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Exact asymptotics of component-wise extrema of
two-dimensional Brownian motion

Krzysztof Dȩbicki1, Lanpeng Ji2,3 and Tomasz Rolski4

Abstract: We derive the exact asymptotics of

P

{
sup
t≥0

(
X1(t)− µ1t

)
> u, sup

s≥0

(
X2(s)− µ2s

)
> u

}
, u → ∞,

where (X1(t), X2(s))t,s≥0 is a correlated two-dimensional Brownian motion with correlation ρ ∈ [−1, 1] and µ1, µ2 >

0. It appears that the play between ρ and µ1, µ2 leads to several types of asymptotics. Although the exponent in

the asymptotics as a function of ρ is continuous, one can observe different types of prefactor functions depending

on the range of ρ, which constitute a phase-type transition phenomena.

Key Words: Two-dimensional Brownian motion; exact asymptotics; component-wise extrema; quadratic pro-

gramming problem; generalised Pickands-Piterbarg constants.

AMS Classification: Primary 60G15; secondary 60G70

1. Introduction

Distributional properties of component-wise extrema of stochastic processes attract growing interest in recent liter-

ature. On one side, it is a natural object of interest in the extreme value theory of random fields. On the other side,

strong motivation to investigate component-wise extrema stems for example from multivariate stochastic models

applied to modern multidimensional risk theory, financial mathematics or advanced communication networks, to

name some of the applied-probability areas.

We consider a standard correlated Brownian motion (X1(t), X2(t))t≥0 with constant correlation ρ ∈ [−1, 1], and

let (X1(t), X2(s))t,s≥0 be its two parameter extension, where

E {X1(t)X2(s)} = ρmin(t, s).

The aim of this paper is to find exact asymptotics of

(1) P (u) := P {Q1 > u,Q2 > u} , u → ∞,

where Qj = supt≥0(Xj(t)− µjt) with µj > 0, j = 1, 2.

Due to its importance in, e.g., quantitative finance or ruin theory, the component-wise maxima

(Q1(T ), Q2(T )) =

(
sup

t∈[0,T ]

(X1(t)− µ1t), sup
s∈[0,T ]

(X2(s)− µ2s)

)
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have been studied extensively; see, e.g., [4, 12, 15, 19, 23, 24]. In particular, some formulas for the joint distribution

of (Q1(T ), Q2(T )) are known. Unfortunately, they are in the form of infinite-sums of integrals of some special

functions, which makes them of limited use in drawing out asymptotic properties of P (u) as u → ∞.

Interestingly, in [15] it was worked out a formula for joint survival function of (Q1(Ep), Q2(Ep)), where Ep is an

independent exponential random variable with parameter p > 0. Vector (Q1(Ep), Q2(Ep)) as well as (Q1, Q2) have

bivariate exponential distribution (BVE) in the sense of the terminology of Kou and Zhong [15], that is: (i) it has

exponential marginals and (ii) it is absolute continuous with respect to two-dimensional Lebesgue measure. The

later property for (Q1, Q2) follows from Theorem 7.1 in [2] combined with the fact that P {Qj = 0} = 0, see also

related Lemma 4.4 in [7]. We remark that requirement (ii) implies that (Q1, Q2) does not belong to the classical

examples of Marshall-Olkin-type BVE; see [18]. Since there are no results in the literature on qualitative properties

of our BVE distribution, as a by-product of the results of this contribution, we analyze the dependence structure

of Q1 and Q2 in an asymptotical sense of Resnick [22]; see Remarks 2.2 (b) and Remarks 2.4 (b) for more details.

We refer also to a related work of Rogers and Shepp [23] who considered correlation structure of (Q1(T ), Q2(T ))

for two Brownian motions without drift.

A need to consider the joint survival function for (Q1, Q2) appeared also in Lieshout and Mandjes [16] who

considered two parallel queues sharing the same Brownian input (which is the case of ρ = 1) and also a Brownian

tandem queue. We refer to [17] for further discussions on Gaussian-related queueing models and to [3, 6] for the

analysis of a related simultaneous ruin problem for the correlated Brownian motion model.

It is worth noting that in recent papers [26, 13], the component-wise maxima in discrete models defined by

( max
1≤i≤n

X1
i , . . . , max

1≤i≤n
Xd

i ),

with (X1
i , . . . , X

d
i ) (i = 1, 2, . . .) independent and identically distributed Gaussian random vectors, were discussed.

The first step in understanding the asymptotics of (1) is to find its logarithmic asymptotics. This was done

recently in [8], in an insurance context, where P (u) was interpreted as the probability of component-wise ruin.

More precisely, by an application of Theorem 1 in [9]

lnP (u)

u
∼ −g(t0)

2
, u → ∞,(2)

where (with t = (t, s)⊤ a column vector and ⊤ denoting the transpose sign)

g(t0) = inf
t>0

inf
x≥1+µ1t

y≥1+µ2s

(x, y) Σ−1
ts (x, y)⊤(3)

and Σ−1
ts is the inverse matrix of Σts =


 t ρ (t ∧ s)

ρ (t ∧ s) s


 , with t ∧ s = min(t, s). The main contribution

of [8] includes the detailed analysis of the two-layer minimisation problem involved in g(t0), which results in an

explicit logarithmic asymptotics of P (u); see also Proposition 3.1 below.

In order to get the exact asymptotics of P (u) as u → ∞, we employ a modification of the double-sum technique,

accommodated to the analysis of multivariate extremes investigated in this contribution; see Theorems 2.1 and

2.3, which constitute the main results of this paper. It appears that the play between ρ and µ1, µ2 leads to several
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types of asymptotics. Although in [8] it was noticed, that the exponent in the asymptotics as a function of ρ, called

therein an adjustment coefficient, is continuous, one can observe different types of prefactor functions depending

on the range of ρ. This phase-type phenomena has no intuitive explanations.

In the rest of the paper we assume that ρ ∈ (−1, 1) and without loss of generality suppose that µ1 ≤ µ2. Note that

for ρ = 1,

P (u) = P

{
sup
s≥0

(X2(s)− µ2s) > u

}
= e−2µ2u, ∀u > 0

and, for ρ = 0,

P (u) = P

{
sup
t≥0

(X1(t)− µ1t) > u

}
P

{
sup
s≥0

(X2(s)− µ2s) > u

}
= e−2(µ1+µ2)u, ∀u > 0.(4)

To work out the case ρ = −1, one can use a result from [25], to show that

P (u) ∼ e−(2µ2+6µ1)u(2I{µ1=µ2} + I{µ1<µ2}), u → ∞,(5)

where I{·} is the indicator function.

The rest of this paper is organised as follows. In Section 2, we present the exact asymptotics of P (u), given in

Theorems 2.1, 2.3. Section 3 recalls the explicit expressions for g(t0) and t0 derived in [8]. The main lines of proofs

are displayed in Section 4 and Section 5, respectively, followed by the Appendix consisting of technical calculations.

We conclude this section by showing some notation and conventions used in this work. All vectors here are 2-

dimensional column vectors written in bold letters. For instance α = (α1, α2)
⊤. Operations with vectors are

meant component-wise, so λx = xλ = (λx1, λx2)
⊤ for any λ ∈ R,x ∈ R

2. For any set D ⊆ [0,∞)2, any λ > 0 and

any (a1, a2) ∈ [0,∞)2 denote

λD = {(λt, λs) : (t, s) ∈ D}, (a1, a2) +D = {(a1 + t, a2 + s) : (t, s) ∈ D}.

Next, let us briefly mention the following standard notation for two given positive functions f(·) and h(·). We write

f(x) = h(x)(1+o(1)) or simply f(x) ∼ h(x), if limx→a f(x)/h(x) = 1 (a ∈ R∪{∞}). Further, write f(x) = o(h(x))

if limx→a f(x)/h(x) = 0, and write f(x) . h(x) if limx→a f(x)/h(x) ≤ 1.

2. Main results

In this section we present the exact asymptotics of P (u), for which we need some additional notation. First, define

ρ̂1 =
µ1 + µ2 −

√
(µ1 + µ2)2 − 4µ1(µ2 − µ1)

4µ1
∈ [0,

1

2
), ρ̂2 =

µ1 + µ2

2µ2
.(6)

These are key points, based on which we consider different scenarios of ρ. Next, let

Σ∗ =


 t∗ ρs∗

ρs∗ s∗


 , b∗ = (1 + µ1t

∗, 1 + µ2s
∗)⊤,(7)

with

t∗ = t∗(ρ) = s∗ = s∗(ρ) :=

√
2(1− ρ)

µ2
1 + µ2

2 − 2ρµ1µ2
.(8)
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Moreover, denote, for any fixed T, S > 0,

△T,S = {(t, s) : t ∈ [0, T ], s ∈ [t, t+ S]} ∪ {(t, s) : s ∈ [0, T ], t ∈ [s, s+ S]},(9)

and define

H(T, S) :=

∫

R2

ex
⊤Σ−1

∗ b∗P



 ∃

(t,s)∈△T,S

X1(t)− µ1t > x1

X2(s)− µ2s > x2



 dx1dx2 ∈ (0,∞),

where the finiteness can be proved by following a standard argument in proving the finiteness of Pickands and

Piterbarg type constants; see, e.g., [20] (or Lemma 4.2 in [3]). Interestingly, a new Pickands-Piterbarg constant

H̃ := lim
S→∞

lim
T→∞

1

T
H(T, S) ∈ (0,∞)

appears in the scenario ρ̂1 < ρ < ρ̂2; the existence, finiteness and positiveness of this constant are proved in

Theorem 2.1 below.

We split the statement of the main results on the exact asymptotics into two scenarios: µ1 < µ2 and µ1 = µ2

respectively.

Theorem 2.1. Suppose that µ1 < µ2. We have, as u → ∞,

P (u) ∼





e−2(µ2+(1−2ρ)µ1)u, if −1 < ρ < ρ̂1;

1
2 e−2(µ2+(1−2ρ̂1)µ1)u, if ρ = ρ̂1;

H̃
√
t∗

2
√

π(1−ρ)
u−1/2e−

µ1+µ2+2/t∗
1+ρ u, if ρ̂1 < ρ < ρ̂2;

e−2µ2u, if ρ̂2 < ρ < 1,

where

0 <
t∗µ⊤Σ−1

∗ b∗

16
∏2

i=1(Σ
−1
∗ b∗)i

< H̃ < ∞.

Remarks 2.2. (a). It turns out that the special scenario ρ = ρ̂2 is of different nature than the scenarios analyzed

in Theorem 2.1. Note that in this case we have b1 = b2 = 0 in Lemma A.1, which implies that around its optimizing

point (t∗, s∗) = (1/µ2, 1/µ2) function g(t, s) defined in Section 3 takes different form than for other scenarios. This

makes its analysis go out of the approach that works for the other scenarios. In Section 4.4, following the same

lines of reasoning as given in the proof of case ρ̂2 < ρ < 1 in Theorem 2.1, we find the following bounds for the

case of ρ = ρ̂2

1

2
e−2µ2u . P (u) . e−2µ2u, as u → ∞.(10)

(b). It follows from Theorem 2.1 and (5) that for any −1 ≤ ρ < ρ̂2

P {Q1(∞) > u|Q2(∞) > u} =
P {Q1(∞) > u,Q2(∞) > u}

P {Q2(∞) > u} → 0, u → ∞.

According to the terminology from [22], this means that Q1(∞) is asymptotically independent of Q2(∞). Similarly,

one can see that Q2(∞) is also asymptotically independent of Q1(∞) (note that the notion of asymptotically

independence is not symmetric). Furthermore, for ρ̂2 ≤ ρ ≤ 1, we have that Q2(∞) is asymptotically independent

of Q1(∞), but Q1(∞) is asymptotically dependent of (equivalent to) Q2(∞).
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Next we give the result for the case where µ := µ1 = µ2. In this case, we have t∗ = s∗≡1/µ and

H̃ := lim
S→∞

lim
T→∞

1

T

∫

R2

e
2µ
1+ρ (x1+x2)

P



 ∃

(t,s)∈△T,S

X1(t)− µt > x1

X2(s)− µs > x2



 dx1dx2.

Theorem 2.3. Suppose that µ1 = µ2. We have, as u → ∞,

P (u) ∼





2 e−4(1−ρ)µu, if −1 < ρ < 0;

e−4µu, if ρ = 0;

H̃
2
√

πµ(1−ρ)
u−1/2e−

4µ
1+ρu, if 0 < ρ < 1,

where (1 + ρ)/16 < H̃ < ∞.

Remarks 2.4. (a). Note that comparing scenario −1 < ρ < 0 of Theorem 2.3 with −1 < ρ < ρ̂1 of Theorem 2.1,

there is an additional 2 appearing in the asymptotics. The reason for this is that there are two equally important

minimizers of g(t, s), (t, s) ∈ (0,∞)2 in the case of µ1 = µ2.

(b). For any −1 < ρ < 1, we have that Q1(∞) and Q2(∞) are mutually asymptotically independent.

3. Analysis of the two-layer minimization problem

In this section, for completeness and for reference we recall some notation and the result on the two-layer mini-

mization problem (3) derived in [8]. Recall that

g(t, s) := inf
x≥1+µ1t

y≥1+µ2s

(x, y) Σ−1
ts (x, y)⊤, t, s > 0.

Function g(t, s) has a natural interpretation as g−1(t, s) plays the same role as variance of one-dimensional centered

normal random variable, in the sense that according to [10]

lnP
{
X1(t) > (1 + µ1t)

√
u,X2(s) > (1 + µ2s)

√
u
}
∼ −g(t, s)

2
u, u → ∞;

see also (15) below. Properties of g(t, s) play crucial role for the asymptotics of P (u) as u → ∞. In particular, as

mentioned above we know that

lnP (u) ∼ −g(t0)

2
u,

where g(t0) = inf(t,s)∈(0,∞)2 g(t, s). We refer to [9] for more detailed and general discussions on the logarithmic

asymptotics of supremas of multidimensional Gaussian processes and fields. We refer also to [3, 7] for analogs of

generalized variance function in the context of extremes of vector-valued Gaussian processes.

For the exact asymptotics of P (u) as u → ∞, the local behaviour of g(t, s) around point t0 has to be analyzed.

For this we define for t, s > 0 the following functions:

g1(t) =
(1 + µ1t)

2

t
, g2(s) =

(1 + µ2s)
2

s
,

g3(t, s) = (1 + µ1t, 1 + µ2s) Σ
−1
ts (1 + µ1t, 1 + µ2s)

⊤.

Since t ∧ s appears in the above formula, we shall consider a partition of the quadrant (0,∞)2, namely

(0,∞)2 = A ∪ L ∪B, A = {s < t}, L = {s = t}, B = {s > t}.(11)
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For convenience we denote A = {s ≤ t} = A ∪ L and B = {s ≥ t} = B ∪ L. Hereafter, all sets are defined on

(0,∞)2, so (t, s) ∈ (0,∞)2 will be omitted.

Note that g3(t, s) can be represented in the following two different forms:

g3(t, s) =





gA(t, s) :=
(1+µ1t)

2s−2ρs(1+µ1t)(1+µ2s)+(1+µ2s)
2t

ts−ρ2s2 , if (t, s) ∈ A

gB(t, s) :=
(1+µ1t)

2s−2ρt(1+µ1t)(1+µ2s)+(1+µ2s)
2t

ts−ρ2t2 , if (t, s) ∈ B
(12)

=





(1+µ2s)
2

s + ((1+µ1t)−ρ(1+µ2s))
2

t−ρ2s , if (t, s) ∈ A

(1+µ1t)
2

t + ((1+µ2s)−ρ(1+µ1t))
2

s−ρ2t , if (t, s) ∈ B.
(13)

Denote further

gL(s) := gA(s, s) = gB(s, s) =
(1 + µ1s)

2 + (1 + µ2s)
2 − 2ρ(1 + µ1s)(1 + µ2s)

(1− ρ2)s
, s > 0.(14)

The following result gives a full analysis of the two-layer minimization problem (3), which is crucial for our derivation

of the exact asymptotics of P (u). We refer to [8] for its detailed proof.

Proposition 3.1. (i). Suppose that −1 < ρ < 0.

For µ1 < µ2 we have

g(t0) = gA(tA, sA) = 4(µ2 + (1− 2ρ)µ1),

where, (tA, sA) = (tA(ρ), sA(ρ)) :=
(

1−2ρ
µ1

, 1
µ2−2µ1ρ

)
∈ A is the unique minimizer of g(t, s), (t, s) ∈ (0,∞)2.

For µ1 = µ2 =: µ we have

g(t0) = gA(tA, sA) = gB(tB , sB) = 8(1− ρ)µ,

where (tA, sA) =
(

1−2ρ
µ , 1

(1−2ρ)µ

)
, (tB , sB) :=

(
1

(1−2ρ)µ ,
1−2ρ
µ

)
∈ B are the only two minimizers of g(t, s), (t, s) ∈

(0,∞)2.

(ii). Suppose that 0 ≤ ρ < ρ̂1. We have

g(t0) = gA(tA, sA) = 4(µ2 + (1− 2ρ)µ1),

where (tA, sA) is the unique minimizer of g(t, s), (t, s) ∈ (0,∞)2.

(iii). Suppose that ρ = ρ̂1. We have

g(t0) = gA(tA, sA) = 4(µ2 + (1− 2ρ)µ1),

where (tA, sA) = (tA(ρ̂1), sA(ρ̂1)) = (t∗(ρ̂1), s∗(ρ̂1)) ∈ L, is the unique minimizer of g(t, s), (t, s) ∈ (0,∞)2,

with (t∗, s∗) = (t∗(ρ̂1), s∗(ρ̂1)) defined in (8).

(iv). Suppose that ρ̂1 < ρ < ρ̂2. We have

g(t0) = gA(t
∗, s∗) = gL(t

∗) =
2

1 + ρ
(µ1 + µ2 + 2/t∗),

where (t∗, s∗) = (t∗(ρ), s∗(ρ)) ∈ L is the unique minimizer of g(t, s), (t, s) ∈ (0,∞)2.
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(v). Suppose that ρ = ρ̂2. We have t∗(ρ̂2) = s∗(ρ̂2) = 1/µ2, and

g(t0) = gA(1/µ2, 1/µ2) = gL(1/µ2) = g2(1/µ2) = 4µ2,

where the minimum of g(t, s), (t, s) ∈ (0,∞)2 is attained at (1/µ2, 1/µ2), with g3(1/µ2, 1/µ2) = g2(1/µ2),

and 1/µ2 is the unique minimizer of g2(s), s ∈ (0,∞).

(vi). Suppose that ρ̂2 < ρ < 1. We have

g(t0) = inf
(t,s)∈D2

g2(s) = g2(1/µ2) = 4µ2,

where the minimum of g(t, s), (t, s) ∈ (0,∞)2 is attained when g(t, s) = g2(s).

4. Proof of Theorem 2.1

Note that, by a change of variables and the self-similarity of Brownian motion,

P (u) = P {∃t,s>0 (X1(ut) > (1 + µ1t)u, X2(us) > (1 + µ2s)u)}

= P
{
∃(t,s)∈(0,∞)2 (X1(t) > (1 + µ1t)

√
u, X2(s) > (1 + µ2s)

√
u)
}
,(15)

and recall the notation for the optimizer points (tA, sA) as introduced in Proposition 3.1.

The proof of Theorem 2.1 will be presented in the order of cases (i) −1 < ρ < ρ̂1, (ii) ρ̂1 < ρ < ρ̂2, (iii) ρ = ρ̂1,

(iv) ρ̂2 ≤ ρ < 1 in the following subsections.

For each of these cases (particularly for cases (i)-(iii)), we employ a modification of the double-sum technique. The

idea here is first to split the region (0,∞)2 into several subregions; see sections Splitting on subregions below. Then

we can show that the main contributor to the exact asymptotics of P (u) is the maxima on a small, appropriately

chosen region which includes the optimizer point (tA, sA) or (t∗, s∗), since the contributions of the maxima on

other regions are negligible; see sections Upper bounds and estimates. The derivation of the asymptotics for the

contributing region follows by an application of the double-sum method, where we use that asymptotically the

probability of interest behaves as a sum of tail probabilities of maxima over sets of even smaller size, which in the

literature on extremes of Gaussian processes is referred to as the Pickands’ size.

4.1. (i) Scenario −1 < ρ < ρ̂1.

4.1.1. Splitting on subregions. We first split the region (0,∞)2 into the following two parts:

U1 := [tA − θ0, tA + θ0]× [sA − θ0, sA + θ0] ⊂ A. U2 := (0,∞)2 \ U1,

where θ0 > 0 is some small constant which can be identified later on. It follows from (15) that

P0(u) := P
{
∃(t,s)∈U1

X1(t) >
√
u(1 + µ1t), X2(s) >

√
u(1 + µ2s)

}

≤ P (u) ≤ P
{
∃(t,s)∈U1

X1(t) >
√
u(1 + µ1t), X2(s) >

√
u(1 + µ2s)

}
(16)

+P
{
∃(t,s)∈U2

X1(t) >
√
u(1 + µ1t), X2(s) >

√
u(1 + µ2s)

}

=: P0(u) + r0(u)
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Furthermore, we have, for all large u,

p(u) ≤ P0(u) ≤ p(u) + r1(u),(17)

where

p(u) := P

{
∃
(t,s)∈△(1)

u ×△(2)
u

X1(t) >
√
u(1 + µ1t), X2(s) >

√
u(1 + µ2s)

}
,

r1(u) := P

{
∃
(t,s)∈U1\△(1)

u ×△(2)
u

X1(t) >
√
u(1 + µ1t), X2(s) >

√
u(1 + µ2s)

}
,

with

△(1)
u =

[
tA − ln(u)√

u
, tA +

ln(u)√
u

]
, △(2)

u =

[
sA − ln(u)√

u
, sA +

ln(u)√
u

]
.

Next, we further split the rectangle △(1)
u × △(2)

u into smaller rectangles. To this end, we denote, for any fixed

T, S > 0

△(1)
j;u = △(1)

j;u(T ) = [tA + jTu−1, tA + (j + 1)Tu−1], −N (1)
u ≤ j ≤ N (1)

u ,

△(2)
l;u = △(2)

l;u (S) = [sA + lSu−1, sA + (l + 1)Su−1], −N (2)
u ≤ l ≤ N (2)

u ,

where N
(1)
u = ⌊T−1 ln(u)

√
u⌋, N (2)

u = ⌊S−1 ln(u)
√
u⌋ (we denote by ⌊a⌋ the smallest integer that is larger than a).

Define

pj,l;u = P

{
∃
(t,s)∈△(1)

j;u×△(2)
l;u

X1(t) >
√
u(1 + µ1t), X2(s) >

√
u(1 + µ2s)

}

and

pj,l1,l2;u = P

{
∃
t∈△(1)

j;u
X1(t) >

√
u(1 + µ1t), ∃s∈△(2)

l1;u

X2(s) >
√
u(1 + µ2s), ∃s∈△(2)

l2;u

X2(s) >
√
u(1 + µ2s)

}

pj1,j2,l;u = P

{
∃
t∈△(1)

j1;u
X1(t) >

√
u(1 + µ1t), ∃t∈△(1)

j2;u
X1(t) >

√
u(1 + µ1t), ∃s∈△(2)

l;u

X2(s) >
√
u(1 + µ2s)

}
.

We have from the generalized Bonferroni’s inequality (see Lemma A.2 in Appendix A)

p1(u) ≥ p(u) ≥ p2(u)−Π1(u)−Π2(u),(18)

where

p1(u) =

N(1)
u∑

j=−N
(1)
u

N(2)
u∑

l=−N
(2)
u

pj,l;u, p2(u) =

N(1)
u −1∑

j=−N
(1)
u +1

N(2)
u −1∑

l=−N
(2)
u +1

pj,l;u,

Π1(u) =

N(1)
u∑

j=−N
(1)
u

∑

−N
(2)
u ≤l1<l2≤N

(2)
u

pj,l1,l2;u, Π2(u) =

N(2)
u∑

l=−N
(2)
u

∑

−N
(1)
u ≤j1<j2≤N

(1)
u

pj1,j2,l;u.
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4.1.2. Upper bounds and estimates. In what follows, we shall derive upper bounds for r0(u), r1(u) in Lemma 4.1,

the exact asymptotics of p1(u), p2(u) in Lemma 4.2 and asymptotic behaviour for Π1(u),Π2(u) in Lemma 4.3. The

proofs of the lemmas are displayed in Appendix A. Recall that we assume −1 < ρ < ρ̂1.

Lemma 4.1. For any chosen small θ0 > 0, we have, for all large u,

r0(u) ≤ e−
(
√

u−C0)2

2 ĝ, with ĝ = inf
(t,s)∈U2

g(t, s) > gA(tA, sA),

r1(u) ≤ C1u
3/2e−

u
2 gA(tA,sA)−K1(ln(u))

2

hold for some constants C0, C1,K1 > 0 not depending on u.

Below we discuss the asymptotics of p1(u), p2(u). Define

H(µ;T ) :=

∫

R

e2µx1P
{
∃t∈[0,T ] B1(t)− µt > x1

}
dx1.

Lemma 4.2. We have, as u → ∞,

p1(u) ∼ p2(u) ∼
H(µ1;T )H(µ2 − 2µ1ρ;S)

TS

1

µ1(µ2 − 2µ1ρ)
e−

gA(tA,sA)

2 u.

The last lemma is concerned with the asymptotic behaviour of Π1(u),Π2(u).

Lemma 4.3. It holds that

lim sup
S→∞

lim sup
T→∞

lim
u→∞

Π1(u)

exp(−gA(tA, sA)u/2)
= lim sup

S→∞
lim sup
T→∞

lim
u→∞

Π2(u)

exp(−gA(tA, sA)u/2)
= 0.

4.1.3. Asymptotics of P (u). By Lemmas 4.1, 4.2, 4.3 applied to (16) - (18) we obtain that

P (u) ∼ lim
S→∞

lim
T→∞

H(µ1;T )H(µ2 − 2µ1ρ;S)

TS

1

µ1(µ2 − 2µ1ρ)
e−

gA(tA,sA)

2 u = e−
gA(tA,sA)

2 u,

where we used that, for any µ > 0

H(µ) := lim
T→∞

1

T
H(µ;T ) = µ,(19)

see, e.g., [3]. Hence, using that gA(tA, sA) = 4(µ2 + (1 − 2ρ)µ1) (see (i)-(ii) of Proposition 3.1) we conclude the

proof for scenario −1 < ρ < ρ̂1 in Theorem 2.1. �

4.2. (ii) Scenario ρ̂1 < ρ < ρ̂2.

4.2.1. Splitting on subregions. We split the region (0,∞)2 into five pieces as shown in Figure 1 (left). Namely, with

some small θ0 > 0 and u large, let

D0 = {(t, s) : t∗ − ln(u)/
√
u ≤ t ≤ t∗ + ln(u)/

√
u, 0 ≤ s− t ≤ ln(u)2/u} ∪

{(t, s) : s∗ − ln(u)/
√
u ≤ s ≤ s∗ + ln(u)/

√
u, 0 ≤ t− s ≤ ln(u)2/u},

D2 = {(t, s) : t∗ + ln(u)/
√
u ≤ t ≤ t∗ + θ0, s∗ + ln(u)/

√
u ≤ s ≤ s∗ + θ0, },

D3 = {(t, s) : s∗ − ln(u)/
√
u ≤ s ≤ s∗ + ln(u)/

√
u, s+ ln(u)2/u ≤ t ≤ t∗ + θ0, },

D4 = {(t, s) : t∗ − ln(u)/
√
u ≤ t ≤ t∗ + ln(u)/

√
u, t+ ln(u)2/u ≤ s ≤ s∗ + θ0, },

D1 = [t∗ − θ0, t
∗ + θ0]× [s∗ − θ0, s

∗ + θ0] \ (D0 ∪D2 ∪D3 ∪D4),
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s∗

t∗

s∗ − θ0 s∗ + θ0

t∗ − θ0

t∗ + θ0

ln(u)2/u

D̃1

D̃2D̃3

D̃4
ln(u)/

√
u

D̃0

D̃5

s

t

s∗

t∗

s∗ − θ0 s∗ + θ0

t∗ − θ0

t∗ + θ0

ln(u)2/u

D1

D2D3

D4
ln(u)/

√
u

D0

D5

s

Figure 1. Partition of (0,∞)2: Left for ρ̂1 < ρ < ρ̂2; right for ρ = ρ̂1

D5 = (0,∞)2 \ [t∗ − θ0, t
∗ + θ0]× [s∗ − θ0, s

∗ + θ0].

Clearly, we have the following bounds

p(u) ≤ P (u) ≤ p(u) + r1(u) + r2(u) + r3(u),(20)

where

p(u) := P
{
∃(t,s)∈D0

X1(t) >
√
u(1 + µ1t), X2(s) >

√
u(1 + µ2s)

}
,

r1(u) := P
{
∃(t,s)∈D5

X1(t) >
√
u(1 + µ1t), X2(s) >

√
u(1 + µ2s)

}
,

r2(u) := P
{
∃(t,s)∈D1∪D2

X1(t) >
√
u(1 + µ1t), X2(s) >

√
u(1 + µ2s)

}
,

r3(u) := P
{
∃(t,s)∈D3∪D4

X1(t) >
√
u(1 + µ1t), X2(s) >

√
u(1 + µ2s)

}
.

Next, we consider a further partition of D0. Recall △T,S given in (9). Denote, for any T, S > 0 and u > 0,

△(1)
j;u = △(1)

j;u(T ) = [t∗ + jTu−1, t∗ + (j + 1)Tu−1], −N (1)
u ≤ j ≤ N (1)

u ,

△(2)
l;u = △(2)

l;u (S) = [lSu−1, (l + 1)Su−1], 1 ≤ l ≤ N (2)
u ,

where N
(1)
u = ⌊T−1 ln(u)

√
u⌋, N (2)

u = ⌊S−1 ln(u)2⌋. Define further

pj;u := P

{
∃(t,s)∈(t∗+ jT

u ,s∗+ jT
u )+u−1△T,S

X1(t) >
√
u(1 + µ1t), X2(s) >

√
u(1 + µ2s)

}
,

pj,l;u := P

{
∃
t∈△(1)

j;u,s−t∈△(2)
l;u

X1(t) >
√
u(1 + µ1t), X2(s) >

√
u(1 + µ2s)

}
,

pj,l;u := P

{
∃
s∈△(1)

j;u,t−s∈△(2)
l;u

X1(t) >
√
u(1 + µ1t), X2(s) >

√
u(1 + µ2s)

}
,

and

qj1,j2;u = P





∃
(t,s)∈(t∗+

j1T
u ,s∗+

j1T
u )+u−1△T,S

X1(t) >
√
u(1 + µ1t), X2(s) >

√
u(1 + µ2s)

∃
(t,s)∈(t∗+

j2T
u ,s∗+

j2T
u )+u−1△T,S

X1(t) >
√
u(1 + µ1t), X2(s) >

√
u(1 + µ2s)



 .
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Thus, it follows from the Bonferroni’s inequality that

Π1(u) + Π1(u) + p1(u) ≥ p(u) ≥ p2(u)−Π21(u)−Π22(u),(21)

where

p1(u) =

N(1)
u∑

j=−N
(1)
u

pj;u, p2(u) =

N(1)
u −1∑

j=−N
(1)
u +1

pj;u, Π1(u) =

N(1)
u∑

j=−N
(1)
u

∑

1≤l≤N
(2)
u

pj,l;u,

Π1(u) =

N(1)
u∑

j=−N
(1)
u

∑

1≤l≤N
(2)
u

pj,l;u, Π21(u) :=

N(1)
u∑

j1=−N
(1)
u

∑

j2>j1+1

qj1,j2;u, Π22(u) :=

N(1)
u∑

j1=−N
(1)
u

qj1,j1+1;u.

4.2.2. Upper bounds and estimates. In what follows, we shall derive upper bounds for ri(u), i = 1, 2, 3 in Lemma

4.4, the exact asymptotics of p1(u), p2(u) in Lemma 4.5 and asymptotic behaviour for Π1(u),Π1(u),Π21(u),Π22(u)

in Lemma 4.7. The proofs of the lemmas are displayed in Appendix A.

Lemma 4.4. For any chosen small θ0 > 0, we have, for all large u,

r1(u) ≤ e−
(
√

u−C1)2

2 ĝ, ĝ = inf
(t,s)∈D5

g(t, s) > gL(t
∗),

r2(u) ≤ C2u
3/2e−

u
2 gL(t∗)−K2(ln(u))

2

,

r3(u) ≤ C3u
3/2e−

u
2 gL(t∗)−K3(ln(u))

2

hold for some constants C1, C2, C3,K2,K3 > 0 not depending on u.

Lemma 4.5. For any T, S > 0, we have, as u → ∞,

p1(u) ∼ p2(u) ∼
H(T, S)

T

√
t∗

2
√

π(1− ρ)
u−1/2 e−

ugL(t∗)

2 .

Below, we show, for any fixed S > 0, the sub-additivity property of H(T, S) as a function of T > 0.

Lemma 4.6. Let S > 0 be fixed, we have for any T1, T2 > 0

H(T1 + T2, S) ≤ H(T1, S) +H(T2, S)

and further,

0 <
t∗µ⊤Σ−1

∗ b∗

16
∏2

i=1(Σ
−1
∗ b∗)i

< lim
T→∞

1

T
H(T, S) = inf

T>0

1

T
H(T, S) < ∞.

The last lemma gives some asymptotic results for Π1(u),Π1(u),Π21(u),Π22(u).

Lemma 4.7. For any T > S > 1,

lim
u→∞

max(Π1(u),Π1(u))

u−1/2 exp(−gL(t∗)u/2)
≤ C0⌊S⌋

∑

l≥1

e−K0lS ,

lim
u→∞

Π21(u)

u−1/2 exp(−gL(t∗)u/2)
≤ C1(S)⌊T ⌋

∑

l≥1

e−K1lT ,

and

lim
u→∞

Π22(u)

u−1/2 exp(−gL(t∗)u/2)
=

√
t∗

2
√

π(1− ρ)

(
2H(T, S)

T
− H(2T, S)

T

)
,
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where C0,K0,K1 > 0 are three constants which do not dependent on T, S, u, and C1(S) does not dependent on T, u.

4.2.3. Asymptotics of P (u). Combining (20)-(21) and the results in Lemmas 4.4, 4.5 and 4.7, yields that, for any

large T1, T2, S1, S2 such that Si < Ti, i = 1, 2,
√
t∗

2
√

π(1− ρ)

H(T1, S1)

T1
+ 2C0⌊S1⌋

∑

l≥1

e−K0lS1

≥ lim sup
u→∞

P (u)

u−1/2 exp(−gL(t∗)u/2)
≥ lim inf

u→∞
P (u)

u−1/2 exp(−gL(t∗)u/2)

≥
√
t∗

2
√

π(1− ρ)

H(T2, S2)

T2
− C1(S2)⌊T2⌋

∑

k≥1

e−K1kT2 −
√
t∗

2
√

π(1− ρ)

(
2H(T2, S2)

T2
− H(2T2, S2)

T2

)
.

Letting first T2 → ∞ and then S2 → ∞, we have from the above formula, (19) and Lemma 4.6 that

lim
S→∞

lim
T→∞

H(T, S)

T
∈ (0,∞).

The proof for scenario ρ̂1 < ρ < ρ̂2 in Theorem 2.1 follows then by letting T1 → ∞ and then S1 → ∞, and (iv) of

Proposition 3.1. �

4.3. (iii) Scenario ρ = ρ̂1. Since the idea of the proof of this case is similar to that of scenarios (i) and (ii), we

present only main steps. We split the region (0,∞)2 into five pieces as shown in Figure 1 (right). Namely, with

some small θ0 > 0 and u large, let

D̃0 = {(t, s) : t∗ − ln(u)/
√
u ≤ t ≤ t∗ + ln(u)/

√
u, 0 ≤ s− t ≤ ln(u)2/u} ∪

{(t, s) : s∗ − ln(u)/
√
u ≤ s ≤ s∗ + ln(u)/

√
u, s < t ≤ t∗ + ln(u)/

√
u} =: D̃0B ∪ D̃0A,

D̃3 = {(t, s) : s∗ − θ0 ≤ s ≤ s∗ + θ0, s < t ≤ t∗ + θ0} \ D̃0A,

D̃1 = D1 ∩B, D̃2 = D2 ∩B, D̃4 = D4, D̃5 = D5.

Clearly, we have the following bounds

p(u) ≤ P (u) ≤ p(u) + r̃0(u) + r̃1(u) + r̃2(u),(22)

where

p(u) := P

{
∃(t,s)∈D̃0A

X1(t) >
√
u(1 + µ1t), X2(s) >

√
u(1 + µ2s)

}
,

r̃0(u) := P

{
∃(t,s)∈D̃0B

X1(t) >
√
u(1 + µ1t), X2(s) >

√
u(1 + µ2s)

}
,

r̃1(u) := P

{
∃(t,s)∈D̃1∪D̃2∪D̃4∪D̃5

X1(t) >
√
u(1 + µ1t), X2(s) >

√
u(1 + µ2s)

}
,

r̃2(u) := P

{
∃(t,s)∈D̃3

X1(t) >
√
u(1 + µ1t), X2(s) >

√
u(1 + µ2s)

}
.

Similar arguments as used in scenarios (i), (ii) give that

lim
u→∞

p(u)

exp (−gA(tA, sA)u/2)
=

µ
3/2
1 (µ2 − 2µ1ρ)

2

2π
√
µ2 − 2(µ1 + µ2)ρ+ 3µ1ρ2

∫

R

∫ ∞

x2

e
−(a1x2

1−2a2x1x2+a3x2
2)

4 dx1dx2,(23)

and

lim
u→∞

r̃0(u)

u−1/2 exp (−gA(tA, sA)u/2)
≤ H̃

√
t∗

2
√
π(1− ρ)

,(24)
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and the asymptotically negligibility of r̃1(u), r̃2(u). Note that in proving the bound for r̃2(u), in addition to (33)

as in the proof of Lemma 4.1, we also need the fact that (for t > s)

gA(tA + t, sA + s) ≥ gA(tA, sA) +
a1
2
(1− ε)

((
t+

µ2 − 2µ1ρ

µ1
ρs

)2

+

(
(µ2 − 2µ1ρ)

3(µ2 − 2(µ1 + µ2)ρ+ 3µ1ρ
2)

µ3
1

)
s2

)
.

Consequently, the claim follows by formulas (22)-(24) and the asymptotically negligibility of r̃1(u), r̃2(u). This

completes the proof of scenario ρ = ρ̂1 in Theorem 2.1. �

4.4. (iv) Scenario ρ̂2 ≤ ρ < 1. First note that

e−2µ2u = P

{
sup
s≥0

(X2(s)− µ2s) > u

}
≥ P (u) ≥ P {∃t≥0 X1(t)− µ1t > u, X2(t)− µ2t > u} =: π(u).

Furthermore, the exact asymptotics for π(u) has been discussed in Corollary 4.3 in [14] (where we take r = 0).

Thus, we have, for ρ = ρ̂2,

π(u) ∼ 1

2
e−2µ2u, u → ∞,

and for ρ̂2 < ρ < 1,

π(u) ∼ e−2µ2u, u → ∞.

Therefore, the claims in scenario ρ̂2 < ρ < 1 of Theorem 2.1 and ρ̂2 = ρ in (a) of Remark 2.2 follow. �

5. Proof of Theorem 2.3

For µ1 = µ2 = µ, we have that ρ̂1 = 0, ρ̂2 = 1. The case ρ = 0 follows from (4). Thus the interesting scenarios

include (i) −1 < ρ < 0 and (ii) 0 < ρ < 1. The claim for (ii) 0 < ρ < 1 follows directly from (iii) in Theorem 2.1,

with t∗ = 1/µ. Next, we shall focus on the proof for (i) −1 < ρ < 0. The proof goes with the same arguments as in

the proof of scenario (i) in Theorem 2.1, but now there are two minimizers of the function g(t, s), (t, s) ∈ (0,∞)2,

namely, (tA, sA) = (t0, s0) ∈ A, (tB , sB) = (s0, t0) ∈ B, with t0 = 1−2ρ
µ , s0 = 1

(1−2ρ)µ .

We first split the region (0,∞)2 into three parts. Namely, with some small θ0 > 0, let

U11 = [t0 − θ0, t0 + θ0]× [s0 − θ0, s0 + θ0] ⊂ A,

U12 = [s0 − θ0, s0 + θ0]× [t0 − θ0, t0 + θ0] ⊂ B,

U2 = (0,∞)2 \ (U11 ∪ U12).

As in the proof of scenario (i) of Theorem 2.1, the main contribution of the asymptotics comes from U11 ∪ U12.

Note further that

P
{
∃(t,s)∈(U11∪U12) X1(t) >

√
u(1 + µ1t), X2(s) >

√
u(1 + µ2s)

}

= P
{
∃(t,s)∈U11

X1(t) >
√
u(1 + µ1t), X2(s) >

√
u(1 + µ2s)

}

+P
{
∃(t,s)∈U12

X1(t) >
√
u(1 + µ1t), X2(s) >

√
u(1 + µ2s)

}
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−P





∃(t1,s1)∈U11
X1(t1) >

√
u(1 + µ1t1), X2(s1) >

√
u(1 + µ2s1)

∃(t2,s2)∈U12
X1(t2) >

√
u(1 + µ1t2), X2(s2) >

√
u(1 + µ2s2)





=: Pθ0,1(u) + Pθ0,2(u)− Pθ0,0(u).

By symmetric property of the model we know that Pθ0,1(u) = Pθ0,2(u). Next, we show in Lemma 5.1 that Pθ0,0(u)

is asymptotically negligible compared with Pθ0,1(u). The proof of it is displayed in Appendix A.

Lemma 5.1. For any chosen small θ0 > 0, we have for all large u

Pθ0,0(u) ≤ e
− (

√
u−C0)2gA(tA,sA)

2σ2
0

holds for some constant C0 > 0, σ2
0 ∈ (0, 1) which do not depend on u.

The rest of the proof is the same as those in the proof of scenario (i) in Theorem 2.1, and thus omitted. This

completes the proof. �

Appendix A. Proofs of Lemmas 4.1-5.1

In this section we give proofs of Lemmas 4.1-5.1 that are the building blocks of the proofs of Theorems 2.1 and 2.3.

We begin with the analysis of the local behaviour of function g(t, s), (t, s) ∈ (0,∞) at its minimizer in scenarios

(i)–(iv) of Proposition 3.1, respectivelly.

Lemma A.1. Assume that µ1 < µ2. We have

(i). If −1 < ρ < ρ̂1, then as (t, s) → (0, 0),

g(tA + t, sA + s) = gA(tA, sA) +
a1
2
t2(1 + o(1))− a2ts(1 + o(1)) +

a3
2
s2(1 + o(1)),

where, with h(ρ) := µ2 − 2(µ1 + µ2)ρ+ 3µ1ρ
2 > 0,

a1 :=
2µ3

1(µ2 − 2µ1ρ)

h(ρ)
> 0, a2 :=

−2ρµ2
1(µ2 − 2µ1ρ)

2

h(ρ)
, a3 :=

2(µ2 − 2µ1ρ)
4(1− 2ρ)

h(ρ)
> 0.

(ii). If ρ̂1 < ρ < ρ̂2, then

– (ii.1), as (t, s) → (0, 0), with s < t (i.e., (t∗ + t, s∗ + s) ∈ A),

g(t∗ + t, s∗ + s) = gL(t
∗) + b1(t− s)(1 + o(1)) +

c1
2
s2(1 + o(1)),

where

b1 :=
(ρ− 1− 2ρ2) + 2ρ(µ2 − µ1ρ)s

∗ + (1 + ρ)µ2
1s

∗2

(1− ρ)(1 + ρ)2s∗2
> 0,

c1 :=
2

s∗3

(
1 +

ρ2(ρ(1− ρ)− (µ2 − µ1ρ)s
∗)2

(1− ρ2)3

)
> 0.

– (ii.2), as (t, s) → (0, 0), with s > t (i.e., (t∗ + t, s∗ + s) ∈ B),

g(t∗ + t, s∗ + s) = gL(t
∗) + b2(s− t)(1 + o(1)) +

c2
2
t2(1 + o(1)),

where

b2 :=
(ρ− 1− 2ρ2) + 2ρ(µ1 − µ2ρ)t

∗ + (1 + ρ)µ2
2t

∗2

(1− ρ)(1 + ρ)2t∗2
> 0,
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c2 :=
2

t∗3

(
1 +

ρ2(ρ(1− ρ)− (µ1 − µ2ρ)t
∗)2

(1− ρ2)3

)
> 0.

– (ii.3), as (t, s) → (0, 0), with s = t (i.e., (t∗ + t, s∗ + s) ∈ L),

g(t∗ + t, s∗ + t) = gL(t
∗) +

b0
2
t2(1 + o(1)),

where b0 := 4
(1+ρ)t∗3 .

(iii). If ρ = ρ̂1 (in this case tA = sA = t∗ = s∗), then

– (iii.1), as (t, s) → (0, 0), with s < t,

g(tA + t, sA + s) = gA(tA, sA) +
a1
2
t2(1 + o(1))− a2ts(1 + o(1)) +

a3
2
s2(1 + o(1)),

– (iii.2), as (t, s) → (0, 0), with s > t,

g(t∗ + t, s∗ + s) = gL(t
∗) + b2(s− t)(1 + o(1)) +

c2
2
t2(1 + o(1)).

– (iii.3), as (t, s) → (0, 0), with s = t,

g(t∗ + t, s∗ + t) = gL(t
∗) +

b0
2
t2(1 + o(1)).

The proof of Lemma A.1 is tedious but only involves basic calculations using Taylor expansion, and thus it is

omitted.

Next we present below a generalized version of the Bonferroni’s inequality. The proof can be found in, e.g., [11].

Lemma A.2. Let (Ω,F ,P) be a probability space and A1, · · · , An and B1, · · · , Bm be n + m events in F with

n,m ≥ 2. Then

n∑

k=1

m∑

l=1

P {Ak ∩Bl} ≥ P





⋃

k=1,...,n

l=1,...,m

(Ak ∩Bl)





≥
n∑

k=1

m∑

l=1

P {Ak ∩Bl}

−
n∑

k=1

∑

1≤l1<l2≤m

P {Ak ∩Bl1 ∩Bl2} −
m∑

l=1

∑

1≤k1<k2≤n

P {Ak1
∩Ak2

∩Bl} .

A.1. Proof of Lemma 4.1. Let T0 > 0 be a fixed large constant (will be determined later). It is easily seen that

r0(u) ≤ P
{
∃(t,s)∈[0,T0]2\U1

X1(t) >
√
u(1 + µ1t), X2(s) >

√
u(1 + µ2s)

}

+P
{
∃t≥T0 X1(t) >

√
u(1 + µ1t)

}
+ P

{
∃s≥T0 X2(s) >

√
u(1 + µ2s)

}
.

Next we consider upper bounds for each term on the right-hand side. According to Lemma 5 of [8], for any fixed

t, s, there exists a unique index set

I(t, s) ⊆ {1, 2}

such that

g(t, s) = (1 + µ1t, 1 + µ2s)I(t,s) (Σts)
−1
I(t,s),I(t,s) (1 + µ1t, 1 + µ2s)

⊤
I(t,s),(25)

and

(Σts)
−1
I(t,s),I(t,s) (1 + µ1t, 1 + µ2s)

⊤
I(t,s) > 0I(t,s).(26)
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In the above, we use notation that if I ⊂ {1, 2}, then for a vector a ∈ R
2 we denote by aI = (ai, i ∈ I)

a sub-block vector of a. Similarly, if further J ⊂ {1, 2}, for a matrix M = (mij)i,j∈{1,2} ∈ R
2×2 we denote by

MI,J = (mij)i∈I,j∈J the sub-block matrix of M determined by I and J . Furthermore, we write M−1
II = (MII)

−1

for the inverse matrix of MII whenever it exists.

Thus,

P
{
∃(t,s)∈[0,T0]2\U1

X1(t) >
√
u(1 + µ1t), X2(s) >

√
u(1 + µ2s)

}

≤ P

{
∃(t,s)∈[0,T0]2\U1

(1 + µ1t, 1 + µ2s)I(t,s) (Σts)
−1
I(t,s),I(t,s) (X1(t), X2(s))

⊤
I(t,s) >

√
ug(t, s)

}
(27)

= P

{
∃(t,s)∈[0,T0]2\U1

Z(t, s)

g(t, s)
>

√
u

}
,

where

Z(t, s) := (1 + µ1t, 1 + µ2s)I(t,s) (Σts)
−1
I(t,s),I(t,s) (X1(t), X2(s))

⊤
I(t,s).(28)

Note that

Var

(
Z(t, s)

g(t, s)

)
=

1

g(t, s)
.(29)

In order to apply the Borell-TIS inequality, we first show that

lim sup
(t,s)→(t(b),s(b))

|Z(t, s)|
g(t, s)

< ∞, almost surely

holds for any (t(b), s(b)) on the boundary {(t, s) : t ≥ 0, s = 0} ∪ {(t, s) : t = 0, s ≥ 0}.

In fact, if the above does not hold for some boundary point (t(b), s(b)), then for any M > 0 there exist a sequence

{(tk, sk)}∞k=1 and some measurable set E such that (tk, sk) → (t(b), s(b)), P {E} > 0 and

|Z(tk, sk)|
g(tk, sk)

≥ M on E

for all large enough k. Then we have

Var

(
Z(tk, sk)

g(tk, sk)

)
≥ M2

P {E} > 0.(30)

On the other hand, by Lemma 6 of [8] we have g(t, s) = g3(t, s) for all (t, s) ∈ {(t, s) : t ≥ 0, s = 0} ∪ {(t, s) :

t = 0, s ≥ 0}, and thus by (29) and (13) we have limk→∞ Var
(

Z(tk,sk)
g(tk,sk)

)
= 0. This is a contradiction with (30).

Therefore, Z(t,s)
g(t,s) , (t, s) ∈ [0, T0]

2 \ U1 is almost surely bounded. Consequently, by the Borell-TIS inequality (see,

e.g., [1]) we have, for any fixed small constant θ0 > 0

P

{
∃(t,s)∈[0,T0]2\U1

Z(t, s)

g(t, s)
>

√
u

}
≤ e−

(
√

u−C0)2

2 ĝ

holds for all u such that

√
u > C0 := E

{
sup

(t,s)∈[0,T0]2\U1

Z(t, s)

g(t, s)

}
.

Moreover, since Xi is the standard Brownian motion,

lim
t→∞

Xi(t)

1 + µit
= 0 almost surely,
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showing that the random process Xi(t)
1+µit

, t ≥ T0 has almost surely bounded sample paths on [T0,∞). Again by the

Borell-TIS inequality

P
{
∃t≥T0

Xi(t) >
√
u(1 + µit)

}
≤ e−

(
√

u−Ci)
2

2

(1+µiT0)2

T0

holds for all
√
u > Ci := E

{
supt∈[T0,∞)

X1(t)
1+µit

}
. Since for all large enough T0 it holds that (1+µiT0)

2

T0
> ĝ, the claim

for r0(u) is established.

Below we consider r1(u). Since (tA, sA) ∈ A, we have from Proposition 3.1 that for any chosen small θ0

g(t, s) = gA(t, s), (t, s) ∈ U1 ⊂ A,

and further (cf. (28))

Z(t, s) = (1 + µ1t, 1 + µ2s) Σ
−1
ts (X1(t), X2(s))

⊤ =: h1(t, s)X1(t) + h2(t, s)X2(s), (t, s) ∈ U1,

with

h1(t, s) =
(1 + µ1t)s− ρs(1 + µ2s))

ts− ρ2s2
, h2(t, s) =

(1 + µ2s)t− ρs(1 + µ1t))

ts− ρ2s2
.

Thus, similarly to (27) we conclude that

r1(u) ≤ P

{
∃
(t,s)∈U1\△(1)

u ×△(2)
u

Z(t, s)

gA(t, s)
>

√
u

}
.(31)

Since h1(t, s), h2(t, s), gA(t, s), (t, s) ∈ U1 are all smooth functions and

E
{
(Xi(t1)−Xi(t2))

2
}
= |t1 − t2| , i = 1, 2

one can check that, for all (t1, s1), (t2, s2) ∈ U1,

E

{(
Z(t1, s1)

gA(t1, s1)
− Z(t2, s2)

gA(t2, s2)

)2
}

≤ Const · (|t1 − t2|+ |s1 − s2|).

Therefore, an application of the Piterbarg’s inequality in [5][Lemma 5.1] (see also [20][Theorem 8.1] or [21][Theorem

3]) yields that

r1(u) ≤ P

{
∃
(t,s)∈U1\△(1)

u ×△(2)
u

Z(t, s)

gA(t, s)
>

√
u

}
≤ C3u

3/2e−
u
2 g̃u ,(32)

where C3 > 0 is some constant which does not depend on u and

g̃u := inf
(t,s)∈U1\△(1)

u ×△(2)
u

gA(t, s).

Moreover, we have from (i) of Lemma A.1 that for all (tA + t, sA + s) ∈ U1

gA(tA + t, sA + s) ≥ gA(tA, sA) +
a1
2
(1− ε)

(
(1− ρ2)t2 +

(
ρt+

µ2 − 2µ1ρ

µ1
s

)2

+

(
µ2 − 2µ1ρ

µ1

)2(
µ2 − 2µ1ρ

µ1
(1− 2ρ)− 1

)
s2

)
(33)

holds with some small ε > 0, where for all −1 < ρ < ρ̂1 (see also the proof of (b).(i) in Lemma 9 of [8] for ρ > 0)

µ2 − 2µ1ρ

µ1
(1− 2ρ)− 1 > 0.



18

Thus

g̃u ≥ gA(tA, sA) +
a1
2
(1− ε)min

(
(1− ρ2),

(
µ2 − 2µ1ρ

µ1

)2(
µ2 − 2µ1ρ

µ1
(1− 2ρ)− 1

))
(ln(u))2

u
.

Inserting the above to (32) completes the proof. �

A.2. Proof of Lemma 4.2. We first analyze the summand pj,l;u. We set

bj,l;u = (aj;u, bl;u)
⊤, aj;u = 1 + µ1(tA +

jT

u
), bl;u = 1 + µ2(sA +

lS

u
).(34)

It follows that

pj,l;u = P



∃t∈[0,T ]

s∈[0,S]

X1(tA + jT
u + t

u ) > aj;u
√
u+ µ1√

u
t

X2(sA + lS
u + s

u ) > bl;u
√
u+ µ2√

u
s





= P



∃t∈[0,T ]

s∈[0,S]

X1(tA + jT
u ) +X1(tA + jT

u + t
u )−X1(tA + jT

u ) > aj;u
√
u+ µ1√

u
t

X2(sA + lS
u ) +X2(sA + lS

u + s
u )−X2(sA + lS

u ) > bl;u
√
u+ µ2√

u
s



 .(35)

Since (tA+ jT
u , sA+ lS

u ) ∈ A for all large u, the covariance matrix of Zj,l;u := (X1(tA+ jT
u ), X2(sA+ lS

u ))⊤ is given

by

Σj,l;u =


 tA + jT

u ρ (sA + lS
u )

ρ (sA + lS
u ) sA + lS

u


 .

Thus, the density function of Zj,l;u is given by

φΣj,l;u
(w) =

1√
(2π)2 |Σj,l;u|

exp

(
−1

2
w⊤(Σj,l;u)

−1w

)
, w = (w1, w2)

⊤.

By conditioning on the value of Zj,l;u we rewrite (35) as

pj,l;u =

∫

R2

φΣj,l;u
(w)P



∃t∈[0,T ]

s∈[0,S]

X1(tA + jT
u + t

u )−X1(tA + jT
u ) > aj;u

√
u+ µ1√

u
t− w1

X2(sA + lS
u + s

u )−X2(sA + lS
u ) > bl;u

√
u+ µ2√

u
s− w2

∣∣∣∣∣Zj,l;u = w



 dw,

Using change of variables w =
√
ubj,l;u − x/

√
u we further obtain

pj,l;u = u−1

∫

R2

φΣj,l;u
(
√
ubj,l;u − x/

√
u)Pj,l;u(x) dx,

where

Pj,l;u(x) := P



∃t∈[0,T ]

s∈[0,S]

X1(tA + jT
u + t

u )−X1(tA + jT
u ) > µ1√

u
t+ x1√

u

X2(sA + lS
u + s

u )−X2(sA + lS
u ) > µ2√

u
s+ x2√

u

∣∣∣∣∣Zj,l;u =
√
ubj,l;u − x√

u



 .

Now, we analyse Pj,l;u(x). Due to the fact that (tA, sA) ∈ A, we have for all t ∈ [0, T ], s ∈ [0, S], and large enough

u

tA +
jT

u
+

t

u
≥ tA +

jT

u
> sA +

lS

u
+

s

u
≥ sA +

lS

u
.

Thus, by the properties of Brownian motion

Pj,l;u(x) = P
{
∃t∈[0,T ] X1(t)− µ1t > x1

}

×P

{
∃s∈[0,S] X2(sA +

lS

u
+

s

u
)−X2(sA +

lS

u
) >

µ2√
u
s+

x2√
u

∣∣∣Zj,l;u =
√
ubj,l;u − x√

u

}
,
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Next we have

φΣj,l;u
(
√
ubj,l;u − x/

√
u) =

1√
(2π)2 |Σj,l;u|

exp

(
−1

2
(
√
ubj,l;u − x/

√
u)⊤(Σj,l;u)

−1(
√
ubj,l;u − x/

√
u)

)
,

where the exponent can be rewritten as

(
√
ubj,l;u − x/

√
u)⊤(Σj,l;u)

−1(
√
ubj,l;u − x/

√
u)

= u(bj,l;u)
⊤Σ−1

j,l;ubj,l;u − 2x⊤Σ−1
j,l;ubj,l;u +

1

u
x⊤Σ−1

j,l;ux

= ugA(tA +
jT

u
, sA +

lS

u
)− 2x⊤Σ−1

j,l;ubj,l;u +
1

u
x⊤Σ−1

j,l;ux.

Define

fj,l;u(x) := exp

(
x⊤Σ−1

j,l;ubj,l;u − 1

2u
x⊤Σ−1

j,l;ux

)
, x ∈ R

2.

Thus, it follows that

p1(u) =
u−1

2π

N(1)
u∑

j=−N
(1)
u

N(2)
u∑

l=−N
(2)
u

1√
|Σj,l;u|

exp

(
−1

2
ugA(tA +

jT

u
, sA +

lS

u
)

)∫

R2

fj,l;u(x)Pj,l;u(x) dx.

Further, we obtain from (i) of Lemma A.1 that, for all large enough u,

gA(tA +
jT

u
, sA +

lS

u
) ∼ gA(tA, sA) +

1

2

(
a1

(
jT

u

)2

− 2a2

(
jT

u

)(
lS

u

)
+ a3

(
lS

u

)2
)

holds uniformly for −N
(1)
u ≤ j ≤ N

(1)
u ,−N

(2)
u ≤ l ≤ N

(2)
u .

Consequently, by Lemma A.3 below we obtain

lim
u→∞

p1(u)

exp (−gA(tA, sA)u/2)
=

1

2π
√

|Σ0|
H(µ1;T )H(µ2 − 2µ1ρ;S)

TS

∫

R2

e
−(a1x2

1−2a2x1x2+a3x2
2)

4 dx,

which gives the result for p1(u). The claim for p2(u) follows with the same arguments. �

Lemma A.3. For any T, S > 0

lim
u→∞

∫

R2

fj,l;u(x)Pj,l;u(x) dx = H(µ1;T )H(µ2 − 2µ1ρ;S)

holds uniformly for −N
(1)
u ≤ j ≤ N

(1)
u ,−N

(2)
u ≤ l ≤ N

(2)
u .

We omit the tedious proof of Lemma A.3 since its idea is standard, i.e., it is based on finding a uniform integrable

bound for the integrand and then using the dominated convergence theorem.

A.3. Proof of Lemma 4.3. Let us begin with Π1(u). It follows that

Π1(u) =

N(1)
u∑

j=−N
(1)
u

∑

−N
(2)
u ≤l1<l2≤N

(2)
u

pj,l1,l2;u

=

N(1)
u∑

j=−N
(1)
u

N(2)
u∑

l=−N
(2)
u

pj,l,l+1;u +

N(1)
u∑

j=−N
(1)
u

N(2)
u∑

l1=−N
(2)
u

N(2)
u∑

l2=l1+2

pj,l1,l2;u =: Π11(u) + Π12(u).

In order to deal with Π11(u) we note that

pj,l,l+1;u = pj,l;u + pj,l+1;u − p̃j,l;u,
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where

p̃j,l;u = P

{
∃
(t,s)∈△(1)

j;u×(△(2)
l;u∪△(2)

l+1;u)
X1(t) >

√
u(1 + µ1t), X2(s) >

√
u(1 + µ2s)

}
.

Then we have

Π11(u) =

N(1)
u∑

j=−N
(1)
u

N(2)
u∑

l=−N
(2)
u

(pj,l;u + pj,l+1;u − p̃j,l;u).

Using the same arguments as in the proof of Lemma 4.2 we obtain

lim
u→∞

Π11(u)

e−gA(tA,sA)u/2
=

1

µ1(µ2 − 2µ1ρ)

(
2H(µ1;T )H(µ2 − 2µ1ρ;S)

TS
− H(µ1;T )H(µ2 − 2µ1ρ; 2S)

TS

)
,

which gives that

lim sup
S→∞

lim sup
T→∞

lim
u→∞

Π11(u)

e−gA(tA,sA)u/2
= 0.

Next we consider Π12(u) which is more involved. We have (recall (34) for aj;u, bl;u)

pj,l1,l2;u = P





∃
t∈[0,T ]

s1∈[0,S]

s2∈[0,S]

X1(tA + jT
u + t

u ) > aj;u
√
u+ µ1√

u
t

X2(sA + l1S
u + s1

u ) > bl1;u
√
u+ µ2√

u
s1

X2(sA + l2S
u + s2

u ) > bl2;u
√
u+ µ2√

u
s2





≤ P





∃
t∈[0,T ]

s1∈[0,S]

s2∈[0,S]

X1(tA + jT
u + t

u ) > aj;u
√
u+ µ1√

u
t

1
2

(
X2(sA + l1S

u + s1
u ) +X2(sA + l2S

u + s2
u )
)
> bl1,l2;u

√
u+ µ2

2
√
u
(s1 + s2)





=: Pj,l1,l2;u,(36)

with

bl1,l2;u = 1 + µ2

(
sA +

l1S

u
+

(l2 − l1)S

2u

)
.

For notational simplicity, we shall denote

t̃A = tA +
jT

u
, s̃A = sA +

l1S

u
, sA = s̃A +

(l2 − l1)S

2u
, ŝA = s̃A +

(l2 − l1)S

4u
.

Again by conditioning on the event

Ej,l1,l2;u(x1, x2) :=

{
X1(t̃A) = aj;u

√
u− x1√

u
,

1

2

(
X2(s̃A) +X2(sA +

l2S

u
)

)
= bl1,l2;u

√
u− x2√

u

}
,

we have

Pj,l1,l2;u = u−1

∫

R2

φΣj,l1,l2;u
(
√
ubj,l1,l2;u − x/

√
u)F (j, l1, l2;u,x) dx,

where

Σj,l1,l2;u =


 t̃A ρ sA

ρ sA ŝA


 , bj,l1,l2;u = (aj;u, bl1,l2;u)

⊤

and

F (j, l1, l2;u,x) := P
{
∃t∈[0,T ] X1(t)− µ1t > x1

}
P





∃
s1∈[0,S]

s2∈[0,S]

Yj,l1,l2;u(s1, s2) > x2

∣∣∣∣∣Ej,l1,l2;u(x1, x2)





,
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where

Yj,l1,l2;u(s1, s2) =

√
u

2

(
X2(s̃A +

s1
u
)−X2(s̃A) +X2(sA +

l2S

u
+

s2
u
)−X2(sA +

l2S

u
)

)
− µ2

2
(s1 + s2).

Similarly as in the proof of Lemma 4.2, we obtain

φΣj,l1,l2;u
(
√
ubj,l1,l2;u − x/

√
u) =

1√
(2π)2 |Σj,l1,l2;u|

exp

(
−1

2
u (bj,l1,l2;u)

⊤Σ−1
j,l1,l2;u

bj,l1,l2;u

)
fj,l1,l2;u(x),

where

fj,l1,l2;u(x) := exp

(
x⊤Σ−1

j,l1,l2;u
bj,l1,l2;u − 1

2u
x⊤Σ−1

j,l1,l2;u
x

)
.

Next, some elementary calculations give that

(bj,l1,l2;u)
⊤Σ−1

j,l1,l2;u
bj,l1,l2;u = gA(tA +

jT

u
, sA +

l1S

u
+

(l2 − l1)S

2u
) +

t̃AgA(t̃A, sA)− a2j;u

4(t̃AŝA − ρ2sA
2)

(l2 − l1)S

u
.

Further, note that

gA(tA +
jT

u
, sA +

l1S

u
+

(l2 − l1)S

2u
) = gA(tA +

jT

u
, sA +

l1S

u
) +

∂gA(t, s)

∂s
|
(t̃A,s̃A+θl1,l2;u

(l2−l1)S
2u )

(l2 − l1)S

2u

holds for some θl1,l2;u ∈ (0, 1) and

∂gA(t, s)

∂t
|
(t̃A,s̃A+θl1,l2;u

(l2−l1)S
2u )

→ 0, u → ∞

holds uniformly for j, l1, l2 (hereafter when we write j, l1, l2 we mean −N
(1)
u ≤ j ≤ N

(1)
u ,−N

(2)
u ≤ l1, l2 ≤ N

(2)
u )).

Consequently

exp

(
−1

2
u (bj,l1,l2;u)

⊤Σ−1
j,l1,l2;u

bj,l1,l2;u

)
∼ exp

(
−1

2
u gA(tA +

jT

u
, sA +

l1S

u
)

)
e−Q0(l2−l1)S(37)

holds uniformly for j, l1, l2 as u → ∞, where (by (b).(i) of Lemma 9 of [8] or Lemma A.1.(i) with a1 > 0)

Q0 =
tAgA(tA, sA)− (1 + µ1tA)

2

8(tAsA − ρ2s2A)
> 0.

Next, we consider the uniform, in j, l1, l2, limit of the following:

P





∃
s1∈[0,S]

s2∈[0,S]

Yj,l1,l2;u(s1, s2) > x2

∣∣∣∣∣Ej,l1,l2;u(x1, x2)





, u → ∞

For the conditional mean we can derive that

E {Yj,l1,l2;u(s1, s2)|Ej,l1,l2;u(x1, x2)} = −µ2

2
(s1 + s2)

+

(
ρ(s1 + s2)

2
√
u

,
s1
4
√
u

)
Σ−1

j,l1,l2;u
(bj,l1,l2;u − x/

√
u),

which further gives that

E {Yj,l1,l2;u(s1, s2)|Ej,l1,l2;u(x1, x2)} = −µ2

2
(s1 + s2) +

2ρaj;uŝA − ρaj;usA − 2ρ2bj,l1,l2;usA + bj,l1,l2;ut̃A

4(t̃AŝA − ρ2sA
2)

s1

+
ρaj;uŝA − ρ2bj,l1,l2;usA

2(t̃AŝA − ρ2sA
2)

s2 +
ρsAs1 − 2ρŝA(s1 + s2)

4(t̃AŝA − ρ2sA
2)

x1

u
+

2ρ2sA(s1 + s2)− t̃As1

4(t̃AŝA − ρ2sA
2)

x2

u

→ −1

2
(µ2 − 2µ1ρ) s2, u → ∞.
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For the conditional variance of the increments we have

Var {Yj,l1,l2;u(s1, s2)− Yj,l1,l2;u(s
′
1, s

′
2)|Ej,l1,l2;u(x1, x2)} =

|s1 − s′1|+ |s2 − s′2|
4

+

(
ρ(s1 − s′1 + s2 − s′2)

2
√
u

,
s1 − s′1
4
√
u

)
Σ−1

j,l1,l2;u

(
ρ(s1 − s′1 + s2 − s′2)

2
√
u

,
s1 − s′1
4
√
u

)⊤

→ |s1 − s′1|+ |s2 − s′2|
4

, u → ∞.

Therefore, similarly as in Lemma A.3 we can show that as u → ∞

P





∃
s1∈[0,S]

s2∈[0,S]

Yj,l1,l2;u(s1, s2) > x2

∣∣∣∣∣Ej,l1,l2;u(x1, x2)





→ P





∃
s1∈[0,S]

s2∈[0,S]

1

2
(B1(s1) +B2(s2))−

1

2
(µ2 − 2µ1ρ) s2 > x2





.

Consequently, the dominated convergence theorem gives

∫

R2

fj,l1,l2;u(x)F (j, l1, l2;u,x) dx

→
∫

R

e2µ1x1P
{
∃t∈[0,T ] X1(t)− µ1t > x1

}
dx1

×
∫

R

e2(µ2−2µ1ρ)x2P





∃
s1∈[0,S]

s2∈[0,S]

1

2
(B1(s1) +B2(s2))−

1

2
(µ2 − 2µ1ρ) s2 > x2





dx2(38)

=: H(µ1;T ) H(µ1, µ2;S)

holds uniformly for j, l1, l2, as u → ∞.

Next we derive a useful upper bound for H(µ1, µ2;S), S > 0:

H(µ1, µ2;S) ≤ (⌊S⌋)2eQ0SH(µ1, µ2; 1) < ∞.(39)

In order to prove (39), by taking j = l1 = 0, l2 = 1 we arrive at

P0,0,1;u = P





∃
t∈[0,T ]

s1∈[0,S]

s2∈[0,S]

X1(tA + t
u ) > a0;u

√
u+ µ1√

u
t

1
2 (X2(sA + s1

u ) +X2(sA + S
u + s2

u )) > b0,1;u
√
u+ µ2

2
√
u
(s1 + s2)





∼ u−1

√
(2π)2 |Σ0,0,0;u|

exp

(
−1

2
u gA(tA, sA)

)
e−Q0SH(µ1;T )H(µ1, µ2;S).(40)

Define, for any integers 0 ≤ m,n ≤ ⌊S⌋,

qm,n;u := P





∃
t∈[0,T ]

s1∈[0,1]

s2∈[0,1]

X1(tA + t
u ) > a0;u

√
u+ µ1√

u
t

1
2 (X2(sA + m

u + s1
u ) +X2(sA + S+n

u + s2
u )) > b̃m,n;u

√
u+ µ2

2
√
u
(s1 + s2)





with

b̃m,n;u = 1 + µ2

(
s0 +

m

u
+

S + n−m

2u

)
.

Using the same arguments as in the derivation of (40) one can show that

qm,n;u ∼ u−1

√
(2π)2 |Σ0,0,0;u|

exp

(
−1

2
u gA(tA, sA)

)
e−Q0(S+n−m)H(µ1;T )H(µ1, µ2; 1).(41)
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Comparing (40) and (41) we derive

H(µ1, µ2;S) ≤
⌊S⌋−1∑

m=0

⌊S⌋−1∑

n=0

e−Q0(n−m)H(µ1, µ2; 1)

≤ (⌊S⌋)2eQ0SH(µ1, µ2; 1).

The finiteness of H(µ1, µ2; 1) can be proved by using the Borell-TIS inequality. This justifies bound (39).

Now, we are ready to analyse the triple sum Π12(u). We have

Π12(u) =

N(1)
u∑

j=−N
(1)
u

N(2)
u∑

l1=−N
(2)
u

N(2)
u∑

l2=l1+2

u−1

√
(2π)2 |Σj,l1,l2;u|

× exp

(
−1

2
u (bj,l1,l2;u)

⊤Σ−1
j,l1,l2;u

bj,l1,l2;u

)∫

R2

fj,l1;u(x)F (j, l1, l2;u,x) dx.

Therefore, we can derive from (37)-(38) and (39) that

lim
u→∞

Π12(u)

exp(−ugA(tA, sA)/2)
≤ Const

∞∑

k=1

e−kQ0S
H(µ1;T )H(µ1, µ2; 1)(⌊S⌋)2

TS
.

Consequently, the above implies that

lim sup
S→∞

lim sup
T→∞

lim
u→∞

Π12(u)

exp(−ugA(tA, sA)/2)
= 0.

Thus, the claim for Π1(u) is established. Using similar arguments, one can further show that the claim for Π2(u)

holds. �

A.4. Proof of Lemma 4.4. The claim for r1(u) follows from the same arguments as that for r0(u) of Lemma 4.1.

Next, as in the proof of Lemma 4.1, using the Piterbarg’s inequality we can show that

r2(u) ≤ C2u
3/2e−

u
2 g̃u ,

where C2 > 0 is some constant which does not depend on u, and thus the claim for r2(u) follows since

g̃u = inf
(t,s)∈D1∪D2

g(t, s) = inf
s∈[s0−θ0,s0−ln(u)/

√
u]∪[s0+ln(u)/

√
u,s0+θ0]

gL(s)

≥ gL(s
∗) +

b0
2
(1− ε)

(ln(u))2

u
,

where the last inequality follows by (ii.3) of Lemma A.1. Finally, the claim for r3(u) can be proved similarly, by

using Piterbarg’s inequality and (ii.1)-(ii.2) of Lemma A.1. �

A.5. Proof of Lemma 4.5. We first analyse the summand pj;u. Let

bj;u = (aj;u, bj,u)
⊤, aj;u = 1 + µ1(t

∗ +
jT

u
), bj;u = 1 + µ2(s

∗ +
jT

u
).

Then

pj;u = P



 ∃

(t,s)∈△T,S

X1(t
∗ + jT

u + t
u ) > aj;u

√
u+ µ1√

u
t

X2(s
∗ + jT

u + s
u ) > bj;u

√
u+ µ2√

u
s



 .

Define Zj;u := (X1(t
∗ + jT

u ), X2(s
∗ + jT

u ))⊤, whose density function is given by

φΣj;u(w) =
1√

(2π)2 |Σj;u|
exp

(
−1

2
w⊤(Σj;u)

−1w

)
, w = (w1, w2)

⊤,
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with the covariance matrix given by

Σj;u =


 t∗ + jT

u ρ (t∗ + jT
u )

ρ (t∗ + jT
u ) s∗ + jT

u


 .

By conditioning on the value of Zj;u and using change of variables w =
√
ubj;u − x/

√
u, we further obtain

pj;u = u−1

∫

R2

φΣj;u
(
√
ubj;u − x/

√
u)P



 ∃

(t,s)∈△T,S

X1(t)− µ1t > x1

X2(s)− µ2s > x2



 dx.

Consequently, similar arguments as in the proof of Lemma 4.2 yield

p1(u) ∼ p2(u) ∼
N(1)

u∑

j=−N
(1)
u

pj;u ∼ H(T, S)u−1

√
(2πt∗)2(1− ρ2)

N(1)
u∑

j=−N
(1)
u

e−
u
2 gL(t∗+ jT

u )

∼ H(T, S)u−1/2

T
√

(2πt∗)2(1− ρ2)
e−

u
2 gL(t∗)

∫

R

e−
b0
4 x2

dx.

This completes the proof. �

A.6. Proof of Lemma 4.6. First note that

P

{
∃(t,s)∈(t∗,s∗)+u−1△T1+T2,S

X1(t) >
√
u(1 + µ1t), X2(s) >

√
u(1 + µ2s)

}

≤ P

{
∃(t,s)∈(t∗,s∗)+u−1△T1,S

X1(t) >
√
u(1 + µ1t), X2(s) >

√
u(1 + µ2s)

}

+P

{
∃
(t,s)∈(t∗+

T1
u ,s∗+

T1
u )+u−1△T2,S

X1(t) >
√
u(1 + µ1t), X2(s) >

√
u(1 + µ2s)

}
.

Using the same arguments as the proof of Lemma 4.5, we conclude the sub-additivity of H(T, S), T > 0. Thus

lim
T→∞

1

T
H(T, S) = inf

T>0

1

T
H(T, S) < ∞

follows directly from Fekete’s lemma. Moreover, since by definition

H(T, S) ≥
∫

R2

ex
⊤Σ−1

∗ b∗P



 ∃

t∈[0,T ]

X1(t)− µ1t > x1

X2(t)− µ2t > x2



 dx1dx2,

the positive lower bound follows from Lemma 4.7 in [3]. This completes the proof. �

A.7. Proof of Lemma 4.7. We begin with the analysis of Π1(u). We first look at pj,l;u. Denote

bu = bj,l,m,n;u := (aj,m;u, bj,l,m,n;u)
⊤,

aj,m;u = 1 + µ1(t
∗ +

jT +m

u
), bj,l,m,n;u = 1 + µ2(t

∗ +
jT +m

u
+

lS + n

u
).

It is derived that

pj,l;u ≤
⌊T⌋−1∑

m=0

⌊S⌋−1∑

n=0

P





∃
t∈[t∗+ jT

u +m
u ,t∗+ jT

u +m+1
u ]

s−t∈[ lSu +n
u , lSu +n+1

u ]

X1(t) >
√
u(1 + µ1t), X2(s) >

√
u(1 + µ2s)





=

⌊T⌋−1∑

m=0

⌊S⌋−1∑

n=0

P





∃
t∈[0,1]

s∈[0,1]

X1(t
∗ + jT+m

u + t
u ) > aj,m;u

√
u+ µ1√

u
t

X2(t
∗ + jT+m

u + lS+n
u + t+s

u ) > bj,l,m,n;u
√
u+ µ2√

u
(t+ s)
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=:

⌊T⌋−1∑

m=0

⌊S⌋−1∑

n=0

pj,l,m,n;u.

Next, we look at pj,l,m,n;u. We define

Zu :=

(
X1(t

∗ +
jT +m

u
), X2(s

∗ +
jT +m

u
+

lS + n

u
)

)⊤
,

Y1;u(t) :=

(
X1(t

∗ +
jT +m

u
+

t

u
)−X1(t

∗ +
jT +m

u
)

)√
u− µ1t,

Y2;u(t, s) :=

(
X2(t

∗ +
jT +m

u
+

lS + n

u
+

t+ s

u
)−X2(t

∗ +
jT +m

u
+

lS + n

u
)

)√
u− µ2(t+ s).

Consider the conditional process

W u(t, s) := (Y1;u(t), Y2;u(t, s))
⊤ | Zu =

√
ubu − x√

u
.

We have that (Y1;u(t), Y2;u(t, s),Z
⊤
u ) is a normally distributed random vector, with mean

µ̂(t, s) := (−µ1t,−µ2(t+ s), 0, 0)⊤

and covariance matrix given by (suppose S > 1)

Σ̂u(t, s) :=




t 0 0 ρ t√
u

0 t+ s 0 0

0 0 t∗ + jT+m
u ρ (t∗ + jT+m

u )

ρ t√
u

0 ρ (t∗ + jT+m
u ) t∗ + jT+m

u + lS+n
u




.

Thus, for the mean

E {W u(t, s)} = (−µ1t,−µ2(t+ s)) +


 0 ρ t√

u

0 0




 t∗ + jT+m

u ρ (t∗ + jT+m
u )

ρ (t∗ + jT+m
u ) t∗ + jT+m

u + lS+n
u




−1(√
ubu − x√

u

)

= (−µ1t,−µ2(t+ s)) +

(
ρ(bj,l,m,n;u − ρaj,m;u)t− ρtx2−ρx1

u

(t∗ + jT+m
u + lS+n

u )− ρ2(t∗ + jT+m
u )

, 0

)

→ (−ν(ρ) t,−µ2(t+ s))
⊤
, ν(ρ) :=

ρ2 − ρ+ (µ1 − µ2ρ)t
∗

t∗(1− ρ2)
,

as u → ∞, where the convergence is uniform for −N
(1)
u ≤ j ≤ N

(1)
u , 1 ≤ l ≤ N

(2)
u . Similarly, we can derive that,

for any t1, t2 ∈ [0, T ], s1, s2 ∈ [−S, S],

Cov(W u(t1, s1)−W u(t2, s2)) → Cov((B1(t1)−B1(t2), B2(t1 + s1)−B2(t2 + s2))
⊤)

as u → ∞, uniformly for −N
(1)
u ≤ j ≤ N

(1)
u , 1 ≤ l ≤ N

(2)
u . Consequently, we have, as u → ∞,

P





∃
t∈[0,1]

s∈[0,1]

Y1;u(t) > x1

Y2;u(t, s) > x2

∣∣∣∣∣Zu =
√
ubu − x√

u





→ P





∃
t∈[0,1]

s∈[0,1]

B1(t)− ν(ρ)t > x1

B2(t+ s)− µ2(t+ s) > x2





.
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Similar arguments as those in the proof of Lemma 4.2 gives that

pj,l,m,n;u ∼ Ĥ(1, 1)u−1

√
(2π)2 |Σ∗|

e−
u
2 gB(t∗+ jT+m

u ,s∗+ jT+m
u + lS+n

u ),

where (recall notation in (7))

Ĥ(1, 1) =

∫

R2

ex
⊤Σ−1

∗ b∗P





∃
t∈[0,1]

s∈[0,1]

B1(t)− ν(ρ)t > x1

B2(t+ s)− µ(t+ s) > x2





dx1dx2 ∈ (0,∞).

It follows further from (ii.2) of Lemma A.1 that there exists some ε > 0 such that, for all t < s small,

gB(t
∗ + t, t∗ + s) ≥ gL(t

∗) + b2(1− ε)(s− t) +
c2(1− ε)

2
t2,

thus, for u sufficiently large

gB(t
∗ +

jT +m

u
, t∗ +

jT +m

u
+

lS + n

u
) ≥ gL(t

∗) + b2(1− ε)
lS

u
+

c2(1− ε)

2

(
ĵT

u

)2

holds for all −N
(1)
u ≤ j ≤ N

(1)
u , 1 ≤ l ≤ N

(2)
u , 0 ≤ m ≤ ⌊T ⌋− 1, 0 ≤ n ≤ ⌊S⌋− 1, where ĵ = jI{j≥0} +(j+1)I{j<0}.

This implies that, for u large

e−
u
2 gA(t∗+ jT+m

u ,s∗+ jT+m
u + lS+n

u ) ≤ e−
u
2 gL(t∗)

√
u

T

(
e
− c2(1−ε)

4

(
ĵT√
u

)2 T√
u

)
e−

b2(1−ε)
2 lS .

Based on the above discussions we obtain

lim
u→∞

Π1(u)

u−1/2 exp(−gL(t∗)u/2)
≤ Ĥ(1, 1)√

(2π)2 |Σ∗|
⌊T ⌋⌊S⌋

T

∑

l≥1

e−
b2(1−ε)

2 lS

∫

R

e−
c2(1−ε)

4 x2

dx.

Similar bounds can be found for Π1(u), and thus the first claim follows.

Next we consider Π21(u). For any j2 > j1 + 1 we have

qj1,j2;u = P





∃
(t,s)∈(t∗+

j1T
u ,s∗+

j1T
u )+u−1△T,S

X1(t) >
√
u(1 + µ1t), X2(s) >

√
u(1 + µ2s)

∃
(t,s)∈(t∗+

j2T
u ,s∗+

j2T
u )+u−1△T,S

X1(t) >
√
u(1 + µ1t), X2(s) >

√
u(1 + µ2s)





≤ u−1

∫

R2

φΣj1,j2;u
(
√
ubj1,j2;u − x/

√
u)F (j1, j2;u,x) dx =: Qj1,j2;u,

where, with aj;u = 1 + µ1(t
∗ + j1T

u ), bj;u = 1 + µ2(s
∗ + j1T

u ),

Σj1,j2;u =

(
t∗ +

j1T

u
+

(j2 − j1)S

4u

)
 1 ρ

ρ 1


 , bj1,j2;u =

(
aj1;u + aj2;u

2
,
bj1;u + bj2;u

2

)
,

F (j1, j2;u,x) := P





∃
(t,s)∈△T,S

(t′,s′)∈△T,S

Y1;u(t, t
′) > x1

Y2;u(s, s
′) > x2

∣∣∣∣∣
Y3;u =

aj1;u+aj2;u

2

√
u− x1√

u

Y4;u =
aj1;u+aj2;u

2

√
u− x2√

u





,

with

Y1;u(t, t
′) =

√
u

2

(
X1(t

∗ +
j1T

u
+

t

u
)−X1(t

∗ +
j1T

u
) +X1(t

∗ +
j2T

u
+

t′

u
)−X1(t

∗ +
j2T

u
)

)
− µ1

2
(t+ t′),

Y2;u(s, s
′) =

√
u

2

(
X2(s

∗ +
j1T

u
+

s

u
)−X2(s

∗ +
j1T

u
) +X2(s

∗ +
j2T

u
+

s′

u
)−X2(s

∗ +
j2T

u
)

)
− µ2

2
(s+ s′),

Y3;u =
1

2

(
X1(t

∗ +
j1T

u
) +X1(t

∗ +
j2T

u
)

)
, Y4;u =

1

2

(
X2(s

∗ +
j1T

u
) +X2(s

∗ +
j2T

u
)

)
.
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Next we have that (Y1;u(t, t
′), Y2;u(s, s

′), Y3;u, Y4;u) is a normally distributed random vector, with mean

µ̂(t, t′, s, s′) =
(
−µ1

2
(t+ t′),−µ2

2
(s+ s′), 0, 0

)⊤

and covariance matrix given by (suppose T > S)

Σ̂u(t, s) =




t+t′

4
ρ(t∧s+t′∧s′)

4
t

4
√
u

ρt
4
√
u

ρ(t∧s+t′∧s′)
4

s+s′

4
ρs

4
√
u

s
4
√
u

t
4
√
u

ρs
4
√
u

t∗ + j1T
u + (j2−j1)T

4u ρ
(
t∗ + j1T

u + (j2−j1)T
4u

)

ρt
4
√
u

s
4
√
u

ρ
(
t∗ + j1T

u + (j2−j1)T
4u

)
s∗ + j1T

u + (j2−j1)T
4u




.

Similarly as before, one can get

Qj1,j2;u ∼ H̃(T, S)u−1

√
(2π)2 |Σ∗|

e
−u

2

(
1+

(j2−j1)T
4u

t∗+
j1T
u

+
(j2−j1)T

4u

)
gL(t∗+

j1T
u +

(j2−j1)T
2u )

,

as u → ∞, where

H̃(T, S) :=

∫

R2

ex
⊤Σ−1

∗ b∗P





∃
(t,s)∈△T,S

(t′,s′)∈△T,S

1
2 (X1(t) + X̃1(t

′))− µ1t
∗−1

4t∗ t− µ1

2 t′ > x1

1
2 (X2(s) + X̃2(s

′))− µ2s
∗−1

4s∗ s− µ2

2 s′ > x2





dx1dx2 ∈ (0,∞),

with (X̃1, X̃2) an independent copy of (X1, X2). Particularly, letting j1 = 0, j2 = 2 we can show, similarly as in

(39), that

H̃(T, S) ≤ H̃(1, S)(⌊T ⌋)2e
gL(t∗)

8t∗ T .

Therefore, as u → ∞,

Π21(u) .
H̃(T, S)u−1/2

T
√
(2π)2 |Σ∗|

e−
u
2 gL(t∗)




N(1)
u∑

j1=−N
(1)
u

e
− b0

4

(
j1T√

u

)2 T√
u






N(1)
u∑

j2=j1+2

e−
gL(t∗)

8t∗ (j2−j1)T




.
H̃(1, S)⌊T ⌋2u−1/2

T
√
(2π)2 |Σ∗|

e−
u
2 gL(t∗)

∫

R

e−
b0
4 x2

dx

∞∑

k=1

e−
gL(t∗)

8t∗ kT .

Finally, we consider Π22(u). Note that

Π22(u) =

N(1)
u∑

j=−N
(1)
u

pj;u + pj+1;u − p̃j;u,

where

p̃j;u = P

{
∃(t,s)∈(t∗+ jT

u ,t∗+ jT
u )+u−1△2T,S

X1(t) >
√
u(1 + µ1t), X2(s) >

√
u(1 + µ2s)

}
.

Consequently, the claim for Π22(u) follows directly by using Lemma 4.5. �
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A.8. Proof of Lemma 5.1. Similarly as in (27) we obtain

Pθ0,0(u) ≤ P
{
∃(t1,s1)∈U11

Z(t1, s1) >
√
ug(t1, s1), ∃(t2,s2)∈U12

Z(t2, s2) >
√
ug(t2, s2)

}

≤ P

{
∃(t1,s1)∈U11

Z(t1, s1) >
√
u
√
g(t0, s0), ∃(t2,s2)∈U12

Z(t2, s2) >
√
u
√
g(s0, t0)

}

≤ P

{
∃(t1,s1)∈U11,(t2,s2)∈U12

Z(t1, s1) + Z(t2, s2) > 2
√
u
√
g(t0, s0)

}
,

where, we used the fact that g(t0, s0) = g(s0, t0) ≤ inf(t,s)∈(U11∪U12) g(t, s), and

Z(ti, si) :=
Z(ti, si)√

Var(Z(ti, si))
=

Z(ti, si)√
g(ti, si)

, i = 1, 2.

Further note that

E {Z(t0, s0)Z(s0, t0)} = E {(2µX1(t0) + 2(1− 2ρ)µX2(s0))(2(1− 2ρ)µX1(s0) + 2µX2(t0))}

= 8(1 + 2ρ)(1− ρ)µ.

We obtain

E
{
(Z(t0, s0) + Z(s0, t0))

2
}

= 2 + 2E
{
Z(t0, s0)Z(s0, t0)

}

= 2 + 2
E {Z(t0, s0)Z(s0, t0)}

g(t0, s0)

= 2 + 2(1 + 2ρ) < 4.

Thus, for sufficiently small θ0 > 0,

σ2 := sup
(t1,s1)∈U11

(t2,s2)∈U12

E
{
(Z(t1, s1) + Z(t2, s2))

2
}
< 4,

where we use continuity of the functions involved. Again, using the Borell-TIS inequality we obtain

P

{
∃(t1,s1)∈U11,(t2,s2)∈U12

Z(t1, s1) + Z(t2, s2) > 2
√
u
√
g(t0, s0)

}
≤ e−

(2
√

u
√

g(t0,s0)−C0)2

2σ2

holds for all large u such that

2
√
u
√
g(t0, s0) > C0 := E





sup
(t1,s1)∈U11

(t2,s2)∈U12

(Z(t1, s1) + Z(t2, s2))





.

Thus, the claim follows. �
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ebicki, K. M. Kosiński, M. Mandjes, and T. Rolski. Extremes of multidimensional Gaussian processes. Stochastic Process.

Appl., 120(12):2289–2301, 2010.

[10] E. Hashorva. Asymptotics and bounds for multivariate Gaussian tails. J. Theoret. Probab., 18(1):79–97, 2005.

[11] E. Hashorva and L. Ji. Extremes and first passage times of correlated fractional Brownian motions. Stochastic Models, 30(3):272–

299, 2014.

[12] H. He, W. P. Keirstead, and J. Rebholz. Double lookbacks. Mathematical Finance, 8(3):201–228, 1998.

[13] H. Honnappa, P. Jaiswal, and R. Pasupathy. Large deviations of gaussian extremes on convex sets. Manuscript.

https://web.ics.purdue.edu/ pasupath/PAPERS/ldextremes.pdf, 2020.

[14] L. Ji. On the cumulative Parisian ruin of multi-dimensional Brownian motion models. Accepted for publication in Scandinavian

Actuarial Journal, 2020.

[15] S. Kou and H. Zhong. First-passage times of two-dimensional Brownian motion. Adv. Appl. Prob., 48:1045–1060, 2016.

[16] P. Lieshout and M. Mandjes. Tandem Brownian queues. Math. Methods Oper. Res., 66:275–298, 2007.

[17] M. Mandjes. Large Deviations for Gaussian Queues: Modelling Communication Networks. Wiley, Chichester, 2007.

[18] A. W. Marshall and I. Olkin. A multivariate exponential distribution. J.Amer. Statist. Assoc., 62:30–44, 1967.

[19] A. Metzler. On the first passage problem for correlated Brownian motion. Statistics and Probability Letters, 80:277–284, 2010.

[20] V. I. Piterbarg. Asymptotic methods in the theory of Gaussian processes and fields, volume 148 of Translations of Mathematical

Monographs. American Mathematical Society, Providence, RI, 1996.

[21] V. I. Piterbarg. High extrema of Gaussian chaos processes. Extremes, 19(2):253–272, 2016.

[22] S. Resnick. Extreme Values, Regular Variation and Point Processes. Springer-Verlag, 1987.

[23] L. C. G. Rogers and L. Shepp. The correlation of the maxima of correlated Brownian motions. J. Appl. Prob., 43:880–883, 2006.

[24] J. Shao and X. Wang. Estimates of the exit probability for two correlated Brownian motions. Adv. Appl. Prob., 2013(45):37–50.

[25] M. Teunen and M. Goovaerts. Double boundary crossing result for the Browian motion. Scandinavian Actuarial Journal, (2):139–

150, 1994.

[26] R. van der Hofstad and H. Honnappa. Large deviations of bivariate Gaussian extrema. Queueing Systems, 93:333–349, 2019.


