

This is a repository copy of Ontogeny of the human pelvis.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/163217/

Version: Accepted Version

Article:

Verbruggen, S.W. orcid.org/0000-0002-2321-1367 and Nowlan, N.C. (2017) Ontogeny of the human pelvis. The Anatomical Record, 300 (4). pp. 643-652. ISSN 1932-8486

https://doi.org/10.1002/ar.23541

This is the peer reviewed version of the following article: Verbruggen, S.W. and Nowlan, N.C. (2017), Ontogeny of the Human Pelvis. Anat. Rec., 300: 643-652., which has been published in final form at https://doi.org/10.1002/ar.23541. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

1	Title: Ontogeny of the human pelvis	S
2		
3	Authors: Stefaan W. Verbruggen ¹ ,	Niamh C. Nowlan ¹
4		
5	¹ Department of Bioengineering, Imp	perial College London, UK
6		
7		
8		
	Corresponding Author:	Dr. Stefaan W. Verbruggen
		Department of Bioengineering
		Imperial College London
		London, SW7 2AZ, UK
		Email: s.verbruggen@imperial.ac.uk
		Tel: +44 (0) 2075947426
9		
10	Word count: 5537	
11		
12	Keywords: acetabulum; chondrifica	ation; ossification; development; hip joint;
13	morphogenesis;	
14	Running title: Ontogeny of the hun	nan pelvis
15		
16		

ABSTRACT

The human pelvis has evolved over time into a remarkable structure, optimised into an intricate architecture that transfers the entire load of the upper body into the lower limbs, while also facilitating bipedal movement. The pelvic girdle is composed of two hip bones, os coxae, themselves each formed from the gradual fusion of the ischium, ilium and pubis bones. Unlike the development of the classical long bones, a complex timeline of events must occur in order for the pelvis to arise from the embryonic limb buds. An initial blastemal structure forms from the mesenchyme, with chondrification of this mass leading to the first recognisable elements of the pelvis. Primary ossification centres initiate in utero, followed post-natally by secondary ossification at a range of locations, with these processes not complete until adulthood. This cascade of events can vary between individuals, with recent evidence suggesting that fetal activity can affect the normal development of the pelvis. This review surveys the current literature on the ontogeny of the human pelvis.

1 1. Introduction

The pelvis connects the axial skeleton to the appendicular skeleton, the primary function of which is transfer of the weight of the upper body into the lower limbs during standing or walking. It performs this function partly by providing attachments for, and withstanding the forces of, some of the most powerful muscles in the body. This strong and rigid structure also serves to protect the organs and tissues of the pelvic region, and some abdominal viscera.

7 The pelvic girdle consists of two large hip bones, known as the os coxae (see Figure 1). These
8 bones connect with each other anteriorly at the pubic symphysis and articulate posteriorly with
9 the midline sacrum at the sacroiliac joints. This forms the pelvic ring, a stable structure that
10 allows little mobility, thus transferring loads from the trunk to the lower limbs.

- 11
- Figure 1: Diagram of the pelvis, articulating with the sacrum of the spine and
 comprising the left and right hip bones, themselves composed of an ilium, ischium and
 pubis bone (Gray 1918).

1 While these pelvic bones are particularly strong and demonstrate structural integrity in the adult 2 human, they are in fact each composed of three smaller bones: the ilium, the ischium and the 3 pubis. Each of these bones develops an intricate three-dimensional form, presenting multiple 4 rami (branches) and fossae (hollows), and establishing complex interfaces with each other. This is exemplified by the triradiate zone, which forms the multi-faceted junction of all three bones 5 6 at the site of the acetabulum. Interestingly, these individual bones do not completely ossify until well after puberty and as late as 25 years of age, demonstrating the elaborate timeline over 7 8 which pelvic ontogeny occurs. Indeed, the manner in which this timeline occurs is crucial to 9 the correct formation and ultimate ossification of the bones, and alterations to its intricate organisation can lead to the development of skeletal malformations. This review examines our 10 11 current knowledge of the development of the hip bones, from initial mesenchymal 12 condensation, through chondrification to ossification, and provides a perspective on future research into the effect of the mechanical environment on development. 13

14

15 **2.** Morphogenesis of the pelvis

Despite their unique morphology, the pelvic bones follow the same general developmental route as the rest of the skeleton, beginning with the formation of a mesenchymal template, which transforms into cartilage by chondrification, later followed by progressive ossification to form bone. Shape changes continue to occur throughout this process, and developments will be described in each section where relevant.

The pelvis develops from the same mass as the all of the other tissues that form the lower limb, when the prospective skeletal regions of the embryo are composed largely of a loosely organised connective tissue known as mesenchyme. Initially, the lower limb bud begins as a small protuberance in the anterolateral aspect of the body wall at the end of the third intrauterine week, at the level of the lumbar and first sacral segments (Strayer 1943; Strayer 1971).

1 The first indication of the development of the pelvis occurs around embryonic day 28, when 2 the lower limb buds begin to develop at the lumbar and upper sacral segments of the embryonic 3 cord (Bardeen and Lewis 1901; O'Rahilly and Gardner 1975). These limb buds initiate as small 4 but rapidly proliferating masses of mesenchymal stem cells surrounded by a layer of ectoderm (the outer border of the embryo) (Laurenson 1964a; O'Rahilly et al. 1956; Yasuda 1973). The 5 6 obturator, femoral and sciatic nerves rapidly extend deep into the developing limb bud, with 7 their position well established before cells from the mesoderm condense into a core between 8 days 34 and 36 (Laurenson 1963). Therefore, the cells forming the future cartilaginous anlage 9 are forced to organise in a region bounded by these predetermined nerve pathways (Laurenson 1963). 10

The primordial mesenchyme begins to extend outwards to form three processes: an upper iliac, 11 12 a lower posterior ischial and a lower anterior pubic (Fazekas and Kósa 1978). The ischial and pubic mesenchymal masses meet to form the obturator foramen, by fusing inferiorly about the 13 position of the obturator nerve. Interaction with the nascent spinal column occurs around days 14 15 36 to 38, when the iliac process extends towards the vertebral mesenchymal primordium to fuse with the costal processes of the upper sacral vertebrae (Bardeen 1905; Fazekas and Kósa 16 17 1978). Further development eventually leads to the formation of the future pubic symphysis through the meeting of the pubic primordia in the anterior midline (Scheuer and Black 2004). 18 19 The sacrum, which articulates with the os coxae and transfers most of the load of the upper 20 body to the hip, emerges as a series of somites or divisions of the mesenchymal notochord, during development of the vertebral column. Somites begin to form near the skull at around 20 21 days, with three or four subdivisions developing each day such that the five sacral somites 22 23 appear at about day 29 (Scheuer and Black 2004).

2.1. Chondrification

2 Chondrification of these blastemal structures begins between intra-uterine weeks 6 and 7 3 (Bardeen 1905; O'Rahilly and Gardner 1975), with cartilage appearing first in the iliac mass in 4 the region of the acetabulum superior to the greater sciatic notch (Laurenson 1964a). Separated by the course of the obturator nerve, chondrification centres initiate in the pubis and the ischium 5 6 and are well developed by seven to eight weeks (O'Rahilly and Gardner 1972). Approaching 7 the end of the second intra-uterine month, these three chondrification centres meet and fuse to 8 form a shallow acetabulum, with the ischium and ilium fusing first, followed by a union with 9 the pubic mass (Adair 1918). By the end of the second month, the chondrification of the pubic masses extend to meet and fuse at the midline, at the site of the future pubic symphysis (Adair 10 1918). At this stage, the anterior superior iliac spine, the ischial spine, and the ischial tuberosity 11 12 are well defined (Andersen 1962; Bardeen 1905), and thus the cartilaginous pelvis is approaching completion at the beginning of the third intra uterine month (Adair 1918). 13 Chondrification of the sacral vertebrae also commences in the 6th week, with the initiation of 14 15 up to six chondrification centres in each vertebra. Typically, four sites occur approximately concentrically about the vertebral canal, while two initiate in the centrum on either side of the 16 regressing notochord and later fuse into a single centre as the notochord disappears. Complete 17 fusion into a cartilaginous vertebral body generally occurs in the 4th month (Scheuer and Black 18 2004). 19

20

21 2.2. Primary Ossification

The pelvis forms through the process of endochondral ossification, whereby chondrocyte cells in cartilage begin to deposit biochemical factors to stimulate mineralisation and blood vessel in-growth. These two steps are essential for bone cells to begin laying down bone in the original cartilage template. This process usually initiates in a specific location for each bone, known as

the primary centre of ossification. As the pelvis is composed of three bones, primary
ossification commences at an ossification centre in each (see Figure 2), with the timing and
location of ossification initiation following that of the prior chondrification process (Laurenson
1964b).

5

6	Fi	gure 2: Diag	ram of the right hip bone, indicating the location of the triradiate
7	cartila	ge zone (dotte	ed line) that separates the ilium, ischium and pubis bones, and the
8		three p	rimary ossification centres (Scheuer and Black 2004).
9			
10	2.2.1.	Prenatal 1	Primary Ossification
11		2.2.1.1.	Ilium

The first primary centre to develop is in the ilium, appearing around the beginning of the third intra-uterine month. The centre occurs in the perichondrium of the roof of the acetabulum close to the site of the future greater sciatic notch (Laurenson 1964b), close to the foramen of the sciatic nerve. The ossification spreads cranially from this centre, covering the internal and 1 external surfaces of the iliac wing by nine weeks, but without invading the underlying cartilage 2 (a process known as perichondral ossification). Ossification then proceeds by fanning out 3 radially, depositing bone on both an internal and an external shell (Birkner 1978; Delaere et al. 4 1992; Laurenson 1965). By 10–11 weeks, a primary marrow cavity is formed as pores develop 5 in the ossified shell, allowing osteoblasts and vasculature to invade the internal degenerating 6 cartilage space. The ilium is recognisable by about four to five prenatal months through the 7 presence of the upper border of the greater sciatic notch and the characteristic radiating 8 appearance of the iliac shells.

9

2.2.1.2. Ischium

Pubis

10 In the ischium, the primary ossification centre occurs around 4-5 intra-uterine months and is situated inferoposteriorly to the acetabulum (Laurenson 1963). Perichondral ossification 11 12 takes place first, followed by expansion through endochondral ossification. The ischium is 13 readily identifiable by the end of the sixth month of pregnancy, having a comma-like appearance that is broader superiorly and tapers inferiorly to the anterior-pointing ramal 14 15 surface. The superior, posterior and inferior border of the structure are convex in shape, while the anterior border is concave. The inner pelvic surface of the ischium is smooth, while a 16 17 depression superiorly for the acetabular surface is present on the outer surface.

18 2.2.1.3.

The pubic ossification centre appears last, arising between five to six intra-uterine months.
It initiates in the superior pubic ramus, anterior to the acetabulum and in close proximity to the
passage of both the femoral and obturator nerves. In the early stages of ossification the pubis
is reported to be dumb-bell-shaped (Fazekas and Kósa 1978), and is both the smallest and most
delicate of the pelvic elements. At this stage, it is composed of two ends, a more rounded lateral
(iliac) extremity that points in an infero-oblique direction, and a flatter medial (symphyseal)
extremity that extends vertically downwards to compose the body of the pubis.

2.2.1.4. Sacrum

2	Primary ossification initiates in three locations in each vertebral body of the sacrum; one
3	lateral centre in each neural arch, and one in the centrum. However, ossification centres also
4	develop in the costal elements, which form the ventral aspect of the sacrum and articulate with
5	the auricular surface of the hip bone at the sacro-iliac joint (Schunke 1938). Beginning with
6	the centra of first and second sacral vertebrae in the 3 rd prenatal month, all primary ossification
7	centres of the centra and neural arches initiate by the 5 th month, with the costal centres
8	appearing between the 6 th and 8 th month (Scheuer and Black 2004).

9

10

11 2.2.2. Postnatal Primary Ossification

12 All three primary ossification centres are well developed at birth, and are easily identifiable radiographically. In each of the three bones, the ossification has spread to such an extent that 13 14 it has formed the bony acetabular wall. These three primary elements demonstrate rapid growth 15 in the first three months after birth, although very little morphological change. This growth then slows noticeably until about three years of age, at which point it becomes even slower. 16 This continues until puberty, at which point a growth spurt is activated as part of the normal 17 secondary sex-related growth changes that occur during adolescence. By the time of birth the 18 ossified region of the ilium presents many of the recognisable features of the mature bone. 19 20 While the anterior and posterior iliac spines have ossified at this stage, the anterior inferior iliac spine is less well defined (Scheuer and Black 2004). 21

22

2.2.2.1. Ilium

Postnatally, while the appearance of the three ossification centres does not change significantly, the cartilaginous acetabular surface undergoes notable changes. At birth, the acetabular surface of the ilium is represented by a slight depression in the centre of the

somewhat bulbous inferior extremity. By six months of age, the iliopectineal line can be identified on the ventral rim, and bone is present on the ventral aspect of the future non-articular region of the iliac acetabular fossa by four to five years. By six years of age, a clear line demarcates separation of the articulation sites for the pubis and the ischium, with the immature iliac acetabular extremity taking on a triangular shape. The gluteal margin of this extremity has a scalloped surface, becoming continuous with the anterior border of the ilium passing up towards the anterior inferior iliac spine (Scheuer et al. 2000).

8

2.2.2.2. Ischium

9 At birth, the articular acetabular surface of the ischium is located on its posterior lateral surface, as the non-articular acetabular fossa is sited anteriorly. The angles of the articulation 10 sites gradually change with age and by approximately six months of age an angulation develops 11 12 in the ischium, such that the articulation site for the pubis is found anterior to the superior convex border while the ilium articulates superiorly (Scheuer and Black 2004). By one year of 13 age, the superior border has straightened to the point that the articulation sites are almost 14 15 perpendicularly arranged about the acetabular fossa, with the ilium articulating superiorly and the pubis anteriorly. Both the ischial spine and superior border project posteriorly and are 16 17 thickened and well developed by this stage, with the triangular projection of the superior border presenting the future articulation site with the posterior acetabular epiphysis (Scheuer et al. 18 2000). 19

20 2.2.2.3. Pubis

The pubis at birth presents a somewhat oval-shaped articular surface located anteriorly, developing a raised area by six months of age. This elevation develops a metaphyseal border on two sides, allowing for articulation with the ilium superiorly and the ischium inferiorly. The line of demarcation between the articulation sites is first identifiable around three to four years

of age, developing more in the approach to ischiopubic fusion. Additionally, the raised
 acetabular region has flattened by this age.

3

2.2.2.4. Fusion of Primary Ossification Centres

4 Fusion between the primary centres first occurs between the ischium and pubis and, although it can begin as early as three years of age, it usually takes place between five and eight 5 6 years. In the approach to fusion of the cartilaginous joint (synchrondosis) the ends of the joint 7 temporarily grow in size, with this enlargement normally dissipating by ten years of age. Fusion 8 between the ischium and the pubis initially occurs only in the ramal region, with fusion not 9 progressing in the acetabular region until puberty due to the presence of the triradiate cartilage. In the sacrum, fusion of the centres of each neural arch with its associated costal centre occurs 10 11 between 2 and 5 years postnatally (Scheuer and Black 2004). These centres unite with the 12 centrum centres between years 2 and 6, such that all primary centres have fused by 6 years (Scheuer and Black 2004). 13

14

15 2.3. Secondary Ossification

Secondary ossification centres appear later than the primary ossification centres, usually 16 17 during the first years of postnatal life. In the pelvis these centres initiate at multiple locations in each of the constituent bones (see Figure 3), with ossification subsequently spreading 18 19 outward in a similar fashion to the epiphyseal plates of long bones, but in a range of complex 20 patterns. There are generally three main epiphyses that form within the cup-shaped cartilage of the acetabulum, from individual ossicles that form around the acetabular rim, with these 21 eventually expanding to form both the outer rim of the acetabulum and much of the articular 22 23 surface. An additional secondary centre of ossification for the ilium appears at the iliac crest, whereas the pubic secondary centres initiate at the pubic symphysis and the ramus (as shown 24 25 in Figure 3). Additional ischial secondary ossification sites occur at the ramus and the

tuberosity (as shown in Figure 3), while accessory centres (such as the anterior inferior iliac
spine, #6 in Figure 3)) are also known to occur but their initiation sites can be more variable
(Scheuer and Black 2004). Much like the end plates of any developing typical long bone, three
types of cartilage are represented at each ossification centre in the maturing os coxae: growth,
epiphyseal and articular (see Figure 4).

Figure 3: Primary ossification centres of the (1) ilium, (2) ischium and (3) pubis in
the left hip bone, and secondary ossification centres (blue) of (4) the triradate cartilage
zone, (5) the crest of the ilium, (6) the anterior inferior iliac spine, (7) the tuberosity of
the ischium, (8) the symphysis pubis, and (9) the ramal epiphyses. Adapted from (Gray
11

1 **2.3.1.** Acetabulum

2 The common secondary ossification feature shared by all three bones of the os coxae is 3 the cartilaginous acetabular anlage. This comprises a socket-shaped area of articular cartilage 4 bordering medially a triradiate unit of growth cartilage between the ilium, ischium and pubis (Harrison 1957; Ponseti 1978a). The articular cartilage lining provides an articular surface for 5 6 the femoral head at the hip joint, while the triradiate unit comprises regions of growth cartilage 7 contiguous with the bony surfaces and separated from each other by a central region of 8 epiphyseal cartilage. The slow progression of the ossification in this triradiate zone allows the 9 acetabulum to expand during childhood to accommodate the enlarging femoral head (Harrison 1961). 10

11

Figure 4: (A) Section through a hip joint of a full term infant (Ponseti 1978a), displaying
the femoral head, articular cartilage and triradiate cartilage, with the black rectangles
indicating (B) areas of growth and epiphyseal cartilage as ossification of the bone
progresses (Scheuer and Black 2004), and (C) a roentgenogram of the acetabulum of a
nine-year-old female displaying secondary ossification centres in the triradiate cartilage
between the ilium (IL), ischium (IS) and pubis (P) (Ponseti 1978a).

As each of the three secondary ossification centres enlarge they ultimately meet with the ossifying triradiate epiphysis and fusion occurs. The first acetabular epiphysis to ossify is the os acetabuli (anterior acetabular epiphysis), which initiates between nine and ten years of age as a triangular-shaped bone between the pubis and the ilium, as seen in Figure 4C (Ponseti 1978a; Zander 1943). A second acetabular epiphysis arises around 10–11 years of age at the
junction between the ilium and the ischium. A third superior epiphysis appears between 12 and
14 years of age, forming a substantial part of the upper rim and roof of the acetabular articular
surface. Complete fusion of the triradiate cartilage normal occurs by mid-puberty (11–15 years
in females 14–17 years in males), with the pelvic surface generally fusing before the acetabular
aspect (Flecker 1932; Freedman 1934; Stevenson 1924).

7 **2.3.2.** Ilium

8 The order of initiation of the other secondary epiphyses after the fusion of the triradiate 9 zone is generally reported to be - from first to last - anterior inferior iliac spine, iliac crest, ischial tuberosity and pubic symphysis. The epiphysis for the anterior inferior iliac spine 10 11 commences ossification around 10-13 years of age and fuses by around 20 years (Francis 12 1940), and it has been reported that the ossification of this centre can occur either in isolation, or from an extension of the centre of the superior epiphysis of the os acetabuli (Scheuer and 13 Black 2004). The iliac crest epiphysis comprises two separate ossification centres, with an 14 15 anterior epiphysis forming the anterior superior iliac spine and the anterior half of the iliac crest, while the posterior epiphysis develops into the posterior superior iliac spine and the 16 17 posterior half of the iliac crest (Stevenson 1924). The two epiphyses meet in the middle of the crest just posterior to its highest point, following a spiral growth pattern (Birkner 1978). The 18 crest begins to ossify around 12-13 years of age in females and 14-15 years in males, with 19 20 union of the two ossification centres occurring around 15–18 years in females and 17–20 years in males (McKern and Stewart 1957). 21

22 **2.3.3.** Ischium

The ossification of the ischial epiphysis initiates as a small centre in the ischial tuberosity
between 13–16 years of age, commencing union at the superior rim of the epiphyseal surface.
This epiphysis then spreads across the surface of the tuberosity, continuing along the ischial

ramus as the thin, tongue-like ramal epiphysis (Scheuer and Black 2004). The pelvic surface
of the tuberal epiphysis commences union with fusion occurring between 16 and 18 years of
age, while the ramal epiphysis has usually reached half way along the ischial ramus by around
19–20 years of age. The ramal epiphysis progresses slowly, with complete union anywhere
between 20 and 23 years of age (Scheuer and Black 2004).

6 **2.3.4. Pubis**

7 Morphogenesis at the pubic symphyseal face occurs in two distinct regions, known as the 8 ventral and dorsal demifaces (McKern and Stewart 1957). Its secondary ossification follows a 9 complex pattern, commencing with a type of pre-epiphyseal stage (Meindl et al. 1985), typified by a discernible ridge-and-furrow appearance of the joint surface. No build-up of bone occurs, 10 joint surfaces are not well-defined, and the pubic tubercle displays no evidence of an epiphysis 11 12 (Scheuer and Black 2004). This morphological appearance does not change up to approximately 20 years of age. Around this time bone begins to be laid directly onto the dorsal 13 face by gradual accretion, having the effect of smoothing over the ridge-and-furrow surface 14 15 between 15 and 23 years of age (Katz and Suchey 1986). The delimitation of the extremities of the pubic symphysis commences between 23–27 years of age, with the inferior extremity 16 usually initiating before the superior extremity (Todd 1920). These upper and lower extremities 17 generally begin to fuse between 24 and 35 years of age, although it is often not completed until 18 19 35 years and indeed may not complete at all (Scheuer and Black 2004).

20 **2.3.5.** Sacrum

Each sacral segment remains separate until puberty, with secondary ossification of the sacrum beginning around 12 years. In contrast to the primary ossification pattern of the vertebrae, the secondary ossification of the costal elements begins between the caudal sacral vertebrae, with the S1 vertebra being the last to fuse at the end of puberty (15-16 years). The annular epiphyses between the vertebral bodies similarly commence in a caudocranial

direction, with fusion of all epiphyses by 20-25 years (Scheuer and Black 2004). The epiphysis 1 2 of the sacro-iliac joint develops from discrete ossific islands that appear between 15 and 16 3 years, with complete union at this surface occurring after 18 years of age (Scheuer and Black 4 2004).

5

2.4. 6 **Sexual Dimorphism**

7 2.4.1.

Prenatal Sexual Dimorphism

8 Of particular interest to researchers has been sex differences in the immature pelvis. Indeed, the adult pelvis is an area of the human skeleton that displays some of the greatest 9 10 levels of sexual dimorphism; so much so that the hip bone is often the preferred bone for 11 accurate prediction of sex in adult forensic specimens (Bruzek 2002). While there is a great deal of literature investigating sex differences in the fetal and juvenile pelvis (Correia et al. 12 2005; Holcomb and Konigsberg 1995; Schutkowski 1993), it is still generally held that though 13 dimorphism may exist from an early age, differences significant enough to permit 14 determination of sex do not occur until the onset of puberty (Scheuer and Black 2004). 15 However, in studies which have reported sex differences in fetal hip bones, the differences tend 16 to parallel those in the adult pelvis. Hromada (Hromada 1939) reported differences in the 17 18 proportions of the sciatic notch, ilium, and pelvic inlet and outlets, and also identified two main 19 growth phases in the fetal pelvis, with the first ending in no identifiable sex differences at two months gestational age, and the second initiating at seven months with growing indications of 20 21 sexual dimorphism approaching birth (Hromada 1939). Similarly, Boucher (Boucher 1957) and later Holcomb and Kongsberg (Holcomb and Konigsberg 1995) observed some sexual 22 23 dimorphism with regard to shape, specifically in the sciatic notch. In contrast, Weaver found no differences in any of the previously proposed measurements, or in new ones devised for the 24 study (Weaver 1980). Furthermore, a recent study used reconstructed CT images of fetal ilia 25

to conduct the first three-dimensional morphometric analysis, with this highly detailed analysis
reporting no difference between the sexes (Mokrane et al. 2013). Therefore, while it remains
unclear whether significant sexual dimorphism is present prenatally, there is a consensus that
any differences are not of a sufficiently high level to reliably determine sex from the hip bone.

- 5
- 6

2.4.2.

Postnatal Sexual Dimorphism

The most comprehensive measurements of sexual dimorphism in the whole pelvis were
taken using radiogrammetry of male and female 8- and 18-year-olds, with the only differences
detected at 8 years in the breadth of the ischium and acetabular regions (LaVelle 1995).
However, males showed significantly greater growth in the acetabulum during puberty, while
females presented differentially greater growth in the pelvic cavity (LaVelle 1995).

12 Most other studies of postnatal sexual dimorphism have focused on the ilium, initially using a metric technique to fit growth curves to iliac dimensions, and finding that the iliac 13 height is the best measure for sex determination (Rissech and Malgosa 2005). More recently, 14 15 geometric morphometry of multi-slice CT scans has been used to attempt to separate the effects of shape (development) and size (growth) (Bilfeld et al. 2013). They found that, while size does 16 17 not vary between the sexes, ilium shape becomes sexually dimorphic at 11 years (Bilfeld et al. 2013). However, the trajectories of size and shape do vary throughout ontogeny and between 18 19 the sexes (Bilfeld et al. 2013). Most recently, a comprehensive geometric morphometric study 20 of photographic data confirmed these findings, and furthermore found that the ontogeny of size and shape are defined by non-linear trajectories that differ between the sexes, and that the rate 21 22 of maturation of these traits is typically higher in males than in females (Wilson et al. 2015). 23 However, while pelvic growth trajectories in females between puberty and 25–30 years develop to provide larger obstetrically relevant dimensions (i.e. width of the pelvic inlet and outlet), it 24

has also been shown that a reduction in these dimensions occurs from 40 years onwards on a
trajectory similar to that of males (Huseynov et al. 2016).

3

4

2.5. Congenital and developmental abnormalities of the pelvis

It is obvious from the length and complexity of the ontogenetic timeline described herein that
the correct progression of morphogenesis and tissue differentiation is vital to obtaining a
complete, functional pelvic girdle.

8 The most common congenital abnormality of the pelvis is developmental dysplasia of the hip 9 (DDH), which is a dislocation of the femur that results in malformations of both the femoral head and the acetabulum. While it is the femur that dislocates in these cases, evidence exists 10 11 that there is a relationship between the development of the acetabulum and DDH, with the 12 acetabular cartilage presenting bulges of degraded cartilage on the articular surface in DDH cases (Ponseti 1978b). Additionally, it is known that the presence and sphericity of the femoral 13 head is necessary for the correct development of the acetabulum (Ponseti 1978b). Furthermore, 14 15 researchers using both ultrasonography and radiography have identified delayed maturation, and the development of a notch near the sclerotic nerve, in the acetabulum in cases of hip 16 dysplasia (Portinaro et al. 1994; Portinaro et al. 1997), again demonstrating a link with 17 structural changes to the pelvis. 18

19 3. Mechanobiological influences on pelvic development

While the native adaptation of bone to mechanical loading has been apparent to researchers for more than a century (Frost 1990a; Frost 1990b; Parfitt 1994; Wolff 1892), with deformities such as femoroacetabular impingement thought to occur due to mechanoadaptation in the pelvis of young professional athletes (Matheney et al. 2013; Philippon et al. 2007), evidence of this occurrence in the immature pelvis is less clear. The ilium appears to be most affected, with the characteristic concavities and convexities of the iliac crest not appearing until around

1 two years of age, approximately the time that upright locomotion begins (Scheuer and Black 2 2004). It has also been proposed that during primary ossification of the ilium in utero, the 3 external shell that forms is thicker than the inner shell due to the action of the gluteal muscles 4 (Delaere and Dhem 1999; Delaere et al. 1992), as shown in Figure 5. Similarly, it has been observed that the internal organisation patterns in early fetal and neonatal trabecular bone in 5 6 the pelvic ilium bear striking similarities to adult trabecular patterns (Cunningham and Black 7 2009). As these patterns have been associated with bipedal locomotion in adults, this suggests 8 that the action of in utero limb movements, despite not being weight-bearing, may be sufficient 9 to initiate skeletal remodelling (Cunningham and Black 2009). Furthermore, evidence of high intracortical remodelling activity in both the internal and external cortex of the ilium, which 10 11 decreases significantly with age, possibly suggests a greater adaptive capability in the infant 12 ilium (Rauch et al. 2007). In contrast, a recent study of ontogenetic changes in the trabecular architecture of the ilium of modern humans posited that the direction of growth was more likely 13 due to genetic or epigenetic factors (Abel and Macho 2011). However, the same study found 14 15 significant trabecular alignment along the sacro-pubic trabecular bundle in infants, which constitutes the main line of force transmission from the auricular surface to the acetabulum, 16 17 indicating potential mechanoadaptation (Abel and Macho 2011).

Figure 5: Microradiograph of a frontal section through the right prenatal ilium at
15 weeks and 38 weeks of gestation (Delaere and Dhem 1999). The lateral iliac cortex
(arrow) is thicker than the medial cortex at the later gestational age, indicative of
mechanobiological response to the action of the gluteal muscles on the lateral surface.

6

1

As studies of human pelvic development are exclusively observational, researchers have turned to animal models in an attempt to delineate the effects of prenatal mechanical stimulation as developmental cues. A series of experiments on rat models investigated the effect of mechanical interference on the growth rate and maturation of the acetabulum and sacro-iliac joint (Harrison 1958a; Harrison 1958b). They determined that the correct development of the sacro-iliac joint depends on the integrity of surrounding cartilage and ligaments, while the presence of a femoral head at the acetabulum was found to be necessary to prevent dysplasia (Harrison 1958a; Harrison 1961). Rat models have also been employed to investigate the effects of limb restraint on pelvic development, which led to decreased acetabular surface smoothness that could be partially reversed with the removal of restraint (Hashimoto et al. 2002). Additionally, experimentally induced premature fusion of the triradiate cartilage was found to cause acetabular dysplasia and hip dislocation in rabbit embryos (Gepstein et al. 1984).

Using the embryonic chick model, it has been shown that amputation of the hindlimb bud will prevent the formation of the pelvis (Malashichev et al. 2005; Malashichev et al. 2008), and the importance of mechanical stimulation due to prenatal movements for development of the hip joint was demonstrated in the embryonic chick, with pharmacological immobilization resulting in abnormal orientation of the pelvis and malformation of the acetabulum (Nowlan et al. 2014).

Recent forays into the field of computational biomechanics have provided an alternative 14 15 avenue of enquiry for developmental mechanobiology, with the potential of replicating the womb environment in silico. Computational studies have allowed for the development of 16 17 mechanobiological models of hip joint development (Giorgi et al. 2014; Shefelbine and Carter 2004), predicting the development of a malformed acetabulum, decreased acetabular coverage 18 19 and the development of coxa valga from idealised geometries, under reduced and abnormal 20 movement patterns (Giorgi et al. 2015; Shefelbine and Carter 2004). The biomechanics of 21 human fetal movements has also been investigated computationally, using kicking motions captured from cine-MRI data to determine the intramuscular forces generated at the hip joint 22 23 during fetal kicking (Verbruggen et al. 2016). However, to date these models either use simplified or adult bone geometries, and cannot fully predict the mechanobiological response 24 25 that occurs in utero. Further work in this field and advances in imaging techniques will improve

the predictive power of these models, and provide a useful tool to investigate development in
 utero.

3

4 4. Conclusion and Future Perspective

The literature summarised here describes over a century's worth of studies of the complex 5 6 cascade of events that lead to the development of the mature pelvis, one of the most intricately-7 shaped and important load-bearing bones in the human skeleton. For the most part, this field 8 of study has comprised careful documentation of anatomical specimens from prenatal humans. 9 Investigations using animal models have shed light on the importance of mechanical stimulation in the ontogeny of the pelvis, with more recent advances in medical imaging and 10 11 computational modelling techniques further elucidating these mechanobiological links. As 12 additional technological strides are made, it may become possible to monitor the development of the pelvis in high resolution, and in real time, and thus further advance our understanding of 13 the ontogeny of the human pelvis. 14

15

16 5. Acknowledgements

Funding from the European Research Council under the European Union's Seventh
Framework Programme (ERC Grant agreement n° [336306]), and from Arthritis Research UK
(Grant Reference Number 20683) is acknowledged.

		Week 5	Blastemal structures of the pelvis have formed from primordial mesenchyme (Bardeen, 1905)
	Ion	6-7	— Chondrification begins in iliac mass (O'Rahilly and Gardner, 1975)
	ficat	7-8	Chondrification centres initiate in ischial and pubic masses (Gardner and O'Rahilly, 1972)
	ndri	Month 2	— Chondrification centres meet, fuse to form immature acetabulum and pubic symphysis (Adair, 1918)
	Cho	2-3	— Ilium ossification initiates (Laurenson, 1964b)
		3	— Cartilaginous pelvis complete (Adair, 1918)
ation	4-5 6 Birth — — • Year 1 2 3-4		Ischium ossification commences (Laurenson, 1963), ilium is identifiable (Scheuer and Black, 2004)
			Ilium prominence of the iliopectineal line has developed (Scheuer and Black, 2004)
			— Pubis commences ossification, all three primary bony components present (Sheuer and Black, 2004)
ssific			— Ischial spine, pubic tubercle and crest have developed (Scheuer and Black, 2004)
ILV O			— Anterior border of ilium has bent forwards (Scheuer and Black, 2004)
rima			Iliac and ischial articulation sites on the pubis are clearly demarcated (Scheuer and Black, 2000)
		4-5	— Non-articular acetabular area clearly defined on the ilium (Scheuer and Black, 2000)
		5-6	— Pubic non-articular acetabular area is clearly defined (Scheuer and Black, 2004)
		5-8	– Fusion occurs at the ischiopubic rami (Fazekas and Kósa, 1978)
		9-10	Os acetabuli is identifiable, ossific islands occur in triradiate cartilage (Zander, 1943)
		10-11	Ossification initiates in posterior acetabular epiphysis (Zander, 1943)
		10-13	— Ossification centre develops in the anterior inferior iliac spine (Francis, 1940)
		11-15	— Fusion of acetabulum in females (Stevenson, 1924; Freedman, 1934)
		12-14	
		13-16	Ischial epiphysis commences ossification (Francis, 1940)
	tion	14-17	
	sifice	15-23	
	ry Os	16-18	— Ischial tuberosity has developed fully (Scheuer and Black, 2004)
	onda	17-20	
	Sec	19-20	— Ischial epiphysis extends half way along the ramus (Scheuer and Black, 2004)
		20	Complete fusion of the anterior inferior iliac spine (Francis, 1940)
		20-23	Ischial epiphysis, iliac crest have completed union (McKern and Stuart, 1957)
		23-27	Pubic tubercle epiphysis, inferior and superior borders delineated (Todd. 1920)
		24-30	
		35	Ventral rampart is complete and the symphyseal rim is mature (Todd, 1920)

1	Figure 6: Timeline of chondrification and ossification events in the ontogenic
2	development of the human pelvis
3	
4	6. References
5	Abel R, Macho GA (2011) Ontogenetic changes in the internal and external morphology of
6	the ilium in modern humans Journal of anatomy 218:324-335 doi:10.1111/j.1469-
7	7580.2011.01342.x
8	Adair FL (1918) The ossification centers of the fetal pelvis Transactions of the American
9	Gynecological Society for the Year 43:89
10	Andersen H (1962) Histochemical Studies of the Development of the Human Hip Joint Cells
11	Tissues Organs 48:258-292
12	Bardeen CR (1905) Studies of the development of the human skeleton.(A). The development
13	of the lumbab, sacbal and coccygeal vertebwe.(B). The cubves and the pbopobtionate
14	regional lengths of the spinal column during the first thbee months of embbyonic
15	development.(C). The development of the skeleton of the posterior limb American
16	Journal of Anatomy 4:265-302
17	Bardeen CR, Lewis WH (1901) Development of the limbs, body-wall and back in man
18	American Journal of Anatomy 1:1-35
19	Bilfeld MF, Dedouit F, Sans N, Rousseau H, Rougé D, Telmon N (2013) Ontogeny of Size
20	and Shape Sexual Dimorphism in the Ilium: A Multislice Computed Tomography
21	Study by Geometric Morphometry Journal of Forensic Sciences 58:303-310
22	doi:10.1111/1556-4029.12037
23	Birkner R (1978) Normal Radiologic Patterns and Variances of the Human Skeleton: An X-
24	ray Atlas of Adults and Children. Urban & Schwarzenberg,

1	Boucher BJ (1957) Sex differences in the foetal pelvis American Journal of Physical
2	Anthropology 15:581-600 doi:10.1002/ajpa.1330150409
3	Bruzek J (2002) A method for visual determination of sex, using the human hip bone
4	American Journal of Physical Anthropology 117:157-168 doi:10.1002/ajpa.10012
5	Correia H, Balseiro S, De Areia M (2005) Sexual dimorphism in the human pelvis: Testing a
6	new hypothesis HOMO - Journal of Comparative Human Biology 56:153-160
7	doi: <u>http://dx.doi.org/10.1016/j.jchb.2005.05.003</u>
8	Cunningham CA, Black SM (2009) Development of the fetal ilium – challenging concepts of
9	bipedality Journal of Anatomy 214:91-99 doi:10.1111/j.1469-7580.2008.01005.x
10	Delaere O, Dhem A (1999) Prenatal development of the human pelvis and acetabulum Acta
11	Orthop Belg 65:255-260
12	Delaere O, Kok V, Nyssen-Behets C, Dhem A (1992) Ossification of the Human Fetal Ilium
13	Cells Tissues Organs 143:330-334
14	Fazekas IG, Kósa F (1978) Forensic fetal osteology. Akadémiai Kiadó,
15	Flecker H (1932) Roentgenographic Observations of the Times of Appearance of Epiphyses
16	and their Fusion with the Diaphyses Journal of Anatomy 67:118-164.113
17	Francis CC (1940) The appearance of centers of ossification from 6 to 15 years American
18	Journal of Physical Anthropology 27:127-138 doi:10.1002/ajpa.1330270132
19	Freedman E (1934) Os acetabuli J Bone Joint Surg 31:492-495
20	Frost HM (1990a) Skeletal structural adaptations to mechanical usage (SATMU): 1.
21	Redefining Wolff's Law: The bone modeling problem The Anatomical Record
22	226:403-413 doi:10.1002/ar.1092260402
23	Frost HM (1990b) Skeletal structural adaptations to mechanical usage (SATMU): 2.
24	Redefining Wolff's Law: The remodeling problem The Anatomical Record 226:414-
25	422 doi:10.1002/ar.1092260403

1	Gepstein R, Weiss R, Hallel T (1984) Acetabular dysplasia and hip dislocation after selective
2	premature fusion of the triradiate cartilage. An experimental study in rabbits Bone &
3	Joint Journal 66-B:334-336
4	Giorgi M, Carriero A, Shefelbine SJ, Nowlan NC (2014) Mechanobiological simulations of
5	prenatal joint morphogenesis Journal of biomechanics 47:989-995
6	Giorgi M, Carriero A, Shefelbine SJ, Nowlan NC (2015) Effects of normal and abnormal
7	loading conditions on morphogenesis of the prenatal hip joint: application to hip
8	dysplasia Journal of biomechanics 48:3390-3397
9	Gray H (1918) Anatomy of the human body. Lea & Febiger,
10	Harrison T (1958a) An experimental study of pelvic growth in the rat Journal of anatomy
11	92:483
12	Harrison T (1958b) The growth of the pelvis in the rat—a mensural and morphological study
13	Journal of anatomy 92:236
14	Harrison T (1961) The influence of the femoral head on pelvic growth and acetabular form in
15	the rat Journal of anatomy 95:12
16	Harrison TJ (1957) Pelvic Growth. Queen's University of Belfast,
17	Hashimoto R, Kihara I, Otani H (2002) Perinatal development of the rat hip joint with
18	restrained fetal movement Congenital Anomalies 42:135-142 doi:10.1111/j.1741-
19	4520.2002.tb00863.x
20	Holcomb SMC, Konigsberg LW (1995) Statistical study of sexual dimorphism in the human
21	fetal sciatic notch American Journal of Physical Anthropology 97:113-125
22	doi:10.1002/ajpa.1330970204
23	Hromada J (1939) Contribution to the study of the growth of the fetal pelvis Anthropologie
24	18:129-170

1	Huseynov A, Zollikofer CPE, Coudyzer W, Gascho D, Kellenberger C, Hinzpeter R, Ponce
2	de León MS (2016) Developmental evidence for obstetric adaptation of the human
3	female pelvis Proceedings of the National Academy of Sciences 113:5227-5232
4	doi:10.1073/pnas.1517085113
5	Katz D, Suchey JM (1986) Age determination of the male os pubis American Journal of
6	Physical Anthropology 69:427-435
7	Laurenson RD (1963) The chondrification and primary ossification of the human ilium.
8	University of Aberdeen
9	Laurenson RD (1964a) The chondrification of the human ilium The Anatomical Record
10	148:197-202 doi:10.1002/ar.1091480209
11	Laurenson RD (1964b) The primary ossification of the human ilium The Anatomical Record
12	148:209-217 doi:10.1002/ar.1091480211
13	Laurenson RD (1965) Development of the Acetabular Roof in the Fetal Hip An
14	Arthrographic and Histological Study 47:975-983
15	LaVelle M (1995) Natural selection and developmental sexual variation in the human pelvis
16	American Journal of Physical Anthropology 98:59-72 doi:10.1002/ajpa.1330980106
17	Malashichev Y, Borkhvardt V, Christ B, Scaal M (2005) Differential regulation of avian
18	pelvic girdle development by the limb field ectoderm Anatomy and embryology
19	210:187-197
20	Malashichev Y, Christ B, Pröls F (2008) Avian pelvis originates from lateral plate mesoderm
21	and its development requires signals from both ectoderm and paraxial mesoderm Cell
22	and tissue research 331:595-604
23	Matheney T, Sandell L, Foucher K, Lamontagne M, Grodzinsky AJ, Peters CL (2013)
24	Motion Analysis, Cartilage Mechanics, and Biology in Femoroacetabular
25	Impingement: Current Understanding and Areas of Future Research Journal of the

American Academy of Orthopaedic Surgeons 21:S27-S32 doi:10.5435/jaaos-21-07 s27

3	McKern TW, Stewart TD (1957) Skeletal age changes in young American males analysed
4	from the standpoint of age identification. DTIC Document,
5	Meindl R, Lovejoy C, Mensforth R, Walker R (1985) A revised method of age determination
6	using the os pubis, with a review and tests of accuracy of other current methods of
7	pubic symphyseal aging American journal of physical anthropology 68:29-45
8	Mokrane F-Z, Dedouit F, Gellée S, Sans N, Rousseau H, Rougé D, Telmon N (2013) Sexual
9	Dimorphism of the Fetal Ilium: A 3D Geometric Morphometric Approach with
10	Multislice Computed Tomography Journal of Forensic Sciences 58:851-858
11	doi:10.1111/1556-4029.12118
12	Nowlan NC, Chandaria V, Sharpe J (2014) Immobilized chicks as a model system for early-
13	onset developmental dysplasia of the hip Journal of Orthopaedic Research 32:777-785
14	doi:10.1002/jor.22606
15	O'Rahilly R, Gardner E (1972) The initial appearance of ossification in staged human
16	embryos American Journal of Anatomy 134:291-307 doi:10.1002/aja.1001340303
17	O'Rahilly R, Gardner E (1975) The timing and sequence of events in the development of the
18	limbs in the human embryo Anatomy and embryology 148:1-23
19	O'Rahilly R, Gardner E, Gray DJ (1956) The Ectodermal Thickening and Ridge in the Limbs
20	of Staged Human Embryos Development 4:254-264
21	Parfitt AM (1994) Osteonal and hemi-osteonal remodeling: The spatial and temporal
22	framework for signal traffic in adult human bone Journal of Cellular Biochemistry
23	55:273-286 doi:10.1002/jcb.240550303
24	Philippon M, Schenker M, Briggs K, Kuppersmith D (2007) Femoroacetabular impingement
25	in 45 professional athletes: associated pathologies and return to sport following

1	arthroscopic decompression Knee Surgery, Sports Traumatology, Arthroscopy
2	15:908-914 doi:10.1007/s00167-007-0332-x
3	Ponseti IV (1978a) Growth and development of the acetabulum in the normal child.
4	Anatomical, histological, and roentgenographic studies The Journal of Bone & Joint
5	Surgery 60:575-585
6	Ponseti IV (1978b) Morphology of the acetabulum in congenital dislocation of the hip. Gross,
7	histological and roentgenographic studies The Journal of Bone & Joint Surgery
8	60:586-599
9	Portinaro N, Matthews S, Benson M (1994) The acetabular notch in hip dysplasia Bone &
10	Joint Journal 76-B:271-273
11	Portinaro NMA, Murray D, Benson MKD (1997) Acetabular Notch Journal of Pediatric
12	Orthopaedics B 6:48-51
13	Rauch F, Travers R, Glorieux FH (2007) Intracortical remodeling during human bone
14	development—A histomorphometric study Bone 40:274-280
15	doi: <u>http://dx.doi.org/10.1016/j.bone.2006.09.012</u>
16	Rissech C, Malgosa A (2005) Ilium growth study: applicability in sex and age diagnosis
17	Forensic Science International 147:165-174
18	doi:http://dx.doi.org/10.1016/j.forsciint.2004.08.007
19	Scheuer L, Black S (2004) The juvenile skeleton. Academic Press,
20	Scheuer L, Black S, Cunningham C (2000) Developmental juvenile osteology. Academic
21	Press,
22	Schunke GB (1938) The anatomy and development of the sacro-iliac joint in man The
23	Anatomical Record 72:313-331 doi:10.1002/ar.1090720306

1	Schutkowski H (1993) Sex determination of infant and juvenile skeletons: I. Morphognostic
2	features American Journal of Physical Anthropology 90:199-205
3	doi:10.1002/ajpa.1330900206
4	Shefelbine SJ, Carter DR (2004) Mechanobiological predictions of growth front morphology
5	in developmental hip dysplasia Journal of Orthopaedic Research 22:346-352
6	doi:http://dx.doi.org/10.1016/j.orthres.2003.08.004
7	Stevenson PH (1924) Age order of epiphyseal union in man American Journal of Physical
8	Anthropology 7:53-93
9	Strayer LM (1943) The Embryology of the Human Hip Joint The Yale Journal of Biology
10	and Medicine 16:13-26.16
11	Strayer LMJ (1971) Embryology of the Human Hip Joint Clinical Orthopaedics and Related
12	Research 74:221-240
13	Todd TW (1920) Age changes in the pubic bone. I. The male white pubis American Journal
14	of Physical Anthropology 3:285-334 doi:10.1002/ajpa.1330030301
15	Verbruggen SW, Loo JHW, Hayat TTA, Hajnal JV, Rutherford MA, Phillips ATM, Nowlan
16	NC (2016) Modeling the biomechanics of fetal movements Biomechanics and
17	Modeling in Mechanobiology 15:995-1004 doi:10.1007/s10237-015-0738-1
18	Weaver DS (1980) Sex differences in the ilia of a known sex and age sample of fetal and
19	infant skeletons American journal of physical anthropology 52:191-195
20	Wilson LAB, Ives R, Cardoso HFV, Humphrey LT (2015) Shape, size, and maturity
21	trajectories of the human ilium American Journal of Physical Anthropology 156:19-
22	34 doi:10.1002/ajpa.22625
23	Wolff J (1892) Das gesetz der transformation der knochen DMW-Deutsche Medizinische
24	Wochenschrift 19:1222-1224

- 1 Yasuda Y (1973) Differentiation of human limb buds in vitro The Anatomical Record
- 2 175:561-577
- 3 Zander G (1943) "Os Acetabuli" and Other Bone Nuclei; Periarticular Calcifications At the
- 4 Hip-Joint Acta Radiologica 24:317-327
- 5