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Abstract. Cardiac magnetic resonance imaging (CMRI) provides non-
invasive characterization of the heart and surrounding tissues. It is an im-
portant tool for the prognosis of pulmonary arterial hypertension (PAH),
a disease with heterogeneous presentation that makes survival likelihood
prediction a challenging task. In this paper, we propose a Geodesically
Smooothed Tensor feature learning method (GST) that utilizes not only
the heart but also its surrounding tissues to characterize disease severity
for improving prognosis. Specifically, GST includes structures surround-
ing the heart by geodesic rings which were incrementally smoothed with
Gaussian filters. This provides additive insight while modulating for pa-
tient positional differences for a subsequent tensor-based feature learn-
ing pipeline. We performed evaluation on Four Chamber and Short Axis
CMRI from 150 individuals with confirmed PAH and 1-year mortality
census (27 deceased, 123 alive). The proposed GST method improved
AUC and Cox difference at 4-years post-imaging (Cox4YD) over the
standardized measurement of right ventricular end systolic volume in-
dex (RVESVi: AUC: 0.58; Cox4YD: 0.18) on the Four Chamber protocol
(AUC: 0.77; Cox4YD: 0.35). Only AUC was improved over RVESVi in
the Short Axis scans (AUC: 0.77; Cox4YD: 0.16).

1 Introduction

Pulmonary arterial hypertension (PAH) is a severe disease affecting the car-
diopulmonary system with a recorded 1-year mortality rate of 15% [3]. The het-
erogeneous nature of disease presentation and the diversity in disease progression
at time-of-diagnosis makes predicting survival likelihood and proper treatment
planning a challenging task for PAH [9]. Guidelines from the European Society
of Cardiology and the European Respiratory Society assigns categorical risk of
1-year mortality to subjects based on assessment of symptom severity, 6-minute
walk test, and right ventricle function [6]. There is evidence that prognostic
indicators including clinical, echo-cardiogram imaging, and right heart catheter-
ization (RHC) can be used to predict a subject’s likelihood of mortality [2].
Recently, standardized cardiac magnetic resonance imaging (CMRI) measures



calculated from user-delineated contours were shown to have prognostic value in
PAH subjects when combined with clinical measures (AUC = 0.70-0.78) [8].

Prior studies of artificial intelligence technologies for PAH prognosis have fo-
cused on segmentation-based ventricular volume and motion analysis and achieved
a moderate performance accuracy (AUC = 0.75) [1]. From related literature,
while feature extraction methods typically focus on specific regions of interest
within a dataset, there are potentially features in non-target organ regions which
could provide additional disease risk classification [15]. Inspired by this, we note
that features from the surrounding tissues of the heart has the potential to ben-
efit PAH prognosis. For example, PAH subjects with worse outcomes tend to
have increased pulmonary vasculopathy [7] which could potentially be detected
as features in the lungs. However, the automatic extraction of meaningful fea-
tures from areas external to the heart is challenged by the diversity in patient
positioning during scanning. As the priority of the imaging technician is the lo-
cation of heart structures, the positioning of secondary structures (lungs, liver,
appendages) may be inconsistent or difficult to align to a standard.

Moreover, temporal-spatial medical scans, such as CMRIs have high dimen-
sionality characterizing the in-vivo tissue conditions of target organs and sur-
rounding structures. However, the number of available samples is much smaller
relevant to such high dimensionality, making machine learning challenging on
such data. Recently, a tensor-based dimensionality reduction method named as
multilinear principal component analysis (MPCA) [10] has shown promising re-
sults in automated diagnosis of PAH by detecting interpretable tensorial CMRI
features [13]. It will be interesting to explore its application in prognosis.

Contributions: This paper proposes a Geodesically Smooothed Tensor fea-
ture learning method (GST) for PAH prognosis. More specifically, we use a
simple, regional Gaussian smoothing to include tissues surrounding the heart
incrementally. This has the potential to alleviate the challenges associated with
positional discrepancies and promote a more comprehensive assessment of mor-
tality risk. The geodescially smoothed CMRI is then passed to a tensor feature
learning pipeline to predict the mortality. To the best of our knowledge, this
is the first work to employ incremental geodesic-based image smoothing and
investigate the prognostic value of tensor-based features from such smoothed
images.

2 Methodology

Figure 1 shows an overview of the proposed GST pipeline for PAH prognosis.
Source code is made available at https://github.com/pykale.

CMRI Data Preprocessing. Image preprocessing is consisted of (1) CMRI
unit standardization, (2) magnetic field in-homogeneity bias correction, (3) inter-
subject scan alignment, (4) incremental geodesic distance smoothing, and (5)
in-plan resolution down-sampling. CMRI units were standardized using z-score
normalization to allow for meaningful comparison between subjects [11]. CMRI
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Fig. 1: Overview of the proposed pipeline for PAH prognosis including geodesic
smoothing preprocessing, tensor feature learning, and performance analysis.
Gray highlighted regions are described in more detail in the Methods.

field in-homogeneity bias correction was performed using the N4ITK method
to correct for acquisition artifacts [14]. Affine registration of three landmarks
points placed by an expert in each of the datasets was performed to align sub-
ject hearts to the same image space; specific landmarks are detailed in the CMRI
Scan Data section of the Experiments. Incremental geodesic distance smooth-
ing is described in the next section. The in-plane scaling was done by max-pool
at 2, 4, 8, 16 times resulting in down-sampled resolution images of 256 × 256,
128× 128, 64× 64, and 32× 32 respectively.

Geodesic Smoothing.Our GSTmethod performs incremental smoothing based
on geodesic distance from the region of the heart using iterative mask dilation
and Gaussian filters. Let Hi be the previous iteration i’s mask with diameter
dHi

, ρ be the width of the concentric shell, s be the structuring element 4πρ2,
and Xm be indicating a phase in subject’s cardiac cycle.

First we calculate the geodesic distance using dilation procedure from the
edge of the initial mask Hi to the concentric edge at an expanding distance ρ

towards the image bounds, hereby Hi+1 follows the formulation:

Hi+1 = Hi ⊕ s. (1)

The initial mask, Hi is subtracted from the dilated mask and element-wise
multiplication is performed with image Xm. This results in a shell of image
about the Hi, Vi, with inner diameter of dHi

and outer diameter of dHi
+2× ρ,

calculated as:

Vi = (Hi+1 −Hi)⊙Xm. (2)

The 2D Gaussian of Vi is calculated as Wi. Let σ be the smoothing factor.
The formulation of Wi is as follows:

Wi = G[Vi(r, c)|σ] =
1

2πσ2
e

−r
2+c

2

2σ2 , (3)



which is updated for each i with ∆σ as the defined incremental increase in
smoothing factor as:

σ = σ +∆σ. (4)

Equations (1) to (4) are repeated until Hi+1 has reached the image bound-
aries (i = I). Finally, the incrementally smoothed image X ′

m is calculated as the
sum of all Wi as follows:

X ′

m =

I∑

i=0

Wi. (5)

The resulting X ′

m is an image of the same size as Xi. The original masked
heart region is unchanged from the original image and voxels along tangential
arrays from the mask become increasingly more blurred. The lower left of Fig.
1 shows a typical mask and Fig. 2B shows an example on a Four Chamber scan.

Tensor Feature Learning. The learning of prognostic tensor features involves
(1) MPCA feature extraction, (2) Fisher discriminant feature ranking, (3) sup-
port vector machine (SVM) training, and (4) cross validation. After CMRI data
preprocessing, MPCA is applied to the aligned dataset for spatial-temporal fea-
ture extraction - see next section for details on the parameters for Baseline,
Masked, Surrounding Smoothing, and Geodesic Smoothing. After MPCA, the ex-
tracted features are ranked using Fisher’s discriminant score. Those top-ranked
features were utilized to train a linear SVM through 10-fold stratified cross val-
idation with class imbalance preserving fold generation. This was repeated 10
times for a 10×10-fold cross validation to help alleviate bias from random fold
generation and increase the estimation reliability for small sample size.

Spatial-Temporal Feature Extraction. We identify prognostic characteris-
tics by using MPCA [10] to learn multilinear bases from image stacks to obtain
low-dimensional tensor features. Here, we represent our M CMRI samples as
third-order tensors in the form {X1, ..., XM ∈ R

I1×I2×I3}. MPCA utilizes these
inputs to extract low-dimensional tensor features {Y1, ..., YM ∈ R

P1×P2×P3} by
learning three (order N = 3) projection matrices {U(n) ∈ R

In×Pn , n = 1, 2, 3}
as follows:

Ym = Xm ×1 U
(1)⊤ ×2 U

(2)⊤ ×3 U
(3)⊤ ,m = 1, ...,M, (6)

where Pn < In, thereby reducing the dimension of the input tensor to P1×P2×P3

from I1 × I2 × I3. The projection matrices {U(n)} are optimized through max-

imizing the total scatter ΨY =
∑M

m=1 ||Ym − Y ||2F , where Y = 1
M

∑M

m=1 Ym is
the mean tensor and || · ||F is the Frobenius norm [10]. MPCA has one hyper-
parameter Q determining the tensor subspace dimensions {P1, P2, P3} and its
default setting takes only one iteration.

Performance Assessment. Model performance was evaluated using 10×10-
fold cross validation. The primary metric is the area under the receiver-operator



Table 1: Demographic and clinical information of study population. N : number
of subjects; IPAH: idiopathic PAH; WHO: World Health Organization.

Attribute Deceased Alive p

N 27 123 -
IPAH 14 (52%) 55 (44%) 0.62
Female 17 (63%) 88 (72%) 0.56
Age (Mean±STD) 70.3± 10.4 62.2± 12.7 < 0.01

WHO-2 0 (0%)) 7 (6%)
WHO-3 23 (85%) 103 (84%) 0.49
WHO-4 4 (15%) 13 (10%)

characteristic curve (AUC). We computed both sensitivity and specificity. We
also performed Cox proportional-hazards regression [4,12], a type of non-parametric
survival analysis which relates variables to survival time; the measured effect is
the Hazard rate which is the expected number of events/deaths per unit time.
Categorical variables were assessed with Fisher’s Exact Test or Chi-squared
test and continuous variables were assessed with Wilcoxon Rank Sum test, (R,
https://www.r-project.org/).

3 Experiments

For the task of PAH prognosis assessment, the proposed pipeline takes as input
CMRI data represented by volumetric slices (spatial) of intensity units over 20
phases of the cardiac cycle (temporal).

Study Population. Subjects diagnosed with PAH and imaged prior to treat-
ment with CMRI between December 2014 and February 2017 were included in
this study following institutional review board approval and ethics committee
review. In total, 150 subjects were included in this study; diagnosis of PAH was
made following RHC within 48 hours of imaging. Table 1 lists key demograph-
ics and clinical information for the study subjects. Subjects were censused in
November 2019 at which time 80 subjects (52%) were alive. One-year mortality
was calculated from date of imaging, with a total 27 subjects (18%) deceased
within one year of CMRI assessment. The median survival time of those who
died within 1-year was 173 days. Subjects who were deceased after 1-year tended
to be older (70 years average) compared to those who were alive at 1-year follow-
up (62 years average).

CMRI Scan Data. Two CMRI protocols - Short Axis and Four Chamber -
were utilized in this study. All scans were performed on a 1.5 Tesla GE HDx
(GE Healthcare, Milwaukee, USA) using an 8-channel cardiac coil and retrospec-
tive electrocardiogram gating. Acquisition parameters followed clinical standards
with a cardiac gated multi-slice balanced SSFP sequence (20 frames per cardiac
cycle, slice thickness 8mm, FOV 48, matrix 512 x 512, BW 125 KHz/pixel,



TR/TE 3.7/1.6 ms). Expert reader defined landmarks were selected as the infe-
rior hinge point, superior hinge point, and interolateral inflection point of right
ventricular free wall for the Short Axis scan. For the Four Chamber the left
ventricular apex, mitral annuli, and tricuspid annuli were used.

CMRI Tensor Experimental Setup. Four experimental levels were explored
on both the Four Chamber and Short Axis datasets: (1) Baseline, (2) Masked,
(3) Gaussian Surroundings, and (4) Gaussian Geodesic.

– The Baseline Tensor experiment took as input the complete unmasked
CMRI and tensor feature extraction was performed on all voxels.

– The Masked Tensor experiment took as input CMRI with a user-defined
ellipse circumscribing the heart and tensor feature extraction was performed
on voxels within the masked heart region.

– The Surrounding Smoothing Tensor (SST) experiment took as input CMRI
Gaussian smoothing performed on all voxels exterior to the ellipsoid mask
with two levels of σ = [0.5, 1.0] and tensor feature extraction was performed
on all voxels.

– The Geodesic Smoothing Tensor (GST) experiment took as input CMRI
with Gaussian smoothing performed with incremental increases on all voxels
exterior to the ellipsoid mask with two levels of σ = [0.5, 1.0] , one level
of incremental σi = 0.1, and two levels of concentric size bw = [5, 10] and
tensor feature extraction was performed on all voxels.

For all the experiments, in-plane scaling was done by max-pool at 2, 4, 8, 16 times
resulting in down-sampled resolution images of 256× 256, 128× 128, 128× 128,
and 32× 32 respectively.

Comparison Studies. Contour-based measurements of the right ventricle end-
diastolic volume index (RVEDVi) and right ventricle end-systolic volume index
(RVESVi) were made by an expert reader and thresholded based on published
categories [8].

Classification Accuracy. Table 2 shows the performance results from exper-
iments. The RVEDVi and RVESVi measures both achieved relatively low per-
formance (AUC = 0.577-0.581). Performance improvement was seen with appli-
cation of all tensor-based experiments over Baseline Tensor. In Four Chamber
Masked Tensor, binary masking improved prediction quality by a difference of
0.12 in AUC. Minimal difference (∆AUC < 0.01) was seen by applying a con-
stant Gaussian smoothing over the surrounding structures (SST ). However, use
of GST to incrementally increase the level of σ farther away from the heart
improved performance by up to 0.07 difference in AUC. The best performing
(AUC = 0.774) prognostic tool was the Four Chamber GST which extracted
tensor features from the heart and concentric rings of 5-voxel steps increasing
the level of blur sigma from 0.5 by 0.1 each step. On the Short Axis Masked
Tensor, an improvement of 0.20 points in ∆AUC was achieved. Only modest
improvement (∆AUC = 0.01) was seen in the Short Axis GST.



Table 2: Experimental classification settings and results. The best results were
in bold for the last three columns. Precision is shown as two decimal places
therefore some tied values in the table differ in the third digit (e.g. 0.58 and
0.77). AUC: area-under-curve for 1-year mortality; SENS: sensitivity for 1-year
mortality; Cox4YD: Cox Proportional-Hazards Regression difference at 4-years
after imaging; RVEDVi: right ventricular end-diastolic volume index; RVESVi:
right ventricular end-systolic volume index; SST: Surrounding Smoothed Tensor;
GST: Geodesic Smoothed Tensor.

Experiment Mask Gaussian Geodesic AUC SENS Cox4YD

Standard RVEDVi - - - 0.58 0.52 0.02
RVESVi - - - 0.58 0.74 0.18

Four Chamber Baseline - - - 0.60± 0.03 0.52 0.16
Masked YES - - 0.70± 0.03 0.59 0.18
SST YES 0.5 - 0.71± 0.02 0.67 0.19
SST YES 1.0 - 0.70± 0.03 0.67 0.22
GST YES 0.5 5 0.77± 0.03 0.70 0.35

GST YES 1.0 10 0.77± 0.03 0.70 0.34

Short Axis Baseline - - - 0.56± 0.04 0.44 0.02
Masked YES - - 0.75± 0.03 0.70 0.15
SST YES 0.5 - 0.71± 0.02 0.70 0.11
SST YES 1.0 - 0.63± 0.03 0.59 0.08
GST YES 0.5 5 0.76± 0.03 0.78 0.16

GST YES 1.0 10 0.73± 0.03 0.70 0.15

Cox Proportional-Hazards Regression Analysis. Cox regression analysis
was performed on the top prognostic predictions - with Kaplan-Meier survival
curves shown in Figure 2A [5]. The Four Chamber GST had the hazards ratio
(HR) of 2.89 (CI: [1.81, 4.63], p < 0.01), with good discrimination between sur-
vival curves beyond 365 days. Similar results were seen for the Short Axis GST
(HR 1.81, [1.13, 2.90], p = 0.01). The CMRI standardized score of RVESVi cat-
egorized into low and intermediate-high score achieved a non-significant hazards
(HR 1.70, [1.01, 2.88], p = 0.05). The WHO functional class clinical score also
achieved high odds (HR 2.00, [1.17, 3.43], p = 0.01), however this is likely un-
realistically biased by the absence of deceased subjects at time of census who
were WHO category-2. A comparison of the difference at 4-years survival rates
for predicted-deceased and predicted-survived, shown graphically in Fig. 2A, is
included in Table 2 as column Cox4YD.

Uni-variate Cox indicated statistical significance (p < 0.05) in (1) Age, (2)
WHO functional class, (3) Four Chamber GST 1-year mortality prediction, and
(4) Short Axis GST 1-year mortality prediction. Multi-variate Cox proportional-
hazards regression analysis was performed (Table 3) on these four variables
demonstrated a high concordance of 0.732; this indicates a high probability for
any two randomly selected subjects, the subject with the shorter survival time
has a larger risk score.



Fig. 2: A) Kaplan–Meier survival plots with standard right ventricular end-
systolic volume index (RVESVi), and geodesic smoothing tensor Four Chamber
(4C GST) and Short Axis (SA GST) predictions of survival through four years
census. Higher curves with 50% transparency are subjects predicted-survival and
lower curves at 0% transparency are subjects predicted-deceased. B) Example
of geodesic smoothing (top) on a Four Chamber scan (bottom).

Table 3: Multivariate Cox proportional-hazards regression analysis.WHO: World
Health Organization; HR: Hazards Ratio; GST: Geodesic Smoothed Tensor.

Attribute Beta Coefficient HR p

Age 0.046± 0.011 1.05 < 0.01

WHO Functional Class 0.635± 0.301 1.89 0.04

Four Chamber GST 0.937± 0.246 2.55 < 0.01

Short Axis GST 0.374± 0.245 1.45 0.13

Limitations. The current study was limited by the relatively small cohort (150
subjects, 27 cases of 1-year mortality). Mortality is affected not only by a sub-
ject’s disease but also by lifestyle habits and treatment decisions, therefore it is
possible there are levels of mortality risk (i.e. a novel virus, accident) that can-
not ever be fully accounted in a prognostic assessment. We selected to extract
features from two common scanning protocols (Four Chamber and Short Axis);
in clinic there are additional CMRI acquisitions typically acquired which could
be explored for additional or supplemental prognostic features.

4 Conclusions

This paper proposed a Geodesically Smooothed Tensor feature learning method
(GST) which uses both the heart and its surrounding tissues for PAH prognosis.
We have demonstrated that 1) tensor-based CMRI features can achieve higher



PAH mortality prediction compared to standardized measures of ventricular vol-
ume, and 2) the full GST pipeline including surrounding tissues can further
improves the performance, particularly on Four Chamber scans of the heart.
Further study is therefore warranted to investigate if this improvement persists
in a larger cohort and for other scanning protocols.
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