to ap-
pear in the production version of a page.
Using 15 real-world web pages from a variety of application domains, we conducted experiments

to study REDECHECK-RM’s efficiency and effectiveness.
To determine if REDECHECK-RM can detect layout regressions in these subjects, we created and

applied mutation operators that systematically modified both the HTML and CSS source code of
web pages, thereby enabling us to answer three research questions.
The experiments reveal that the answer to part (a) of the first research question is that

REDECHECK-RM is effective at detecting the layout changes in the mutants with no
false-negative results and just one false-positive result.
Importantly, an investigation of the single false positive revealed that it had subtle shifts in the

position of elements that would not be readily apparent to either a developer or a page visitor.
Answering part (b) of the first question, the results show that REDECHECK-RM, with the greatest

number of true positives and true negatives, is the best checking technique when compared with ei-
ther manual spotchecking or a differencing tool that uses an alignment graph, classifying 12.5% and
18.75% more true positives, respectively.
The second research question determined how different methods for detecting responsive layout

regressions varied in their effectiveness as the regression itself differed in its subtlety.
The results show that the effectiveness of REDECHECK-RM is consistent regardless of the sub-

tlety of a layout change, with good levels of detection observed across all studied subtleties.
In contrast, a spotchecking technique based on the alignment graph is only effective at detecting

layout regressions that are not subtle, providing inaccurate guidance to a web developer when the
layout change is only visible at a minimal number of viewport widths.
Finally, because a developer can configure how REDECHECK-RM extracts a page’s RLG, the

third research question studied how the tool’s efficiency and effectiveness varied when paired with
one of the three RLG extraction methods.

42 of 46T. A. WALSH ET AL.

© 2020 John Wiley & Sons, Ltd. e1748Softw. Test. Verif. Reliab. 2020;e1748
DOI: 10.1002/stv

Along with revealing that exhaustive sampling of a page is not necessary, the results show that
the most cost-effective approach extracts the RLG by sampling the page both at regular intervals
and at breakpoints found in the page’s style sheets.
Finally, the results also support the use of either 60 or 80pixels as the step size at which

REDECHECK-RMshould sample the page.
Because this paper’s experimental results demonstrate the benefits of using REDECHECK-RM, we

plan to further develop and evaluate the tool in future work.
One focus of our future work is integrating into REDECHECK-RM approaches from other tools

that leverage image differencing, such as WEBSEE [99] and VISER [43].
In addition to adding support for dynamic web pages and multiple-page websites, as in tools like

CRAWLJAX [100] and VFDETECTOR [101], we also plan for REDECHECK-RM to detect page changes
that involve, for instance, fonts, colours and the content of inline elements.
Finally, in light of Section 4.7’s results, we plan to enhance REDECHECK-RM to better ensure that

it can even detect the subtle layout faults that a human might initially overlook.
Because this paper’s experimental results depend on the representativeness of the mutants

that serve as potential responsive layout regressions, we intend to add more and more varied
mutation operators.
Along with supporting the mutation of web pages’ JavaScript, as performed by the MUTANDIS

tool [87], we intend for our mutation testing method to support the focused manipulation of a page’s
DOM, thereby better enabling the systematic creation of subtle mutants.
After extending our mutation testing tool, we will follow the procedure proposed by Just et al.

[102] to experimentally determine if these mutants are representative of real-world regressions in
web pages’ responsive layout.
Before conducting this experiment and the others that will compare REDECHECK-RM to the new

approaches mentioned in the previous paragraph, we will also collect larger and more complex sub-
jects, thereby mitigating the validity threats of these future studies.
After experimentally enhancing our understanding of the trade-offs in using REDECHECK-RM to

automatically identify layout regressions in complex responsive web pages, we intend to conduct a
number of studies involving human subjects.
Because this paper furnishes anecdotal evidence of the challenges that web developers face when

checking a responsive page, we intend to conduct follow-on experiments with humans who differ in
their level of expertise in responsive web development.
Varying the type of layout regression and following a procedure similar to the one proposed by

Fraser et al. [103], we will also experimentally determine the ways in which REDECHECK-RM, in
comparison with baselines involving manual and automated spotchecking, helps web developers
to detect layout regressions.
Building on this paper’s study, the goal of these follow-on experiments is to more accurately

characterize the cost–benefit trade-offs associated with using REDECHECK-RM.
The combination of this paper’s implementation and evaluation of REDECHECK-RMwith both the

suggested enhancements to the tool and the new experimental studies will result in a cost-effective
and well-understood tool that supports the creation of high-quality responsive web applications.

REFERENCES

1. Mesbah A, Prasad M. R. Automated cross-browser compatibility testing. In Proceedings of the International

Conference on Software Engineering, 2011; 561–570.
2. Statista. Statistics portal: mobile share of organic search, 2017. https://www.statista.com/statistics/297137/mobile-

share-of-us-organic-search-engine-visits/
3. Comscore. Comscore digital media blog: smartphone apps are now 50% of all U.S. digital media time spent, 2016.

https://www.comscore.com/Insights/Blog/Smartphone-Apps-Are-Now-50-of-All-US-Digital-Media-Time-Spent
4. Marcotte E. Responsive web design: a book apart, 2014.
5. Alston P, Walsh D, Westhead G. Uncovering threshold concepts in web development: an instructor perspective.

Transactions on Computing Education. 2015; 15(1): 1–18.
6. Park TH, Dorn B, Forte A. An analysis of HTML and CSS syntax errors in a web development course.

Transactions on Computing Education. 2015; 15(1): 1–21.

43 of 46 AUTOMATICALLY IDENTIFYING POTENTIAL REGRESSIONS—RESPONSIVE WEB PAGES

© 2020 John Wiley & Sons, Ltd. e1748Softw. Test. Verif. Reliab. 2020;e1748
DOI: 10.1002/stv

7. Bajaj K, Pattabiraman K, Mesbah A. Mining questions asked by web developers. In Proceedings of the Working

Conference on Mining Software Repositories, 2014; 12–21.
8. Walsh TA, Kapfhammer GM, McMinn P. Automated layout failure detection for responsive web pages without an

explicit oracle. In Proceedings of the International Symposium on Software Testing and Analysis, ACM, 2017;
192–202.

9. Walsh TA, Kapfhammer GM, McMinn P. ReDeCheck: an automatic layout failure checking tool for
responsively designed web pages. In Proceedings of the International Symposium on Software Testing and

Analysis – Demonstration Papers, 2017; 360–363.
10. Frost B. Mobile web problems and how to avoid them, 2020. https://bradfrost.com/blog/post/mobile-web-problems/
11. Hartmann J, Sutcliffe A, De Angeli A. Investigating attractiveness in web user interfaces. In Proceedings of the

International Conference on Human Factors in Computing Systems, 2007; 387–396.
12. Cyr D, Head M, Ivanov A. Design aesthetics leading to M-loyalty in mobile commerce. Information &

Management. 2006; 43(8): 950–963.
13. ResponsivePX. ResponsivePX tricky breakpoint finder, 2020. https://responsivepx.com/
14. Google. Resizer: an interactive viewer that helps designers test material design breakpoints across desktop, mobile,

and tablet, 2020. https://material.io/resources/resizer/
15. BBC News. Wraith: responsive screenshot comparison tool, 2020. {https://github.com/BBC-News/wraith}
16. Walsh TA, McMinn P, Kapfhammer G. M. Automatic detection of potential layout faults following changes to

responsive web pages. In Proceedings of the International Conference on Automated Software Engineering, IEEE,
2015; 709–714.

17. World Wide Web Consortium. CSS3 @media rule, 2016. https://www.w3schools.com/cssref/css3_pr_mediaquery.
asp

18. Bootstrap. Bootstrap: responsive front-end framework, 2020. https://getbootstrap.com/
19. BuiltWith. Bootstrap usage statistics, 2017. https://trends.builtwith.com/docinfo/Twitter-Bootstrap
20. ZURB. Foundation: responsive front-end framework, 2020. https://get.foundation/
21. ZURB. Websites using ZURB Foundation, 2020. https://zurb.com/responsive
22. Boyter B. scc: a very fast accurate code counter with complexity calculations and COCOMO estimates written in

pure Go, 2018. https://github.com/boyter/scc
23. Creative Bloq. 8 RWD problems (and how to avoid them), 2014. https://www.creativebloq.com/rwd/responsive-

design-problems-12142790
24. Choudhary SR, Prasad MR, Orso A. X-PERT: accurate identification of cross-browser issues in web applications.

In Proceedings of the International Conference on Software Engineering, IEEE, 2013; 702–711.
25. (W3C) WWWC. JavaScript HTML DOM, 2020. https://www.w3schools.com/js/js_htmldom.asp
26. World Wide Web Consortium. XPath syntax, 2016. https://www.w3schools.com/xsl/xpath_syntax.asp
27. Walsh TA, McMinn P, Kapfhammer GM. ReDeCheck: automatically detecting layout failures in responsive web

pages, 2018. https://github.com/redecheck/redecheck
28. Selenium HQ. Selenium: web browser automation, 2020. https://www.selenium.dev/
29. PhantomJS. PhantomJS: scriptable headless browser, 2020. https://phantomjs.org
30. Mahajan S, Halfond WGJ. Detection and localization of HTML presentation failures using computer vision-based

techniques. In Proceedings of the International Conference on Software Testing, Verification and Validation, IEEE,
2015; 1–10.

31. Jia Y, Harman M. An analysis and survey of the development of mutation testing, vol. 37, 2011; 649–678.
32. Viewport Resizer. Viewport resizer: developer device testing toolbar for emulating screen resolutions, 2017.

https://lab.maltewassermann.com/viewport-resizer/
33. Window resizer. , 2015. https://ionut-botizan.net/window-resizer/
34. Alameer A, Mahajan S, Halfond W. G. J. Detecting and localizing internationalization presentation failures in web

applications. In Proceedings of the International Conference on Software Testing, Verification, and Validation,
IEEE, 2016; 202–212.

35. Choudhary SR, Versee H, Orso A. WebDiff: automated identification of cross-browser issues in web applications.
In Proceedings of the International Conference on Software Maintenance, IEEE, 2010; 1–10.

36. Vargha A, Delaney HD. A critique and improvement of the CL common language effect size statistics of McGraw
and Wong. Journal of Educational and Behavioral Statistics. 2000; 25(2): 101–132.

37. Ampatzoglou A, Bibi S, Avgeriou P, VerbeekM, Chatzigeorgiou A.. Identifying, categorizing and mitigating threats
to validity in software engineering secondary studies. Information and Software Technology. 2019; 106: 201–230.

38. Mustafa N, Labiche Y, Towey D. Mitigating threats to validity in empirical software engineering: a traceability case
study. In Proceedings of the Annual Computer Software and Applications Conference, IEEE, 2019; 324–329.

39. JSoup. JSoup: Java HTML parser. 2020. https://jsoup.org
40. JStyleParser. JStyleParser: a CSS parser written in Java, 2020. https://cssbox.sourceforge.net/jstyleparser/
41. Mahajan S, Halfond W. G. J. Finding HTML presentation failures using image comparison techniques. In

Proceedings of the International Conference on Automated Software Engineering, 2014; 91–96.
42. Gerstaecker H. Single page applications: the rise of web apps in 2020, 2020. https://hackernoon.com/single-page-

applications-the-rise-of-web-apps-in-2020-un6c32gm
43. Althomali I, Kapfhammer GM, McMinn P. Automatic visual verification of layout failures in responsively

designed web pages. In Proceedings of the International Conference on Software Testing, Verification and

Validation, IEEE, 2019; 183–193.

44 of 46T. A. WALSH ET AL.

© 2020 John Wiley & Sons, Ltd. e1748Softw. Test. Verif. Reliab. 2020;e1748
DOI: 10.1002/stv

44. Memon AM, Banerjee I, Nagarajan A. GUI ripping: reverse engineering of graphical user interfaces for testing. In
Proceedings of the Working Conference on Reverse Engineering, IEEE, 2003.

45. Yang W, Prasad MR, Xie T. A grey-box approach for automated GUI-model generation of mobile applications. In
International Conference on Fundamental Approaches to Software Engineering. Springer: Berlin, Heidelberg,
2013; 250–265.

46. Memon AM, Soffa ML. Regression testing of GUIs. In Proceedings of the 11th International Symposium on the

Foundations of Software Engineering, 2003; 118–127.
47. Xie Q, Grechanik M, Fu C, Cumby C. Guide: a GUI differentiator. In Proceedings of the International Conference

on Software Maintenance, IEEE, 2009; 395–396.
48. Amalfitano D, Fasolino AR, Tramontana P, De Carmine S, Memon A. M. Using GUI ripping for automated testing

of Android applications. In Proceedings of the International Conference on Automated Software Engineering,
IEEE, 2012; 258–261.

49. Amalfitano D, Riccio V, Paiva ACR, Fasolino AR. Why does the orientation change mess up my Android
application? From GUI failures to code faults. Software Testing, Verification and Reliability. 2018; 28(1): e1654.

50. Moreira RM, Paiva AC. PBGT tool: an integrated modeling and testing environment for pattern-based GUI testing.
In Proceedings of the International Conference on Automated Software Engineering, 2014; 863–866.

51. Moreira RM, Paiva AC, Nabuco M, Memon A. Pattern based GUI testing: bridging the gap between design and
quality assurance. Software Testing, Verification and Reliability. 2017; 27(3): e1629.

52. Hu G, Yuan X, Tang Y, Yang J. Efficiently, effectively detecting mobile app bugs with AppDoctor. In Proceedings

of the European Conference on Computer Systems, 2014; 1–15.
53. Moran K, Watson C, Hoskins J, Purnell G, Poshyvanyk D. Detecting and summarizing GUI changes in

evolving mobile apps. In Proceedings of the International Conference on Automated Software Engineering,
2018; 543–553.

54. Moran K, Li B, Bernal-Cárdenas C, Jelf D, Denys P. Automated reporting of GUI design violations for mobile
apps. In Proceedings of the International Conference on Software Engineering, 2018; 165–175.

55. Lee S, Koubek RJ. The effects of usability and web design attributes on user preference for e-commerce web sites.
Computers in Industry. 2010; 61(4): 329–341.

56. Robins D, Holmes J. Aesthetics and credibility in web site design. Information Processing & Management. 2008;
44(1): 386–399.

57. Mbipom G, Harper S. The interplay between web aesthetics and accessibility. In Proceedings of the International

Conference on Computers and Accessibility, 2011; 147–154.
58. Li W, Harrold MJ, Görg C. Detecting user-visible failures in AJAX web applications by analyzing users’

interaction behaviors. In Proceedings of the International Conference on Automated Software Engineering,
2010; 155–158.

59. Guo Y, Sampath S. Web application fault classification: an exploratory study. In Proceedings of the International

Symposium on Empirical Software Engineering and Measurement, 2008; 303–305.
60. Wang X, Zhang L, Xie T, Xiong Y, Mei H. Automating presentation changes in dynamic web applications via

collaborative hybrid analysis. In Proceedings of the International Symposium on the Foundations of Software

Engineering, 2012; 1–11.
61. Dallmeier V, Burger M, Orth T, Zeller A. WebMate: a tool for testing Web 2.0 applications, Proceedings of the

Workshop on JavaScript Tools, 2012; 11–15.
62. Marchetto A, Tonella P, Ricca F. State-based testing of Ajax web applications. In Proceedings of the International

Conference on Software Testing, Verification, and Validation, IEEE, 2008; 121–130.
63. Milani Fard A, Mirzaaghaei M, Mesbah A. Leveraging existing tests in automated test generation for web

applications. In Proceedings of the International Conference on Automated Software Engineering, 2014; 67–78.
64. Mesbah A, Van Deursen A, Roest D. Invariant-based automatic testing of modern web applications. Transactions

on Software. 2012; 38(1): 35–53.
65. Halfond WGJ, Orso A. Automated identification of parameter mismatches in web applications. In Proceedings of

the International Symposium on Foundations of Software Engineering, 2008; 181–191.
66. Halfond WGJ. Automated checking of web application invocations. In Proceedings of the International

Symposium on Software Reliability Engineering, 2012; 111–120.
67. Sampath S, Sprenkle S, Gibson E, Pollock L, Souter Greenwald A. Applying concept analysis to user-session-

based testing of web applications. Transactions on Software. 2007; 33(10): 643–658.
68. Sampath S, Bryce RC, Viswanath G, Kandimalla V, Koru AG. Prioritizing user-session-based test cases for

web applications testing. In Proceedings of the International Conference on Software Testing, Verification, and

Validation, IEEE, 2008; 141–150.
69. Sprenkle S, Gibson E, Sampath S, Pollock L. Automated replay and failure detection for web applications. In

Proceedings of the International Conference on Automated Software Engineering, 2005; 253–262.
70. Sprenkle SE, Pollock LL, Simko LM. Configuring effective navigation models and abstract test cases for

web applications by analyzing user behaviour. Software Testing, Verification and Reliability. 2013; 23(6):
439–464.

71. Wang W, Sampath S, Lei Y, Kacker R, Kuhn R, Lawrence J. Using combinatorial testing to build navigation graphs
for dynamic web applications. Software Testing, Verification and Reliability. 2016; 26(4): 318–346.

72. Apiwattanapong T, Orso A, Harrold M. J. A differencing algorithm for object-oriented programs. In Proceedings of
the International Conference on Automated Software Engineering, IEEE, 2004; 2–13.

45 of 46 AUTOMATICALLY IDENTIFYING POTENTIAL REGRESSIONS—RESPONSIVE WEB PAGES

© 2020 John Wiley & Sons, Ltd. e1748Softw. Test. Verif. Reliab. 2020;e1748
DOI: 10.1002/stv

73. Raghavan S, Rohana R, Leon D, Podgurski A, Augustine V. Dex: a semantic-graph differencing tool for studying
changes in large code bases. In Proceedings of the 20th International Conference on Software Maintenance, 2004;
188–197.

74. Mahajan S, Halfond WG. WebSee: a tool for debugging HTML presentation failures. In Proceedings of the

International Conference on Software Testing Validation and Verification, 2015; 1–8.
75. Mahajan S, Li B, Behnamghader P, Halfond W. G. J. Using visual symptoms for debugging presentation failures in

web applications. Proceedings of the International Conference on Software Testing Verification and Validation,
2016.

76. Saar To, Dumas M, Kaljuve M, Semenenko N. Browserbite: cross-browser testing via image processing. Software:
Practice and Experience. 2016; 46(11): 1459–1477.

77. Chang TH, Yeh T, Miller RC. GUI testing using computer vision. In Proceedings of the International Conference

on Human Factors in Computing Systems, 2010; 1535–1544.
78. Hallé S, Bergeron N, Guerin F, Le Breton G. Testing web applications through layout constraints. In Proceedings

of the International Conference on Software Testing Verification and Validation, IEEE, 2015; 1–8.
79. Hallé S, Bergeron N, Guérin F, Le Breton G, Beroual O.. Declarative layout constraints for testing web

applications. Journal of Logical and Algebraic Methods in Programming. 2016; 85: 737–758.
80. Montague D, Hogan L. Building a device lab five simple steps, 2015.
81. BrowserStack, Browserstack. , 2017. https://www.browserstack.com
82. Kersley M. Responsive design testing, 2017. https://mattkersley.com/responsive/
83. Google. Mobile-friendly test, 2015. https://www.google.com/webmasters/tools/mobile-friendly/
84. Kapfhammer G. M.. Software Testing. The Computer Science Handbook, 2004.
85. Praphamontripong U, Offutt J. Applying mutation testing to web applications. In Workshop Proceedings of the

International Conference on Software Testing, Verification, and Validation, IEEE, 2010; 132–141.
86. Praphamontripong U, Offutt J, Deng L, Gu J. An experimental evaluation of web mutation operators. In

Proceedings of the Workshop on Mutation Analysis, IEEE, 2016; 102–111.
87. Mirshokraie S, Mesbah A, Pattabiraman K. Guided mutation testing for JavaScript web applications. Transactions

on Software Engineering. 2015; 41(5): 429–444.
88. Rodríguez-Baquero D, Linares-Vásquez M. Mutode: generic JavaScript and Node.js mutation testing tool. In

Proceedings of the International Symposium on Software Testing and Analysis, 2018; 372–375.
89. Mahajan S, Alameer A, McMinn P, Halfond WGJ. XFix: automated tool for repair of layout cross browser issues.

In International Conference on Software Testing and Analysis, 2017; 368–371.
90. Mahajan S, Alameer A, McMinn P, Halfond W. G. J. Automated repair of layout cross browser issues using

search-based techniques. In Proceedings of the International Conference on Software Testing and Analysis,
2017; 249–260.

91. Mahajan S, Alameer A, McMinn P, Halfond WGJ. Automated repair of internationalization failures using style
similarity clustering and search-based techniques. In Proceedings of the International Conference on Software

Testing, Validation and Verification, 2018.
92. Mahajan S, Alameer A, McMinn P, Halfond WGJ. Effective automated repair of internationalization presentation

failures in web applications using style similarity clustering and search-based techniques. Software Testing, Veri-
fication and Reliability, To Appear.

93. Alameer A, Chiou PT, Halfond W. G. J. Efficiently repairing internationalization presentation failures by solving
layout constraints. In Proceedings of the International Conference on Software Testing, Validation and Verification,
IEEE, 2019; 172–182.

94. Mahajan S, Abolhassani N, McMinn P, Halfond W. G. J. Automated repair of mobile friendly problems in web
pages. In Proceedings of the International Conference on Software Engineering, 2018; 140–150.

95. Sterling G. No, apps aren’t winning. The mobile browser is, 2015. https://marketingland.com/morgan-stanley-no-
apps-arent-winning-the-mobile-browser-is-144303

96. Van’t Hof A, Jamjoom H, Nieh J, Williams D. Flux: multi-surface computing in Android. In Proceedings of the

European Conference on Computer Systems, 2015; 1–17.
97. Dougherty C. Google adds ‘mobile friendliness’ to its search criteria, 2015. The New York Times.
98. StackExchange. Data Explorer. Prevalence of tags related to responsive web design, 2017. https://data.

stackexchange.com/stackoverflow/query/edit/541879
99. Mahajan S, Halfond WGJ. WebSee: a tool for debugging HTML presentation failures. In Proceedings of the

International Conference on Software Testing Verification and Validation, IEEE, 2015; 1–8.
100. Mesbah A, van Deursen A, Lenselink S. Crawling Ajax-based web applications through dynamic analysis of user

interface state changes. Transactions on the Web. 2012; 6(1): 1–30.
101. Ryou Y, Ryu S. Automatic detection of visibility faults by layout changes in HTML5 web pages. In Proceedings of

the International Conference on Software Testing, Validation and Verification, 2018; 182–192.
102. Just R, Jalali D, Inozemtseva L, Ernst MD, Holmes R, Fraser G. Are mutants a valid substitute for real faults in

software testing? In Proceedings of the International Symposium on Foundations of Software Engineering,
2014; 654–665.

103. Fraser G, Staats M, McMinn P, Arcuri A, Padberg F. Does automated unit test generation really help software
testers? A controlled empirical study. Transactions on Software Engineering and Methodology. 2015; 24(4): 1–49.

46 of 46T. A. WALSH ET AL.

© 2020 John Wiley & Sons, Ltd. e1748Softw. Test. Verif. Reliab. 2020;e1748
DOI: 10.1002/stv

