
This is a repository copy of What factors make SQL test cases understandable for testers?
A human study of automated test data generation techniques.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/163398/

Version: Accepted Version

Proceedings Paper:
Alsharif, A., Kapfhammer, G.M. and McMinn, P. orcid.org/0000-0001-9137-7433 (2019) 
What factors make SQL test cases understandable for testers? A human study of 
automated test data generation techniques. In: 2019 IEEE International Conference on 
Software Maintenance and Evolution (ICSME). 2019 IEEE International Conference on 
Software Maintenance and Evolution (ICSME), 30 Sep - 04 Oct 2019, Cleveland, OH, 
USA. IEEE , pp. 437-448. ISBN 9781728130958 

https://doi.org/10.1109/icsme.2019.00076

© 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other users, including reprinting/ republishing this material for advertising or
promotional purposes, creating new collective works for resale or redistribution to servers 
or lists, or reuse of any copyrighted components of this work in other works. Reproduced 
in accordance with the publisher's self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



What Factors Make SQL Test Cases Understandable

For Testers? A Human Study of

Automated Test Data Generation Techniques

Abdullah Alsharif

University of Sheffield

Gregory M. Kapfhammer

Allegheny College

Phil McMinn

University of Sheffield

Abstract—Since relational databases are a key component of
software systems ranging from small mobile to large enterprise
applications, there are well-studied methods that automatically
generate test cases for database-related functionality. Yet, there
has been no research to analyze how well testers — who must
often serve as an “oracle” — both understand tests involving SQL
and decide if they reveal flaws. This paper reports on a human
study of test comprehension in the context of automatically
generated tests that assess the correct specification of the integrity
constraints in a relational database schema. In this domain, a tool
generates INSERT statements with data values designed to either
satisfy (i.e., be accepted into the database) or violate the schema
(i.e., be rejected from the database). The study reveals two key
findings. First, the choice of data values in INSERTs influences
human understandability: the use of default values for elements
not involved in the test (but necessary for adhering to SQL’s
syntax rules) aided participants, allowing them to easily identify
and understand the important test values. Yet, negative numbers
and “garbage” strings hindered this process. The second finding
is more far reaching: humans found the outcome of test cases
very difficult to predict when NULL was used in conjunction with
foreign keys and CHECK constraints. This suggests that, while
including NULLs can surface the confusing semantics of database
schemas, their use makes tests less understandable for humans.

I. INTRODUCTION

Often considered one of an organization’s most valuable

resources [1], a relational database is the backbone of many

software applications. As such, software engineering practi-

tioners advocate the testing of relational databases [2], which

frequently have a complex and hard-to-specify schema that de-

fines how the database’s data is structured. A schema encodes

integrity constraints that safeguard the database’s state [3]. For

instance, a record in a database may be identified through

an attribute that is always unique, specified in a UNIQUE

constraint. Since a UNIQUE ensures that data values are distinct,

its accidental omission from the schema can compromise

database correctness and increase future maintenance costs.

Prior work presented a family of coverage criteria aiding

the systematic testing of database schemas [4]. These criteria

require the creation of data rows in INSERT statements that

exercise integrity constraints as true or false. The testing goal

is to run INSERTs with data values that either satisfy (i.e., are

accepted into the database) or violate the schema (i.e., are

rejected from the database). For instance, a test can violate

a UNIQUE constraint (i.e., exercise it as false) by populating

a database and then trying to add an identical value. Or, a

test can satisfy the UNIQUE (i.e., exercise it as true) by always

using different data values. Since schemas often contain many

tables and integrity constraints, manually writing most of these

tests is tedious and error-prone. As such, prior work presented

automated test data generators that output a test suite of

INSERTs that effectively covers the test requirements [5], [6].

It is challenging to create test cases that are understandable

and maintainable [7], [8] — especially when the tests use

complex and inter-dependent INSERT statements to populate a

relational database [9]. While automated test data generators

can create test cases that aid systematic database schema test-

ing [10], the human cost associated with inspecting test output

and understanding test outcomes is often overlooked [11].

When database schemas evolve [12], their automatically

generated tests should be understandable by humans. Source

code understandability is subjective, with developers having

different views of automatically generated tests [13]. For ex-

ample, if testers are deciding whether or not the database will

reject a test, some may prefer English-like strings, while others

may appreciate simple values such as empty strings. Yet, since

understandable test inputs support human comprehension of

test outcomes and may expedite the process of finding and

fixing faults [14], it is critical to identify the general-purpose

characteristics of understandable database schema tests.

With the goal of identifying the factors that make SQL

tests understandable for human testers, this paper uses sev-

eral automated test data generation methods to create tests

for database schemas. We place these techniques into four

categories according to the data that they generate: (1) random

values; (2) default values that use empty strings for characters

and constants for numeric values; (3) values from a language

model used by Afshan et al. [15], combined with a search-

based technique, Alternating Variable Method (AVM); and (4)

reused values derived from either column names or a library

of readable values. To evaluate the understandability of the

data generated by these techniques we conducted a human

study. The human participants in this experiment were tasked

with explaining test outcomes for data arising from the five

data generators. The study’s participants were asked to identify

which INSERT statement, if any, would be rejected by the

database because it violated a schema’s integrity constraint.

This paper highlights two key findings. The first is that

the data values in INSERTs influence human understandability:



CREATE TABLE places (

host TEXT NOT NULL,

path TEXT NOT NULL,

title TEXT,

visit_count INTEGER,

fav_icon_url TEXT,

PRIMARY KEY(host, path)

);

CREATE TABLE cookies (

id INTEGER PRIMARY KEY NOT NULL,

name TEXT NOT NULL,

value TEXT,

expiry INTEGER,

last_accessed INTEGER,

creation_time INTEGER,

host TEXT,

path TEXT,

UNIQUE(name, host, path),

FOREIGN KEY(host, path)

REFERENCES places(host, path),

CHECK (expiry = 0 OR

expiry > last_accessed),

CHECK (last_accessed >= creation_time),

);

(a) The BrowserCookies relational database schema

AVM-D

1)
INSERT INTO places(host, path, title, visit_count, fav_icon_url)

VALUES ('', '', '', 0, '')

2)
INSERT INTO cookies(id, name, value, expiry, last_accessed, creation_time, host, path)

VALUES (0, '', '', 0, 0, 0, '', '')

3)
INSERT INTO places(host, path, title,visit_count, fav_icon_url)

VALUES ('a', '', '', 0, '')

4)
INSERT INTO cookies(id, name, value, expiry, last_accessed, creation_time, host, path)

VALUES (1, '', '', 0, 0, 0, '', '')

DOM-RND

1)
INSERT INTO places(host, path, title, visit_count, fav_icon_url)

VALUES ('xuksiu', 'fwkjy', 'bmmniu', -53, 'f')

2)
INSERT INTO cookies(id, name, value, expiry, last_accessed, creation_time, host, path)

VALUES (0, 'iywt', 'ryl', 0, -357, -877, 'xuksiu', 'fwkjy')

3)
INSERT INTO places(host, path, title,visit_count, fav_icon_url)

VALUES ('lmm', 'j', 'w', 907, NULL)

4)
INSERT INTO cookies(id, name, value, expiry, last_accessed, creation_time, host, path)

VALUES (131, 'iywt', 'mdofmfl', NULL, NULL, 106, 'xuksiu', 'fwkjy')

(b) Automatically generated test cases using AVM-D and DOM-RND that violates a UNIQUE constraint,

Fig. 1. The BrowserCookies relational database schema with examples of automatically generated test case data.

using default values for elements not involved in the test —

but necessary for adhering to SQL’s syntax rules — aided

participants, allowing them to easily identify and understand

the important values. Yet, negative numbers and “garbage”

strings hindered a human’s ability to reason about the rejection

of INSERT statements. The second finding is more far reaching

and in confirmation of prevailing wisdom among database

developers: humans found the outcome of tests very difficult to

predict when NULL was used in conjunction with foreign keys

and CHECK constraints. Even though NULLs limit test under-

standability for humans, this result suggests that NULL use in

tests can surface the confusing semantics of database schemas.

Overall, this paper makes the following contributions:

1) A human study that assesses the understandability of

automatically generated test data by using a realistic task in

which participants must determine which INSERT, if any, would

be rejected by a relational database (Sections III – IV).

2) Readability guidelines for schema tests, derived from quan-

titative and qualitative feedback from industrial and academic

experts in the human study, directing both manual testers and

creators of automated testing tools (Sections V – VII).

II. BACKGROUND AND MOTIVATION

This section introduces the state-of-the-art methods for auto-

matically generating test data for relational database schemas.

It also explains the challenges often confronting humans when

they attempt to understand and maintain this type of test data.

Relational Database Schemas. A relational database schema

describes how data is structured when it is stored in a database.

Including tables with columns that are associated with data

types and integrity constraints that afford data protection,

schemas are normally specified by CREATE TABLE statements,

like the ones in Figure 1(a). For instance, the PRIMARY KEY in

the cookies table of Figure 1(a) requires that each record must

have a unique id attribute, while the NOT NULL constraint for

id and name stipulates that these attributes cannot store a NULL

value. This table also features a UNIQUE constraint on the name,

host, and path columns, stipulating that no rows inserted into

the database can have exactly the same values for these three

attributes. Furthermore, the table has two CHECK constraints

that restrict the range of values that expiry, last_accessed,

and creation_time can store. This schema also illustrates how

a FOREIGN KEY on the host and path columns of cookies links

the records of that table to those in the places table.

Test Case Generation for Database Schemas. Integrity

constraints preserve the consistency and validity of the data

in a database [16]. Since a database administrator may either

incorrectly specify or omit an integrity constraint [10], it is

important to use coverage criteria to guide their systematic

testing [4]. Intuitively, testing an integrity constraint involves

exercising it as true (i.e., satisfying the constraint) and false

(i.e., violating the constraint). For example, if testers want to

manually ensure the correctness of the UNIQUE constraint in

the BrowserCookies schema, then assuming an initially blank

database, they should INSERT a row of valid data into the

cookies table. To assess the correctness of the UNIQUE they

would then try to insert a row of data where a value for

at least one of the three columns in the UNIQUE constraint

is distinct from those previously entered. To check that the

schema correctly rejects invalid data, they should also attempt

to insert a row of data in which the values are the same as

those already entered for those columns, as shown in Fig 1(b).

Since it may be challenging for testers to identify attribute

values that are tailored to the constraints in a schema, test data

generation techniques support this process by automatically

creating tests that aim to cover all the integrity constraints. For

schemas, there are many techniques for test data generation,

such as Random+ [10], the Alternating Variable Method

(AVM) [4], [10], and DOMINO [6], [17], with prior work show-

ing that AVM and DOMINO are often the most effective [6].

The AVM is a local search technique that uses guidance

from a fitness function to generate the tests that cover the

integrity constraints for a given schema [10]. Leveraging

test adequacy criteria, formulations of distance functions, and

different ways to restart, this method optimizes a vector

of test values that will appear in an INSERT statement [4].

Operating with the same goal as the AVM, DOMINO is

a random technique that uses domain-specific operators to



generate test data for schema testing. After creating random

values, it uses operators that perform value copying and

randomization, the setting or removal of NULLs, and the solving

of CHECK constraints [6]. The copying operator helps to match

values depending on the coverage criteria (e.g., it copies values

to violate a UNIQUE constraint or to link a FOREIGN KEY).

The randomizing operator aids when DOMINO must generate

distinct values to satisfy the coverage criteria. When solving

CHECKs, DOMINO uses randomization to select values from a

constant pool containing values mined from the schema [6].

Figure 1(b) gives examples of tests, produced by both afore-

mentioned techniques, that violate the UNIQUE constraint of the

cookies table. (This example refers to the AVM as “AVM-D”

and DOMINO as “DOM-RND” to distinguish them from new

variations of these techniques presented in Section III-A.) Both

AVM/AVM-D and DOMINO/DOM-RND assume an empty

database, building up the sequence of INSERTs required to first

populate the database with valid values, so that the constraint

can be tested with identical values for the columns focused on

by the final INSERT of each test. The sequence of statements

also involves inserting data into the places table so that the

foreign key of the cookies table is not violated instead of the

UNIQUE constraint, which is the ultimate target of this test case.

Automated test data generators can help testers to avoid

the tedious and error-prone task of manually writing tests for

a database schema. Prior work has shown that automatically

generated tests can effectively cover the schema and detect

synthetic schema faults [4], [18], [19]. Yet, testers must still

act as an “oracle” for a test when they judge whether it passed

or failed [14], a challenging task that is often overlooked.

Human Oracle Costs. The effort expended by a human acting

as an oracle for a test suite — that is, understanding each test

case and its outcomes, reasoning about whether a test should

pass or fail and whether the observed behavior is correct or

otherwise — is referred to as the “human oracle cost” [20].

Human oracle costs are either quantitative or qualitative. It

is possible to decrease the quantitative costs by, for instance,

reducing the number of tests in a suite or the length of the

individual tests. Strategies to reduce the qualitative costs often

involve modifying the test data generators so that they create

values that are more meaningful to human testers [15], [21].

With the ultimate goal of reducing human oracle costs, this

paper identifies the factors that influence test understandability.

Test Understandability Factors. Although human oracle

costs can be ameliorated by creating automated test data

generation methods that consider readability (e.g., [13], [22]),

to the best of our knowledge there is no prior work aiming

to characterize and limit the qualitative human oracle costs

associated with the automated testing of a database schema. As

a first step, we must determine how generated test data affects

a human’s understanding of a test’s behavior. Thus, before

focusing on generating tests that limit human oracle costs, it

is prudent to identify the characteristics that make test cases

easy for testers to understand and reason about. This paper

reports on a human study performing this important task.

As an example, even though each of the tests in Figure 1(b)

successfully violate the intended UNIQUE, they employ different

values because they were created with the two previously de-

scribed automated test data generation techniques. Depending

on the generated test data, it may be more or less challenging

for a tester to effectively reason about test outcomes [14] and

determine whether or not the tests achieved the goal of creating

inputs that do not satisfy an integrity constraint. For instance,

the second and fourth INSERT statements from AVM-D assign

empty strings for the values of the UNIQUE constraint, while the

second and fourth INSERTs from the DOM-RND technique use

randomly generated strings. Since every data generator works

differently, each created test may have varying values — all of

which may differ in their human understandability and support

of effective testing — for both those attributes involved in

testing an integrity constraint and the other schema attributes.

Knowing that the readability of test inputs influences test

case understandability [14], we created variants of AVM and

DOMINO that generate more readable data values. This enables

us to characterize the factors involved in the comprehension of

tests for relational database schemas, which is the focus of this

paper’s study, the design of which the next section describes.

III. METHODOLOGY

In order to act as a human oracle, testers must understand

the behavior of a test. The aim of our study, therefore, was to

find out what properties of relational schema tests, comprising

SQL INSERTs, make them easy for humans to understand.

We studied five different ways to automatically generate

tests, based on the two main techniques, AVM and DOMINO,

as introduced in the last section. Each technique embodies a

different strategy for producing the test inputs (i.e., the values

within the INSERTs) that may affect the human comprehension

of those tests. These involve the use of default values, random

values, pre-prepared data such as dictionary words, or data

specifically generated to have English-like qualities.

A. Automated Test Case Generation Techniques

We first introduce each automated method with example test

cases for the NistWeather schema shown in Figure 2. The test

cases generated by each method, featured in part (b) of this

figure, aim to satisfy the CHECK constraint on the MONTH column

of the Stats table, starting from an initially empty database.

In order to insert a valid row in the Stats table, a row must

first be inserted into the Station table, thereby ensuring that

the foreign key declared in the Stats table is not violated.

Thus, each test case consists of two INSERT statements.

The first two test data generators, AVM-D and AVM-LM,

are based on the alternating variable method from Section II.

AVM-D is a version of the AVM that starts by initializing

each data value to a default (e.g., a zero for a numeric type or

empty string for a string type). AVM-D was chosen for this

study as it has featured in a number of prior papers devoted

to testing relational database integrity constraints (e.g., [4],

[10]). An example test case generated by AVM-D is shown

in Figure 2(b). The default values — empty strings and zeros



CREATE TABLE Station (

ID INTEGER PRIMARY KEY,

CITY VARCHAR(20),

STATE CHAR(2),

LAT_N INTEGER NOT NULL,

LONG_W INTEGER NOT NULL,

CHECK (LAT_N BETWEEN 0 and 90),

CHECK (LONG_W BETWEEN 180 AND -180)

);

CREATE TABLE Stats (

ID INTEGER REFERENCES STATION(ID),

MONTH INTEGER NOT NULL

TEMP_F INTEGER NOT NULL,

RAIN_I INTEGER NOT NULL,

CHECK (MONTH BETWEEN 1 AND 12),

CHECK (TEMP_F BETWEEN 80 AND 150),

CHECK (RAIN_I BETWEEN 0 AND 100),

PRIMARY KEY (ID, MONTH)

);

(a) The NistWeather relational database schema.

AVM-D 1)
INSERT INTO Station(ID, CITY, STATE, LAT_N, LONG_W)

VALUES (0, '', '', 0, 0);

2)
INSERT INTO Stats(ID, MONTH, TEMP_F, RAIN_I)

VALUES (0, 1, 127, 0);

AVM-LM 1)
INSERT INTO Station(ID, CITY, STATE, LAT_N, LONG_W)

VALUES (100, 'Thino', 'jo', 0, 0);

2)
INSERT INTO Stats(ID, MONTH, TEMP_F, RAIN_I)

VALUES (100, 6, 127, 1);

DOM-RND 1)
INSERT INTO Station(ID, CITY, STATE, LAT_N, LONG_W)

VALUES (100, 'ivjyv', 'jr', 0, 0);

2)
INSERT INTO Stats(ID, MONTH, TEMP_F, RAIN_I)

VALUES (100, 12, 90, 40);

DOM-COL 1)
INSERT INTO Station(ID, CITY, STATE, LAT_N, LONG_W)

VALUES (100, 'CITY_0', 'ST', 2, 0);

2)
INSERT INTO Stats(ID, MONTH, TEMP_F, RAIN_I)

VALUES (100, 12, 90, 1);

DOM-READ 1)
INSERT INTO Station(ID, CITY, STATE, LAT_N, LONG_W)

VALUES (100, 'sidekick', 'ba', 90, 150);

2)
INSERT INTO Stats(ID, MONTH, TEMP_F, RAIN_I)

VALUES (100, 12, 80, 12);

(b) Generated test cases with multiple techniques that satisfies a CHECK constraint for column MONTH.

Fig. 2. The NistWeather relational database schema with examples of automatically generated test case data.

— are shown in each INSERT statement and are used when

AVM-D did not need to modify the data values to fulfill the

test requirement. The values of 1 and 127 are needed to satisfy

the CHECK constraints on MONTH and TEMP_F, respectively.

AVM-LM is the basic AVM algorithm described in Sec-

tion II but with an additional post-processing step. Following

the generation of data using the AVM (this time, starting

with random, rather than default values), the strings in a test

case are optimized for “English-likeness” using a language

model, similar to that employed by Afshan et al. [15]. This

method replaces every instance of a string in each INSERT

statement of a test case with a new string generated using

the language model. The algorithm generates 10,000 strings

of the same length and picks the one with the best language

model score. We included AVM-LM because, in Afshan et

al.’s study of automated test data generation for C programs,

the incorporation of a language model as an extra fitness

component in the search-based method helped to produce more

readable strings that made tests easier and quicker for human

testers to understand [15]. Figure 2(b) shows an example of

a test case generated with AVM-LM. The test case does not

use default values, but rather starts with a sequence of data

values that are either randomly generated or randomly selected

from constants used in the schema itself. This method creates

English-like words for test strings (i.e., “Thino” and “jo”).

The next three methods, DOM-RND, DOM-COL, and

DOM-READ are variants of the DOMINO from Section II.

DOM-RND is the basic form of DOMINO, which a prior

study found to obtain the highest mutation scores out of all

studied testing methods [6]. Figure 2(b) gives an example of

a test in which this method generated all values randomly or

randomly selected from constants mined from the schema.

DOM-COL is a variant of DOMINO that, instead of using

a randomly generated value for a string, uses the value’s

associated column name with a sequential integer suffix. The

motivation behind DOM-COL is the intuition that, if a data

value embodies the column name, testers should easily match

data values in an INSERT with their columns. Since this is only

viable with strings, for integer data DOM-COL attempts to

use sequentially generated integers instead of random values.

DOM-COL’s example test in Figure 2(b) shows how “CITY_0”

is used as one of the values. Since the STATE column has a

two character limit, the chosen value is a random subsequence

of the column name, which here is the first two characters.

DOM-READ is another variant of DOMINO that selects

values from a database that is used separately from the testing

process and is populated for the schema. The motivation for

this customization of DOMINO is similar to that of AVM-

LM: readable values from an existing database should make

test data values easier to follow in the INSERT statements that

contain them. For the purposes of this study, we made the pop-

ulated databases with a Java library called DataFactory [23],

which fills string fields with English words. The test for DOM-

READ in Figure 2(b) is similar to that of DOM-RND’s except

that it features either English words or word-like subsequences

for length-constrained fields (i.e., “sidekick” and “ba”).

While AVM-D and DOM-RND have previously appeared

in the literature [4], [6], AVM-LM, DOM-COL, and DOM-

READ are new techniques designed for this study of test input

comprehension. We do not include a purely random test data

generator because its values are, from an understandability

perspective, nearly identical to those generated by DOM-RND.

B. Measuring Comprehension

Program comprehension, the task of reading and under-

standing programs, is a complex cognitive task [24]. It of-

ten involves understanding a system’s behavior through the

development of either general-purpose or application-specific

software knowledge [25]. This paper uses multiple-choice

questions to measure this human knowledge and identify com-

prehension factors. While some studies use multiple-choice

questions to assess problem-solving skill [26], others report

that performance on a multiple-choice quiz correlates with

knowledge of a written text [27]. In comparison to open-ended

short-answer essays, multiple-choice questions are normally

more reliable because they constrain the responses [28]. Over-

all, this prior work shows that multiple-choice questions can

surface a human’s understanding and problem-solving skills.

C. Research Questions

With the goal of identifying the factors that make SQL test

cases understandable, we designed a human study to focus on

answering the following two research questions:



RQ1: Success Rate in Comprehending the Test Cases. How

successful are testers at correctly comprehending the behavior

of schema test cases generated by automated techniques?

RQ2: Factors Involved in Test Case Comprehension. What

are the factors of automatically generated SQL INSERT state-

ments that make them easy for testers to understand?

D. Experimental Set-up

Schemas and Generators. To generate tests we used the

publicly available SchemaAnalyst tool [5], which already

provides an implementation of the AVM-D and DOM-RND

techniques for database schema testing. We added DOM-

COL and DOM-READ (and their value-initializing libraries)

and AVM-LM (and its language model) to SchemaAnalyst,

making the enhanced tool, as shown in Figure 3, available for

download at https://github.com/schemaanalyst/schemaanalyst.

Using SchemaAnalyst, we generated tests for the schemas from

Section II (i.e., BrowserCookies in Figure 1 and NistWeather in

Figure 2), applying each of the five test generation techniques.

We chose these database schemas because, taken together, they

have the five main types of integrity constraint (i.e., primary

keys, foreign keys, CHECK, NOT NULL, and UNIQUE) and different

data types (e.g., integers, text, and constrained strings).

Test Cases. We configured SchemaAnalyst to generate test

suites by fulfilling a coverage criterion that produces tests that

exercise each integrity constraint of the schema with INSERT

statements that are (a) accepted, because the test data in the

INSERT statements satisfies the integrity constraint along with

any other constraints that co-exist in the same table, and (b)

contains an INSERT statement that is rejected, because test data

in it violates the integrity constraint (while satisfying all other

constraints) [4]. We selected one example of a test that satisfies

each different type of integrity constraint (e.g., primary keys

and foreign keys) and one example of a test case that violates

each type of integrity constraint for each relational schema.

When there were multiple test cases to choose from (be-

cause, for example, the schema involves multiple CHECK con-

straints), we selected one at random. BrowserCookies involves

at least one of each of the main five types of integrity

constraint, while NistWeather involves all the main types of

integrity constraint except a UNIQUE. As such, the set of test

cases used for the questionnaire consisted of ten test cases

for BrowserCookies and a further eight for NistWeather —

to satisfy and violate each of the integrity constraint types

— generated by each of the five techniques, resulting in a

total of 90 test cases overall. We configured SchemaAnalyst to

generate test cases suitable for database schemas hosted by the

PostgreSQL DBMS. We chose PostgreSQL as its behavior is

generally accepted as closest to the SQL standard [29], [30].

Each test case starts from a blank relational database,

building up the state needed to test a constraint through a

series of initial INSERTs. For instance, the adequate testing

of a primary key involves an INSERT adding at least one

row into a table; to test a foreign key, data must be inserted

into the referenced table. We then incorporated the generated

Coverage

Criterion

Schema

Test Data Generation

Generation

Function

AVM-D DOM-RND DOM-COL
DOM-

READ

Test

Data

AVM-LM

Schema

Test Suite

Calls a Value Library

Uses Enhances

Fig. 3. The inputs and outputs of the enhanced SchemaAnalyst tool.

test cases in a comprehension task delivered by a web-based

questionnaire system, as further described in Section III-E.

Pilot Trial. The number of questions, test cases, and schemas

were carefully chosen using a pilot trial. The trial revealed that

when participants were given more than two schemas they got

confused and could not remember schema properties, which is

not realistic. We also noted that humans completed the tasks in

less than an hour when given tests covering all of the integrity

constraints in a schema like the ones in Figures 1 and 2.

E. Design of the Human Study

Web-Based Questionnaire Supporting Two Studies. We

created a web application to allow human participants to

answer questions about the automatically generated test cases.

Each question has its own individual web page featuring a

specific test. The web page shows the schema for which

SchemaAnalyst generated the test case at the top of the page,

with the INSERT statements making up the test underneath.

The questionnaire then required the participants to select the

first INSERT statement of the test case, if any, that is rejected by

the DBMS because it violates one of more integrity constraints

of the schema. If the test is designed to satisfy all of the

integrity constraints, none of the INSERT statements will fail,

whereby participants should select “None of them”. The goal

is for participants to focus on the test inputs, acting as oracles

for these tests that do not have assertion statements. When a

participant could not decide on the answer, we also provided

an “I don’t know” option for them to select, thereby preventing

them from having to select a response at random to continue

to the next question. Importantly, adding the “I don’t know”

option helped to prevent guessing from influencing the results.

To answer our RQs, we designed a human study based on

this questionnaire. In the first part, referred to as the “silent”

study, participants answered the questionnaire under “exam

conditions” (i.e., they were not allowed to interrupt other

participants or confer). This allowed us to obtain a relatively

large set of quantitative data from the questionnaire in a

short amount of time. The second part took the form of a

“think aloud” study in which we collected more detailed and

qualitative information from a smaller number of participants.

The participants did not receive the correct answers to any of

the questions, which might have influenced their answers to

questions involving later test cases. Importantly, this type of

mixed design is often used to validate quantitative results [31].

The Silent Study (SS). Designed to answer RQ1, this study

involved 25 participants recruited from the student body at

the University of Sheffield, studying Computer Science (or

a related degree) at either the undergraduate or PhD level.



As part of our recruitment and sign-up process, potential

participants completed an assessment in which they had to

say whether four INSERT statements would be accepted or

rejected for a table with three constraints. We did not invite

anyone to participate if they got more than one answer wrong,

ensuring that we included capable participants with adequate

SQL knowledge. The web-based questionnaire asked the level

of SQL experience of each participant, which varied between

less than a year for nine participants to over five years for two.

We designed this quiz to focus on the understandability of test

inputs and not the understandability of basic SQL commands.

We assigned each participant to one of five groups randomly,

such that there were five participants in each group. The study

had two within-subject variables (i.e., the database schemas

and the test case generation techniques) and one between-

subject variable (i.e., the specific test cases themselves) [32],

as shown in Figure 4. That is, all groups answered questions

involving an adequate test case created by each test generation

technique for each of the two schemas and a specific integrity

constraint. We assigned a test made by a generator to precisely

one group, resulting in five responses per test. Since each

cell in Figure 4 represents a separate test for satisfying and

violating each constraint, this means that there were 450 data

points in total, with 250 for BrowserCookies and 200 for

NistWeather. Although we added two questions at the start

of a question set so that participants could practice and get

familiar with each schema, we did not analyze the responses to

these questions. Each participant was financially compensated

with £10, encouraging them to do their best to understand the

schema tests and complete the questionnaire in under an hour.

The Think Aloud Study (TAS). We designed this study

to answer RQ2, recruiting five new individuals to complete

the questionnaire, assigning each to their own group and

allowing full coverage of the questions in the questionnaire.

Participants were asked to say their thought processes aloud,

a technique commonly used in the HCI research community

for studying human cognitive processes in problem-solving

tasks [33]. This protocol allows for the inferences, reasons,

and decisions made by participants to be surfaced when they

complete an assignment [34]. The first author performed this

study, prompting participants to say why they had chosen an

answer if they had not already verbalized their reasoning.

The first author made an audio recording of each partic-

ipant’s session, manually transcribing it to text afterwards.

Following this, we analyzed all of these statements. When

at least three of the five participants said the same thing, this

paper reports it as a “key observation” in the answer to RQ2.

The five participants comprised three additional Computer

Science PhD students from the University of Sheffield and two

industry participants who each had two years of experience.

With these five participants, we restricted ourselves to prompt-

ing them with a “why?” question to get them to reveal their

thought processes, without any further interactions. We also

recruited a sixth participant, with whom we performed the TAS

in a randomly assigned group. In contrast to the first five par-

BrowserCookies NistWeather

A column is presented to a group (Grp) as a questionnaire comprised of tests from each data generator

W
ith

in

Betw
een

AVM-D

AVM-LM

DOM-RND

DOM-COL

DOM-READ

Grp 1 Grp 2 Grp 3 Grp 4 Grp 5 Grp 1 Grp 2 Grp 3 Grp 4 Grp 5

PK NN FK CC UQ

NN FK CC UQ PK

FK CC UQ PK NN

CC UQ PK NN FK

UQ PK NN FK CC

PK NN FK CC

NN FK CC PK

FK CC PK NN

CC PK NN FK

PK NN FK CC

Fig. 4. The mixed study design with two within-subjects variables (i.e.,
a schema and a data generator) and one between-subjects variable (i.e.,
a test case). Each test case represents a question and is denoted by an
integrity constraint’s test (i.e., a Primary Key (“PK”), Foreign Key (“FK”),
UNIQUE constraint (UQ), NOT NULL constraint (NN), or CHECK constraint
(CC)). The hashed box shows that this schema did not have a UNIQUE test.

ticipants, we probed the sixth participant with direct questions

inspired by comments that others made. This sixth participant

was a developer from a large multi-national corporation with

over 10 years of software development experience, including

with the SQL. As such, we refer to him in the answer to RQ2

as the “experienced industry engineer”. We do not count him

among the official TAS participants. Instead, our answer to

RQ2 uses the expert as an additional source of comments that

we report alongside those from the first five participants.

F. Threats to Validity

External Validity. The selection of schemas for this paper’s

study is a validity threat because those chosen may yield

results that are not be evident for real schemas. To mitigate this

threat we picked two schemas that feature all of the integrity

constraints and data types commonly evident in schemas [12].

Since they may not represent those often used in practice, the

tests used in the study are also a validity threat. To address this

matter, we used an open-source automated test data generation

tool, SchemaAnalyst [5], and configured it to create effective

tests according to a recommended adequacy criterion [4]. This

decision guaranteed that the study’s participants considered

tests that can exercise all of a schema’s integrity constraints

as both true and false. The use of a small number of relational

schemas and tests is also a validity threat. It is worth noting

that we purposefully limited the number of these artifacts to

ensure that participants could complete the questionnaire in a

reasonable amount of time, thereby mitigating the potentially

negative effects of fatigue. Since no previous human studies

have been done in this area, we began with a small-scale

experiment using a small number of participants. Given the

relatively small number of total data points, we used a statisti-

cal power calculation to see the percentage chance of detecting

differences in the human responses to the questionnaire.

Internal Validity. The potential for a learning effect is a

validity threat that could arise when participants become better

at answering questions as the questionnaire progresses, due to

their experience with prior tasks. We mitigated this threat by

randomizing the presentation order for questions and schemas.



TABLE I
CORRECT AND INCORRECT ANSWERS FOR THE SILENT STUDY

Technique Correct Incorrect Percentage Rank

Responses Responses Correct

AVM-D 76 14 84% 1

AVM-LM 65 25 72% =3

DOM-COL 67 23 74% 2

DOM-RND 55 35 61% 5

DOM-READ 65 25 72% =3

The “think aloud” (TAS) experiment also had threats that

we attempted to mitigate. To ensure that all study participants

had a uniform experience, the people in the TAS had to

abide by a restricted form of interaction with the first author,

ensuring that they did not inappropriately discover facets of the

comprehension task. Since participants in a think aloud may

be naturally reluctant to verbalize their thought process, we

instructed each person to “stream” their thoughts during their

completion of the questionnaire. Another potential validity

threat is that the majority of the participants in the studies

were students. However, the TAS included two industrialists

and an expert who had technique rankings that were similar

to those arising from the silent studies with the students. This

trend suggests that it is acceptable to use students to identify

the factors that make SQL tests understandable, in broad

confirmation of prior results in software engineering [35].

Construct Validity. The measurement of a subjective con-

cept like understandability is also a validity threat. To assess

test understandability, we determined how successful human

testers were at identifying which INSERT statement, if any,

would be rejected by the database because it violated an

integrity constraint — a viable proxy to understandability that

we could accurately calculate. Yet, a study of this nature raises

other concerns since participants might not be accustomed to

using the questionnaire application to determine the outcome

of a SQL test case. It is also possible that testers might have

better knowledge of a database schema that they designed. To

overcome both of these final concerns, the study included two

practice questions with responses that were not recorded.

IV. ANSWERS TO THE RESEARCH QUESTIONS

RQ1: Success Rate in Comprehending the Test Cases. Ta-

ble I shows the number of correct and incorrect responses

for RQ1. A response is correct if a participant successfully

selected the first INSERT that was rejected by the DBMS, or

the “None” option, if all the INSERT statements are accepted.

The “I do not know” option was not selected by participants

in response to any of the questions in the silent study (SS).

Tests generated by AVM-D were most easily comprehended:

participants correctly responded 84% of the time. Conversely,

tests produced by DOM-RND were the most misunderstood:

participants only correctly responded 61% of the time for this

method. AVM-LM, DOM-COL, and DOM-READ, which all

employ operations to produce more readable strings, achieved

similar numbers of correct responses between 72 and 74%.

We performed a Fisher Exact test on the results of each

pair of techniques, which revealed a statistically significant

difference between AVM-D and DOM-RND, with a p-value

< 0.001. However, at the same alpha-level of 0.05, there

were no statistically significant differences between the other

techniques. We also performed a post-hoc test called “Power

of Fisher’s Exact Test for Comparing Proportions” to compute

the statistical power of Fisher’s Exact test [36]. This test shows

that, with 90 responses each for DOM-RND and AVM-D,

there will be a 93% chance of detecting a significant difference

at the 0.05 significance level, assuming that the response score

is 84% and 61% for AVM-D and DOM-RND, respectively.

For the other test data generators, a post-hoc test calculates

that there is a 50% or less chance of detecting a significant

difference, suggesting the need for more human participants.

Figure 5 shows the numbers of correct and incorrect re-

sponses for each test case. This plot reveals that participants

had particular trouble with DOM-RND and identifying test

cases where there was no rejected INSERT statement for the

BrowserCookies schema, as shown in the figure by the bars

labeled with the “BC-S-” prefix. These are test cases designed

to exercise an integrity constraint such that all data in the

INSERT statements is successfully entered into the database.

All of the questions involving these test cases were answered

incorrectly for DOM-RND. Similarly, participants struggled

with these types of test cases for AVM-LM, DOM-COL, and

DOM-READ: they correctly answered 5, 9, and 6 questions

out of 25, respectively. However, for AVM-D, participants

did not encounter the same issues, answering 18 out of 25

questions correctly. The ratio of correct/incorrect answers is

more or less similarly evenly distributed for other test types,

although even for these remaining types of tests, DOM-RND

remains the weakest performer in terms of correct responses.

In conclusion for RQ1, the SS showed that participants

seem to most easily comprehend the behavior of the test

cases generated by AVM-D, as evidenced by the fact that they

answered the most questions correctly for test cases generated

by this technique. In contrast, the most difficult test cases to

understand were those generated by DOM-RND. The other

techniques, that fall in between these two extremes, have a

similar influence on the human comprehension of schema tests.

We designed the TAS with the aim of finding out more

about these potential differences in the minds of the human

participants, the results of which we discuss next.

RQ2: Factors Involved in Test Case Comprehension. The

TAS resulted in fewer overall responses as there were only

five participants. Yet, Table II shows the recorded answers

follow a similar pattern to those given by participants for

RQ1: AVM-D produces tests that are understood the best,

with DOM-RND the worst, AVM-LM and DOM-COL falling

between the two, and DOM-READ tying AVM-D in this study.

The main purpose of the TAS was to surface what participants

thought about the tests for which they answered questions.

There were seven key observations (KOs) made by three or

more of the five participants, each of which we discuss next.

■ Confusing Behavior of Foreign Keys (KO1) and CHECK Con-

straints (KO2) with NULL. When NULL is used on columns with-

out NOT NULL constraints but with other integrity constraints,



4

1

5

3

2

3

2

3

2

4

1

5 5
4

1

5 5 5

3

2

5 5 5

3

2

4

1

5
4

1

1

4
5

1

4
5

4

1

5 5
4

1

5 5 5
4

1

5
4

1

5

3

2

5

3

2

1

4
5

1

4
5 5 5

4

1

4

1

5 5 5
4

1

5

3

2

5 5

5 5 5 5 5 5
4

1

4

1

5

2

3

5

3

2

5 5 5
4

1

4

1

4

1

5 5 5

3

2

1

4
5

4

1

5 5 5
4

1

5 5
4

1

4

1

3

2

5
4

1

DOM−READ DOM−RND

AVM−D AVM−LM DOM−COL

B
C

−
S

−
C

C

B
C

−
S

−
F

K
B

C
−
S

−
N

N
B

C
−
S

−
P

K
B

C
−
S

−
U

Q
B

C
−
V

−
C

C

B
C

−
V

−
F

K
B

C
−
V

−
N

N
B

C
−
V

−
P

K
B

C
−
V

−
U

Q
N

W
−
S

−
C

C
N

W
−
S

−
F

K
N

W
−
S

−
N

N
N

W
−
S

−
P

K
N

W
−
V

−
C

C
N

W
−
V

−
F

K
N

W
−
V

−
N

N
N

W
−
V

−
P

K

B
C

−
S

−
C

C

B
C

−
S

−
F

K
B

C
−
S

−
N

N
B

C
−
S

−
P

K
B

C
−
S

−
U

Q
B

C
−
V

−
C

C

B
C

−
V

−
F

K
B

C
−
V

−
N

N
B

C
−
V

−
P

K
B

C
−
V

−
U

Q
N

W
−
S

−
C

C
N

W
−
S

−
F

K
N

W
−
S

−
N

N
N

W
−
S

−
P

K
N

W
−
V

−
C

C
N

W
−
V

−
F

K
N

W
−
V

−
N

N
N

W
−
V

−
P

K

B
C

−
S

−
C

C

B
C

−
S

−
F

K
B

C
−
S

−
N

N
B

C
−
S

−
P

K
B

C
−
S

−
U

Q
B

C
−
V

−
C

C

B
C

−
V

−
F

K
B

C
−
V

−
N

N
B

C
−
V

−
P

K
B

C
−
V

−
U

Q
N

W
−
S

−
C

C
N

W
−
S

−
F

K
N

W
−
S

−
N

N
N

W
−
S

−
P

K
N

W
−
V

−
C

C
N

W
−
V

−
F

K
N

W
−
V

−
N

N
N

W
−
V

−
P

K

0

1

2

3

4

5

0

1

2

3

4

5

Test Cases

N
u

m
b

e
r 

o
f 

R
e

s
p

o
n

s
e

s

Answers

Correct

Incorrect

Fig. 5. A stacked bar plot that shows the count of correct and incorrect responses for each automated test generation technique. Each stacked bar corresponds
to a specific test case. The horizontal-axis labels designate which schema the test case was generated for (either BrowserCookies, denoted by the “BC” prefix,
or NistWeather, denoted by the “NW” prefix). These are suffixed by the test case type – either the satisfaction (“S”) or violation (“V”) of a specific integrity
constraint (a primary key (“PK”), foreign key (“FK”), UNIQUE constraint (UQ), NOT NULL constraint (NN), or CHECK constraint (CC)).

participants tended to think that the INSERT statement should

be rejected. All five stated this for foreign keys, while four

commented they thought this was true of CHECK constraints.

Yet, this is not the behavior defined by the SQL standard [37].

One participant admitted that they “think it is easier to just

look at the ones that have a NULL to see if they are rejected

first”. While it was easy for the participants to spot NULLs,

they found it confusing to judge how they would behave when

interacting with the schema’s other integrity constraints. For

example, one participant stated that “the path [a FOREIGN KEY

column in the BrowserCookies schema] is NULL which is not

going to work, so I will stop thinking there and judge [INSERT

statement] four to be the faulty statement.” Another participant

said that a “CHECK constraint should be a NOT NULL by default”

even when the constraint involved columns that could be NULL.

The experienced industry engineer stated the following

when he encountered a NULL on a FOREIGN KEY column: “the

schema does not allow it” and on another question that “it

should fail the FOREIGN KEY because of the NULL [in one of the

compound foreign key columns] and the fact that value does

not exist [the other foreign key column value in the referenced

table]”. He also debated with himself on the issue of whether

CHECK constraints should not allow a NULL as he was “not sure

about the boolean logic around NULLs— I do not think NULL is

equal to zero and I do not think NULL is greater than NULL”. He

asked himself “can I treat a NULL as zero?”. After answering

the question with “I do not know”, we asked him “Do you

think NULLs in CHECK constraints are a bit confusing?”. He

answered “Yes, I am very wary with NULL”. After completing

the survey, he made the following observation: “In a work

situation, I would have looked up how NULL is interpreted in

a logical constraint. I did not find them hard to read but I do

not know how the DBMS is going to interpret a NULL”.

To conclude this KO, NULL is confusing for testers, and the

frequency of its use in tests is a factor for comprehension.

■ Negative Numbers Require More Comprehension Effort

When Used in CHECK Constraints (KO3). Negative numbers

confused four participants when the column is numeric and

used within a boolean logic of a CHECK. Participants repeti-

tively checked negative numbers when they were compared

together. A participant reported that negative numbers were

more difficult than positive numbers because “it takes more

time to do mental arithmetic” when they are in comparisons.

Another participant said negative numbers “are not realistic”.

The experienced industry engineer also commented on

negative numbers when we prompted him after answering a

survey question with them. He stated “they are harder, slightly,

to think about but it is OK and I can reason about them”. For

negative numbers with primary keys he said: “It feels that you

would not use a negative value on a primary key”.

To conclude this KO, the use of negative numbers increases

the comprehension effort for database schema test cases.

■ Randomly Generated Strings Require More Comprehension

Effort to Compare (KO4). Four think-aloud participants said

that randomly-generated strings are harder to work with than

readable or empty strings. One participant referred to such

strings as “garbage data”. They went on to say that random

strings are “harder when you are thinking of primary and

foreign key [string columns], as you had to combine them,

and there will be one letter difference, and it will be easier if

it is real words”. In particular, DOM-RND generates random

string values, as shown in Figures 1(b) and 2(b). Comparing

the similarity of values that have small differences requires

more attention. One participant stated that small differences

with characters are “trickier” when trying to review duplicates

and references. After completing the survey, the experienced

industry engineer said “the one I liked least is random values”

(i.e., data generated by DOM-RND). Of the data generated,

he stated “these are horrible, they are more distinct . . . but

they do not mean anything. At least [readable strings], I can

understand. But for this I had to compare each character”.

Because they are both “more readable” and “pronounce-

able”, participants also preferred non-random strings (e.g.,

those produced by DOM-COL, DOM-READ, and AVM-LM).



Concluding this KO, humans prefer readable, realistic strings

to randomly-generated ones when understanding schema tests.

■ It is Easy to Identify When NULL Violates NOT NULL Con-

straints (KO5). NULL was confusing for participants when used

with foreign keys and CHECK constraints, but as would be

expected, their behavior is straightforward to identify when

used with NOT NULL constraints. Three participants made this

comment. One participant stated after he finished the questions

that “the NOT NULL constraints are the easiest to spot [violation

of NOT NULL], followed by PRIMARY KEY constraints”. Another

participant commented on a test case that did not involve

NULL: “nothing is NULL, so it is easy to see the ones [INSERT

statements] that are NULL to see if they will be rejected”.

To conclude this KO, it is clear that NULL has differing

effects on test case comprehension, depending on the context

in which it appears. When used with NOT NULL constraints,

human testers thought that the behavior of a test was obvious.

■ Empty Strings Look Strange (KO6), But They Are Help-

ful (KO7). The AVM-D technique uses empty strings as the

initial value for string columns in INSERT statements, only

modifying them as required by the goal of the test case, as

illustrated by the examples in Figures 1(b) and 2(b).

When a question involving a test case generated by AVM-D

was revealed to one of the participants, he said “this is

difficult”. However, he changed his mind afterward, saying

that one could see the “differences and similarities between

INSERTs”, which helped him to identify parts of the INSERT

statements that affected the behavior of the overall test case.

Another participant stated that a test case with default values

was “a good one” because “zeros are easy to read”. However,

when the same participant first encountered empty strings he

said that they were “weird”. The experienced industry engineer

liked empty strings because “they are easy to skip over to get

to the important data”. Reflecting on test effectiveness, he also

said “empty strings are boundary values that need to be tested”.

To conclude this KO, empty strings help to denote unimpor-

tant data, an crucial cue in SQL test comprehension.

Our answer to RQ2 includes many thought-provoking ob-

servations. Participants raised issues concerning the use of

NULL (KOs 1, 2 and 5), suggesting its judicious use in test data

generation. There were positive comments about default values

(KO7), readable strings (KO4), and unenthusiastic comments

about negative numbers (KO3) and random strings (KO4). We

explore these factors in the subsequent discussion section.

V. DISCUSSION

There are several factors that influence the understanding of

automatically generated SQL tests, as evident from the think

aloud study. This section investigates the frequency of these

factors in the test cases generated by each method, explaining

whether they aid or hinder successful test comprehension.

Frequency of NULL. Table III shows the median, mean, and

total occurrences of NULL in the 18 test cases generated by

each technique for the two schemas used in the study. Test

cases generated by AVM-D did not have many NULLs (5 in

TABLE II
CORRECT AND INCORRECT ANSWERS FOR THE THINK ALOUD STUDY

Technique Correct Incorrect Percentage Rank

Responses Responses Correct

AVM-D 16 2 89% =1

AVM-LM 14 4 78% 4

DOM-COL 15 3 83% 3

DOM-RND 12 6 67% 5

DOM-READ 16 2 89% =1

total) compared to the other techniques, which involved 20

or more occurrences, with 39 for DOM-READ. AVM-D’s

tests had the highest comprehension rate in the SS: 84% of

questions involving them were answered correctly, as shown

in the table. Conversely, test generation techniques leading

to many occurrences of NULL (e.g., DOM-RND and DOM-

READ) had the lowest comprehension rates. The TAS revealed

that participants got confused with NULLs on columns involving

integrity constraints, but which did not also have NOT NULL

constraints defined on them. This suggests two strategies: (1)

generate NULLs in these scenarios, helping testers to understand

the behavior of NULL in schemas and test edge cases that detect

more faults, as reported in prior work [6]; or (2) limit the use

of NULL in order to expedite the human oracle process.

Negative Numbers. Table III shows the median, mean, and

total occurrences of negative numbers in test cases gener-

ated by each technique. DOM-COL generates numeric values

through the use of sequential integers, and therefore did not

produce test cases with any negative numbers. AVM-D’s test

cases only contained two occurrences of negative numbers,

while other techniques involved 20 or more occurrences.

AVM-D and DOM-COL were two of the best performers

in terms of test case comprehension for RQ1, but there is

not a significant difference in the number of questions that

participants correctly answered between DOM-COL and the

other techniques. Therefore, the data gives weak evidence that

negative numbers affect test case comprehension; however,

negative numbers are important to test boundaries, and as such

the decision to include them needs to balance thoroughness of

the testing process with human comprehension of test cases.

Repetitious Values. TAS participants commented that the

AVM-D’s use of many empty strings helped them to identify

the important parts of the test case. Critically, the smaller the

number of distinct values in a test case, the smaller the amount

of information the human had to understand. Table III shows

that AVM-D involved the smallest number of distinct values in

the test cases generated (e.g., 68), while the number of distinct

values for the other techniques was more or less similar (e.g.,

approximately 200). The frequency of string values follows

an inverse pattern. AVM-D’s test cases received the highest

percentage of correctly comprehended test cases. Once again,

the results suggest that repetitious values are a positive factor

for the database schema tests. Moreover, unlike the other

factors (i.e., the use of NULL or negative numbers), repeating

values or using suitable defaults (e.g., empty strings or zero

values) for unimportant aspects of a test case may not limit a

human tester’s ability to understand a schema test’s behavior.



TABLE III
TEST CASE FACTORS BY TECHNIQUE, INCLUDING THE PERCENTAGE THAT SILENT STUDY PARTICIPANTS CORRECTLY COMPREHENDED

Technique NULLs Negatives Word Frequency Distinct Values
Percentage

Median Mean Total Median Mean Total Median Mean Median Mean Total Correct

AVM-D 0 0.3 5 0 0.1 2 4 5.1 4 3.8 68 84%

AVM-LM 1 1.1 21 1 1.4 25 1 1.2 10.5 12 216 72%

DOM-COL 1.5 1.4 26 0 0 0 1 1.2 10.5 11.3 203 74%

DOM-RND 2 1.5 27 0.5 1.1 19 1 1.1 10 11.3 203 61%

DOM-READ 2 2.7 39 1 1.4 26 1 1.2 10.5 11.3 204 72%

Readable Values. We developed three of our techniques to

generate non-random, human-readable strings (e.g., AVM-LM,

DOM-COL, and DOM-READ). The results for RQ1 do not

suggest that this was the most important factor in test case

comprehension. While these techniques did not produce test

cases with the highest comprehension rate, they were also not

the worst. In the TAS of RQ2, participants agreed that ran-

dom strings were hard to understand, and therefore preferred

readable strings. We asked the experienced industry engineer

about the different types of strings produced by AVM-LM,

DOM-COL, and DOM-READ. He said the following of DOM-

READ: “. . . easy to compare them because I can read them.

[I see] distinct values, but I prefer nouns and adverbs”; of

strings generated by the AVM-LM: “nice because they are

pronounceable”; of strings generated by DOM-COL: “[values

are] easy to correlate” with column names. However, he also

stated that DOM-COL should have “visually different words”

to help distinguish between different values. Overall, while

human-readable values seem helpful, the results suggest that

they are not critical to SQL test case comprehension.

The responses to RQ1 and RQ2 and the results in Table III

highlight the factors that influence human comprehension of

schema tests. The results suggest that the frequency of NULLs,

existence of negative numbers, repetition of data values, and

presence of readable values can influence the understandability

of automatically generated tests. This means that both manual

testers and the creators of automated testing tools should

consider these issues as they may influence whether humans

can understand tests and effectively complete testing tasks.

VI. RELATED WORK

Test comprehension is a frequently studied issue. For in-

stance, Li et al. surveyed 212 developers and more than half re-

ported difficulty with understanding unit tests [38]. The studies

of Daka et al. [14] and Rojas et al. [39] show that professional

testers find automatically generated tests hard to understand

and difficult to maintain. Grano et al. reported that manually

written tests are more readable than automated tests [40].

Different approaches have been created to address this issue:

test visualization [41], [42], automatic test documentation [38],

[43], [44], and test readability improvement [14], [15], [22].

Yet, these papers examined test comprehension in the con-

text of traditional programs. While prior work studied human

errors in the context of database query languages [45]–[48],

to the best of our knowledge this paper is the first to study

test comprehension in the domain of database schemas and

SQL statements. This is surprising, since there are many prior

methods for automatically testing and debugging a database.

Examples of prior work range from testing SELECT queries

with constraint solvers or specifications (e.g., [49]–[51]) or

by using randomized techniques (e.g., [52]–[54]); to test-

ing database functionality in database-centric applications

(e.g., [55]–[59]); to automatically populating databases as a

testing enabler (e.g., [60]); to testing and debugging database

schemas (e.g., [4], [6], [61]–[63]). While these papers often

experimentally evaluate the effectiveness of the generated tests

and data, they do not, like this paper, investigate whether the

constructed tests are understandable for and useful to humans.

This paper also features a think aloud study (TAS), which

has been previously employed by software testing researchers.

For instance, Rojas et al. used a TAS, featuring five partici-

pants, to investigate the usefulness of automated Java testing

tools compared to manually engineered tests [39]. Itkonen et

al. used a TAS to understand how professional testers write

tests manually [64]. While this paper’s methodology is similar

to these prior papers, its TAS aimed to surface insights from

humans who performed database schema testing tasks.

One of the findings of this paper is the confusing nature of

NULL for testers. This finding is consistent with the fact that

the use of NULL has been the source of debate and chagrin

for DBMS designers as well [65]–[68], leading to defects and

inconsistency in the DBMS engines themselves [69], [70].

VII. CONCLUSIONS AND FUTURE WORK

Presenting a study of the factors that make SQL test cases

understandable for human testers, this paper reveals that:

1. NULL is confusing for testers. Testers find the behav-

ior of NULL difficult to predict when used in conjunction

with different integrity constraints such as foreign keys and

CHECK constraints, suggesting the need for their judicious use.

2. Negative numbers require testers to think harder. Testers

prefer positive numeric values, although, from a testing per-

spective, negative numbers should not be avoided altogether.

3. Simple repetitions for unimportant test values help

testers. If only the important data values in the test case vary,

while all others are held constant, a tester can easily focus on

the non-trivial aspects of a test case to understand its behavior.

4. Readable string values. Testers prefer to work with human-

readable, rather than randomly generated, string values.

We plan to use these findings as guidelines for the development

of new test data generators for database schemas and, when

appropriate, traditional programs. Our goal is to develop tools

that automatically generate tests containing data values that are

both understandable to humans and effective at finding faults.



REFERENCES

[1] P. Glikman and N. Glady, “What’s the value of your
data?” 2015. [Online]. Available: https://techcrunch.com/2015/10/
13/whats-the-value-of-your-data/

[2] S. Guz, “Basic mistakes in database testing,” 2011. [Online]. Available:
https://dzone.com/articles/basic-mistakes-database

[3] G. M. Kapfhammer, “A comprehensive framework for testing database-
centric applications,” Ph.D. dissertation, University of Pittsburgh, 2007.

[4] P. McMinn, C. J. Wright, and G. M. Kapfhammer, “The effective-
ness of test coverage criteria for relational database schema integrity
constraints,” Transactions on Software Engineering and Methodology,
vol. 25, no. 1, 2015.

[5] P. McMinn, C. J. Wright, C. Kinneer, C. J. McCurdy, M. Camara, and
G. M. Kapfhammer, “SchemaAnalyst: Search-based test data generation
for relational database schemas,” in Proceedings of the International

Conference on Software Maintenance and Evolution, 2016.
[6] A. Alsharif, G. M. Kapfhammer, and P. McMinn, “DOMINO: Fast

and effective test data generation for relational database schemas,”
in Proceedings of the International Conference on Software Testing,

Verification and Validation, 2018.
[7] E. Dustin, T. Garrett, and B. Gauf, Implementing automated software

testing: How to save time and lower costs while raising quality, 2009.
[8] M. Olan, “Unit testing: Test early, test often,” Journal of Computing

Sciences in Colleges, vol. 19, no. 2, 2003.
[9] M. Emmi, R. Majumdar, and K. Sen, “Dynamic test input generation for

database applications,” in Proceedings of the International Symposium

on Software Testing and Analysis, 2007.
[10] G. M. Kapfhammer, P. McMinn, and C. J. Wright, “Search-based

testing of relational schema integrity constraints across multiple database
management systems,” in Proceedings of the International Conference

on Software Testing, Verification and Validation, 2013.
[11] M. Harman, S. G. Kim, K. Lakhotia, P. McMinn, and S. Yoo, “Optimiz-

ing for the number of tests generated in search based test data generation
with an application to the oracle cost problem,” in Proceedings of the

3rd International Workshop on Search-Based Software Testing, 2010.
[12] D. Qiu, B. Li, and Z. Su, “An empirical analysis of the co-evolution

of schema and code in database applications,” in Proceedings of the

International Symposium on the Foundations of Software Engineering,
2013.

[13] J. M. Rojas and G. Fraser, “Is search-based unit test generation research
stuck in a local optimum?” in Proceedings of the 10th International

Workshop on Search-Based Software Testing, 2017.
[14] E. Daka, J. Campos, G. Fraser, J. Dorn, and W. Weimer, “Modeling read-

ability to improve unit tests,” in Proceedings of the 10th International

Symposium on the Foundations of Software Engineering, 2015.
[15] S. Afshan, P. McMinn, and M. Stevenson, “Evolving readable string test

inputs using a natural language model to reduce human oracle cost,”
in Proceedings of the International Conference on Software Testing,

Verification and Validation, 2013.
[16] A. Silberschatz, H. F. Korth, and S. Sudarshan, Database System

Concepts, 6th ed., 2010.
[17] A. Alsharif, G. M. Kapfhammer, and P. McMinn, “Generating test suites

with DOMINO,” in Proceedings of the 11th International Conference

on Software Testing, Verification and Validation – Demonstrations Track,
2018.

[18] C. J. Wright, G. M. Kapfhammer, and P. McMinn, “The impact of
equivalent, redundant and quasi mutants on database schema mutation
analysis,” in Proceedings of the International Conference on Quality

Software, 2014.
[19] P. McMinn, C. Wright, C. McCurdy, and G. M. Kapfhammer, “Auto-

matic detection and removal of ineffective mutants for the mutation
analysis of relational database schemas,” Transactions on Software

Engineering, 2019.
[20] E. T. Barr, M. Harman, P. McMinn, M. Shahbaz, and S. Yoo, “The

oracle problem in software testing: A survey,” Transactions on Software

Engineering, vol. 41, no. 5, 2015.
[21] P. McMinn, M. Stevenson, and M. Harman, “Reducing qualitative

human oracle costs associated with automatically generated test data,”
in Proceedings of the International Workshop on Software Test Output

Validation, 2010.
[22] E. Daka, J. M. Rojas, and G. Fraser, “Generating unit tests with

descriptive names or: Would you name your children thing1 and thing2?”
in Proceedings of International Symposium on Software Testing and

Analysis, 2017.

[23] A. Gibson, “Generate test data with DataFactory,”
2011. [Online]. Available: https://www.andygibson.net/blog/article/
generate-test-data-with-datafactory/comment-page-1/

[24] S. Letovsky, “Cognitive processes in program comprehension,” Journal

of Systems and Software, vol. 7, no. 4, 1987.
[25] A. Von Mayrhauser and A. M. Vans, “Program comprehension during

software maintenance and evolution,” Computer, vol. 28, no. 8, 1995.
[26] A. A. Rupp, T. Ferne, and H. Choi, “How assessing reading compre-

hension with multiple-choice questions shapes the construct: A cognitive
processing perspective,” Language Testing, vol. 23, no. 4, 2006.

[27] Y. Ozuru, S. Briner, C. A. Kurby, and D. S. McNamara, “Comparing
comprehension measured by multiple-choice and open-ended questions.”
Canadian Journal of Experimental Psychology, vol. 67, no. 3, 2013.

[28] D. R. Bacon, “Assessing learning outcomes: A comparison of multiple-
choice and short-answer questions in a marketing context,” Journal of

Marketing Education, vol. 25, no. 1, 2003.
[29] “SQL conformance.” [Online]. Available: https://www.postgresql.org/

docs/9.5/static/features.html
[30] DigitalOcean, “SQLite vs MySQL vs PostgreSQL: A comparison of

relational database management systems,” Jul 2017. [Online]. Available:
https://goo.gl/mrZSG4

[31] J. W. Creswell, R. Shope, V. L. Plano Clark, and D. O. Green,
“How interpretive qualitative research extends mixed methods research,”
Research in the Schools, vol. 13, no. 1, 2006.

[32] G. Charness, U. Gneezy, and M. A. Kuhn, “Experimental methods:
Between-subject and within-subject design,” Journal of Economic Be-

havior & Organization, vol. 81, no. 1, 2012.
[33] J. Nielsen, T. Clemmensen, and C. Yssing, “Getting access to what

goes on in people’s heads? Reflections on the think-aloud technique,”
in Proceedings of the 2nd Nordic Conference on Human-Computer

Interaction, 2002.
[34] M. W. van Someren, Y. F. Barnard, and J. A. Sandberg, The think aloud

method: A practical approach to modelling cognitive, 1994.
[35] M. Höst, B. Regnell, and C. Wohlin, “Using students as subjects: A

comparative study of students and professionals in lead-time impact
assessment,” Empirical Software Engineering, vol. 5, no. 3, 2000.

[36] Y. Xia, J. Sun, and D.-G. Chen, “Power and sample size calculations
for microbiome data,” in Statistical Analysis of Microbiome Data with

R, 2018.
[37] “Database language SQL part 2: Foundation (SQL/foundation),”

ANSI/ISO/IEC International Standard – ISO/IEC 9075-2:2011, 2011.
[38] N. Li, Y. Lei, H. R. Khan, J. Liu, and Y. Guo, “Applying combinatorial

test data generation to big data applications,” in Proceedings of the

International Conference on Automated Software Engineering, 2016.
[39] J. M. Rojas, G. Fraser, and A. Arcuri, “Automated unit test generation

during software development: A controlled experiment and think-aloud
observations,” in Proceedings of the International Symposium on Soft-

ware Testing and Analysis, 2015.
[40] G. Grano, S. Scalabrino, H. C. Gall, and R. Oliveto, “An empirical

investigation on the readability of manual and generated test cases,” in
Proctedings of the 26th International Conference on Program Compre-

hension, 2018.
[41] B. Cornelissen, A. Van Deursen, L. Moonen, and A. Zaidman, “Visual-

izing testsuites to aid in software understanding,” in Proceedings of the

11th European Conference on Software Maintenance and Reengineering,
2007.

[42] A. M. Smith, J. J. Geiger, G. M. Kapfhammer, M. Renieris, and G. E.
Marai, “Interactive coverage effectiveness multiplots for evaluating pri-
oritized regression test suites,” in Compendium of the 15th Information

Visualization Conference, 2009.
[43] M. Linares-Vásquez, B. Li, C. Vendome, and D. Poshyvanyk, “Doc-

umenting database usages and schema constraints in database-centric
applications,” in Proceedings of the 25th International Symposium on

Software Testing and Analysis, 2016.
[44] B. Li, C. Vendome, M. Linares-Vásquez, and D. Poshyvanyk, “Aiding

comprehension of unit test cases and test suites with stereotype-based
tagging,” in Proceedings of the 26th International Conference on Pro-

gram Comprehension, 2018.
[45] A. Ahadi, J. Prior, V. Behbood, and R. Lister, “Students’ semantic

mistakes in writing seven different types of SQL queries,” in Proceedings

of the Conference on Innovation and Technology in Computer Science

Education, 2016.
[46] P. Reisner, “Human factors studies of database query languages: A

survey and assessment,” Computing Surveys, vol. 13, no. 1, 1981.



[47] T. Taipalus, M. Siponen, and T. Vartiainen, “Errors and complications in
SQL query formulation,” Transactions on Computing Education, vol. 18,
no. 3, 2018.

[48] J. B. Smelcer, “User errors in database query composition,” International

Journal of Human-Computer Studies, vol. 42, no. 4, 1995.
[49] S. Khalek, B. Elkarablieh, Y. Laleye, and S. Khurshid, “Query-aware

test generation using a relational constraint solver,” in Proceedings of

the International Conference on Automated Software Engineering, 2008.
[50] C. de la Riva, M. J. Suárez-Cabal, and J. Tuya, “Constraint-based test

database generation for SQL queries,” in Proceedings of the Interna-

tional Workshop on the Automation of Software Test, 2010.
[51] C. Binnig, D. Kossmann, and E. Lo, “Multi-RQP: Generating Test

Databases for the Functional Testing of OLTP Applications,” in Pro-

ceedings of the International Workshop on Testing Database Systems,
2008.

[52] D. Chays, Y. Deng, P. G. Frankl, S. Dan, F. I. Vokolos, and E. J. Weyuker,
“An AGENDA for testing relational database applications,” Journal of

Software Testing, Verification and Reliability, vol. 14, no. 1, 2004.
[53] D. R. Slutz, “Massive stochastic testing of SQL,” in Proceedings of the

International Conference on Very Large Data Bases, 1998.
[54] J. Castelein, M. Aniche, M. Soltani, A. Panichella, and A. van Deursen,

“Search-based test data generation for SQL queries,” in Proceedings of

the International Conference on Software Engineering, 2018.
[55] S. R. Clark, J. Cobb, G. M. Kapfhammer, J. A. Jones, and M. J. Harrold,

“Localizing SQL faults in database applications,” in Proceedings of the

International Conference on Automated Software Engineering, 2011.
[56] K. Pan, X. Wu, and T. Xie, “Generating program inputs for database

application testing,” in Proceedings of the International Conference on

Automated Software Engineering, 2011.
[57] E. Lo, C. Binnig, D. Kossmann, M. Tamer Özsu, and W.-K. Hon, “A

framework for testing DBMS features,” The Very Large Data Bases

Journal, vol. 19, no. 2, 2010.
[58] G. M. Kapfhammer and M. L. Soffa, “Database-aware test coverage

monitoring,” in Proceedings of the India Software Engineering Confer-

ence, 2008.
[59] Gregory M. Kapfhammer and Mary Lou Soffa, “A family of test

adequacy criteria for database-driven applications,” in Proceedings of the

International Symposium on the Foundations of Software Engineering,
2003.

[60] K. Houkjær, K. Torp, and R. Wind, “Simple and realistic data gener-
ation,” in Proceedings of the International Conference on Very Large

Data Bases, 2006.
[61] J. Cobb, G. M. Kapfhammer, J. A. Jones, and M. J. Harrold, “Dynamic

invariant detection for relational databases,” in Proceedings of the

International Workshop on Dynamic Analysis, 2011.
[62] C. J. Wright, G. M. Kapfhammer, and P. McMinn, “Efficient mutation

analysis of relational database structure using mutant schemata and par-
allelisation,” in Proceedings of the International Workshop on Mutation

Analysis, 2013.
[63] C. Kinneer, G. M. Kapfhammer, C. J. Wright, and P. McMinn, “Auto-

matically evaluating the efficiency of search-based test data generation
for relational database schemas,” in Proceedings of the International

Conference on Software Engineering and Knowledge Engineering, 2015.
[64] J. Itkonen, M. V. Mantyla, and C. Lassenius, “How do testers do it?

An exploratory study on manual testing practices,” in Proceedings of

the International Symposium on Empirical Software Engineering and

Measurement, 2009.
[65] “NULL handling in SQLite versus other database engines.” [Online].

Available: https://www.sqlite.org/nulls.html
[66] R. Sheldon, “How to get NULLs horribly wrong in SQL Server,”

2016. [Online]. Available: https://www.red-gate.com/simple-talk/sql/
t-sql-programming/how-to-get-nulls-horribly-wrong-in-sql-server/

[67] W. Lam, “The behavior of NULLs in SQL.” [Online]. Available:
http://www-cs-students.stanford.edu/∼wlam/compsci/sqlnulls

[68] M. Winand, “Modern SQL: NULL — purpose, comparisons,
NULL in expressions, mapping to/from NULL.” [Online]. Available:
https://modern-sql.com/concept/null

[69] SQLite Tutorial Website, “SQLite primary key: The ultimate guide
to primary key.” [Online]. Available: http://www.sqlitetutorial.net/
sqlite-primary-key/

[70] S. Stein, G. Milener, C. Guyer, and R. Byham,
“Unique Constraints and Check Constraints.” [Online]. Avail-
able: https://docs.microsoft.com/en-us/sql/relational-databases/tables/
unique-constraints-and-check-constraints?view=sql-server-2017


