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ABSTRACT 1 

Background: Type 1 diabetes patients face a heightened risk of hypoglycemia following 2 

exercise. Subsequent overfeeding, as a preventative measure against hypoglycemia, negates 3 

the energy deficit following exercise. Patients are also required to reduce the insulin dose 4 

administered with post-exercise foods to further combat hypoglycemia. However, insulin 5 

dose is dictated solely by carbohydrate content, even though post-prandial glycemia is vastly 6 

influenced by glycemic index (GI). With a need to control post-exercise energy balance, the 7 

appetite responses following meals differing in GI are of particular interest. Objective: This 8 

study assessed the appetite response to a low (LGI) and high GI (HGI) post-exercise meal in 9 

type 1 diabetes patients. This also offered an opportunity to assess the influence of GI on 10 

appetite responses independent of insulinemia, which confounds findings in individuals 11 

without diabetes. Design: Ten physically-active men with type 1 diabetes completed two 12 

trials in a randomized crossover design. Following 45-min of treadmill-exercise at 70% of 13 

peak oxygen uptake, participants consumed a low (LGI: GI = ~37) or high GI (HGI: GI = 14 

~92) meal, with matched macronutrient composition, negligible fiber content, and with 15 

insulin dose administration standardized. The postprandial appetite response was determined 16 

for 180-min post-meal. During this time, circulating glucose, insulin, glucagon and glucagon-17 

like peptide-1 (GLP-1) concentrations, and subjective appetite ratings were determined. 18 

Results: HGI meals produced ~60% greater postprandial glucose AUC compared to LGI (p 19 

= 0.008). Insulin, glucagon and GLP-1 did not significantly differ between trials (p > 0.05). 20 

Fullness AUC was ~25% greater following HGI vs. LGI (p < 0.001), whereas hunger 21 

sensations were ~9% lower following HGI vs. LGI (p = 0.001). Conclusions: Under 22 

conditions of matched insulinemia and fiber, a HGI post-exercise meal suppresses feelings of 23 

hunger and augments postprandial fullness sensations more so than an otherwise equivalent 24 

LGI meal, in type 1 diabetes patients. 25 
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INTRODUCTION 26 

Regular exercise brings a vast array of health benefits for patients with type 1 diabetes (1). 27 

However, managing diabetes, whilst integrating exercise into the lives of patients, is both 28 

complex and challenging. A heightened risk of exercise-induced and iatrogenic 29 

hypoglycemia (i.e. a fall in blood glucose concentrations below the normal physiological 30 

range) (2), often results in over-consumption of carbohydrate (3), and ultimately excessive 31 

energy intake (4) as a preventative measure. This may negate the benefits exercise offers for 32 

weight management and body composition, and could potentially contribute to a deterioration 33 

in wider diabetes management (5).  34 

 35 

Research has shown that insufficient exercise and excessive energy intake can confer 36 

detrimental long-term implications for glycemic control and cardiovascular risk in patients (6, 37 

7). Conversely, elevating energy expenditure through regularly exercising, and thus inducing 38 

a negative energy balance could be advantageous to glycemic control; reduced energy and 39 

carbohydrate intake may assist in the prevention of adiposity accumulation and the associated 40 

insulin resistance which occurs following diagnosis of type 1 diabetes (8). However, even in 41 

people without diabetes there is a risk of over-compensation of energy intake in response to 42 

energy expenditure (9), potentially due to increased appetite (9,10). Indeed, modulating post-43 

exercise appetite through nutritional strategies could be advantageous for type 1 diabetes 44 

patients, thus appetite regulation following exercise is emerging as an important component 45 

of diabetes care (3, 11).  46 

 47 

The composition of the foods consumed following exercise is of importance to type 1 48 

diabetes patients. Work from our group illustrates reduced hyperglycemia in the acute peri- 49 

and post-exercise period when low GI (LGI) carbohydrates are consumed before and after 50 
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exercise, compared with high GI carbohydrates (HGI) (12-14). This is important, as patients 51 

with type 1 diabetes are faced with particular difficulty in normalizing glycemia around the 52 

time of exercise and more so following exercise (15). Repeated exposure to severe glycemic 53 

variability on a regular basis may be detrimental to diabetes management (5, 16). However, 54 

the impact of food composition on appetite in type 1 diabetes is less well understood.  55 

 56 

In people without type 1 diabetes, diets that contain LGI carbohydrates are associated with 57 

reductions in appetite (17), however this may not be the case when fiber content is matched 58 

(18). The acute impact of glycemic index on appetite in a healthy population may be largely 59 

driven by insulinemia rather than glycemia, as postprandial insulin concentrations are 60 

inversely related to hunger, whereas postprandial glycemia is not (19), and gastrointestinal 61 

incretins may also play a role (20-22). Therefore, studying appetite responses following HGI 62 

and LGI meals in patients with type 1 diabetes offers a unique insight into the impact of meal 63 

glycemic index, whereby insulin-induced satiety is not confounded by dissimilar insulinemia 64 

(23), as administration of insulin dose is typically based on carbohydrate amount and not 65 

type. 66 

Accordingly, this study had two main aims: 1) to investigate the appetite and GLP-1 response 67 

to HGI and LGI post-exercise meals in type 1 diabetes patients, thereby reflecting a typical 68 

daily situation in which exercise recommendations for minimising the risk of hypoglycemia 69 

are adhered; 2) to examine the influence of the glycemic index on appetite independent of 70 

insulinemia and fiber content.  71 

 72 

 73 

 74 

 75 
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PARTICIPANTS AND METHODS 76 

Patients  77 

The protocol was approved by local National Health Service Research Ethics Committee 78 

(13/NE/0016, ClinicalTrials.gov (NCT02208115). All patients provided written informed 79 

consent. 80 

Ten type 1 diabetic men ([mean ± SEM] age 27 ± 1 years, VO2peak 51.3  2.1 ml.kg-1.min-1, 81 

BMI 25.5 ± 0.3 kg.m-2, HbA1c 6.7 ± 0.2%, 49.9 ± 2.4 mmol/mol) attended the Newcastle 82 

NIHR Clinical Research Facility on two occasions, separated by a minimum of seven days. 83 

All patients had long standing diabetes (duration of diabetes 15 ± 2 years), and were treated 84 

on a stable basal-bolus regimen composed of insulin aspart and once-daily insulin glargine. 85 

All patients were familiar with carbohydrate counting and were administering 1.0 ± 0.1 units 86 

of insulin aspart per 10 g of carbohydrate. Patients were not eligible if taking medication 87 

other than insulin, or supplements known to affect appetite or gastrointestinal motor function. 88 

Furthermore, patients were free of gastrointestinal disease, had not undergone gastrointestinal 89 

surgery, and were free of diabetes-related complications. In addition, all patients were 90 

regularly active participating in running-based activities a minimum of 3 times per week for 91 

at least 30 minutes on each occasion. 92 

 93 

Experimental design 94 

This was a randomised, counter-balanced cross-over design with two experimental arms: a 95 

LGI and HGI trial which commenced at ~17:00PM. A schematic of the experimental trial 96 

design is presented in Supplemental Figure 1. Patients replicated their diet (assessed using 97 

weighed dietary recording sheets) and maintained their usual insulin regimen in the 24 hours 98 

prior to each main trial. Basal insulin dose was standardised (dose, injection site, and time of 99 

injection) across trials. Moreover, real-time continuous glucose monitoring (Paradigm Veo, 100 
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Medtronic diabetes, USA) was used prior to main trials to normalise glycemia in the 101 

preceding 24 hours (for details see (12)). Patients were asked to replicate activity patterns and 102 

refrain from strenuous physical activity 48 hours before each trial. Trials were rescheduled if 103 

a patient experienced a symptomatic hypoglycemic episode or periods of severe or prolonged 104 

hyperglycemia. On each trial day, patients were provided with two standardised meals which 105 

were based on the habitual dietary patterns of type 1 diabetes patients and current 106 

recommendations for exercise in diabetic patients (4, 24). This postprandial design allows for 107 

greater translation of findings into daily life (25). The meals consisted of a cereal-based 108 

breakfast (frosted flakes, semi-skimmed milk, and peaches) equating to 1.3g.carbohdyrate.kg-109 

1BM (549 ± 20 kcal) and a pasta-based lunch (pasta, tomato-based sauce, cheddar cheese, 110 

olive oil) equating to 1.3g.carbohdyrate.kg-1BM (968 ± 35 kcal). The breakfast meal was 111 

consumed at ~08:00AM, and a lunch meal consumed at ~13:00PM. Both meals were 112 

provided to patients by the research team, and consumed at home, with meal times 113 

standardised across trials. Carbohydrate intake across the experimental trial day was based on 114 

recommendations for exercising type 1 diabetes patients (2), and was calculated to be 115 

sufficient to cover the cost of the exercise bout, as determined via indirect calorimetry from 116 

predicted VO2 and VCO2 concentrations during exercise. 117 

 118 

Transport was provided to patients for each laboratory attendance and trial start time was 119 

replicated. Following arrival, a resting venous blood sample was taken (see blood sampling 120 

and analysis), and patients administered a 75% reduced dose (2.0 ± 0.1 units) of rapid-acting 121 

insulin aspart, into the subcutis of the abdomen (12, 13). Injection site was taken as 122 

equidistant between the iliac crest and naval as currently recommended (15, 26, 27), and was 123 

standardized on each visit using indelible ink. With this insulin administration, patients 124 

consumed an exercise carbohydrate-based bolus (frosted flakes, semi-skimmed milk, and 125 
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peaches) equating to 1.0g.carbohdyrate.kg-1BM (423 ± 15 kcal), calculated to be of medium 126 

GI (GI = 57), as per current pre-exercise recommendations (15). Sixty minutes following 127 

rapid-acting insulin administration / carbohydrate bolus ingestion, a blood sample was drawn 128 

before patients performed 45 minutes of treadmill running at an intensity to elicit 70% of 129 

VO2peak. Running speed was calculated during a preliminary visit where a maximal 130 

incremental treadmill test was performed, as previously described by our group (15). For the 131 

performance of exercise, ambient temperature and humidity was controlled across trials. 132 

Blood samples were taken immediately after exercise and at 60 minutes post-exercise. At 60 133 

minutes post-exercise, patients administered a 50% reduced dose of rapid-acting insulin 134 

aspart in anticipation of the test meals (15). Immediately following insulin administration 135 

patients consumed one of two test meals matched for energy (HGI 1.7 ± 0.1 MJ / 413 ± 16 136 

kcal vs. LGI 1.7 ± 0.1 MJ / 409 ± 15 kcal) and carbohydrate content (1.0g.carbohydrate.kg-137 

1BM) but differing in GI (HGI = 37 vs. LGI = 92) (Table 1). Meals were matched for 138 

macronutrient content (Table 1), and contained negligible amounts of fiber (HGI = 1.0 ± 0.1 139 

vs. LGI = 0.5 ± 0.1 g). The order in which test meals were consumed was randomized and 140 

counter-balanced, determined using a computer program. We calculated the GI of each meal 141 

using methods described by Brouns et al (28) in 10 non-diabetic control participants; meal 142 

composition and energy content were determined using a computer software package 143 

(Microdiet, Downlee Systems LTD, UK). Following the consumption of each test meal, 144 

patients remained rested for 180 minutes with periodic blood sampling every 30 minutes. As 145 

each meal composed of food and a beverage (standardised volume), water was withheld 146 

during the post-prandial period to control for mechanoreceptor-mediated suppression of 147 

appetite. Perceptions of appetite (hunger and fullness) were assessed across the duration of 148 

each trial, measured immediately before each blood sample point using visual analogue 149 

scales (29). 150 
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*** INSERT TABLE 1 *** 151 

Blood sampling and analysis 152 

At each sample point a 6-ml venous blood sample was taken of which 20μl was used for the 153 

immediate quantification of blood glucose (BG: Biosen C-Line; EKF Diagnostic GmbH, 154 

London, UK) and 10 μl analyzed for hemoglobin and hematocrit (Hemo Control; EKF 155 

Diagnostic GmbH, UK), which was used to correct for changes in plasma volume following 156 

exercise (30). The remaining sample was aliquoted evenly into serum separation (Vacuette, 157 

Greiner Bio-One GmBH, Austria) and Lithium-heparin tubes (Vacuette, Greiner Bio-One 158 

GmBH, Austria) before being centrifuged at 3000 rev.min-1 for 15 minutes at 4˚C and stored 159 

at -80˚C for retrospective analysis of serum rapid-acting insulin analogue (Invitron Insulin 160 

Assay; Invitron, Monmouth, UK) and plasma glucagon (Glucagon EIA, Sigma-Aldrich, 161 

USA) and total GLP-1 (Epitope Diagnostics, San Diego, CA). Further blood samples were 162 

taken at 60 minutes following pre-exercise meal / rapid-acting insulin administration 163 

(immediately before exercise), at 60 minutes post-exercise (immediately before the post-164 

exercise-meal / rapid-acting insulin administration), and at 30, 60, 90, 120, 150, and 180 165 

minutes following the post-exercise meal / rapid-acting insulin administration. As patients in 166 

this study had long-standing diabetes and were solely dependent upon exogenous insulin, the 167 

influence of endogenous insulin secretion from residual β-cell function was considered 168 

negligible (31). Therefore, any changes in insulin concentrations detected by this assay were 169 

considered to be due to changes in the appearance or disappearance of insulin aspart. The 170 

coefficient of variation for the biochemical analysis of serum insulin, plasma glucagon and 171 

plasma GLP-1 was <10%.  172 

Statistical analysis 173 

All data are presented as mean ± SEM. Data presented as Area Under the Curve (AUC) was 174 

calculated using methods described by Wolever and Jenkins (32). Delta changes in AUC 175 
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from pre-test meal scores / concentrations were calculated by subtracting subsequent values 176 

from pre-test meal scores. PASW Statistics software (IBM PASW version 18; IBM, Armonk, 177 

NY, USA) was used to analyse data. Within and between condition responses were examined 178 

using repeated measures ANOVA on two levels (time*condition). Where significant p-values 179 

were identified for interaction effects (time*condition), GI was deemed to have influenced 180 

the response, and simple main effects analyses were performed. Significant main effects of 181 

time were further investigated using Bonferroni adjusted pairwise comparisons. Relationships 182 

were explored using Pearson’s product moment correlation coefficient. Paired samples t-tests 183 

were conducted as relevant. Statistical significance was accepted at p ≤ 0.05. 184 

 185 

 186 

 187 

 188 

 189 

 190 

 191 

 192 

 193 

 194 

 195 

 196 

 197 

 198 

 199 

 200 
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RESULTS 201 

Glycemic control was comparable over the 24 hours prior to patients’ arrival at the laboratory 202 

for both experimental trials (CGM mean glucose: HGI 10.4 ± 1.0, LGI 9.4 ± 1.1 mmol.l-1; p 203 

= 0.534; and total interstitial glucose AUC0-24hrs: HGI 11324 ± 1056, LGI 10212 ± 1228 204 

mmol.l-1 over 24 hours; p = 0.382). In addition, there were no differences in dietary intake, 205 

insulin administration, or levels of physical activity during this time (Table 2.0). 206 

***INSERT TABLE 2*** 207 

 208 

There were no differences in glycemia, serum insulin, plasma glucagon concentrations or 209 

appetite scores prior to the consumption of the post-exercise test meals (p > 0.05), such that 210 

immediately before administration, patients displayed similar blood glucose (BG: HGI 6.2 ± 211 

0.7 vs. LGI 5.8 ± 0.5 mmol.l-1, p = 0.169), serum insulin (HGI 106 ± 15 vs. LGI 102 ± 14 212 

pmol.l-1, p = 0.986), plasma glucagon concentrations (HGI 732 ± 99 vs. LGI 735 ± 103 213 

pg.ml-1, p = 0.884) and total GLP-1 (HGI 1.95 ± 0.21 vs. LGI 2.47 ± 0.87 pmol.l-1, p = 214 

0.620). At this time, sensations of hunger (HGI 68 ± 3 vs. LGI 67 ± 2, p = 0.925) and 215 

fullness (HGI 60 ± 2 vs. LGI 61 ± 2, p =0.791) were similar between conditions. 216 

 217 

Following administration of rapid-acting insulin and post-exercise test meals, serum insulin 218 

peaked similarly at 30 to 60 minutes under both conditions (HGI 181 ± 26 vs. LGI 175 ± 30 219 

pmol.l-1, p = 0.773; Figure 1A). Temporal changes in serum insulin remained similar beyond 220 

this time (p > 0.05), with concentrations returning to periprandial measures at 180 minutes (p 221 

> 0.05). Moreover, total insulin AUC were similar between conditions over the postprandial 222 

period (AUC0-180mins: HGI 49576 ± 6786 vs. LGI 43924 ± 6196 pmol.l-1 over 180 min, p = 223 

0.332). BG increased from periprandial concentrations over the postprandial period under 224 

both conditions, but elevations were significantly more pronounced under HGI, with higher 225 
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mean peaks (HGI +10.2 ± 0.5 vs. LGI +3.2 ± 0.6 mmol.l-1, p < 0.001; Figure 1B) and 226 

individualized peaks (HGI 15.8 vs. LGI 12.9 mmol.l-1). Total BG AUC was significantly 227 

greater under HGI (AUC0-180mins: HGI 2205 ± 90 vs. LGI 1437 ± 107 mmol.l-1 over 180 min, 228 

p = 0.002), displaying a significantly greater average change in absolute BG concentrations 229 

over the post-meal period compared to the average change under LGI (HGI +6.6 ± 0.9 vs. 230 

LGI +1.7 ± 0.4 mmol.l-1, p < 0.001). As such, patients under HGI were, on average, 231 

hyperglycemic (HGI 12.8 ± 0.5 mmol.l-1; Figure 1B), whereas patients under LGI typically 232 

remained within euglycemic ranges (LGI 7.6 ± 0.6 mmol.l-1, p = 0.002). Glucagon 233 

concentrations were significantly increased following the administration of both meals 234 

peaking similarly 30 minutes after consumption (Figure 2A). Following this, concentrations 235 

declined under HGI such that at 180 minutes concentrations were significantly lower than 236 

pre-meal, whereas the decline under LGI was largely attenuated (Figure 2A). However, total 237 

glucagon AUC was not statistically different between LGI and HGI (AUC0-180mins: LGI 238 

264150 ± 98209 vs. HGI 247054 ± 79042 pg.ml-1 over 180 min, p = 0.141). Temporal 239 

increases in total GLP-1 at 60 minutes following the meal were not statistically significant (p 240 

= 0.223) with concentrations similar to baseline under both conditions throughout the 241 

remaining post-prandial period (Figure 2B). 242 

 243 

***INSERT FIGURE 1A-B*** 244 

 245 

***INSERT FIGURE 2A-B*** 246 

 247 

***INSERT FIGURE 3A-B*** 248 

 249 
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Sensations of hunger peaked at 60 minutes following consumption under both conditions, 250 

(Figure 3AB). Over the remaining 120 minutes hunger sensations decreased under HGI, 251 

(Figure 3AB). Inversely under LGI, no further increases in hunger were apparent, meaning 252 

total AUC for feelings of hunger and fullness were significantly higher (AUC0-180mins: LGI 253 

7619 ± 1130 vs. HGI 6961 ± 1050 mmol.l-1 over 180 min, p <0.001) and lower under the 254 

LGI trial (AUC0-180mins: LGI 2669 ± 421 vs. HGI 3345 ± 561 mmol.l-1 over 180 min, p 255 

<0.001). 256 

 257 

In the LGI trial, a negative relationship was observed between total post-meal BG AUC and 258 

hunger AUC (r2 = 0.420, p = 0.039), but not fullness AUC (r2 = 0.003, p = 0.910) or serum 259 

insulin AUC (r2 <0.001, p = 0.977), plasma total GLP-1 (r2 = 0.009, p = 0.543). Neither 260 

hunger (r2 = 0.002, p = 0.900) nor fullness (r2 = 0.020, p = 0.699) were associated with 261 

changes in serum insulin AUC. Glucagon AUC and total GLP-1 were not associated with any 262 

other variable under LGI. No other correlations were observed between measures under HGI 263 

(p > 0.05; see supplemental figure 2AD and 3AD for correlations). 264 

 265 

 266 

 267 

 268 

 269 

 270 

 271 

 272 

 273 

 274 
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DISCUSSION 275 

The aims of this study were two-fold, 1) to investigate the influence of manipulating the 276 

glycemic index of meals consumed following exercise on appetite responses in patients with 277 

type 1 diabetes, and 2) examine the influence of glycemic index on appetite independent of 278 

insulinemia and fiber content. We demonstrate for the first time that a HGI meal consumed 279 

following exercise elevates subjective feelings of fullness and supresses sensations of hunger 280 

in patients with type 1 diabetes, compared to an isoenergetic LGI meal. It is important to note 281 

that these responses were observed under comparable insulinemia, plasma glucagon and 282 

GLP-1 concentrations, and when meals were matched for macronutrient composition and 283 

fiber content. 284 

 285 

Work from our group illustrates the clinical utility of consuming meals with a LGI around the 286 

time of exercise; specifically, LGI meals before and after exercise offer more favourable 287 

postprandial glycemic profiles without increasing risk of post-exercise hypoglycemia in type 288 

1 diabetes patients (12-14). This is important because the inclusion of exercise into the lives 289 

of patients is severely hampered by difficulties in managing post-exercise glycemia. From 290 

this present study however, we now reveal that patients may experience lower levels of 291 

satiety following LGI consumption in the post-exercise recovery period. Although it would 292 

be naïve to infer these findings to longer-term observations, our data may indicate likelihood 293 

for increased calorie intake following exercise due to increased appetite rather than avoidance 294 

of hypoglycemia per se. This may have important implications for long-term weight 295 

management in this population, and may contrast data in non-diabetic individuals which 296 

demonstrate an improvement in weight management following LGI carbohydrate diets (33). 297 

Of note however, we did not assess ad libitum energy intake in this present study. Therefore 298 

it is possible that perceived ratings of hunger or fullness may not directly translate to changes 299 
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in energy intake. However, we provide the first evidence of altered appetite responses to meal 300 

GI following exercise in type 1 diabetes. 301 

 302 

We have previously demonstrated that with fiber-matched meals, a higher glycemic response 303 

is associated with greater postprandial feelings of fullness in a non-diabetic population (18). 304 

Based on strong positive correlations of fullness and postprandial insulinemia in humans 305 

(19), taken in concert with the acute induction of satiety with intracerebroventricular 306 

administration of insulin in baboons (23), we hypothesised that insulin was a confounding 307 

factor in their appetite responses. In the present study, we provided HGI and LGI meals in the 308 

post-exercise period in people with type 1 diabetes, therefore we were able to manually 309 

control for insulin concentrations due to an absolute deficiency in endogenous insulin 310 

appearance. Accordingly, insulin concentrations were similar at every time point in the 311 

postprandial period (Figure 1A), whereas marked increases in postprandial glucose 312 

concentrations were evident with HGI vs. LGI (Figure 1B) as expected. This observation in 313 

concordance with pre-trial GI testing confirmed that the meals significantly differed in 314 

glycemic index. Therefore the results of the present study indicate that HGI meals induce 315 

greater satiety independent of the insulin response that is typical of these meals (34). 316 

 317 

These findings are consistent with previous infusion studies in people with and without type 1 318 

diabetes, whereby hyperglycemic (~14 and ~10 mmol.l-1) intravenous infusion reduced 319 

hunger sensations compared to euglycemia (~6 mmol.l-1) (35, 36). Interestingly, these effects 320 

are more apparent in the postprandial state (35), suggesting an interaction with the 321 

gastrointestinal tract. Using 13C octanoic acid, Russell et al (35). attempted to assess whether 322 

gastric emptying could explain the reduction in hunger seen under postprandial 323 

hyperglycemia (35). The gastric emptying coefficient (representing global gastric emptying 324 
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rate) tended (p = 0.052, n = 6) to be ~9% greater (i.e. slower gastric emptying) with 325 

postprandial hyperglycemia vs. euglycemia (35), which has also been shown by others (37-326 

39). Taken together, hyperglycemic-induced delayed gastric emptying and the associated 327 

mechanoreceptor-mediated suppression of appetite (40) could be a possible contributory 328 

mechanism to explain the effect we have observed. 329 

 330 

Another potential mechanism to explain the reduced hunger sensations with HGI vs LGI 331 

could be through portal vein signalling (41). With HGI, high glucose concentrations would 332 

likely be present in the portal vein. Since portal glucose infusions in postabsorptive rodents 333 

decreases food consumption and increases the number of c-fos-like immunoreactive neurons 334 

in the arcuate nucleus (41), this suggests that portal glucose enhances the activity of 335 

hypothalamic nuclei associated with appetite suppression. Furthermore, this response is 336 

attenuated by portal vein denervation (41), demonstrating the importance of this pathway for 337 

glucose sensing and appetite. Whilst glucagon displays anorectic properties (42), it is 338 

implausible that this explains the appetite response we observed in this study, since glucagon 339 

concentrations did not significantly differ between trials. 340 

 341 

GLP-1 may play a role in the appetite response to HGI and LGI meals in healthy populations 342 

(21, 43), although the evidence for a differential GLP-1 response to HGI vs. LGI mixed-343 

meals in equivocal (17). We chose to measure GLP-1 because it is considered at least partly 344 

active in type 1 diabetes patients (22), whereas other incretins such as gastric inhibitory 345 

polypeptide are largely absent (44). Postprandial responses in GLP-1 are thought to differ to 346 

those elicited by healthy non-diabetic individuals (22), and we now demonstrate that there is 347 

no significant difference in the GLP-1 response to HGI vs. LGI meals, consumed following 348 
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exercise in type 1 diabetes patients. We encourage further work to explore the wider role that 349 

incretins play in modulating appetite responses in this population.  350 

 351 

The difference in fiber content between the HGI and LGI meals was small (0.5 g). Meta-352 

analyses indicate that fiber reduces subjective sensations of hunger and subsequent energy 353 

intake (45). The difference between meals in the present study however, is not likely to have 354 

played a role in the response we have observed, as a 1 g increase in fiber intake suppresses 355 

appetite by ~0.18% (45). In the current investigation we observed a ~9% and ~25% 356 

difference in the postprandial AUC for hunger and fullness, respectively. Given the ~0.5 g 357 

difference in fiber would influence these responses by at least 2 orders of magnitude less 358 

(~0.09%) we consider this a negligible difference.  359 

 360 

These findings should be considered in the context of more global diabetes care, as LGI post-361 

exercise meals produce more suitable glycemic control than HGI (14), However, we 362 

demonstrate that a post-exercise HGI meal acutely induces greater fullness and less hunger, 363 

independent of insulin, in patients with type 1 diabetes. The clinical application of these 364 

findings should not be underestimated; interventions were carried out in the evening, in a 365 

non-fasted state, thereby facilitating greater translation to daily life (46). It is important to 366 

consider that our patients were young, physically fit, and well-controlled, and that responses 367 

observed herein may not be directly transferable to the wider type 1 diabetes population who 368 

may to be less physically active, in poorer glycaemic control and who may be treated on 369 

different insulin regimens. Further work is needed to clarify the mechanisms of this effect in 370 

well-controlled and physically-active patients and to establish the long-term implications of 371 

this response in a wider cohort of patients regularly participating in exercise. In addition we 372 

advise that future investigations feature assessment of prospective ad libitum dietary intake to 373 
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determine whether changes in appetite are matched with increased energy intake. In 374 

conclusion, HGI post-exercise meals induce greater postprandial feelings of fullness and 375 

lower postprandial hunger sensations in type 1 diabetes patients, under conditions of similar 376 

insulinemia and plasma GLP-1 concentrations. 377 
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Table 1. Meal composition and glycemic index 

 GI Energy (kcal) CHO (g) Fat (g) Protein (g) Fiber (g) 

Evening meal 

LGI 37 409±15 85±1 12±1 2±0.4 0.5±0.1 

HGI 92 413±16 85±1 12±1 2±0.4 1±0.1 

NOTE: test meals were based on 1.0g.carbohydrate.kg-1 body mass (BM). LGI evening meal: basmati rice, tomato-based 

sauce, turkey breast, isomaltulose orange flavoured drink [10% solution]; HGI evening meal: jasmine rice, tomato-based 

sauce, turkey breast, maltodextrin orange flavoured drink [10% solution]. 
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Table 2. Pre-trial dietary intake, insulin administration, and physical activity 

 HGI LGI p value 

Energy intake (MJ) 9.5 ± 0.9 9.4 ± 0.8  0.776 

Carbohydrate (%) 49 ± 3 49 ± 3  0.999 

Fat (%) 32 ± 3 32 ± 3  0.879 

Protein (%) 19 ± 2 20 ± 3  0.887 

Rapid-acting insulin (IU) 24 ± 4 25 ± 4  0.803 

Levels of activity (steps) 7492 ± 140 7325 ± 129  0.202 

Note: Data collected over 48 hours prior to laboratory attendance and presented as mean ± SEM (n=10). Data 

were analyzed using paired samples t-tests. IU = insulin units. Steps recorded via pedometer. 
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FIGURES 

Figure 1 A-B. Time-course changes in (A) serum insulin and (B) blood glucose. Data 

presented as mean ± SEM (n=10). Data were analysed using repeated measures ANOVA and 

subsequent Bonferroni adjusted pairwise comparisons. Black diamonds = HGI, black circles 

= LGI. * indicates a difference between LGI and HGI (p ≤ 0.05). a indicates a significant 

difference from pre-test meal concentrations under HGI, b indicates a significant difference 

from pre-test meal concentrations under LGI. Vertical dashed line break indicates post-

exercise intervention, which occurred 60 minutes post-exercise. Thatched area indicates 

exercise.  

Figure 2 A-B. Time-course changes in (A) plasma glucagon and (B) plasma GLP-1 total. 

Data presented as mean ± SEM (n=10). Data were analysed using repeated measures 

ANOVA and subsequent Bonferroni adjusted pairwise comparisons. Black diamonds = HGI, 

black circles = LGI. * indicates a difference between LGI and HGI (p ≤ 0.05). a indicates a 

significant difference from pre-test meal concentrations under HGI, b indicates a significant 

difference from pre-test meal concentrations under LGI. Vertical dashed line break indicates 

post-exercise intervention, which occurred 60 minutes post-exercise. Thatched area indicates 

exercise.  

Figure 3A-B. Time courses in (A) hunger and (B) fullness following the consumption of the 

post-exercise test meals. Data presented as mean ± SEM (n=10). Data were analysed using 

repeated measures ANOVA and subsequent Bonferroni adjusted pairwise comparisons. Black 

diamonds = HGI, black circles = LGI. * indicates a difference between LGI and HGI (p ≤ 

0.05). a indicates a significant difference from pre-test meal concentrations under HGI, b 

indicates a significant difference from pre-test meal concentrations under LGI. 
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SUPPLEMENTAL Figure 1.  

 

 

 

 

 

 

 

 

 

 

Suppl. Figure 1 Schematic of trial design. Note: Blood glucose, serum insulin, plasma glucagon, plasma GLP-1, and VAS were 

analyzed at each respective blood sample time point.  
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