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Definition 1. (Andrievskii and Fradkov (2006)). Given g ∈
R

l, a scalar transfer function gTW (s) = gTC(sI −A)−1B
is called hyper-minimum-phase (HMP) if it is minimum-
phase and its leading coefficient gTCB is positive.

Lemma 1. (Passification lemma, Fradkov (1976, 2003)). A
rational function gTW (s) = gTC(sI − A)−1B is HMP if
and only if there exist a matrix P , a vector θ∗, and a scalar
ε > 0 such that

P > 0, PA∗ +AT
∗
P < −εP, PB = CT g, (2)

Consider an uncertain linear system

ẋp(t) = Apxp(t) +Bpu(t) + wp(t),

yp(t) = Cpxp(t)
(1)

with the state xp ∈ R
n, control input u ∈ R, measured

output yp ∈ R
l, unknown disturbance wp ∈ R

n, and
uncertain matrices Ap, Bp, Cp.

Assumption 1. There exists ∆w > 0 such that

‖wp(t)‖ ≤ ∆w, ∀t ≥ 0.

Assumption 2. There exists gp ∈ R
l such that gTp Wp(s) =

gTp Cp(sI−Ap)
−1Bp is minimum-phase, i.e., its numerator

is Hurwitz.

2.1 Passification lemma

In this paper, we remove the “relative degree one” as-
sumption by using the so-called shunting method (parallel
feedforward compensator) in the form proposed in Frad-
kov (1994). This allows us to obtain a hyper-minimum-
phase augmented system, which is further stabilized by a
passification-based adaptive controller. By constructing a
switching procedure for the adaptive controller parameters
and quantizer’s zooming, we ensure convergence of the
system state from an arbitrary set to an ellipsoid, whose
size depends on the disturbance bound. The results are
demonstrated by an example of an aircraft flight control.

2. PLANT DESCRIPTION AND PRELIMINARIES

Compared to linear feedback, adaptive controllers achieve
better performance in the presence of uncertainties. How-
ever, the price for this is higher complexity. Namely, the
dynamical order of adaptive systems is typically several
times higher than that of linear ones, which makes them
more sensitive to disturbances, noise, unmodeled dynam-
ics, etc. Consequently, quite a number of studies were
devoted to designing simple adaptive controllers with low
dynamical orders (Fradkov (1974, 1976); Barkana and
Kaufman (1985); Kaufman et al. (1998); Iwai and Mizu-
moto (1992); Deng et al. (2001); Dolinar et al. (2000); Cho
and Burton (2011); Amini and Javanbakht (2014)).

The class of adaptive systems proposed in Fradkov (1974,
1976) is based on passification: design of feedback render-
ing the closed-loop system passive. Such feedback exists
if and only if the system is hyper-minimum-phase, i.e., it
is minimum-phase and has relative degree one (Fradkov
(1974, 1976)). This property is also called strict passivity
(Barkana and Kaufman (1985); Kaufman et al. (1998)).

Since the 1970s, quite a number of adaptive control and
synchronization problems have been solved for passifi-
able systems and networks (see the references in Fradkov
(2003); Andrievskii and Fradkov (2006); Bobtsov et al.
(2014); Selivanov et al. (2015); Andrievskii and Selivanov
(2018); Pyrkin et al. (2018)). In Rahnama et al. (2018)
and Zhu et al. (2017) a concept of passivity indices was
proposed and used for passivation-based event-triggered
control. However, those passivation results are based on
introducing the feedthrough terms making relative degree
zero, which is sometimes nonrealistic. In Selivanov et al.
(2016), the passification method was extended to systems
with quantized measurements and bounded disturbances.
The main restriction of that paper is the “relative degree
one” assumption that limits potential applications.
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Abstract: We construct an adaptive controller for a linear minimum-phase system of an
arbitrary relative degree with an unknown bounded disturbance and dynamically quantized
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of relative degree one that is stabilized by a passification-based adaptive controller. Moreover,
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disturbance bound. The results are demonstrated by an example of an aircraft flight control.
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where A∗ = A−BθT
∗
C.

Remark 1. If gTW (s) = gTC(sI − A)−1B is HMP, then
there exists θ such that u = −θT y + v makes the system

ẋ = Ax+Bu, y = Cx

strictly passive from a new input v to the output gT y,
i.e., there exist functions V (x) = xTPx, with P > 0, and
ϕ(x) ≥ 0, such that ϕ(x) > 0 for x �= 0, satisfying

V (x(t)) ≤ V (x(0)) +

∫ t

0

[

yT (s)gv(s)− ϕ(x(s))
]

ds.

Lemma 2. (Fradkov (1994)). Let gTp Wp(s) = gTp Cp(sI −

Ap)
−1Bp be a minimum-phase transfer function with

a relative degree r > 1 and a leading coefficient
gTp CpA

r−1
p Bp > 0. Let P (s) and Q(s) be Hurwitz polyno-

mials of degrees r − 2 and r − 1 with positive coefficients.
Then there exist a number κ0 > 0 and a function λ0(κ) > 0
such that gTp Wp(s)+κλP (λs)/Q(s) is HMP for any κ > κ0,
0 < λ < λ0(κ).

2.2 Quantizer model

Following Liberzon (2009), we introduce a quantizer with
a quantization range M and a quantization error bound
∆e as a mapping q : y �→ q(y) from R

l to a finite subset of
R

l such that

‖y‖ ≤ M ⇒ ‖q(y)− y‖ ≤ ∆e. (3)

We will refer to the quantity e = q(y) − y as the
quantization error. The concrete codomain of q is not
important for our further analysis, therefore, can be chosen
arbitrary. The value of M is usually dictated by the
effective range of a sensor.

By dynamic quantizer we will mean the mapping

qµ(y) = µq

(

y

µ

)

, (4)

where µ > 0. For each positive µ, one obtains a quantizer
with the quantization range µM and the quantization
error bound µ∆e. We say that M and ∆e are the nominal
quantization range and quantization error bound. We can
think of µ as the “zoom” variable: increasing µ corresponds
to zooming out and essentially obtaining a new quantizer
with larger quantization range and quantization error
bound, whereas decreasing µ corresponds to zooming in
and obtaining a quantizer with a smaller quantization
range but also a smaller quantization error bound.

3. ADAPTIVE CONTROL WITH DYNAMIC
QUANTIZATION

Consider the system (1) subject to Assumptions 1 and 2
with r > 1 being the relative degree of gTp Wp(s). Let us
fix some Hurwitz polynomials P (s) and Q(s) of degrees
r−2 and r−1 with positive coefficients. Due to Lemma 2,
there exist λ and κ such that gTp Wp(s) + Ws(s) with
Ws(s) = κλP (λs)/Q(s) is HMP. We consider a controller
that consists of a shunt system

ẋs(t) = Asxs(t) +Bsu(t),

ys(t) = Csxs(t)
(5)

with the transfer function Ws(s) and switching adaptive
control law

Fig. 1. A minimum-phase system with a shunt

u = −θTp qi(yp)− θsys,

θ̇p = γqi(yp)[g
T
p qi(yp) + ys]− σiθp,

θ̇s = γys[g
T
p qi(yp) + ys]− σiθs,

(6)

for t ∈ [iT, iT + T ), i ∈ N0, where θp ∈ R
l, θs ∈ R

are adaptive coefficients, qi(yp) = qµi
(yp) is the dynamic

quantizer defined in (4), T > 0 is a switching period, γ > 0,
and µi, σi are switching parameters to be defined later.

By introducing (5), we obtain an HMP augmented system.
Without quantization, such a system can be stabilized
using a regularized passification-based adaptive controller
proposed in Narendra et al. (1971). The presence of
quantization requires an additional analysis provided in
the proof of Theorem 1 below. The switching procedure is
introduced to take advantage of the dynamic quantization:
when the system state converges to a smaller set, we can
“zoom in” and reduce the quantization error, which allows
one to adjust σi and ensure convergence to a smaller set.

Denote x = col{xp, xs}, y = col{yp, ys}, w = col{wp, 0},

A =

[

Ap 0
0 As

]

, B =

[

Bp

Bs

]

, C =

[

Cp 0
0 Cs

]

(7)

and consider the augmented system

ẋ(t) = Ax(t) +Bu(t) + w(t),

y(t) = Cx(t),
(8)

whose transfer function is

W (s) =

[

Wp(s)
Ws(s)

]

.

For g = col{gp, 1}, we obtain that gTW (s) = gTp Wp(s) +
Ws(s) is HMP. Without loss of generality, we assume
that ‖g‖ = 1 (since for g̃ = g/‖g‖ the function g̃TW (s)
remains HMP). Then Lemma 1 guarantees that there exist
a matrix P , a vector θ∗ ∈ R

l+1, and a scalar ε > 0 such
that (2) are satisfied (with A, B, and C given in (7)). For
µ0 > 0, V0 > 0 define the following quantities

ρ =
‖C‖

µ0∆e‖θ∗‖

√

V0λ
−1

min
(P ),

ν =
ε

2
− ‖θ∗‖µ

2
0∆

2
eV

−1

0 − 2
µ0∆e‖θ∗‖‖C‖
√

λmin(P )V0

,

α = ε− ν − 2ρ−1λ−1

min
(P )‖C‖2,

cγ = γ−1‖θ∗‖
2,

cw = α−1ν−1λmax(P ),

ce = 2α−1(‖θ∗‖+ ‖θ∗‖
2ρ).

(9)

Theorem 1. Consider the system (1) subject to Assump-
tions 1 and 2. Let its output be dynamically quantized by
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(4) with a nominal quantization range M and maximum
quantization error ∆e such that

ce‖C‖2

λmin(P )
<

M2

∆2
e

. (10)

For an arbitrary bounded set of initial conditions, let us
choose

µ2
0 >

cw‖C‖2

M2λmin(P )− ce∆2
e‖C‖2

∆2
w,

V0 =
M2λmin(P )

‖C‖2
µ2
0,

(11)

such that

xT (0)Px(0) + γ−1‖θ(0)− θ∗‖
2 < V0, (12)

where θ = col{θp, θs}. Then the adaptive controller (5),
(6) with

Vi+1 = Vie
−αT + (1− e−αT )(cγ + cw∆

2
w + ceµ

2
i∆

2
e),

(13)

µi = µ0

√

ViV
−1
0 , (14)

σi = α+ γµ2
i∆

2
e(ρ+ ‖θ∗‖

−1), (15)

γ >
‖θ∗‖

2‖C‖2

µ0M2λmin(P )− cw∆2
w‖C‖2 − ceµ2

0∆
2
e

, (16)

guarantees that

xT (t)Px(t) < Vi, t ∈ [iT, iT + T ), i ∈ N0. (17)

Moreover, ‖θ(t)‖ is a bounded function and Vi monotoni-
cally decreases with

limVi =
cγ + cw∆

2
w

1− ceµ2
0∆

2
eV

−1
0

.

Remark 2. Condition (10) establishes the minimum pre-
cision level M

∆e

of the nominal quantizer (with µ = 1)
such that the adaptive controller is capable of reducing
the state norm. Namely, it guarantees that Vi, given by
(13), decreases. The values of ν and ρ in (9) are chosen to
minimize the limit of Vi.

Proof. First, we show that

cγ + cw∆
2
w + ceµ

2
i∆

2
e < Vi < Vi−1, i ∈ N. (18)

Relations (10), (11), (16) guarantee that

cγ + cw∆
2
w + ceµ

2
0∆

2
e < V0. (19)

Then (13) with e−αT ∈ (0, 1) implies

cγ + cw∆
2
w + ceµ

2
0∆

2
e < V1 < V0.

Since µ2
1

(14)
= µ2

0

(

V1

V0

)

< µ2
0, the latter guarantees (18) for

i = 1. If (18) holds for i, then (13) with e−αT ∈ (0, 1)
implies

cγ + cw∆
2
w + ceµ

2
i∆

2
e < Vi+1 < Vi.

Since µ2
i+1

(14)
= µ2

0
Vi+1

Vi

Vi

V0
< µ2

0
Vi

V0
= µ2

i , the latter

guarantees (18) for i + 1. By induction, we obtain (18)
for i ∈ N. Thus, Vi monotonically decreases with the limit
value obtained by solving (13), (14).

Consider the augmented system (8) and

V (x, θ) = xTPx+ γ−1‖θ − θ∗‖
2

with θ = col{θp, θs} and P , θ∗ satisfying (2). Below we
show that

V (t) < Vi, t ∈ [iT, iT + T ), i ∈ N0, (20)

which implies (17) and the boundedness of ‖θ(t)‖. The
control law (6) can be written in the form

u = −θT qi(y),

θ̇ = γqi(y)q
T
i (y)g − σiθ,

t ∈ [iT, iT + T ), (21)

where qi(y) = col{qi(yp), ys}. Note that qi(y) formally is
not a quantizer, since its codomain is not a finite set,
but it satisfies the relation (3) with the same range and
maximum error as qi(yp).

Denote ei = qi(y)− y. Using PB
(2)
= CT g, for t ∈ [iT, iT +

T ) we obtain

V̇ = 2xTP [Ax−BθT qi(y)] + 2xTPw
+ 2(θ − θ∗)

T qi(y)q
T
i (y)g − 2σiγ

−1(θ − θ∗)
T θ

= 2xTP [Ax−BθT
∗
Cx] + 2qTi (y)g(θ∗ − θ)T qi(y)

− 2eTi g(θ∗ − θ)T qi(y)− 2yT gθT
∗
ei + 2xTPw

+ 2(θ − θ∗)
T qi(y)q

T
i (y)g − 2σiγ

−1(θ − θ∗)
T θ.

Let us assume that

|ei(t)| ≤ µi∆e, t ∈ [iT, iT + T ), i ∈ N0. (22)

Then, using Young’s inequality, we obtain

−2eTi (y)g(θ∗ − θ)T qi(y) ≤
(ρ+ ‖θ∗‖

−1)µ2
i∆

2
e‖θ∗ − θ‖2 + ρ−1‖y‖2 + ‖θ∗‖µ

2
i∆

2
e,

−2yT gθT
∗
ei ≤ ρ−1xTCT ggTCx+ ρµ2

i∆
2
e‖θ∗‖

2,
2xTPw ≤ νxTPx+ ν−1λmax(P )∆2

w,
−2σiγ

−1(θ − θ∗)
T θ ≤ −σiγ

−1‖θ − θ∗‖
2 + σiγ

−1‖θ∗‖
2.

Therefore, for t ∈ [iT, iT + T ),

V̇ + αV − βi ≤ −(ε− ν − 2ρ−1λ−1
min(P )‖C‖2 − α)xTPx

− (σi − γρµ2
i∆

2
e − γ‖θ∗‖

−1µ2
i∆

2
e − α)γ−1‖θ∗ − θ‖2

+ ν−1λmax(P )∆2
w + σiγ

−1‖θ∗‖
2 + ρµ2

i∆
2
e‖θ∗‖

2

+ ‖θ∗‖µ
2
i∆

2
e − βi.

Taking βi = ν−1λmax(P )∆2
w + σiγ

−1‖θ∗‖
2 + (ρ‖θ∗‖

2 +
‖θ∗‖)µ

2
i∆

2
e and substituting α from (9) and σi from (15),

we find that V̇ ≤ −αV + βi. Thus,

V (t) ≤

(

V (iT )−
βi

α

)

e−α(t−iT )+
βi

α
, t ∈ [iT, iT+T ).

(23)
Note that

βi

α
= cγ + cw∆

2
w + ceµ

2
i∆

2
e.

Since V (0)
(12)
< V0 and β0/α

(19)
< V0, (23) implies (20) with

i = 0. If (20) holds for some i, then V (iT ) < Vi and, by
continuity, (23) yields

V (iT + T ) ≤

(

V (iT )−
βi

α

)

e−αT +
βi

α
<

(

Vi −
βi

α

)

e−αT +
βi

α
= Vi+1.

Then, using (23) on [(i+ 1)T, (i+ 1)T + T ] with βi+1

α

(18)
<

Vi+1, we obtain (20) for i+1. By induction, (20) holds for
all i ∈ N0.

Now we show that (22) holds for all i ∈ N0. Since

‖y(0)‖
(12)
< µ0M and y(t) is continuous, if ‖y(t)‖ ≥ µ0M

for some t, then there exists the smallest t∗ such that

‖y(t∗)‖ = µ0M . Consequently, ‖e0(t)‖
(3)

≤ µ0∆e holds for

t ∈ [0, t∗] implying V (t)
(20)
< V0 for t ∈ [0, t∗]. The latter
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i Vi × 10−2 µi σi

0 1171.53 1 250.25
1 243.1 0.46 52.13
2 50.5 0.2 11.03
3 10.6 0.09 2.5
4 2.26 0.04 0.73
5 0.55 0.02 0.37

Fig. 2. Switching parameters: Vi — upper bounds for
V on [iT, iT + T ), µi — zooming parameter, σi —
regularizing parameter.

Fig. 3. Plant norm ‖xp(t)‖: (a) for t ∈ [0, 15], (b) for
t ∈ [15, 50]

yields ‖y(t∗)‖ < µ0M , what contradicts the definition

of t∗. Thus, ‖y(t)‖ < µ0M for t ≥ 0. Then V (T )
(23)
<

V1
(14)
= µ2

1V0/µ
2
0 and, therefore, ‖y(T )‖ < µ1M . Using the

arguments similar to the above, we obtain (22) for i = 1.
By induction, (22) holds for i ∈ N0. �

Remark 3. (Polytopic-type uncertainties). Our results are
applicable to the system (1) with uncertain Ap that resides
in a polytope. In this case, the matrix of the augmented
system belongs to some polytope

Aξ ∈

{

N
∑

i=1

ξiAi

∣

∣

∣

∣

0 ≤ ξi,
N
∑

i=1

ξi = 1

}

. (24)

If gTWξ(s) = gTC(sI − Aξ)
−1B is HMP for all ξ from

(24), then (2) are feasible for each ξ with some θξ and Pξ.
To apply Theorem 1, one should take

ε = min
ξ∈Ξ

εξ, θ∗ = argmax
θξ,ξ∈Ξ

‖θξ‖ (25)

and instead of quantities λmax(P ) and λmin(P ) substitute
minξ∈Ξ λmin(Pξ) and maxξ∈Ξ λmax(Pξ), respectively. The
existence of these quantities follows from Lemma 1, com-
pactness of the set of ξ, and continuity of Aξ in ξ.

Relations (2) are feasible for θξ = k∗g with a large enough
k∗ (Andrievskii and Fradkov (2006)). Since (2) are affine
in A, to obtain the values from (25), one can solve linear
matrix inequalities

P > 0, P (Ai −Bk∗g
TC)+(Ai −Bk∗g

TC)TP < −εP,
PB = CT g, i = 1, . . . , N

with a decision variable P and tuning parameters ε, k∗.

Fig. 4. Shunt state xs(t): (a) for t ∈ [0, 15], (b) for
t ∈ [15, 50]

Fig. 5. Control input: (a) for t ∈ [0, 15], (b) for t ∈ [15, 50]

Fig. 6. The value of ‖yp(t)‖ for t ∈ [0, 50]

4. EXAMPLE: FLIGHT CONTROL

The lateral motion of an aircraft considered as a rigid body
can be described by (Fradkov and Andrievsky (2011))

β̇(t) = r(t) + a1β(t) + b1δ(t),

ṙ(t) = a2β(t) + a3r(t) + b2δ(t),

ψ̇(t) = r(t),

(26)

where ψ(t) and r(t) are the yaw angle and the yaw rate,
β(t) is the sideslip angle, δ(t) is the rudder angle (the
control signal), ai and bi are the aircraft model parameters
that depend on the flight conditions. Following Fradkov
and Andrievsky (2011), we take a2 = 33, a3 = −1.3,
b1 = 19/15, b2 = 19 and assume that a1 ∈ [−1.5,−0.7]
is an uncertain parameter.

The first mode of the aircraft bending is modeled as

Wbend(s) =
∆ψ(s)

δ(s)
=

kbend
T 2
bends

2 + 2ξbendTbends+ 1
, (27)

where kbend = −1.5×10−3 is the bending mode transition
factor; Tbend = ω−1

bend is the response time factor with
ωbend = 65 s−1 being the first bending mode natural
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frequency; and ξbend = 0.01 is the damping ratio. The
measured signal is given by

y(t) = ψ(t) + ∆ψ(t). (28)

The system (26)–(28) can be presented as (1) with

[

Ap Bp

Cp 0

]

=

















a1 1 0 0 0 b1
a2 a3 0 0 0 b2
0 1 0 0 0 0

0 0 0 −2ξbend

Tbend

1 0

0 0 0 −1

T 2

bend

0 kbend

T 2

bend

0 0 1 1 0 0

















.

For gp = 1/
√
2, the transfer function gTp Wp(s) =

gTp Cp(sI−Ap)
−1Bp is minimum-phase with relative degree

r = 2. As a shunt transfer function, we take

Ws(s) =
2

s+ 14
.

Then, for g = col{1/
√
2, 1/

√
2} (with ‖g‖ = 1), the func-

tion gTW (s) is HMP, where W (s) is the transfer function
of the augmented system (8). In a manner described in
Remark 3, we find that (2) are feasible for ε = 0.5,
θ∗ = 20g. Using Theorem 1 with

M = 104, ∆e = ∆w = 10−2, µ0 = 1, γ = 50, T = 10,

we obtain the switching parameters presented in Fig. 2.
The decrease of µi corresponds to “zooming in” and
obtaining more precise measurements. The set of initial
conditions is given by xT (0)Px(0) ≤ 1.17× 105, while the
limit set is xT (t)Px(t) ≤ V∞ = 34.68.

The results of numerical simulations for a1 = −0.75 are
presented in Figs. 3–5. Note that at switching instants
T, 2T, . . . the dynamics of the state significantly change.
This happens due to the switching of the zooming param-
eter µi and regularizing parameter σi.

Though the system is stable, it possesses high-frequency
oscillations. Such parasitic oscillations, reflecting unmod-
elled dynamics, are common for system with small parame-
ters (see, e.g., Ioannou and Kokotovic (1983)). In our case,
a shunt system (5) contains a small parameter λ in its
transfer function Ws. It remains an open problem how to
choose Ws to mitigate these oscillations.

5. CONCLUSIONS

We designed an adaptive controller for a linear minimum-
phase systems of an arbitrary relative degree with bounded
disturbances and quantized measurements. Our approach
is based on the shunting method (parallel feedforward
compensator) that extends the system to a hyper-minimum-
phase one. The augmented system is further stabilized by
a passification-based adaptive controller with dynamically
quantized measurements. By constructing a switching pro-
cedure for the adaptive controller parameters and quan-
tizer’s zooming, we ensure convergence of the system state
from an arbitrary set to an ellipsoid whose size depends
on the disturbance bound.

Future work may be devoted to the optimization of the
controller parameters.
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