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When plants establish outside their native range, their ability to

adapt to the new environment is influenced by both demogra-

phy and dispersal. However, the relative importance of these

two factors is poorly understood. To quantify the influence of

demography and dispersal on patterns of genetic diversity

underlying adaptation, we used data from a globally distributed

demographic research network comprising 35 native and 18

nonnative populations of Plantago lanceolata. Species-specific

simulation experiments showed that dispersal would dilute de-

mographic influences on genetic diversity at local scales. Popu-

lations in the native European range had strong spatial genetic

structure associated with geographic distance and precipita-

tion seasonality. In contrast, nonnative populations had weaker

spatial genetic structure that was not associated with environ-

mental gradients but with higher within-population genetic di-

versity. Our findings show that dispersal caused by repeated,

long-distance, human-mediated introductions has allowed inva-

sive plant populations to overcome environmental constraints

on genetic diversity, even without strong demographic changes.

The impact of invasive plants may, therefore, increase with

repeated introductions, highlighting the need to constrain fu-

ture introductions of species even if they already exist in

an area.

plant invasion | adaptation | global change | population genetics |
demography
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Patterns of genetic diversity across a species’ range arise from
a complex interplay between the diversifying effect of de-

mographic variation across landscapes with different selection
pressures and the homogenizing effects of dispersal (1–3). On
one hand, variability in demographic performance influences
genetic diversity through its influence on effective population
size (4). Short-lived, highly fecund species generally have higher
levels of genetic diversity compared with species that are long
lived or have low fecundity (5, 6). On the other hand, dispersal
modulates these relationships by facilitating gene flow between
populations (7). Gene flow from seed and pollen can increase
genetic diversity and reduce genetic differences among pop-
ulations. While the importance of these forces is widely accepted
(8), there is uncertainty about the relative strength of demography

and dispersal in shaping genetic structure across global environ-
mental gradients (9, 10).
For invasive species, the situation is even more complex

because humans disrupt many of the natural processes that
determine genetic diversity (Fig. 1). For example, repeated
introductions and long-distance dispersal by humans can re-
lease invasive plant species from demographic constraints, such
as those imposed by the colonization–competition tradeoff
(11). Invasive species might also overcome climatic constraints
on phenotypic traits as a result of rapid adaptation to new
environments (12) or nonadaptive processes, such as repeated
introductions, which can swamp locally adapted phenotypes
(13). Thus, emerging evidence suggests that plants in their
nonnative range can break ecological “rules” because they are
not always constrained by the same biological and climatic
forces that operate in their native range.
Some populations of invasive species lose genetic diversity

during invasion through founder effects (14), but many have
higher genetic diversity outside their native range (15, 16). The
mechanisms underlying this phenomenon include admixture
(i.e., new genotypes arising from interbreeding among divergent
source populations) (17), hybridization (18), rapid mutation
(19), and exposure of cryptic genetic variation (20). Such in-
creases in genetic diversity can enhance colonization success (21)
and adaptive potential (22) in invasive species. Demographic
changes can also improve invasive plant performance (23), which
is sometimes associated with release from natural enemies (24).
Unfortunately, demographic and genetic aspects of invasion are
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Fig. 1. Conceptual diagram showing how demographic performance and dispersal collectively shape genetic diversity in plant populations (+ indicates that a
positive relationships expected). Genetic diversity is influenced through natural pathways (solid lines), such as local environmental conditions that affect
demographic performance and effective population size (4). Environmental conditions also affect genetic diversity through dispersal (e.g., by facilitating
dispersal vectors or creating dispersal barriers). Dispersal can increase genetic diversity directly by providing a source of new genetic material (outcrossing) or
indirectly through immigration and consequent effects on demography. High propagule pressure arising from high fecundity can influence source–sink
dynamics (7, 83), increasing rates of dispersal (hence the double arrow between demography and dispersal). Human activity can affect genetic diversity
(dashed lines) by altering environmental conditions (e.g., climate change) and by changing dispersal rates and dispersal pathways (e.g., admixture). When this
occurs, demographic performance can also be affected (e.g., through enemy release associated with dispersal across biogeographic boundaries), which can
cause invasive plants to overcome biotic constraints on life–history (11) and environment–trait relationships (13). Although genetic architecture can influence
demography and dispersal, the overall quantity of neutral genetic diversity across the genome is more likely to be the outcome of demographic and dispersal
processes (hence the one-sided arrows between these panels).

Significance

We found that long-distance dispersal and repeated introduc-

tions by humans have shaped adaptive potential in a globally

distributed invasive species. Some plant species, therefore, do

not need strong demographic changes to overcome environ-

mental constraints that exist in the native range; simply mixing

genetic stock from multiple populations can provide an adap-

tive advantage. This work highlights the value of preventing

future introduction events for problematic invasive species,

even if the species already exists in an area.
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often analyzed in isolation (25), in part because labor-intensive
demographic studies are typically done at one or a few sites,
making them severely limited in spatial replication (26). This
means that we lack understanding about the relative importance
of demographic change and global dispersal on biological inva-
sions (27, 28).
Here, we present a demographically informed analysis of

neutral and putatively adaptive genetic diversity in Plantago lan-
ceolata L. (Plantaginaceae), a common forb native to Europe and
western Asia, which now has a cosmopolitan distribution (Fig. 2).
P. lanceolata established in its nonnative range through long-
distance dispersal by humans (29), repeated introductions (30),
and cultivation (31)—all processes that can increase genetic di-
versity and invasion success (15). The overarching aim of the study
was to analyze the influences of local demography and global
dispersal patterns on genetic diversity in P. lanceolata and de-
termine which of these pathways drives adaptive capacity. This
knowledge is necessary to understand how future introduction
events will influence the spread of invasive plants. This global
analysis of genetic diversity, which integrates field-collected de-
mographic data, was made possible by a spatially distributed de-
mographic research network (PLANTPOPNET).
In addition to demographic data, we sampled DNA from 491

individuals, including outgroups and cultivar lines, and 53 naturally
occurring populations across the native European range (n = 35) and

the nonnative range (n = 18) in southern Africa, Australasia, and
North America (Fig. 2). To address our main aim, three hypotheses
were tested.

1) Hypothesis 1. In the absence of dispersal, increases in sur-
vival and fecundity will drive increases in genetic diver-
sity. These effects will be diluted by dispersal between
populations.

2) Hypothesis 2. Patterns of spatial genetic structure among
native populations will reflect dispersal limitations across en-
vironmental gradients. In the nonnative range, gene flow
arising from multiple introductions will disrupt spatial ge-
netic structure observed in the native range.

3) Hypothesis 3. Environmental influences on within-population
genetic diversity will be explained by demographic varia-
tion (density, fecundity, and empirical population growth
rate). Repeated introductions into the nonnative range and
long-distance dispersal by humans will weaken this rela-
tionship (Fig. 1).

A genotypic simulation model, parameterized with empirical
demographic data from P. lanceolata, was used to test Hypoth-
esis 1. We then coupled field-collected demographic data (den-
sity, empirical population growth rate, and fecundity) with single-
nucleotide polymorphism (SNP) data (18,166 neutral and 3,024
putatively adaptive SNPs) to test Hypotheses 2 and 3.

A

B

Fig. 2. Global genetic structure in P. lanceolata. (A) Colored bars represent the proportion of individual genotypes in each population assigned to one of six
genetic clusters identified with fastSTRUCTURE. For clarity, multiple sites were aggregated where overlapping bars had similar assignment probabilities (e.g.,
southern Ireland, Switzerland). Dark gray points are P. lanceolata records from GBIF/BIEN (84, 85). For each nonnative region, the minimum number of
propagules (mean ± SE), overall (Propmin) and relative to sample size (Propmin/N), indicates that multiple introductions would be required to produce observed
levels of genetic diversity. The number of non-European alleles indicates that more genetic diversity was present in nonnative regions than could be explained
by the native sample. (B) Probability of assignment for 491 individuals to six genetic clusters, with individuals grouped by population within region. Three
commercial cultivar lines and two outgroups (P. coronopus and P. major) were included.

4220 | www.pnas.org/cgi/doi/10.1073/pnas.1915848117 Smith et al.
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Results and Discussion

Hypothesis 1: Dispersal between Populations Will Dilute Demographic

Effects on Genetic Diversity. In two simulated populations un-
connected by dispersal, with different rates of juvenile survival
(σj = 0.1 and 0.2) and female fecundity (seeds per plant, ΦF = 1
to 100), higher juvenile survival led to greater genetic diversity
(Fig. 3A). Above the threshold at which populations went extinct
(ΦF = 15), genetic diversity increased sharply until ΦF was ∼25.
Above this point, there was little influence of fecundity on genetic
diversity (Fig. 3A). Population size at the end of the simulation was
larger with higher juvenile survival (Fig. 3B). Thus, variation in
female fecundity seems to have less influence than juvenile survival
in determining genetic diversity in P. lanceolata. When the two
populations were connected by dispersal, differences in heterozy-
gosity persisted until the number of migrants per generation
exceeded 50,000 (Fig. 3 C and D). This number is realistic in nat-
ural populations since reproductive individuals typically produce a
minimum 20 to 100 seeds, and migration refers to propagules dis-
persed before the recruitment process. Male fecundity was kept
constant in the model as it is very high in P. lanceolata [10,000 to
54,000 pollen grains per anther (32)] and had no influence on
genetic diversity.
The simulation result supports our prediction (Hypothesis 1)

that demography would influence genetic diversity in P. lanceo-
lata when dispersal barriers are present and that dispersal would
dilute these effects. The simulation also suggests that juvenile
survival is an important parameter controlling heterozygosity.
When dispersal barriers are removed, however, gene flow from
pollen and seed will swamp local effects of juvenile survival on
heterozygosity. We could, therefore, expect demographic effects

on genetic diversity to become undetectable at the upper range
of pollen and seed movement that occurs in P. lanceolata.
The increases in genetic diversity with juvenile survival (Fig. 3)

might not confer an adaptive advantage since they reflect
genetic diversity arising from neutral demographic processes.
The relevance of this result, however, is that there is enough
demographic variability in P. lanceolata to shape neutral genetic
structure, an assumption underlying the hypotheses in the rest of
the study. Thus, we can expect juvenile survival to be the dominant
demographic parameter underlying differences in P. lanceolata
genetic diversity when dispersal is limited at local scales. At con-
tinental scales, genetic diversity is probably influenced less by
juvenile survival when gene flow is high. This might be especially
true in the nonnative range where there has been a shorter history
of local adaptation (33) and multiple human-mediated introduc-
tions (the human activity pathway) (Fig. 1).

Hypothesis 2: Global Gene Flow fromMultiple Introductions Will Disrupt

Spatial Genetic Structure. Admixture analysis of P. lanceolata
genotypes with fastSTRUCTURE (34) revealed strong genetic
structure in the native range and a high degree of admixture
in the nonnative range. The number of genetic clusters at
Hardy–Weinberg (HW) equilibrium (K) was between K = 6
(model complexity maximizing marginal likelihood) and K = 13
(model components used to explain structure in the data). When
K = 6, cultivar lines and outgroups (Plantago coronopus and
Plantago major) formed two distinct clusters, and the remaining
four clusters were present in the native European range with
clear spatial structure (Fig. 2). Greece, Italy, the Islands of the
North Atlantic, and Finland made up almost “pure” lines of these
four clusters, while other European populations were admixed.
Genotypes of most nonnative populations were admixed, and

there was relatively little spatial structure at a global scale (Fig.
2). This was supported by a significantly higher diversity score in
the nonnative range (model estimate, SE = 0.34, 0.04) compared
with the native range (0.22, 0.03; P = 0.033) (SI Appendix, Fig.
S6). Italy and central France were the most similar source ma-
terial for the dominant genotype in the nonnative populations.
Some cultivar stock was identified in the Spanish populations,
possibly reflecting the Iberian source of material used to breed
cultivars. The cultivars were developed in New Zealand; thus,
the presence of cultivar stock in that population might indicate
mixing between the naturalized population and pasture plants
(Fig. 2). At the upper range of K, further spatial structure was
identified in Europe (e.g., at K = 13, Norway was differentiated
from Finland), while the nonnative populations still showed
admixture of multiple, mostly Mediterranean sources (SI Ap-
pendix, Fig. S1). The lack of spatial structure at a global scale was
supported by analysis of molecular variance showing that genetic
variation between the native and nonnative range was only 2.2%,
among individuals within populations was 10.7%, and among
populations within ranges was 11.4%. The remaining genetic
variation (75.5%) accounted for individual heterozygosity.
The minimum number of colonizing propagules required to

produce the observed level of genetic diversity in nonnative regions
(Propmin) depended on sample size (r = 0.99) and ranged from 5.35
in New Zealand to 49.95 in North America (Fig. 2). Multiple in-
troductions were, therefore, required to produce observed levels of
genetic diversity in the nonnative ranges. Relative to sample size,
Propmin ranged from 0.55 to 0.90, indicating that, in each region,
more than half the sampled population was required to represent
nonnative genetic diversity. Propmin was based on the alleles present
in the native range, but there were also a number of non-European
alleles in each nonnative region (12 to 159) (Fig. 2). Thus, we either
failed to sample the full extent of the source population (despite
extensive sampling across Europe), or new genotypes were pro-
duced after colonization. The latter explanation can arise through
transgressive segregation (35) and is one mechanism by which
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Fig. 3. The simulated effect of demography and dispersal on genetic diversity
(expected heterozygosity, ±95% CI) in two populations of P. lanceolata. (A)
When there was no dispersal between populations, the population with high
juvenile survival (σj = 0.2) had greater genetic diversity than the population
with low juvenile survival (σj = 0.1). At very low levels of female fecundity ΦF,
populations went extinct (†), but ΦF had little influence on genetic diversity at
approximately >25 seeds per plant. (B) Variation in σj influenced population
size at the end of the simulation. (C) The difference in heterozygosity between
the two populations was influenced by dispersal between them (where fe-
cundity was kept constant at 20 seeds per plant). (D) Genetic differences
persisted until high levels of dispersal (>50,000 migrants per generation)
indicated by the 95% CI crossing zero.
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invasive species adapt quickly to new environments. However, we
also detected private alleles within sites in Europe (SI Appendix,
Table S1), and therefore, our sample does not represent the full
range of genetic diversity in the species.
Genetic structure measured by FST (genetic differentiation

between all pairs of populations) was stronger among populations
in the native range (mean FST = 0.16) than the nonnative range
(mean FST = 0.09). To analyze the influence of environmental
gradients on FST, we used three separate generalized dissimilarity
models, one for each range type: native range, nonnative range,
and the global population (native and nonnative combined). The
deviance explained by the native model was 74.3% (bootstrap
CI = 68.6, 78.3), and two of six variables fitted in the model had a
significant influence on FST (Fig. 4 and SI Appendix, Fig. S2).
Genetic distance increased with geographic distance (Fig. 4A), and
sites with similar levels of precipitation seasonality were more
genetically similar (Fig. 4B) after accounting for other variables in
the model (SI Appendix, Fig. S2). No variable significantly affected
FST in the nonnative range (deviance explained = 23.1%, boot-
strap CI = 9.4, 34.1) or the global population (deviance
explained = 10.9%, bootstrap CI = 7.25, 14.33) (SI Appendix, Fig.
S2). Geographic distance was included in each model to account
for differences in spatial scale. Thus, if environmental influences
on gene flow had persisted in the nonnative range, they should
have been detectable. Combined with the admixture analysis,
these results support our prediction (Hypothesis 2) that multiple
introductions from diverse source populations and long-distance
dispersal can weaken environment–genetic structure relationships.
P. lanceolata reproduces clonally as well as sexually, and this
flexible reproductive mode combined with high admixture in the
nonnative range suggests fast expansion after colonization. This
might allow the species to overcome ecological constraints without
the need for local adaptation (36).
In the native range of P. lanceolata, the increase in genetic

distance with precipitation seasonality might partially reflect a
historic biogeographical pattern (precipitation seasonality was
correlated with longitude, r = 0.47). Historical processes occurring
along both east–west and north–south axes shape contemporary
genetic patterns in European plants. For example, glacial refugia
in Iberia, Italy, and the Balkans were reflected in highly divergent
lines of Arabidopsis thaliana south of the alpine barrier (37). In our
dataset, the Italian population was genetically distinct, while two
eastern sites in Romania were highly differentiated and genetically
related to Greece (Fig. 2). François et al. (37) also found evidence
for an eastern refuge in A. thaliana. Further sampling into the

continental Asian range of P. lanceolata would help uncover
whether the observed patterns arose from movement with agri-
culture westward across Europe (38, 39) or postglacial colonizers
from the Balkans (40).

Hypothesis 3: Global Gene Flow Will Weaken Demographic Effects on

Genetic Diversity within Populations. We compared a series of
linear models, including additive and interactive effects of range
(native/nonnative), to address the hypothesis that environmental
influences on within-population genetic diversity would differ
between the native and nonnative ranges (Dataset S1). Our results
offered partial support for Hypothesis 3 because environmental
gradients (characterized by mean temperature, temperature sea-
sonality, and mean precipitation) affected population growth rate,
fecundity, and neutral and adaptive genetic diversity in native and
nonnative ranges of P. lanceolata (Fig. 5 and SI Appendix, Fig. S3).
Our expectation, however, that genetic responses to the environ-
ment could be explained by demographic variation had little
support (SI Appendix, Fig. S3). Demographic variables responded
to environmental gradients but did not induce a response on ge-
netic diversity when used as predictor variables. Demographic and
genetic parameters within populations were best explained by
environmental gradients, and in some cases, there were differ-
ences in the responses between native and nonnative ranges.
The top-ranked models for population growth rate (Fig. 5A)

and fecundity (Fig. 5B) had additive effects of mean temperature,
responding similarly in the native and nonnative ranges. Globally,
warmer sites tended to have lower population growth rates and
higher fecundity. Increases in fecundity can occur to offset lower
survival in stressful environments (41), a phenomenon that has
been recorded in other studies of Plantago (42, 43). There was also
an additive effect of temperature seasonality on neutral genetic
diversity (Fig. 5C), with highly seasonal sites having greater genetic
diversity in the native and nonnative ranges. Mean temperature
and temperature seasonality were correlated (r = −0.36, P = 0.02)
(SI Appendix, Fig. S4). Thus, the observed responses are best
thought of as responses to an environmental gradient, with de-
mographic and genetic parameters responding to different aspects
of the gradient. High genetic diversity in highly seasonal sites
might have been driven by increased fecundity since we found
some evidence of a positive relationship between fecundity and
genetic diversity (SI Appendix, Fig. S3G and Dataset S1).
Three of the top-ranked models included an interaction be-

tween environment and range, showing environmental effects in
the native range but not the nonnative range. Both neutral (Fig.
5D) (bootstrap CI = 0.001, 0.010) and adaptive (Fig. 5F) (boot-
strap CI = 0.004, 0.021) genetic diversity decreased across a mean
precipitation gradient in the native range but not in the nonnative
range. Adaptive genetic diversity increased with temperature
seasonality but only in the native range (Fig. 5E) (bootstrap
CI = −0.021, −0.005). There was also support (a change in Akaike
Information Criterion [ΔAICc] < 2) for nonnative populations
having a weaker response to environmental gradients in terms of
fecundity (SI Appendix, Fig. S3 A and B), population growth rate
(SI Appendix, Fig. S3C), and neutral genetic diversity (SI Appendix,
Fig. S3D). Taken together, these results suggest that nonnative
populations are not constrained by the same environmental forces
as their native counterparts.
Population growth rate and neutral and adaptive genetic di-

versity were all higher in the nonnative range (Fig. 5 and Dataset
S1), suggesting that invasive populations have a greater capacity
for colonization and adaptation. Higher population growth rates
in nonnative populations were probably driven by increases in
survival rather than fecundity since fecundity was lower in the
nonnative range (Fig. 5B and Dataset S1). Thus, our simulation
experiments and our field data indicated stronger effects of
survival than of fecundity on genetic diversity and population
growth, respectively.
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Fig. 4. Genetic distance (FST) between pairs of P. lanceolata populations in
the native European range was explained by two variables: (A) geographic
distance and (B) distance in precipitation seasonality (coefficient of variation
of annual mean precipitation) between sites. A generalized dissimilarity
model indicated that these variables had a significant (adjusted P < 0.001)
effect on FST given all other variables in the model (geographic distance,
mean temperature, mean precipitation, temperature seasonality, and pre-
cipitation seasonality). Deviance explained by the model was 74.3%, and the
model splines are shown in SI Appendix, Fig. S2.
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Increases in genetic diversity can arise when environmental
heterogeneity drives population turnover through increases in
sexual reproduction, population growth, and survival (6, 44). In
our study, however, population growth was affected by mean
temperature, not variability in temperature; cooler sites gener-
ally had higher rates of population growth across the first two
demographic censuses. This is consistent with previous work
showing that high mean temperature was associated with mor-
tality in P. lanceolata (42). Thus, we did not find a clear de-
mographic explanation for the effect of temperature seasonality
on genetic diversity. Temperature stability might have promoted
clonality in P. lanceolata, leading to lower genetic diversity (45).
However, rates of sexual and clonal reproduction within species
are often inversely related (46), and genetic diversity was un-
affected by rates of sexual reproduction in our study. The in-
fluence of global variation in clonality on genetic diversity needs
further investigation, particularly because clonality combined
with sexual reproduction can increase invasion success (36).
Our prediction that environmental effects on genetic diversity

could be explained by demographic variation had only little
support, even in the native range. Except for a weak increase in
neutral genetic diversity with density (SI Appendix, Fig. S3F) and

fecundity (SI Appendix, Fig. S3G), there was little direct influ-
ence of demographic variables on genetic diversity. There are at
least two explanations for this general lack of a demographic
relationship. First, genetic structure can arise even under fre-
quent dispersal (44). Thus, although we found strong spatial
genetic structure in the native range, it is possible that dispersal
was high enough to mask any influence of demography on ge-
netic diversity (the natural dispersal pathway) (Fig. 1). Second,
the fine scale of demographic sampling within sites (a few meters2)
might not reflect effective population size (47). This fits with
our understanding of abiotic filters operating at all scales, while
biotic filters, such as inter- and intraspecific interactions affecting
demographic performance, generally operate at localized
scales (10, 13). P. lanceolata is also highly genetically variable
within and outside its native range. Thus, the low power
within sites might have limited our ability to draw conclusions
about demographic influences on genetic diversity. Sampling
more individuals per site in the future might reveal stronger
effects of fecundity, survival, and population growth on genetic
diversity.
In summary, genetic diversity in P. lanceolata seems to be

shaped predominantly by temperature and precipitation gradients
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Fig. 5. Environmental influences on demography and genetic diversity within populations in the native European (n = 30) and nonnative (n = 14) range of P.
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related to gene flow and admixture rather than demographic vari-
ation. Our data support the prediction that high dispersal would
dilute demographic effects on genetic diversity (Hypothesis 1).
Globally, our analyses suggest that genetic diversity in the nonnative
range is shaped by admixture from multiple source populations and
ongoing introductions, leading to high neutral and adaptive genetic
diversity (Hypothesis 2). Our data suggest that invasive populations
can establish in a broad range of environments without the need
for associated demographic change. Thus, there was little support
for the prediction that demographic variation could explain envi-
ronmental effects on genetic diversity (Hypothesis 3). Our unique
global demographic dataset provides evidence that invasive species
can overcome ecological rules in their nonnative range (11–13).
Reducing long-distance dispersal and further introductions of in-
vasive plants is important, even in areas where they already exist,
as this will limit future increases in genetic diversity and the for-
mation of new genotypes that confer an adaptive advantage in new
environments.

Methods
Study Overview. P. lanceolata is a short-lived [mean, max = 2.8, 8 y (48)],
perennial forb native to Europe. It reproduces sexually and vegetatively, with
gynodioecy, self-incompatibility, and protogyny to enhance outcrossing (49).
Flowers are wind pollinated, and seeds mature in summer. The species occurs
in a wide range of habitats, including seminatural grasslands, roadsides, dis-
turbed sites, abandoned fields, and agricultural land (50). Seeds are dispersed
locally by wind, but seed dispersal distances are estimated to be within cen-
timeters or meters of the mother plant (51). Widespread propagule movement
by humans (29) and repeated introductions as seed contaminants (30)
have led to the global distribution of P. lanceolata. It has been present in
Australia since before 1850 (https://www.ala.org.au/), in North America
since before 1832 (30), and for an unknown time in South Africa (52). It is
cultivated as a commercial pasture plant in New Zealand because it grows
well in the mild winter and limits soil nitrification (31). The species is
classed as invasive in its nonnative range (52) because it reproduces prolifically
and spreads over large areas (53). We follow this definition of “invasive” to
refer to P. lanceolata and other plant species with this characteristic. We use
the term “nonnative” to refer to the geographic range outside of Europe
where the species exists.

We used field-collected demographic andDNAdata from populations of P.
lanceolata to analyze spatial variation in demographic rates and genetic di-
versity. The demographic data were used to parameterize the simulation part
of the study (Hypothesis 1) and to analyze the demographic influence on
genetic diversity across global environmental gradients (Hypothesis 3). For the
genetic dataset, we sampled 454 individuals from 53 naturally occurring
populations in 21 countries across the native European range (35 populations:
Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy,
Norway, Romania, Spain, Sweden, Switzerland, United Kingdom) and the
nonnative range (18 populations: Australia, Canada, Japan, New Zealand,
South Africa, the United States) (Fig. 2). The latitudinal range of sampling, in
absolute terms, was 27.5 to 61.4°. Forty-four populations (83%) were estab-
lished sites in the PLANTPOPNET network (http://www.plantpopnet.com/) un-
dergoing an annual demographic census, while the remaining nine were
sampled for DNA only (SI Appendix, Table S1).

We characterized the environment at each site using four variables from
BioClim (54) at 30-s resolution: annual mean temperature, annual mean
precipitation, temperature seasonality (SD of annual mean temperature),
and precipitation seasonality (coefficient of variation in annual mean pre-
cipitation). We selected these variables because they were important for
morphological variation in P. lanceolata in preliminary analyses, and multi-
collinearity was not high (variance inflation factor < 3, maximum r between
pairs of environmental variables = 0.43 [mean temperature and seasonality
in precipitation], and between range [native/nonnative] and environment
[mean temperature] = 0.59) (55).

Field Demographic Census and DNA Sampling. PLANTPOPNET is an ongoing
research project that began in 2014, and annual censuses of P. lanceolata

populations are planned for the long term. Our analysis used data collected
between 2014 and 2017, but not all sites began data collection at the same
time (i.e., year 0 varied among sites) (SI Appendix, Table S1). In most pop-
ulations (61%), year 0 was 2015, and 73% of populations were sampled
twice during this study period (number of annual censuses per population =

1 to 3) (SI Appendix, Table S1). At each census site in year 0, a series of

adjacent 50 × 50-cm quadrats was established along transects until the
quadrats covered 100 individual plants. Researchers established transects
where P. lanceolata was present in sufficient numbers for demographic
studies, and therefore, density estimates might reflect upper estimates
across local populations. Quadrats were permanently marked to enable re-
peat censuses from year 1 onward. Each plant was individually tagged, and
all rosettes on each plant were measured according to a standard protocol
(56), which included leaf length, number of flowering stems, inflorescence
length, and stage of seed development.

At each site, fresh leaf tissue from seven to nine individuals was collected
and placed immediately in silica gel (SI Appendix, Table S1). Sampled indi-
viduals were close to (∼5 to 20 m) but outside of census plots and were sep-
arated from each other by ∼5 to 10 m. Thus, we avoided damage to
permanently marked individuals in the census population, ensured that sam-
ples were closely related to the census population, and minimized the chance
of sampling clones. We included two samples each from one population of
P. coronopus (Spain) and four populations of P. major (Australia × 2, Ireland ×

1, Romania × 1) as outgroups. To investigate if naturally occurring populations
were influenced by genetic stock from commercial pasture lines, we included
nine individuals from each of three cultivar lines derived from P. lanceolata:
AgriTonic, Ceres Tonic, and Tonic Plantain. The whole dataset thus included
491 individuals. The data are publicly available (https://zenodo.org/record/
3626288).

Genotyping. Samples were genotyped at Diversity Arrays Technology P/L
(Canberra, Australia) using double-restriction enzyme complexity reduction
and high-throughput sequencing (DArTseq). Total genomic DNA was
extracted with a NucleoSpin 96 Plant II Core Kit (MACHEREY-NAGEL) and
purified using a Zymo kit (Zymo Research). The enzymes PstI and MseI were
chosen following tests of different enzyme combinations for P. lanceolata.
DNA samples were processed in digestion/ligation reactions following Kilian
et al. (57) but substituting the single PstI adaptor for two adaptors corre-
sponding to restriction enzyme-specific overhangs. The PstI adaptor was
modified to include Illumina sequencing primers and variable length
barcodes following Elshire et al. (58). Mixed fragments (PstI–MseI) were
amplified in 30 rounds of PCR using the following reaction conditions:
94 °C for 1 min and then 30 cycles of 94 °C for 20 s, 58 °C for 30 s, and 72 °C
for 45 s followed by 72 °C for 7 min. After PCR, equimolar amounts of
amplification products from each sample were bulked and applied to c-Bot
(Illumina) bridge PCR followed by single-read sequencing on an Illumina
Hiseq2500 for 77 cycles. Raw sequences were processed using DArTseq
analytical pipelines (DArTdb) to split samples by barcode and remove
poor-quality sequences. Genotypes for codominant SNPs were called de
novo (i.e., without a reference genome) from 69-bp sequences using
DArTseq proprietary software (DArTsoft). Replicate samples were pro-
cessed to assess call rate (mean = 79%), reproducibility (mean = 99%), and
polymorphic information content (mean = 22%).

SNP Filtering. Starting with 37,692 SNPs that passed DArTseq quality control,
we filtered the data for minimumminor allele frequency (1%), call rate (50%),
and reproducibility (98%) using customR scripts (59) (https://zenodo.org/record/
3626288). Loci in HW and linkage disequilibrium hold important biological
information about population structure, but extreme disequilibrium can
indicate genotyping errors, which bias estimates of population structure
(60). Within sites, there was limited power to reliably test for patterns of
HW and linkage disequilibrium (seven to nine individuals per site). It was
not possible to combine samples from multiple populations because we
detected strong genetic structure even within countries, which would have
produced biologically meaningful patterns of disequilibrium arising from
the Wahlund effect (61). Thus, to identify SNPs with consistent patterns of
HW disequilibrium, we tested each locus in every population separately
using Fisher’s exact tests (62) and used unadjusted P values given the low
power within sites. Loci that deviated from HW equilibrium in more than
five populations were removed (63). We used the correlation between
genotype frequencies (64) to test for linkage disequilibrium between each
pair of loci in each population. Following the same rationale as for HW
disequilibrium, we removed a locus if it was in a correlated pair (r > 0.75)
in more than five populations. To reduce the chance of disequilibrium
from physical linkage, we also filtered SNPs that occurred in the same 69-
bp sequence as another SNP, keeping the one with the highest call rate.
The data comprised 21,190 SNPs after applying these filters.

Detecting Loci under Putative Selection. Neutrality was an assumption un-
derlying the population structure models that we used; thus, we investigated
if SNPs were putatively under selection using one population-level method
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(BayeScan) and two individual-level methods (PCAdapt and LFMM). BayeScan
uses a Markov chain Monte Carlo algorithm to examine outlier loci against
background values of population differentiation (FST) among predefined
populations (65). PCAdapt and LFMM both define background population
structure as K principal components derived from individual genotypes (66,
67). In PCAdapt, each SNP is regressed against each principal component.
LFMM uses the principal components as latent factors in a Gaussian mixed
model, where the genotype matrix is modeled as a function of an environ-
mental matrix (67). While BayeScan is suitable for our population-level sam-
pling design, PCAdapt and LFMM are more reliable for species with complex,
hierarchical population structure (e.g., multiple divergence events) and are less
sensitive to admixed individuals and outliers in the data (68, 69). Thus, we
considered outliers identified in any of the three methods to be putatively
under selection.

For BayeScan, we set the prior odds at 200 [appropriate for the number of
markers in our data (70)], ran the model using default parameters (100,000
iterations with a thinning interval of 10, a burn in of 50,000 and 20 pilot runs
of 5,000 iterations), and checked the distribution of the log likelihood across
iterations to ensure model convergence (SI Appendix, Fig. S5). For both
individual-level methods, we examined scree plots to determine K and used
the first 10 components that captured the majority of population structure
in the data (SI Appendix, Fig. S5). We defined the LFMM environmental
matrix using the four 30-s BioClim variables described above and three ad-
ditional variables: elevation (meters above sea level measured at the site)
and two variables extracted from CliMond (71) at 5-min resolution (annual
mean moisture index and seasonality in moisture [coefficient of variation of
annual mean moisture]). To control for false discovery rate, we calculated q

values from P values and classed SNPs as outliers where q < 0.05 for
BayeScan and PCAdapt and q < 0.1 for LFMM (to account for the small
number of loci identified with this method) (SI Appendix, Fig. S5). The three
analyses identified a total of 3,026 outlier SNPs, and as commonly reported
in other studies (69), there was little overlap among methods (SI Appendix,
Fig. S5). After filtering the putatively adaptive loci, our final dataset com-
prised 18,164 neutral SNPs.

Simulated Genetic Diversity (Hypothesis 1). We conducted two simulation
experiments in MetaPopGen 0.0.4 (72) to determine if realistic levels of
variation in P. lanceolata survival and fecundity would influence genetic
diversity and whether dispersal would override demographic influences on
genetic diversity. Gametes in the model are produced via Mendelian seg-
regation, and mating is random (72). We modeled two distinct populations
to examine different rates of juvenile survival and female fecundity. In Ex-
periment 1, the two populations were unconnected by dispersal, while in
Experiment 2, they were connected by varying levels of dispersal.

Male fecundity ΦM in P. lanceolata is high [10,000 to 54,000 pollen grains
per anther (32)] and had no influence on genetic diversity. Thus, we set ΦM

at 10,000 and focused on variation in female fecundity (seeds per plant) ΦF,
adult σa and juvenile σj survival rate, and between-population dispersal δ
(number of migrants per generation). In both experiments, each of the two
populations i had two age classes x (juvenile xj, adult xa), three genotypes p
representing all combinations of two alleles (00, 01, and 11), and a starting
size Nxp of 25,000 individuals. The model was not spatially explicit, but we
wanted each population to represent a 1-ha site with a density of 15 indi-
viduals per meter2 (based on census data from year 0). Generation time in P.

lanceolata is ∼3 y [range = 1 to 3 y (73, 74)]. Thus, we ran the model for 100
time steps to represent population dynamics over 100 to 300 y, accounting
approximately for the time that P. lanceolata has been present in its non-
native range. Population sizes reached a steady state within 10 time steps.
We estimated juvenile carrying capacity as K = (ΦF × (N × p)) × g, where g is
the estimated field germination rate (0.039). We kept K time and population
constant. MetaPopGen can only simulate one locus at a time, and therefore,
we repeated the experiments 300 times to simulate sampling 300 in-
dependent loci (following ref. 72).

In Experiment 1, we tested the influence of ΦF on genetic diversity (1 to
100, based on census data from year 0) and σ (σji1 = 0.1; σai1 = 0.84; σji2 = 0.2;
σai2 = 0.71) with no dispersal between populations (δ = 0). Survival rates
were based on a total population estimate of 5% alive after 5 y (exp(log(0.05)/5))
(73) and adjusted for commonly reported low survival in juveniles (42). In
Experiment 2, we tested the influence of δ (migration rate: 0 to 0.04 = number
of migrants: 0 to 60,000) on the difference in genetic diversity between
populations. Each population had the same survival rates as Experiment 1, and
ΦF was kept constant at 20. The migration rates produce large numbers of
migrants because each plant produces 20 “newborns,” and migration occurs
before recruitment in the model (72). Thus, δ is influenced by K and will always
be higher than recruitment. We summarized expected heterozygosity at the

end of each simulation and calculated the mean and 95% CI across the 300
loci. The experiments can be reproduced with the code available at https://
zenodo.org/record/3626288.

Population Genetic Structure (Hypothesis 2). All population structure analyses
used our panel of neutral SNPs, a choice dictated by the model assumptions
being based onHWand linkage equilibrium.We first conducted an analysis of
molecular variance in poppr 2.8.0 (75) to determine how neutral genetic
diversity was partitioned across levels: within individuals, among individuals
within populations, among populations within ranges, and between the
native and nonnative range. To assess genomic relationships and the degree
of admixture in the global dataset, we used fastSTRUCTURE (34). This model
determines the number of genetic clusters in the data that would maximize
HW and linkage equilibrium (K). We investigated K = 1 to K = 20 and
assigned each individual to a cluster based on the model complexity that
maximized marginal likelihood and the model components used to explain
structure in data (34). To quantify the level of admixture for each individual
(i) across the most likely K, we calculated a diversity score (76) as

DS=
–
PK

i=1Ci · lnðCiÞ

–Hmax
,

where Ci is the cumulative admixture and Hmax is a scaling factor (Hmax =

K · ((1/K ) · ln(1/K ))), making DS relative to complete evenness for each
individual. We used a linear mixed model to evaluate whether there was
a difference in DS between the native and nonnative range, with site
fitted as a random effect.

To determine whether multiple introductions of P. lanceolata had oc-
curred in nonnative regions (Australia, Japan, New Zealand, North America,
and South Africa), we estimated the minimum number of propagules re-
quired to produce the observed level of genetic diversity in nonnative re-
gions (Propmin) (77). We defined the source population as all of Europe
because nonnative individuals were usually composed of admixed geno-
types from multiple European populations. For each nonnative region, we
calculated the number of alleles not present in Europe and removed these
from the reference panel of nonnative alleles. Individuals from the native
range were then randomly cumulatively sampled without replacement.
Propmin was the number of individuals sampled at the point when all alleles
in the nonnative panel were represented (https://zenodo.org/record/3626288).
We repeated the process 1,000 times to obtain a mean and SE. We also
calculated the number of unique alleles in each of the 53 sites as a measure
of uniqueness.

To assess the influence of environmental gradients on spatial genetic
structure, we used generalized dissimilarity models (78, 79). We fitted one
model for the native range, a second for the nonnative range, and a third
for the global dataset (native and nonnative). We calculated genetic dif-
ferentiation as FST between all pairs of populations in GENEPOP 4.6 (80).
Environmental distances between all pairs of populations i and j were cal-
culated from the four BioClim variables x (xi – xj) (79). For each of the three
datasets, we fitted geographic distance and all environmental distances as
predictor variables in a single model. The importance of each variable, given
all other variables, was assessed by comparing the fitted model with 500
models with a permuted environmental matrix (79). Thus, the effect of each
environmental variable can be interpreted independently, and differences in
spatial scale are accounted for by the geographic distance variable. P values
were Bonferroni adjusted across all terms within each model. We used de-
viance explained to assess goodness of fit of the three models. Given sam-
ples size differences between the three datasets, we used a bootstrap
estimate from 10,000 replicates of the deviance explained to assess the ac-
curacy of the model fit. We assumed the deviance explained to be accurate if
bootstrap 95% CI did not include zero.

Demographic and Dispersal Effects on Genetic Diversity (Hypothesis 3). We
used linear regression to determine if environmental influences on within-
population genetic diversity could be explained by demographic variation
and whether this effect would be weakened by mass dispersal into the
nonnative range (Hypothesis 3). The observation level for all analyses was the
population, and the number of observations was 44 (i.e., all populations with
genetic and demographic data) (SI Appendix, Table S1).

Genetic diversity was calculated as allelic richness in hierfstat (81) sepa-
rately for the neutral (18,166 SNPs) and adaptive (3,024 SNPs) datasets.
Allelic richness was highly correlated with expected heterozygosity (He; r =
0.98), and because it was standardized for sample size, it eliminated a weak
correlation that we observed between He and sample size. We characterized
the environment using the four BioClim variables. For demography, we used
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three variables that can influence genetic diversity (Table 1): population
density (rosettes per meter2), fecundity, and empirical population growth
rate. For fecundity, we used reproductive effort estimated as the rosette-
level inflorescence length × number of flowering stems per meter2. Empir-
ical population growth rate was calculated as r = log(Nt+1/Nt), indicating the
strength and direction of change in rosettes per meter2 in the first 2 y of the
study (for 38 of the 44 populations with 2 y of data) (SI Appendix, Table S1).
Thus, r reflects the combined influence of fecundity and survival (the vari-
ables explored in simulation Experiment 1). We used rosette-level data for
all metrics to reduce potential observer bias in assessing clonality, but plant-
and rosette-level metrics were highly correlated (r = 0.94). Fecundity was log
transformed to address a strongly skewed distribution, and all predictors
were standardized prior to analysis (x − mean(x)/SD(x)).

We tested environmental and demographic effects separately to de-
termine which variables best described variation in genetic diversity. The
analysis comprised two stages. First, we analyzed the effect of each envi-
ronmental variable on genetic diversity. Here, we also modeled the envi-
ronmental effect on demography (i.e., using the three demographic variables
as response terms) to establish a baseline for environmental influences on
demographic rates. Second, we examined whether each demographic vari-
able influenced genetic diversity. In both stages, we analyzed environmental
and demographic interactions with range (native/nonnative). Because of data
limitations (n = 44), it was not possible to fit complex models with multiple
interaction terms, and therefore, we modeled each predictor separately.

To determine the importance of each environmental or demographic
predictor, we used AICc to compare model fit across five alternative model
forms: a null model (no predictor variation), a predictor-only model, a range-
only model, an additive model (predictor + range), and an interactive model

(predictor × range). We considered a model to have support from the data if
it improved the fit over the null model by ΔAICc > 2 (82). Among models
that outfitted the null, those within ΔAICc ≤ 2 of each other were consid-
ered to have equal support from the data. In these cases, we presented the
top-ranked model in the main document and supported models in SI Ap-

pendix. To interpret interaction models in light of sample size differences
between the native (30) and nonnative (14) ranges (e.g., a strong response in
the native range and no response in the nonnative range), we obtained a
bootstrap 95% CI from 10,000 bootstrap replicates of the interaction co-
efficient using the adjusted bootstrap percentile method.
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