
This is a repository copy of Implementation relations and testing for cyclic systems with
refusals and discrete time.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/163152/

Version: Accepted Version

Article:

Lefticaru, R., Hierons, R. orcid.org/0000-0002-4771-1446 and Nunez, M. (2020)
Implementation relations and testing for cyclic systems with refusals and discrete time.
Journal of Systems and Software, 170. 110738. ISSN 0164-1212

https://doi.org/10.1016/j.jss.2020.110738

Article available under the terms of the CC-BY-NC-ND licence
(https://creativecommons.org/licenses/by-nc-nd/4.0/).

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs
(CC BY-NC-ND) licence. This licence only allows you to download this work and share it with others as long
as you credit the authors, but you can’t change the article in any way or use it commercially. More
information and the full terms of the licence here: https://creativecommons.org/licenses/

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Implementation relations and testing for cyclic systems with refusals and discrete time⋆

Raluca Lefticaru

Department of Computer Science, University of Bradford, Bradford, West Yorkshire BD7 1DP UK

Robert M. Hierons

Department of Computer Science, The University of Sheffield, Sheffield, SD1 4DP, UK

Manuel Núñez

Design and Testing of Reliable Systems research group, Universidad Complutense de Madrid, Spain

Abstract

We present a formalism to represent cyclic models and study different semantic frameworks that support testing. These models

combine sequences of observable actions and the passing of (discrete) time and can be used to specify a number of classes of

reactive systems, an example being robotic systems. We use implementation relations in order to formally define a notion of

correctness of a system under test (SUT) with respect to a specification. As usual, the aim is to devise an extension of the classical

ioco implementation relation but available timed variants of ioco are not suitable for cyclic models. This paper thus defines new

implementation relations that encapsulate the discrete nature of time and take into account not only the actions that models can

perform but also the ones that they can refuse. In addition to defining these relations, we study a number of their properties

and provide alternative characterisations, showing that the relations are appropriate conservative extensions of trace containment.

Finally, we give test derivation algorithms and prove that they are sound and also are complete in the limit.

Keywords: Model-based testing; Implementation relations; Cyclic systems.

1. Introduction

Cyclic systems [6] operate in cycles of the following form:

read values from sensors (inputs), perform calculations, then

write values to actuators (outputs). The corresponding models

typically combine actions into a single step and a behaviour is

then a sequence of steps, with time passing between steps. The

importance of these models lies in their relevance to a range of

systems (e.g. embedded control systems) including those used

in robotics. This form of models is found with languages, such

as Statecharts [16], that have a step semantics.

The aim of the work, we are going to discuss, is to define

formal, automated, approaches to testing that fit into the stand-

ard robotics development process. Typically, a robotic system

will be modelled as a state machine. Afterwards, a simulation

model is produced, which is used to validate the original model.

The simulation model can also be used to drive the testing of the

developed system; a point of particular relevance to this paper.

⋆This work has been supported by EPSRC grant EP/R025134/2 RoboTest:

Systematic Model-Based Testing and Simulation of Mobile Autonomous Ro-

bots, the Spanish MINECO-FEDER grant FAME (RTI2018-093608-B-C31)

and the Region of Madrid grant FORTE-CM (S2018/TCS-4314) co-funded by

EIE Funds of the European Union.

Email addresses: r.lefticaru@bradford.ac.uk (Raluca Lefticaru),

r.hierons@sheffield.ac.uk (Robert M. Hierons), mn@sip.ucm.es

(Manuel Núñez)

In contrast to the analysis of many systems where time can be

(at least partially) abstracted, time plays a fundamental role in

cyclic systems and must be treated as a first-class citizen. In

the simulations, time is discrete and each time slot contains a

sequence of actions. The use of robotic systems is expanding

in areas such as manufacturing, healthcare, transport and home

assistance. For example, the sales of these systems increased

by 30% in 2017 and this represented a new record for the fifth

year in a row [25]. This trend is steady and, according to a UK

government report1, the value of the global market for robot-

ics and autonomous systems is expected to reach £13 billion by

2025.

The work described in this paper came out of the early stages

of a project in the area of testing robotic systems. The mo-

tivation was to provide a foundational testing theory on which

to base sound automated testing. The formalism used is the

syntactically simplest one that captures the features required;

syntactic simplicity is beneficial since it facilitates formal reas-

oning. The formalism also has the advantage that it corresponds

to the form of operational semantics given to the models from

which we wish to test 2.

1https://tinyurl.com/nyf64av
2The models are written in a language, RoboChart [35] but, since we are

testing within a simulation, we actually test from RoboSim models [9] derived

from RoboChart.

Preprint submitted to Journal of Systems and Software 11th July 2020

The overall line of work was motivated by several factors.

First, robotic systems are ubiquitous in safety-critical areas and

it is of the upmost importance to increase the confidence in

the correctness of these systems. It is becoming widely recog-

nised, not only in academia but also in industry, that the use of

formal methods increases the reliability of the developed sys-

tems [4, 13, 37]. As a result, since software testing [2, 36] is the

main software validation technique, the combination of formal

methods and testing is a promising approach to analyse the be-

haviour of systems; this is the second factor that motivated the

work. Note that although testing was initially considered to be a

mainly manual and informal activity, many formal approaches

to testing have been defined and applied [3, 11, 20, 21].

Formal approaches to testing usually rely on state-based

models, that is, models that are in the form of labelled trans-

ition systems (LTSs); these models have states and labelled

transitions between the states and there are many tools to sup-

port testing [30, 44]. In testing from an LTS, it is normal to

assume that the system under test (SUT) behaves like an un-

known LTS (this is called the minimal test hypothesis [26]). So,

testing involves comparing two LTSs to decide whether the first

(unknown) one is correct with respect to the second one. The

relation between LTSs, that describes what we mean by cor-

rectness, is usually formalised as an implementation relation.

The literature provides a myriad of implementation relations

for LTSs [14, 15], where the difference between them strongly

depends on the observational power of the observer.

In this paper we introduce a framework to specify and val-

idate robotic systems described as cyclic models. The ultimate

goal is to provide techniques and tools that can be used to make

the development of robotic systems more efficient and effect-

ive, through removing the need for several manual, error prone

activities. Next we enumerate the main contributions. First, we

introduce a state-based formalism, tockLTS, to specify cyclic

models. The tockLTS formalism corresponds to the one under-

lying the operational semantics of tock-CSP [42, Chapter 14],

a timed variant of CSP. This process algebra is used to give se-

mantics to RoboSim [9], a language used to define simulation

models in robotics. Note that we consider tockLTS, instead of

RoboSim, because it has a simpler syntax but also is more gen-

eral. In fact, we expect that it will be relatively easy to adapt our

framework to other simulation languages and to languages hav-

ing a cyclic nature and a step semantics (e.g. Statecharts [16]).

Second, we define several implementation relations (notions of

correctness). Having different notions of correctness is useful

because the users of our framework can decide which one better

suites their needs. There are several types of observations that

can be made in the framework. As usual, we assume that it is

possible to observe the actions that a system performs and also

the passing of time. In addition, we also consider a notion of

refusal; the observation that the system cannot perform certain

actions. Our previous work shows that the use of refusals makes

it possible to distinguish between distinct behaviours that oth-

erwise would be identical. We study properties of these imple-

mentation relations, in particular, we show how they are related

via containment and present alternative characterisations. Hav-

ing defined implementation relations, the final contribution con-

sists of a testing framework for each implementation relation.

We provide such a framework and corresponding test derivation

algorithms. These algorithms are sound: if the SUT does not

pass one of the test cases produced by the algorithm then we

know that the SUT is faulty. These algorithms are also exhaust-

ive in the limit; if the SUT is faulty then it fails at least one test

case that can be returned by the test generation algorithm. Ob-

serve that this means that finite test suites do not provide guar-

anteed fault detection effectiveness. However, this limitation

is inevitable unless one introduces, for example, a finite fault

model that restricts the class of faults that might occur. The ap-

proach is also common practice in ioco-based implementation

relations [45], like the ones that we introduce in this paper; we

discuss this further in Section 8 of the paper.

The choice of formalism was motivated by several factors.

First, as previously noted, the work was developed within a ro-

botics project and the aim was to use a formalism that would

be familiar to roboticists but that could also be provided with

a formal semantics (to support sound test generation and also

formal verification). This led to the development of the Rob-

oChart language, which is based on UML Statecharts; the view

of colleagues working in robotics was that roboticists would

not use languages, such as timed automata [1], that are less fa-

miliar. RoboChart models are mapped to RoboSim, in order

to run simulations. Since we were initially interested in testing

within a simulation, testing should be from RoboSim. However,

it makes little sense to have a testing theory based on a language

such as RoboSim, which has a rich syntax (so the theory would

be complex and difficult to reason about). As a result, we based

the testing theory on the syntactically simplest formalism that

could capture the semantics of a RoboSim model. Note that,

in addition, RoboSim models can be mapped to CSP specific-

ations and the formalism used in this paper is inspired by CSP

with discrete time (tock-CSP [42, Chapter 14]). The formal-

ism essentially mirrors the operational semantics of tock-CSP

but with one crucial difference: since we are interested in test-

ing, it is necessary to have a semantics that reflects the different

roles of inputs and outputs. As a result of the above, the test-

ing theory developed can be used to reason about testing from

RoboSim models and also as the basis for deriving suitable test

cases from such models3. The formalism used in this paper is

also quite general, the hope being that it will be possible to use

the proposed formalism to express the semantics of other mod-

els in languages similar to RoboChart and RoboSim and that

the testing theory developed can then be applied.

Interestingly, the cyclic nature of the models makes them a

little like Finite State Machines (FSMs), also called Mealy Ma-

chines [31], in which there is a finite set of states, transitions

between the states, and each transition has an input/output pair.

There is a rich theory, and set of test generation techniques, as-

sociated with FSMs (see, for example, [19, 28, 38]). As a res-

ult, an alternative might have been to use FSMs. Unfortunately,

FSMs do not provide a general solution. The first point is that

a transition would not necessarily involve an input/output pair;

3In practice, test generation is likely to involve mapping RoboSim to tock-

CSP

2

it could have an arbitrarily long sequence of inputs and outputs.

The first value in a sequence would be an input but after that

the sequence could have outputs before inputs; the controllab-

ility of such sequences would be very different to that of trans-

itions in Mealy Machines. In addition, the ‘transition structure’

taking one from state s to state s′ could contain cycles and so

there may be infinitely many transitions between two states (as

well as there potentially being infinitely many states). However,

there may well be situations in which FSMs can be used and the

corresponding theory and test generation algorithms would then

have a number of benefits, such as there being algorithms that

generate tests that are guaranteed to find all faults in a given

fault model.

This paper represents a revised, extended and enhanced ver-

sion of our recent work [29]. Next we briefly describe the main

contributions with respect to the conference paper. First, we

provide a more detailed and rigorous development of the two

implementation relations previously given; one based on traces,

the second with refusals included. In addition, for each imple-

mentation relation we consider the situation in which an input is

not defined in a given state of the specification and alternatives

that capture different context (ways in which incompleteness is

handled). This leads to an additional two variants of each im-

plementation relation previously given [29] and we prove how

these relate. We also define two testing frameworks, one for

each implementation relation. We give associated automated

test generation algorithms, proving that these are sound and also

complete in the limit.

The rest of the paper is organised as follows. In Section 2 we

briefly discuss the context in which our framework fits and the

most relevant related work. In Section 3 we introduce the main

definitions and concepts used. Based on these, in Section 4

we provide three implementation relations based around trace

inclusion. Section 5 defines the most general type of observa-

tion (the notion of timed refusal traces). In Section 6 we intro-

duce implementation relations based on timed refusal traces and

show that they are strictly stronger than the corresponding rela-

tions from Section 4. In Section 7 we present alternative char-

acterisations of the implementation relations from Section 6.

Section 8 then explores test generation and finally, Section 9

provides conclusions and describe some lines for future work.

2. Technical context and related work

In order to develop robotic systems, it is usual to start with

a state-based model. The work described in this paper was

developed in the context of the state-based RoboChart lan-

guage [35], which allows models to be described in a way that

is familiar to roboticists. A RoboChart model can be auto-

matically mapped to a simulation model, in a language called

RoboSim [9], that is consistent with the original model. Simu-

lation models are also given a formal semantics, making it pos-

sible to automatically analyse or reason about them. A formal

semantics for RoboSim [10] is given by mapping a RoboSim

model to a variant of CSP, called tock-CSP [42, Chapter 14].

The operational semantics of this language is, as usual, given in

terms of an LTS. One of the benefits of this approach is that we

can analyse the semantics of a RoboSim model using formal

tools and methodologies available for CSP. As previously ex-

plained, in this paper we work with a formalism that is similar

to these LTSs (it is actually a slight generalisation). Therefore,

our framework can be directly applied to the development of

robotic systems.

In testing we distinguish between inputs and outputs since

these play different roles and this has led to implementation re-

lations that were not classically considered [14, 15]. The best

known implementation relation is ioco [45]. There are three

main differences between the classical definition of ioco and

the implementation relations given in this paper. We present

relations for timed systems where time is discrete, we are inter-

ested in using refusals while testing, and we do not assume that

SUTs are input-enabled.

Concerning the last property, we do not assume that the SUT

is input-enabled, that is, we do not impose the restriction that

the SUT should be able to react to any input provided by the

tester. This assumption (the SUT being input-enabled) makes

sense for a range of systems and is based on the observation

that the SUT will not block input. However, there are also

systems that are not input-enabled and where this is deliber-

ate. For example, certain options/fields might be greyed-out on

a webpage or simply not available; consider, for instance, the

options available to an editor and to an author in a journal’s

manuscript system. In the context of autonomous systems, a

system might switch off sensors and, in addition, sensors might

fail. It is well-known that one can convert a model that is not

input-enabled into one that is. However, in the type of sys-

tems that we consider in this paper, such a completed model

would less appropriately model an SUT in which certain in-

puts are disabled and could lead to the generation of test cases

that either do not make sense from a testing perspective or in-

troduces redundancy. We consider an approach in which the

absence of an input denotes that input is not allowed/possible

but we also define more relaxed implementation relations that

adapt the ioco approach to undefined inputs.

There are a number of options regarding the observational

power of a user interacting with a system. An observer might

only be allowed to observe the actions in which the system par-

ticipates. However, we can increase the capabilities of observ-

ers. For example, we might consider situations in which it is

possible to also observe the refusal of a set of actions, that is,

those actions in which the system cannot participate at a cer-

tain point. In the scope of testing and process algebras, this is

a well-known approach [40], with some subtle differences with

respect to the notion of must testing [12]. In classical ioco, there

is only one type of refusal, called quiescence, and this can be

observed if the system is in a state where it cannot evolve via

an internal action and, in addition, the system cannot produce

an output without first receiving an input. The observation of

the refusal of a set A is typically represented by the situation

in which the environment chooses to only engage in the ac-

tions in A and the composition of the environment and the SUT

deadlocks. A deadlock is usually observed through a timeout,

similar to the process of observing quiescence in classical ioco,

and this takes time. As a result, the observation of a deadlock

3

(and so also a refusal) should precede a duration (an action rep-

resenting a unit of time passing).

We are not aware of alternative approaches that consider

models with the required features. Of particular interest is the

combination of urgent outputs, refusals and discrete time. It is

exactly this combination that we have to reason about for the

models in which we are interested. There is a need for a formal

testing theory for such models, in order to support the develop-

ment of sound test generation algorithms and, ultimately, test

generation and execution tools.

It is important to note that there is a variant of ioco includ-

ing refusals and where systems need not be input-enabled [17].

We depart from this work in several lines (in addition to in-

cluding time). First, our refusals are observed only in stable

states4 and this has some implications. Specifically, an in-

ternal choice between outputs is equivalent to the same external

choice while if we consider inputs then we obtain semantically

different processes. Using a process algebraic notation, we have

(τ; !o1; stop) + (τ; !o2; stop) ∼ (!o1; stop) + (!o2; stop) while

(τ; ?i1; stop) + (τ; ?i2; stop) ≁ (?i1; stop) + (?i2; stop), where

actions preceded by ? and ! denote, respectively, an input and

an output, and τ denotes an internal action. Second, their notion

of a process being input-enabled is more restrictive than ours:

at a certain port, either all the inputs are enabled or none of

them is. In their notation, we have only one port and we allow

several inputs to be enabled and several to not be.

Finally, ioco does not take into account time. Note that time

cannot be taken as an ordinary action because it is neither an

input, since the tester does not control it, nor an output, since

the SUT does not control it (the SUT cannot, for example, stop

time). There are several timed variants of ioco (all are typic-

ally called tioco) [7, 27, 43]. The versions of tioco differ in a

number of ways, including whether quiescence is a possible ob-

servation. It might be possible to use a version of tioco with dis-

crete time, and in some situations this will be sufficient, but we

prefer a native discrete time tioco (in addition, previous work

does not consider a general notion of refusal).

From the above, one can see that a number of formalisms

have been developed within the context of formal testing and

these have corresponding implementation relations. However,

it appears that they do not provide the combination of features

required for the models in which we are interested. As a res-

ult, this paper develops a novel testing theory, with associated

implementation relations, that builds on previous work on ioco

and tioco.

3. Background and models

In this section we define the models and notation used in this

paper along with some properties that we expect our systems to

fulfill.

4We will say that a state is stable if it is not possible to take a transition

whose label is an output or an internal action.

3.1. Cyclic models

As previously explained, the work in this paper is motivated

by the nature of the types of models used with embedded con-

trol systems in areas such as robotics and the automotive in-

dustry. Such control systems operate in cycles of the following

form.

1. Read values from sensors (inputs).

2. Perform calculations.

3. Write values to actuators (outputs).

The corresponding models typically combine actions into a

single step and a behaviour is then a sequence of steps, with

time passing between steps. Such models can be found in ro-

botics, with RoboCalc, RoboSim and models used in simulation

packages [41] but also in a number of variations of Statecharts

[16].

Example 1. This example is inspired from previous work [8],

which presented a simple rescue application that uses a drone

to deliver some relief to a given target location. The complete

model, described using the RoboChart language [35], is more

complex, comprising other elements like modules, robotic plat-

forms or controllers. In Figure 1 we present only an excerpt:

the state machine model. It has four self-explanatory states:

Off, Looking, Delivering, Returning. The RoboChart

notation allows us to specify entry and during states, exit

actions, transition actions, using events and operations. For ex-

ample, the transitions in our model can be triggered by different

events (e.g. switchOn or found when the target is found) and

operations such as wait(TOP) (an action that pauses the sys-

tem during TOP time units) or move(LV).

In the rest of this section we explain the formalisation we

used. This is consistent with the above type of model but is

rather more general than, for example, only considering models

used within a particular domain. The aim is to develop form-

alisations and corresponding techniques that are relatively gen-

eral and that can be used in the testing of embedded systems.

Interestingly, it will transpire that a number of the classical test-

ing assumptions do not hold and so implementation relations

such as the different available versions of tioco are not suitable.

3.2. Traces and automata

Observations made in testing will be in the form of sequences

and we use ǫ for the empty sequence. Given set A, A∗ denotes

the set of finite sequences of elements from A and Aω denotes

the set of infinite sequences of elements from A.

A system will interact with its environment through inputs

and outputs. Throughout the paper, I and O will represent the

(disjoint) input and output alphabets and we let L = I∪O denote

the set of actions.

The basic, untimed, type of model we consider is an auto-

maton in which, as usual in Automata Theory and in contrast to

the standard notion of LTS, we have the concept of a final state.

Definition 1 (Automaton). An automaton is a tuple p =

(Q, q0, L,T, F) where

4

Figure 1: State machine model of a rescue drone [8]

• Q is a countable, non-empty set of states;

• q0 ∈ Q is the initial state;

• L is a countable set of visible actions;

• T ⊆ Q×(L∪{τ})×Q is the transition relation, where τ < L

represents an internal action;

• F ⊆ Q is the set of final states.

At any time, an automaton p is in a particular state q ∈ Q.

If (q, a, q′) ∈ T for action a ∈ L ∪ {τ} then p can move to state

q′ through a. We will sometimes use an alternative notation: a

transition (q, a, q′) ∈ T can be expressed as q
a
−→ q′. We will

also write q 6
a
−→ if there does not exist q′ such that (q, a, q′) ∈ T .

The transition relation can be extended as follows.

Definition 2. Let p = (Q, q0, L,T, F) be an automaton with

states q, q′ ∈ Q, P ⊆ Q be a set of states, visible actions

a, a1, . . . , an ∈ L, with n > 1, and sequence of visible actions

σ ∈ L∗.

q
ǫ
=⇒ q′ ⇔def q = q′ or ∃q1, . . . , qn−1 ∈ Q :

q
τ
−−→ q1

τ
−−→ . . . qn−1

τ
−−→ q′

q
a
==⇒ q′ ⇔def ∃q1, q2 ∈ Q : q

ǫ
=⇒ q1

a
−−→ q2

ǫ
=⇒ q′

q
a1...an

=====⇒ q′ ⇔def ∃q1, . . . , qn−1 ∈ Q :

q
a1

==⇒ q1

a2

==⇒ . . . qn−1

an

==⇒ q′

q
σ
==⇒⇔def ∃q′ ∈ Q : q

σ
==⇒ q′

P
σ
==⇒⇔def ∃r ∈ P : r

σ
==⇒

q 6
σ
==⇒⇔def ∄q′ ∈ Q : q

σ
==⇒ q′

P 6
σ
==⇒⇔def ∀r ∈ P : r 6

σ
==⇒

p
σ
==⇒⇔def qo

σ
==⇒

As usual, we will not always distinguish between a model

and its initial state. If p = (Q, q0, L,T, F), then we will identify

p with its initial state q0, and, for example, we will usually write

p
σ
==⇒ instead of q0

σ
==⇒. The automaton p = (Q, q0, L,T, F)

defines the language L(p) of finite sequences that take p to a

final state.

Definition 3. Given automaton p = (Q, q0, L,T, F), the lan-

guage L(p) ⊆ L∗ is defined as

L(p) = {σ ∈ L∗|∃q ∈ F : q0

σ
==⇒ q}

3.3. Timed models

We now describe our timed model, which is an LTS in which

there is a special action, ⊖, that denotes the passing of a unit of

time. We call this action ‘tock’ in order to be consistent with

tock-CSP [42, Chapter 14].

Definition 4 (tockLTS, timed traces). A labelled transition

system with tock (or tockLTS) is a tuple p = (Q, q0, I,O,T)

where

• Q is a countable, non-empty set of states;

• q0 ∈ Q is the initial state;

• I and O are countable disjoint sets of inputs and outputs

respectively, with L = I∪O being the set of visible actions;

• T ⊆ Q × (L ∪ {τ,⊖}) × Q is the transition relation, where

τ < L represents the internal action, and ⊖ represents a

tock action denoting the passage of a unit of time.

We use TockLTS(I,O) to denote the set of tockLTS with input

set I and output set O.

The definition of the
σ
==⇒ relation is similar to the one given

in Definition 2, with the only difference that σ ∈ (L∪{⊖})∗ and,

therefore, we omit it. The set of timed traces of p is defined as

Ttraces(p) = {σ ∈ (L ∪ {⊖})∗ | p
σ
=⇒}

We will require some additional notation. Specifically, we

will compute the states that can be reached from a given state

after performing a sequence of actions and define a predicate to

decide whether a system can refuse a set of actions at a certain

state.

Definition 5. Let q = (Q, q0, I,O,T) be a tockLTS, p ∈ Q be a

state, P ⊆ Q be a set of states, A ⊆ L be a set of labels, and

σ ∈ (I ∪ O ∪ {⊖})∗. We define the following notions:

1. p after σ =def {p
′ ∈ Q| p

σ
==⇒ p′}

2. P after σ =def

⋃
{ p after σ|p ∈ P}.

3. P refuses A =def ∃p ∈ P,∀µ ∈ A ∪ {τ} : p 6
µ
−−→.

As usual, we expect processes to have certain properties.

First, we require that time can progress: there cannot be a

state from which it is impossible for time to advance. Second,

we should have the urgency of internal actions and outputs

(to be consistent with how our cyclic models operate). Third,

5

processes should not show Zeno behaviour, that is, a process

should not be able to follow an infinite sequence of actions in

finite time. Finally, processes should have time determinism:

processes do not branch as a result of time passing (performing

a ⊖), though a process can branch through internal actions that

occur after a ⊖.

Definition 6 (Urgency, Zeno behaviour, time determinism).

Let p = (Q, q0, I,O,T) be a tockLTS. Then

• p is time progressing if for all q ∈ Q there exists σ ∈

(I ∪ O)∗ such that q
σ⊖
−−→.

• p has urgent internal actions and output if for all q ∈ Q

and a ∈ O ∪ {τ}, if q
a
−→ then q 6

⊖

−→.

• p has Zeno behaviour if there exists a state q ∈ Q and an

infinite path from q with finitely many tock actions.

• p has time determinism if for all states q1, q2, q3 ∈ Q we

have that q1

⊖

−→ q2 ∧ q1

⊖

−→ q3 implies q2 = q3.

Note that previously [29] we required that processes do not

have forced inputs, that is, for each state of a process there ex-

ists at least one outgoing transition that is not an input. Con-

ceptually, this requirement makes sense - it essentially says that

processes cannot stop time. We weakened this assumption, to

requiring that time progresses, because some cyclic models can

have forced inputs; in development, there is then the obliga-

tion to demonstrate that the context in which the SUT is used

ensures that the composition of the specification and its envir-

onment cannot stop time.

Example 2. In Figure 2 we give a formal representa-

tion, using a tockLTS, of the RoboChart state machine

presented in Example 1. Let pdrone = (Q, q0, I,O,T)

denote this tockLTS, with this having state set Q =

{O1,O2,O3, L0, L1, L2,D0,D1,D2,D3,D4,R1,R2}, initial state

q0 = O1 and action sets I = {? f , ?o, ?s} and O = {!b, !l, !m, !t}.

Essentially, the events that trigger transitions in RoboChart

are transformed into input symbols (?s stands for switchOn, ? f

stands for found and ?o stands for origin) while actions or se-

quences of action calls are transformed into output symbols (!t

stands for takeoff, !l stands for land, !b stands for turnBack

and !m stands for move). We have transformed the actions in-

volving time, such as wait(TOP) and wait(DELIVERY), where

TOP and DELIVERY are greater than 0, into sequences of actions

(⊖ · τ)∗ ·⊖·!α that simulate the passing of an arbitrary number

of time units followed by an output action !α ∈ O. We have

included additional states in order to capture the more com-

plex transition behaviours. Specifically, we have split the Rob-

oChart transition S T ART
ev/a1; ...; an

−−−−−−−−−−→ END into the sequence

of tockLTS transitions S 1

?e
−−−→ S 2

!a1

−−−→ S 3 · · · S n+1

!an

−−−→ E1.

Similarly, other transitions were added to simulate entry ac-

tions associated with states. The state Off is transformed

into the states O1,O2 and O3, the state Looking is trans-

formed into the states L0, L1 and L2, and the states Delivering

and Returning are transformed, respectively, into the states

D1,D2,D3 and D4 and R1 and R2.

We now illustrate some of the concepts from Definition 5 on

pdrone. For example, considering σ =!t · ⊖ the following sets

can be computed: O2 after σ = {L0}, D1 after σ = {D3} and,

consequently, {D1,O2} after σ = {D3, L0}. Concerning refus-

als, for example, we have that D0 refuses (I ∪ O).

Regarding the (timed) traces of a model, it is worth mention-

ing that they can be regarded as the visible (and tock) actions

of a path. For example, pdrone has a path determined by the ex-

ecution of the action sequence ?s·!t ·⊖ ·τ ·⊖ ·τ ·⊖·!m. However,

the corresponding timed trace will consist only of visible and

tock actions: ?s·!t ·⊖ ·⊖ ·⊖·!m ∈ Ttraces(pdrone).

It is easy to check that pdrone satisfies the properties from

Definition 6: the model has time determinism and it has urgent

internal and output actions. If we were to add, for example, a

⊖ transition departing from L0 then the urgency property would

no longer be true. Similarly, an additional ⊖ transition in O3

would violate time determinism. Note that time is always pro-

gressing in pdrone as from any state it is possible to reach a

state from which there is a ⊖ transition. It is easy to check that

pdrone does not have Zeno behaviour. However, if the trans-

ition O3

⊖

−→ L0 was replaced by the transition O3

µ
−→ L0, with

µ ∈ I ∪ U ∪ {τ}, then the new tockLTS would have an infinite

path described by (µτ)ω with no ⊖ actions. It would therefore

exhibit Zeno behaviour.

The tockLTS we consider have the following property; the

proof easily follows from the absence of Zeno behaviour and

the time progressing assumption.

Proposition 1. Let p = (Q, q0, I,O,T) be a tockLTS. We have

that for all q ∈ Q there exists an infinite path σ = µ1 ⊖ µ2 ⊖

µ3 . . . ∈ ((I ∪ O)∗{⊖})ω such that q
σ
=⇒ and ∀i, µi ∈ (I ∪ O)∗.

4. Implementation relations based on traces

If the environment can only observe traces of visible actions

and time (i.e. it cannot observe refusals) then we have a num-

ber of associated implementation relations. We start with the

simplest of these, which simply requires every behaviour (trace)

of the SUT to also be a trace of the specification.

Definition 7. Let p and q be two tockLTSs. We say that

p conforms to q under timed trace inclusion if and only if

Ttraces(p) ⊆ Ttraces(q). We denote this p �tr q.

The following property is immediate from the definition.

Proposition 2. The timed trace inclusion relation is reflexive

and transitive but need not be symmetric or antisymmetric.

Consider now the situation in which σ is a trace of the spe-

cification and there is an input ?a such that σ?a is not a trace

of the specification. If σ is also a trace of the SUT then trace

inclusion requires that the SUT cannot receive input ?a after

σ; ?a is not defined after σ. This makes sense in contexts in

6

O1start O2 O3 L0 L1 L2 D0

D1D2D3D4R1R2

?s !t

⊖

τ

!m ? f !l

⊖τ

!t

⊖

τ!b!m?o

!l

Figure 2: TockLTS drone model

which an input being undefined in the specification corresponds

to that input not being allowed. For example, an input being

undefined might correspond to the requirement that the corres-

ponding field or option either does not appear in an interface or

is greyed-out or that a system does not have access to a particu-

lar sensor (it is turned off). However, there are also cases where

an input not being specified denotes the situation in which any

behaviour is allowed (‘do not care’) and for such situations it

is clear that timed trace inclusion is not the right implement-

ation relation. We now define two additional implementation

relations that interpret an input being undefined in slightly dif-

ferent ways but in ways that are consistent with the (untimed)

implementation relations ioco and uioco [45].

One approach is to say that if a trace σ1 can take the specific-

ation to a state q in which ?a is not defined then any behaviour is

allowed if the SUT receives ?a after σ1. The idea here is simply

that the specification might have been in a state q in which ?a

is not defined and so we should allow any behaviour after this.

Definition 8. Let p and q be two tockLTSs. We say that p �u
tr q

if and only if for all σ ∈ Ttraces(p) either σ ∈ Ttraces(q)

or there exists a prefix σ1?a of σ, with ?a ∈ I, such that σ1 ∈

Ttraces(q) and there is a state q1 such that q
σ1

==⇒ q1 and q1 6
?a
=⇒.

The following property is immediate from the definition.

Proposition 3. The relation �u
tr is reflexive but need not be

symmetric or antisymmetric.

It is interesting to note that, as the following example shows,

this relation need not be transitive. This lack of transitivity is

essentially a result of our not requiring that systems are input-

enabled.

Example 3. Consider the tockLTSs p (left), q (centre) and r

(right) depicted in Figure 3. We have that p �u
tr q since the

specification (that is, q) does not say anything about what the

SUT (that is, p) should do concerning ?i and the subsequent

evolutions. It is trivial that q �u
tr r because, in particular, we

have q �tr r. However, it is obvious that p �u
tr r does not hold.

The �u
tr implementation relation can be seen as allowing any

response to an input ?a in a state of the specification in which

?a is not defined. As a result, we can see this in terms of com-

pleting the specification in the following way.

Definition 9. Let p = (Q, q0, I,O,T) be a tockLTS. The com-

pletion of p, denoted C(p), is the tockLTS (Q∪{qc}, q0, I,O,T
′)

in which qc < Q is a fresh state and T ′ = T ∪ T1 ∪ T2 in which:

1. T1 = {(q, ?a, qc)|q ∈ Q∧?a ∈ I ∧ q 6
?a
=⇒}

2. T2 = {(qc, a, qc)|a ∈ I ∪ O}.

Note that C(p) presents a Zeno behaviour: once we reach the

fresh state qc, we cannot perform any ⊖. This is not a problem

because we only use this process as a theoretical tool to provide

an alternative characterisation of the �u
tr relation.

Example 4. Consider the tockLTS drone model given in Fig-

ure 2 and described in Example 2. We build its completion

C(pdrone) by adding a fresh state qc and the transition sets

T1,T2 as explained in Definition 9. Because pdrone has many

states that do not accept any input, T1 will include transitions

from each of these states, {O2,O3, L0, L1,D0 − D4,R2}, to the

new state, qc, labelled with all the input actions. For the re-

maining states, {O1, L1,R1}, the transition set T1 will include

only transitions with inputs which are not already accepted

by each of these states. For example, for O1 it includes only

O1

? f
−−→ qc,O1

?o
−→ qc. T2 consists of self-loops labelled with all

the visible actions.

Then we have the following result. The proof follows easily

from the fact that �u
tr extends �tr by accepting undefined beha-

viours. This is exactly the role of C(q) with respect to q: extend

the latter with all potential behaviours after unspecified inputs.

Theorem 1. Given tockLTS p and q with the same alphabets,

p �u
tr q if and only if p �tr C(q).

The above deals with undefined inputs in a manner similar

to the (untimed) implementation relation uioco for (untimed)

input-output transition systems and this is also similar to how

undefined inputs are considered in the literature on testing from

finite state machines (see, for example, [18, 19, 38, 39]). How-

ever, the implementation relation ioco takes a different per-

spective, which in effect says that the response to input ?a after

trace σ1 is defined in a specification q if there is some state q1

such that q1 can be reached from the initial state of q by σ1

(q
σ1

=⇒ q1) and ?a is defined in q1 (q1

?a
=⇒). The following adapts

timed trace inclusion by taking the ioco approach to inputs not

being specified.

7

p0start p1

p2

⊖

?i1

!o1

⊖

q0start

⊖

r0start r1

r2

⊖

?i1

!o2

⊖

Figure 3: Models (un)related by variants of trace inclusion

Definition 10. Let p and q be two tockLTSs. We say that p �i
tr

q if and only if for all σ ∈ Ttraces(p) either σ ∈ Ttraces(q)

or there exists a prefix σ1?a of σ, with ?a ∈ I, such that σ1 ∈

Ttraces(q) and for all q1 such that q
σ1

==⇒ q1 we have that

q1 6
?a
=⇒.

Naturally, we cannot use the completion C(q) above to reason

about testing from a specification q under implementation re-

lation �i
tr; C(q) might have behaviours (timed traces) not al-

lowed. However, this is not the case if we first convert q into

an equivalent deterministic tockLTS, using a simple adaption of

the classical transformation from non-deterministic to determ-

inistic finite automata [24]. Given tockLTS q we will let det(q)

denote the determinised version; states of det(q) will be sets of

states of q reached by a common trace.

Definition 11. Let p = (Q, q0, I,O,T) be a tockLTS. We write

det(p) to denote the automaton (P(Q), {q0}, I,O,T
′,P(Q)) in

which (Q1, a,Q2) ∈ T ′ for Q1,Q2 ∈ P(Q) and a ∈ I∪O∪{τ,⊖}

if and only if Q2 =
⋃
{q after a|q ∈ Q1}.

Observe that we say that det(p) is an automaton, rather than

a tockLTS (and so include a set of final states), because det(p)

need not satisfy some of the requirements that we place on

tockLTS. For example, det(p) need not have urgent output; this

might be the case if p
σ
=⇒ p1, p

σ
=⇒ p2, p1

⊖

−→ and there is an

output !o such that p2

!o
−→.

Example 5. Considering the tockLTS pdrone from Example 2

we will provide a few states and transitions for its determin-

ised automaton. Here, the only sources of non-determinism

in this model are due to τ transitions. Thus, it is relatively

straightforward to construct det(pdrone). For example, from

{O3} the action ⊖ moves det(pdrone) to {O3, LO}. Further, !m

takes det(pdrone) from {O3, LO} to {L1}.

We obtain the following result. This follows by simply ob-

serving that in det(q), an input ?a is specified after a trace σ if

and only if we have that q
σ
=⇒ q1 for some state such that q

?a
−→.

Theorem 2. Given tockLTS p and q with the same alphabets,

p �i
tr q if and only if L(p) ⊆ L(C(det(q))).

Note that in the above we did not use �tr to compare p and

C(det(q)) since det(q) is an automaton and not necessarily a

tockLTS.

p0start p1

p2 p3

p4

⊖

!o1

!o1 ?i1

!o1

⊖

⊖⊖

q0start q1

q2 q3

⊖

!o1

!o1 ?i1

⊖⊖

Figure 4: Models illustrating the difference between �u
tr and �i

tr

Observe that the process of constructing det(q) could, in prin-

ciple, lead to states of det(q) corresponding to infinite sets of

states of q, which means that even bounded approaches to (par-

tial) construction might not work. However, it is relatively com-

mon to assume that processes have the following property.

Definition 12. A tockLTS q = (Q, q0, I,O,T) is finitely-

branching if for every q1 ∈ Q and a ∈ I ∪ O ∪ {⊖} we have

that q1 after a is finite.

Under this condition, the states of det(q) that are reached by

finite traces correspond to finite sets of states of Q. The proof

of the result easily follows by induction on the length of σ.

Proposition 4. Given tockLTS q, if q is finitely-branching then

for all σ ∈ Ttraces(q) we have that q1 after σ is finite.

We can now compare the above implementation relations.

Theorem 3. Let p and q be tockLTS with the same alphabets.

We have the following results:

1. If p �tr q then p �u
tr q and p �i

tr q.

2. It is possible that one or more of p �u
tr q and p �i

tr q holds

but not p �tr q.

3. If p �i
tr q then p �u

tr q.

4. It is possible that p �u
tr q but not p �i

tr q.

Proof. The first result is immediate from the definitions of p �tr

q, p �u
tr q, and p �i

tr q.

For the second result, consider the specification tockLTS q

given in Figure 3 (center) and p be the tockLTS given in Fig-

ure 3 (left). It is clear that p �u
tr q and p �i

tr q since under

these relations, an implementation of q can do anything after

receiving ?i1. However, we do not have that p �tr q since, for

example, ?i1!o1 is a timed trace of p but not q.

8

p0start p1

p2 · · ·

!o1

⊖!o2

⊖

q0start q1 q2

q3 q4 · · ·

τ !o1

⊖τ

!o2 ⊖

r0start r1

r2 · · ·

?i1

⊖?i2

⊖

⊖

s0start s1 s2

s3 s4 · · ·

τ ?i1

⊖τ

?i2 ⊖

⊖

⊖

Figure 5: Models related by (refusal) timed trace inclusion

Now consider how �u
tr and �i

tr relate. First if p �i
tr q then,

by definition, for all σ ∈ Ttraces(p) either σ ∈ Ttraces(q)

or there exists a prefix σ1?a of σ, with ?a ∈ I, such that σ1 ∈

Ttraces(q) and for all q1 such that q
σ1

=⇒ q1 we have that q1 6
?a
−→.

If we consider the second part of this condition, this implies

that there exists a prefix σ1?a of σ, with ?a ∈ I, such that σ1 ∈

Ttraces(q) and there is a state q1 such that q
σ1

=⇒ q1 and q1 6
?a
−→.

But this means that σ is allowed under both p �u
tr q and p �i

tr q.

For the last part, we require p and q such that p �u
tr q but not

p �i
tr q. Consider the tockLTSs p and q depicted in Figure 4.

Essentially, they differ through it being possible for p to pro-

duce !o1 after !o1?i1 while q cannot. We have that p �u
tr q since

!o1 can take q to a state (q2) in which ?i1 is not specified and so

(under �u
tr) all behaviours are allowed after !o1?i1. In contrast,

we do not have that p �i
tr q since !o1 can take q to a state (q1)

in which ?i1 is specified and so (under �i
tr) the only behaviours

allowed after !o1?i1 are those that are traces of q. The result

therefore follows.

The previous result shows that the three implementation re-

lations differ in terms of how they deal with unspecified inputs.

As a result, we have the following.

Theorem 4. Let I and O be countable disjoint sets of inputs

and outputs, respectively. Let p and q be two elements of

TockLTS(I,O). If q is input-enabled then the following three

statements are equivalent: p �tr q; p �u
tr q; and p �i

tr q

The trace based implementation relations have some bene-

fits. For example, they have a number of nice properties and

are relatively simple to define. In addition, they correspond to

inclusion between two formal languages and so we can use con-

cepts and results from formal language theory in order to reason

about them. However, there is potential to strengthen them by

allowing refusals to be observed. As a result, there are some

systems that are related under these implementation relations

but that, intuitively, should not be. The following discusses

timed trace inclusion but similar arguments can be applied to

the other two implementation relations defined in this section.

Example 6. Let us consider the fragments of models given in

Figure 5 (top and bottom). These two pairs of models con-

form to each other under timed trace inclusion because we have

Ttraces(p) ⊆ Ttraces(q) and Ttraces(q) ⊆ Ttraces(p),

Ttraces(r) ⊆ Ttraces(s) and Ttraces(s) ⊆ Ttraces(r).

However, often we will want to be able to distinguish between

such processes. On the one hand, we expect both conform-

ances between p and q because outputs cannot be controlled

by the environment. In other words, a choice between out-

puts should work exactly as the corresponding internal choice.

For example, even though ?o1 and ?o2 are available at p0, a

user/tester cannot choose which of them will be performed. On

the other hand, r and s should not be equivalent. The issue

is that the tester or user can choose between two inputs in the

same way that one can choose among the available options in a

vending machine. If we have the corresponding internal choice

and we reach, for example, state s1 then input ?i2 is not avail-

able. The implementation relation that we present in the next

section satisfies all of these properties.

5. Timed refusal traces

In this section we extend the notion of a timed trace to allow

refusals to be observed, leading to timed refusal traces. We

then define the timed refusal traces of a tockLTS. Finally, we

develop an approach in which a tockLTS p is transformed into

an automatonM(p) whose language describes the set of timed

refusal traces of p. In the next section we define implementation

relations based on timed refusal traces and prove that we can

express these in terms of language inclusion based onM(p).

Recall that we are interested in models that are cyclic/have a

step semantics: a sequence of actions occurs without time (in

the model) passing and then there is a tock action. A refusal of

a set X ⊆ L is typically observed through the tester only being

willing to engage in the actions in X and the composition of the

tester and the SUT deadlocking. Since deadlocks are observed

(in testing) through timeouts, the observation of a refusal takes

time and so we only allow a refusal to be observed immediately

before a tock action. Since outputs and internal actions are ur-

gent, this means that a refusal can only be observed in a stable

state.

Definition 13 (Stable state). Let p = (Q, q0, I,O,T) be a

tockLTS, with L = I ∪O. We say that the state q ∈ Q is stable if

for all a ∈ O ∪ {τ} we have that q 6
a
−→.

Given a set X ⊆ L of actions, we use R(X) to denote the

refusal of set X. Further, we let R(L) = {R(X)|X ⊆ L} denote

the set of all possible refusals.

We can extend the transition relation of a tockLTS with re-

fusals as follows.

Definition 14 (Refusal). Let p = (Q, q0, I,O,T) be a tockLTS

and X ⊆ I∪O. For all q ∈ Q we write q
R(X)
−−−−→ q if the following

hold:

1. q
⊖

−→ and

9

2. for all x ∈ X we have that q 6
x
−→ .

This constitutes the observation of the refusal R(X), that is, at a

given stable state the model cannot perform the actions belong-

ing to X.

Note that, as previously indicated, due to the urgency of out-

puts and τ we have that if a ⊖ can occur in a state q then q must

be stable. As a result of this definition, the observation of a re-

fusal R(X) implies that no element a ∈ X ∪O∪ {τ} can occur in

state q: for all a ∈ X ∪O∪ {τ} we have that q 6
a
−→ . We therefore

obtain the following result.

Proposition 5. Given tockLTS p = (Q, q0, I,O,T), q ∈ Q and

X ⊆ I ∪ O, we have that q
R(X)
−−−−→ q if and only if q

R(X∪O)
−−−−−−→ q.

Example 7. In order to illustrate refusals, we consider the two

models from Figure 5 (top). It can be easily checked that

states p0, q0, q1, q3 are not stable. In addition, refusals could

be observed in any stable state of the two tockLTS models,

q′ ∈ {p1, p2, q2, q4}. We denote this by q′
R(X)
−−−−→ q′, where

X ⊆ I ∪ O.

For our running example pdrone, refusals can be observed

only in the stable states in which ⊖ is possible. This is

exactly the set {D0,D2,O3} of states. The transition rela-

tion can be extended with self-loops for refusals in each state

q′ ∈ {D0,D2,O3}. For example, we will have the transition

D0

R({? f ,?o,?s})
−−−−−−−−−→ D0.

Note also that the second condition of Definition 14 implies

that we include R(X) as a refusal if all the actions in X can be

refused, even if there are other actions from L \ X that can be

refused. Therefore, we do not only include maximal refusals.

In fact, doing this would lead to some undesirable effects (this

will be clearer after we give our implementation relations using

refusals).

We can then give the set of refusal traces of a tockLTS in

which, as we already said, p
σ
==⇒ is defined in terms of p

x
−→

and p
R(X)
−−−→ , in the usual way. Recall, however, that a refusal

can only be observed immediately before a tock action. We

therefore obtain a set of potential refusal traces (those that sat-

isfy this condition) and we call these timed refusal traces. Also

note that a timed refusal trace cannot end in a refusal since the

observation of a refusal takes time (and so must be followed by

a ⊖). As a result, this set is not prefix closed.

Definition 15 (Timed refusal traces). Let L be a set of ac-

tions. We define the set of timed refusal traces over L as

RT (L) = (L∗ ∪ (R(L){⊖}))∗.

Let p = (Q, q0, I,O,T) be a tockLTS, with L = I ∪O. The set

of timed refusal traces of p is defined as

TRtraces(p) = {σ ∈ (L ∪ {⊖} ∪ R(L))∗|p
σ
==⇒} ∩ RT (L)

Example 8. Considering again pdrone from Figure 2 with refus-

als added in the stable states {D0,D2,O3}, as explained in the

previous example, some timed refusal traces are:

σ1 =?s·!t · R({? f , ?o, ?s}) ·⊖·!m·? f · · ·

σ2 =?s·!t ·⊖·!m·? f ·!l · R({? f , ?o}) ·⊖ · · ·

Trace inclusion corresponds to a relation between the lan-

guages defined by the automata corresponding to two LTS.

The benefit is that it is possible to use standard results and al-

gorithms from formal language theory. This is particularly use-

ful if the processes are deterministic finite state automata since

there are efficient algorithms for many standard problems, in-

cluding deciding language inclusion (that is, trace inclusion in

our setting). We now show how we can generate an automaton

whose traces are exactly the timed refusal traces of a tockLTS q.

In order to explore one approach that might be used to

achieve this, consider the fragment of a model in Figure 6 (a).

This can refuse all actions other than ?i2 when in state q1. It

might seem that we can simply add a self-loop transition, with

such a refusal, in state q1. However, we would then have the

problem that such a self-loop need not be followed by a ⊖ ac-

tion. For example, the inclusion of such a self-loop in state q1

would allow refusal traces such as ?i1R({?i1})?i2. Such a refusal

trace should not be allowed since it has a refusal followed by an

action other than ⊖.

One possible solution is outlined in Figure 6 (b). Rather than

adding a self-loop, we include a transition, to a new state q̃1,

that is labelled with the refusal. From q̃1 there is only one pos-

sible action, which is ⊖. We also require that q̃1 is not a final

state of the automaton. As a result, any path that reaches a final

state and includes the transition from q1 to q̃1 must follow this

transition by a transition with label ⊖. Note that we require the

notion of a final state and so the model is an automaton and not

a tockLTS.

We now formally define the automaton M(p) that includes

these refusals.

Definition 16. Let p = (Q, q0, I,O,T) be a tockLTS, with L =

I ∪ O. Let us consider the subset of states that can evolve by

performing ⊖, that is, the set Q⊖ = {q ∈ Q|q
⊖

−→}. We define a

set of fresh states Q̃ = {q̃|q ∈ Q⊖} (i.e. Q∩ Q̃ = ∅). The new set

of states Q̃ has a state for each state of Q⊖.

We let M(p) denote the automaton (Q ∪ Q̃, q0, I ∪ O ∪

R(L),T ′, F) where

• T ′ = T ∪ {(q,R(X), q̃)|q ∈ Q⊖ ∧ q
R(X)
−−−−→} ∪ {(q̃,⊖, q′)|q ∈

Q⊖ ∧ q
⊖

−→ q′}.

• F = Q.

The following result shows that the previous construction is

correct.

Theorem 5. Let p = (Q, q0, I,O,T) be a tockLTS. We have that

TRtraces(p) = L(M(p)).

Proof. First, observe that both sets are subsets of RT (L), where

L = I ∪O. We will prove a slightly stronger result than the one

stated before. Specifically, we will prove that for all σ ∈ RT (L),

we have that σ takes p to state q if and only if q is a final state

ofM(p) and σ takesM(p) to state q.

10

q0start q1

q2

q3
?i1

⊖
?i2

⊖
q0start q1

q2

q̃1 q3
?i1

⊖
?i2

R({?i1}) ⊖

(a) Original model (b) Refusal automaton

Figure 6: A refusal can only happen immediately before a duration or tock ⊖

We use proof by induction on the length of σ. The base case,

with σ being the empty sequence, is immediate.

Inductive hypothesis: the result holds if the sequence has

length less than k (k > 0). Let us suppose that σ has length

k and σ takes one of p andM(p) to state q. By the definition

of RT (L), σ = σ1a for some a ∈ L ∪ {⊖} (i.e. sequences in

RT (L) cannot end in refusals). There are two cases to consider.

First, if σ1 does not end with a refusal then, by the inductive

hypothesis, we have that σ1 reaches the same states in p and

M(p). In addition, by construction we have that a takes p and

M(p) to the same state and so the result follows. The second

case is where σ1 ends in a refusal and so σ = σ2R(X)⊖ for

some X ⊆ L and σ2 ∈ RT (L). By the inductive hypothesis, σ2

takes p andM(p) to the same state q1. By construction, R(X)⊖

takes p andM(p) to the same state q and so the result follows.

6. Implementation relations with refusals

In the previous section we defined the notion of a timed re-

fusal trace. In this section we extend the previous implement-

ation relations in the natural way: we base implementation re-

lations on the timed refusal traces of a process and not just its

timed traces.

Definition 17. Let I and O be countable disjoint sets of in-

puts and outputs, respectively. Let p and q be two elements of

TockLTS(I,O). We say that p conforms to q under timed refusal

trace inclusion if and only if TRtraces(p) ⊆ TRtraces(q).

We denote this p �T q.

We now examine this implementation relation before consid-

ering alternatives that treat unspecified inputs in different ways.

First, we present an example showing some relations between

models and why maximal refusals do not provide the expected

implementation relation.

Example 9. Consider again the fragments of models p and q

given in Figure 5 (top). We cannot add refusals to traces in

states p0, q0, q1 and q3 because they are not stable. Therefore,

we have TRtraces(p) ⊆ TRtraces(q) and TRtraces(q) ⊆

TRtraces(p).

Consider now r and s given in Figure 5 (bottom). Assuming

that I = {?i1, ?i2} and O = ∅, we have the following sets5 of

5We only enumerate the relevant elements to show the differences between

the models.

timed refusal traces:

TRtraces(r) = {?i1 · · · , ?i2 · · · ,R(∅) ⊖ · · · , . . .}

TRtraces(s) =

{
?i1 · · · , ?i2 · · · ,R(∅) ⊖ · · · ,

R({?i1}) ⊖ · · · ,R({?i2}) ⊖ · · · , . . .

}

We have TRtraces(r) ⊆ TRtraces(s), so that r conforms

to s under timed refusal trace inclusion, but the converse is not

the case. This shows that an external choice between inputs is

a good implementation of the internal choice between the same

inputs.

These last two fragments help show why we cannot re-

strict ourselves to only computing the maximal refusal sets.

If we were to do this, the timed refusal traces of r would

be the same but the ones corresponding to s would be

R({?i1})⊖,R({?i2})⊖, . . . and we would no longer have timed

trace inclusion.

The following is immediate from Theorem 5.

Theorem 6. Let I and O be countable disjoint sets of inputs

and outputs, respectively. Let p and q be two elements of

TockLTS(I,O). Then p �T q if and only if L(M(p)) ⊆ L(M(q)).

We now define two alternative implementation relations. The

first approach corresponds to that used with �u
tr. Similar to be-

fore, the idea is that any behaviour is allowed if an unspecified

input is received. However, since behaviours are now timed re-

fusal traces, rather than timed traces, the definitions are written

in terms of the states reached by a prefix of a timed refusal trace.

Definition 18. Let I and O be countable disjoint sets of in-

puts and outputs, respectively. Let p and q be two elements

of TockLTS(I,O). We say that p �u
T

q if and only if for all

σ ∈ TRtraces(p) either σ ∈ TRtraces(q) or there exists a

prefix σ1?a of σ, with ?a ∈ I, such that σ1 ∈ TRtraces(q) and

there exists q1 such that q
σ1

==⇒ q1 and q1 6
?a
=⇒.

The second approach corresponds to that used with the im-

plementation relation �i
tr.

Definition 19. Let I and O be countable disjoint sets of in-

puts and outputs, respectively. Let p and q be two elements of

TockLTS(I,O). We say that p �i
T

q if for all σ ∈ TRtraces(p)

either σ ∈ TRtraces(q) or there exists a prefix σ1?a of σ, with

?a ∈ I, such that σ1 ∈ TRtraces(q) and for all q1 such that

q
σ1

==⇒ q1 we have that q1 6
?a
=⇒.

11

We can compare the three implementation relations that are

based on timed refusal traces, with the proof of the following

being equivalent to that of the corresponding result for traces

(Theorem 3).

Theorem 7. Let I and O be countable disjoint sets of inputs

and outputs, respectively. Let p and q be two elements of

TockLTS(I,O). Then the following hold.

1. If p �T q then p �u
T

q and p �i
T

q.

2. It is possible that one or both of p �u
T

q and p �i
T

q hold

but not p �T q.

3. If p �i
T

q then p �u
T

q.

4. It is possible that p �u
T

q but not p �i
T

q.

Similar to before, the implementation relations coincide if

the specification is input-enabled.

Theorem 8. Let I and O be countable disjoint sets of inputs

and outputs, respectively. Let p and q be two elements of

TockLTS(I,O). If q is input-enabled then the following three

statements are equivalent: p �T q; p �u
T

q; and p �i
T

q.

We can now compare the implementation relation defined

in this section with those based on trace inclusion introduced

in Section 4. The proof of the following result follows

from the fact that, for a process r, we have Ttraces(r) =

TRtraces(r) ∩ L∗.

Proposition 6. Let I and O be countable disjoint sets of in-

puts and outputs, respectively. Let p and q be two elements of

TockLTS(I,O). Then the following hold.

1. If p �T q then p �tr q.

2. If p �u
T

q then p �u
tr q.

3. If p �i
T

q then p �i
tr q.

However, the converse is not the case as the following result

shows.

Proposition 7. Let I and O be countable disjoint sets of inputs

and outputs, respectively. There exist p and q in TockLTS(I,O)

such that p �tr q but p �T q does not hold.

Proof. In order to prove this it is sufficient to give an example of

such tockLTSs. Consider r and s depicted in Figure 5 (bottom).

In Example 6 we showed that Ttraces(r) = Ttraces(s).

Therefore, s conforms to r under timed trace inclusion. On

the contrary, in Example 9 we showed that TRtraces(s) *
TRtraces(r). Therefore, s does not conform to r under timed

refusal trace inclusion.

To summarise, s �tr r but s �T r does not hold. The result

therefore holds.

Note that the above proof considered parts of tockLTS mod-

els in which all inputs are specified and thus is not affected by

whether we compare �tr with �T , �u
tr with �u

T
, or �i

tr with �i
tr.

We therefore have the following.

Proposition 8. Let I and O be countable disjoint sets of inputs

and outputs, respectively. There exist p and q in TockLTS(I,O)

such that the following hold.

1. p �u
tr q but not p �u

T
q

2. p �i
tr q but not p �i

T
q

We therefore obtain the following result, that says that

the implementation relations that use timed refusal traces are

strictly stronger than the corresponding implementation rela-

tions that only look at traces.

Theorem 9. Let I and O be countable disjoint sets of inputs

and outputs, respectively. Let p and q be two elements of

TockLTS(I,O). Then the following hold.

1. If p �T q then p �tr q but the converse does not hold.

2. If p �u
T

q then p �u
tr q but the converse does not hold.

3. If p �i
T

q then p �i
tr q but the converse does not hold.

The previous result tells us that if we can observe timed re-

fusal traces in testing then we have more powerful implement-

ation relations than the ones we obtain when we only consider

timed traces. It is also the case that if the environment (e.g. the

user) can observe timed refusal traces (through, for example,

the refusal of actions being observed as a result of options not

being available on a screen) then it is insufficient to test for

trace inclusion and its variants: the user might consider an SUT

p to be faulty with respect to a specification q even though, for

example, they have the same sets of timed traces.

Finally, we show how timed refusal trace inclusion can be

expressed in terms of language containment between automata.

The following is an immediate consequence of Theorem 5 and

tells us that M(q) captures the behaviours we require when

reasoning about timed refusal trace inclusion.

Theorem 10. Let I and O be countable disjoint sets of in-

puts and outputs, respectively. Let p and q be two ele-

ments of TockLTS(I,O). We have that p �T q if and only if

TRtraces(p) ⊆ L(M(q)).

7. Alternative characterisation based on observers

In this section we provide an alternative characterisation of

the implementation relations that are based around timed re-

fusal trace inclusion.

Implementation relations should correspond to the ability of

the environment, or a tester, to distinguish between processes;

typically we require that all observations that can be made of the

SUT are also observations that can be made when interacting

with the specification (see, for example, [45]). In this section

we define the notion of an observer, in our context, and how

such an observer interacts with a tockLTS. This will provide

an alternative, but equivalent, characterisation of timed refusal

trace inclusion.

We follow the classical approach of ioco [45], in which a

special action θ is included in an observer to denote the obser-

vation of a refusal. In the case of ioco, as previously explained,

the only refusal is associated with the inability of a model to

perform output at a certain state (this is denoted by δ in the

models and by θ in the observer/tester).

12

Next we define the notion of observer. An observer is an

automaton in which all states are final. We also require that

certain additional constraints are satisfied.

Definition 20 (Observer). Let I and O be countable disjoint

sets of inputs and outputs, respectively. An observer u =

(Q, q0, I ∪ O ∪ {⊖, θ},T,Q) is an automaton that satisfies the

following properties for each state q ∈ Q:

1. If q 6
⊖

−→ then for all a ∈ O we have that q
a
−→.

2. There exists at most one q′ ∈ Q such that q
⊖

−→ q′. If there

is such a q′ then for all a ∈ O we have that q 6
a
−→.

3. If (q, θ, q′) is a transition of u then ⊖ is the only action

available in state q′.

We let U(I,O) denote the set of observers with input set I and

output set O.

Note that observers cannot perform internal transitions (the

rationale is that they essentially record what they can observe

from a process). The last rule ensures that a refusal must be

followed by a ⊖. The first rule is the standard condition that a

tester is able to observe outputs while the second rule indicates

that time can pass only if no output is available. Finally, the

observation of a refusal takes time and so a θ must be followed

by a ⊖.

Example 10. In Figure 7 we provide an observer for the

tockLTS drone model given in Figure 2. Note that there are

many possible observers and, in addition, the graphical repres-

entation captures only part of an observer. It, does, however, il-

lustrate the observation of a refusal (the θ-labelled transition),

time passing (⊖-transition) and acceptance of all outputs.

We can now define a parallel composition operator ⌉|

between a process p ∈ TockLTS(I,O) and an observer u ∈

U(I,O). This is similar to the operators for LTS [45] but we

choose to enrich the observations made with refusal sets.

Definition 21 (Synchronised parallel communication). Let I

and O be countable disjoint sets of inputs and outputs, re-

spectively. Let p = (Q, q0, I,O,T) ∈ TockLTS(I,O) and u =

(Q′, q′
0
, I ∪ O ∪ {⊖, θ},T ′,Q′) ∈ U(I,O). The composition of

the observer u and the model p, denoted by u ⌉| p, is an auto-

maton (Q × Q′, (q0, q
′
0
), I ∪O ∪ R(I ∪O) ∪ {⊖},T ′′,Q × Q′) in

which T ′′ is defined as follows:

• If (q1, τ, q2) ∈ T then for all q′ ∈ Q′ we have

((q1, q
′), τ, (q2, q

′)) ∈ T ′′.

• If (q1, a, q2) ∈ T and (q′
1
, a, q′

2
) ∈ T ′, with a ∈ I ∪O∪ {⊖},

then we have ((q1, q
′
1
), a, (q2, q

′
2
)) ∈ T ′′.

• Let X ⊆ I ∪ O. If (q1,⊖, q2) ∈ T and (q′
1
, θ, q′

2
) ∈ T ′ then

((q1, q
′
1
),R(X), (q1, q

′
2
)) ∈ T ′′ if and only if the following

conditions hold:

– for all a ∈ I ∪ O we have that either there does not

exist q3 such that (q1, a, q3) ∈ T or there does not

exist q′
3

such that (q′
1
, a, q′

3
) ∈ T ′.

1start

432 5 6

987 10

131211 14 15

16

191817 20

?s
!b !l !m

!t

!t
!b !l !m

θ
!b !l !m

!t

⊖

!m
!b !l !t

Figure 7: Observer example

(O1, 1)start (O2, 4) (O3, 9) (O3, 13) (L0, 16) (L1, 19)

(O3, 16)

?s !t R(X) ⊖ !m

τ

where X ⊆ {!b, !l, !m, !t}.

Figure 8: Composition of a tockLTS with an observer

– for all a ∈ X we have that there exists q′
3

such that

(q′
1
, a, q′

3
) ∈ T ′.

The set of observations that the observer u can make of p,

denoted by obsθ(u, p), is given by the following:

obsθ(u, p) =def {σ ∈ (I ∪ O ∪ R(L) ∪ {⊖})∗ | u ⌉| p
σ
==⇒}

Note that in the last rule of the composition, since q1 may

evolve via ⊖ then we have that it must be a stable state (for all

a ∈ O ∪ {τ} we have that q1 6
a
−→); this follows from the fact that

p is a tockLTS and tockLTSs have urgent outputs and internal

actions (Definition 6). In this rule, also note that we discard the

state reached after the performance of ⊖ from q1: the compos-

ition makes p remain in the same state. Naturally, the second

rule then ensures that this can be followed by a ⊖.

Example 11. Figure 8 shows part of the composition of the

observer given in the previous example (Figure 7) with the

tockLTS model from Figure 2.

The following shows how observations relate to timed refusal

traces and is a result of the definition of u ⌉| p and the definition

of timed refusal traces (Definition 15).

13

Proposition 9. Let I and O be countable disjoint sets of inputs

and outputs, respectively. Given σ ∈ (I ∪O∪ {⊖} ∪ R(L))∗ and

p in TockLTS(I,O), there is an observer u ∈ U(I,O) such that

σ ∈ obsθ(u, p) if and only if σ is a prefix of a timed refusal trace

of p.

Note that in the above result σ need not be a timed refusal

trace of p since σ could end in a refusal; to make this a timed

refusal trace it would be necessary to add the ⊖ that follows this

refusal. The following result is immediate from Proposition 9.

Theorem 11. Let I and O be countable disjoint sets of in-

puts and outputs, respectively. Let p and q be two elements

of TockLTS(I,O). We have that p �T q if and only if for all

u ∈ U(I,O) we have that obsθ(u, p) ⊆ obsθ(u, q).

Since observers capture the observations that can be made,

this tells us that timed refusal trace inclusion is a suitable im-

plementation relation for our scenario.

8. Test generation

In this section we present a testing framework for cyclic sys-

tems specified by using a tockLTS. The goal is to use the spe-

cification of the SUT to derive sound and exhaustive test suites

with respect to an implementation relation. These test suites are

said to be complete. The soundness of the process ensures that

if an SUT fails one of the derived tests then the SUT is faulty

(in other words, it does not conform to the specification with

respect to the chosen implementation relation). In addition, ex-

haustiveness ensures that if an SUT is faulty then there exists a

derived test case that is failed by the SUT. While soundness is

relatively easy to achieve (in particular, the empty set of tests

is sound), exhaustiveness is usually not reached if the SUT is a

black-box. The problem is that we do not have a bound on the

number of tests that we have to apply. We will provide an al-

gorithm that achieves exhaustiveness in the limit [34]. The idea

is that given a natural number n, we can construct test suites that

find all faults that can be observed in observations of length up

to n. If n tends to infinity then we achieve exhaustiveness in

the limit. A recent approach [5] shows how one can derive test

suites that are exhaustive as long as the number of states of the

SUT does not exceed a given bound. Both approaches have a

similar underlying idea: if the length of the tested sequences or

the number of states tends to infinity then the derived test suites

are complete in the limit.

First, we define a testing framework where testers do not have

the capabilities to detect refusals. As a result, we will be able

to characterise our implementation relation based on the timed

traces of a process, that is, the �tr relation. Next, we will extend

the tests with refusals and will be able to provide a character-

isation of the implementation relation based on timed refusal

traces, that is, the �T relation.

8.1. Complete test suites with respect to �tr

Our first task is to define the notion of test. Usually, a test

case can either provide an input to the SUT or observe output.

In our framework, a test case can also observe the passing of

time. A difference with respect to the usual notion of test case

is that we will also test for the (in)ability of the SUT to perform

an input at a certain point of time. In this case, if testing detects

that the SUT is able to perform an input that is not allowed by

the specification then we will stop the testing process and indic-

ate that a faulty behaviour was detected. Similarly, in the next

section we will test for the capabilities of the SUT to perform

refusals (and test that they are followed by a tock action indic-

ating the passing of time). There are two main differences with

respect to usual automata: tests do not have internal actions (ac-

tually, they are deterministic) and they must represent a finite

process, that is, the induced graph cannot have cycles. Finally,

note that the notions of test case and observer, introduced in the

previous section, are related but tests are more restrictive: they

are deterministic, have finite behaviour and at most one input

can be used to continue the testing process from each state of

the test.

Definition 22 (test). Let I and O be countable disjoint sets of

inputs and outputs respectively. An I/O-test (or simply test

when I and O can be inferred from the context) is an acyclic

and deterministic automaton p = (Q, q0, I∪O∪{⊖},T, F) such

that Q is finite and for all q ∈ F we have that either there are

no outgoing transitions from q or the following two restrictions

hold:

• Observe any possible output or passing of time. For each

a ∈ O ∪ {⊖} there exists qa ∈ Q such that (q, a, qa) ∈ T.

• Continue with at most one input. There exists at most one

input ?i such that q
?i
−−→.

In addition, we require that non-final states, denoting that the

testing process has failed, are deadlocked, that is, if q < F then

there does not exist a ∈ I ∪ O ∪ {⊖} and q′ ∈ Q such that

(q, a, q′) ∈ T.

We use T (I,O) to denote the set of I/O-tests.

In a test case, we distinguish three types of states. Two of

them are states in which an input is not applied. This can mean

either that the test case has been successfully passed or failed

(graphically represented by X and ×, respectively). In the first

case (X), there are two cases: the test case has terminated or the

test case is in a state where it can observe further output, or the

passing of time, and then continue. Failing states (×) always

lead to the test case terminating and the set of failing states is

given by Q\F. The third type of state of a test case represents

the potential application of an input to the SUT, paired with the

potential to observe any output or the passing of time. This third

type encompasses two different situations. If the state reached

after the input belongs to F, then we have an expected input;

otherwise it is an input that was not allowed and indicates that

a fault has been detected. Note that we require tests to have a

finite number of states, capturing the idea that the application of

a test case should produce a verdict in finite time. In practice,

if the set of outputs is infinite then we might compress trans-

itions so that we retain finiteness. Given a state q we could, for

14

1 Xstart

4 X3 ×2 × 5 × 6 × 7 ×

10 X9 ×8 × 11 × 12 × 13 ×

16 X15 ×14 × 17 × 18 × 19 ×

22 X21 X20 × 23 × 24 × 25 ×

?s
!t !m !l

!b
⊖

!t
!m !l !b

⊖
?o

⊖
!t !m !l

!b
?o

⊖
!t !m !l

!b
?o

1 Xstart

4 X3 ×2 × 5 × 6 × 7 ×

10 X9 ×8 X 11 × 12 × 13 ×

16 X15 ×14 × 17 × 18 × 19 ×

22 X21 X20 × 23 × 24 × 25 ×

?s
!t !m !l

!b
⊖

!t
!m !l !b

⊖ ?o

⊖
!t !m !l

!b
?o

⊖
!t !m !l

!b
?o

Figure 9: I/O-tests

1 Xstart

3 X2 × 4 X

6 X5 × 7 X

9 X8 × 10 X

12 X11 ×

?s
O×

1 ∅

!t
O×

2 ∅

⊖
O×

3 ∅

{!m,⊖}
O×

4

where O×
1
= {!t, !m, !l, !b,⊖}, O×

2
= {!m, !l, !b,⊖, ?o}, O×

3
=

{!t, !m, !l, !b, ?o} and O×
4
= {!t, !l, !b, ?o}.

Figure 10: I/O-test in compressed form

example, partition the set of transitions from q to deadlocked

states into two groups: the ones reaching pass and fail states,

respectively. For example, if we consider the test case given

in Figure 9 (left), then we would obtain the test case given in

Figure 10. For the sake of simplicity, we will assume that the

tests are in an uncompressed form but will rely to its equivalent

representation if we are working with an infinite set of outputs.

Next, we define the application of a test to an SUT. Essen-

tially, we will compose in parallel the test case and the SUT

and we will say that the application of the test case has failed if

a non-final state of the test case can be reached.

Definition 23 (test application). Let I and O be countable

disjoint sets of inputs and outputs respectively. Let p =

(Q, q0, I,O,T) be a tockLTS and t = (Q′, q′
0
, I ∪O∪ {⊖},T ′, F)

be an I/O-test. We define the application of the test case t to the

system p, denoted by p⌉⌈t, as the automaton (Q×Q′, (q0, q
′
0
), I∪

O∪{⊖, τ},T ′′,Q×F) where T ′′ is the smallest set of transitions

fulfilling the following rules

• If (q1, τ, q2) ∈ T then for all q′ ∈ Q′ we have

((q1, q
′), τ, (q2, q

′)) ∈ T ′′.

• For each a ∈ I ∪O∪ {⊖}, if (q1, a, q2) ∈ T and (q′
1
, a, q′

2
) ∈

T ′ then ((q1, q
′
1
), a, (q2, q

′
2
)) ∈ T ′′.

We say that the application of t to p has failed if there is a

sequence of transitions belonging to T ′′ departing from (q0, q
′
0
)

and reaching a state belonging to Q × (Q′\F); otherwise, we

say that the application was successful.

Example 12. Consider the I/O-tests t1 (Figure 9 (left)) and t2
(Figure 9 (right)), where I and O are the sets of inputs and

outputs, respectively, corresponding to our running example.

Consider the (faulty) implementation of our running example

p1 given in Figure 11. We have that the application of t1 to

p1 fails because the sequence ?s!m, which can be performed

by p1⌉⌈t1, reaches a fail state of the test. On the contrary, the

application of t2 to p1 is successful.

The following result is immediate from the definition of ⌉⌈.

Lemma 1. Let I and O be countable disjoint sets of inputs and

outputs respectively. Let p ∈ TockLTS(I,O), t be an I/O-test

and σ ∈ (I ∪ O ∪ {⊖})∗. We have that p⌉⌈t
σ
==⇒ if and only if

σ ∈ Ttraces(p) and t
σ
==⇒.

Next we present an algorithm to derive tests from a specifica-

tion such that an SUT conforms to the specification with respect

to �tr if and only if the SUT successfully passes all the tests of

the suite. The algorithm is given in Figure 12. The applica-

tion of the algorithm to a specification produces a single test. If

15

O1start O2 O3 L0 L1 L2 D0

D1D2D3D4R1R2

?s

!t

!m

⊖

τ

!m ? f !l

⊖τ

!t

⊖

τ!b!m?o

!l

Figure 11: Faulty implementation of the TockLTS drone model

Input: A specification q = (Q, q0, I,O,T).

Output: A test case t = (Q′, q′
0
, I ∪ O ∪ {⊖},T ′, F).

Initialization

Set a fresh state q′
0

as initial state; Q′, F := {q′
0
}; T ′ := ∅; Qaux := {({q0}, q

′
0
)}.

Loop

While Qaux , ∅ do

1. Choose (P, q′) ∈ Qaux; Qaux := Qaux\{(P, q
′)}.

2. Select one of the following alternatives.

(a) Successful termination (by construction, q′ ∈ F).

(b) Continue testing: apply an input (expected or not) and observe outputs and tock.

i. Apply an input. Choose ?i ∈ I and

• Create a fresh state qi; Q′ := Q′ ∪ {qi}; T ′ := T ′ ∪ {(q′, ?i, qi)}.

• If P
?i
==⇒ then Qaux := Qaux ∪ {(P after ?i, qi)}; F := F ∪ {qi}.

ii. Observe outputs and tock. For each a ∈ O ∪ {⊖} do

• Create a fresh state qa; Q′ := Q′ ∪ {qa}; T ′ := T ′ ∪ {(q′, a, qa)}.

• If P
a
==⇒ then Qaux := Qaux ∪ {(P after a, qa)}; F := F ∪ {qa}.

Figure 12: Test derivation I: the �tr relation

we consider all the non-deterministic choices in the algorithm

(the choice in Step 2 between stop and continue testing and the

choice of the input in Step 2(b)i) then we obtain a test suite.

Note that in Steps 2(b)i and ii we continue testing (third clause)

only if we have chosen an expected input or we are dealing

with an output or tock that the specification can perform from

the reached state after partially traversing it.

Definition 24. Let q be a tockLTS. We denote by Test�tr
(q) the

smallest set including all the tests that can be derived by apply-

ing the algorithm given in Figure 12 to q.

Example 13. Let p be our running example (see Example 2)

and consider the tests t1 and t2 depicted, respectively, in Fig-

ure 9 (left) and (right). We have that t1 ∈ Test�tr
(p) while

t2 < Test�tr
(p). In the latter case, note that state 8 should be

a fail state. Note that the transition departing from state 4 and

labelled by ?o could be produced by our derivation algorithm

because it reaches a fail state (this transition is not available in

p after performing ?s).

Next we study the computational complexity of our al-

gorithm. Therefore, we will restrict to finite tockLTSs, that is,

we will assume that we have finite sets of inputs, outputs, states

and transitions. Note that, as previously discussed, the deriva-

tion algorithm returns a test case but if the algorithm is repeated

then there is no bound on the number of test cases that can be

produced. Therefore, we consider the computational complex-

ity of producing a single test case. In addition, observe that the

time taken to produce a test case will inevitably depend on the

size of the test case and, in particular, it is only possible to place

an upper bound on the time taken if we either fix or bound the

size of the test case. As a result, we explore the complexity of

producing a test case that has n inputs. Note that this is equival-

ent to applying Step 2(b) of the test case derivation algorithm a

total of n times.

Theorem 12. Let p = (Q, q0, I,O,T) be a tockLTS. The space

needed to store a test case with n inputs and generated by the

algorithm given in Figure 12 applied to p is in O(n · |O| · |Q|).

Proof. Each application of Step 2(b) generates |O|+2 new states

16

in the test case and as many transitions. In addition, the aux-

iliary storage space (that is, the set Qaux) increases by at most

|O|+2 pairs. Note that each pair added to Qaux has a single state

of the test case and also a subset of Q. As a result, the auxil-

iary space added in each iteration is in O(|O| · |Q|). Therefore,

we have that, the space needed to compute a test case with n

inputs, including both the space needed for the test case (states

and transitions) and auxiliary space needed to construct it, is in

O(n · |O| + n · |O| + n · |O| · |Q|), that is, in O(n · |O| · |Q|).

Theorem 13. Let p = (Q, q0, I,O,T) be a tockLTS. The time

needed to produce a test case with n inputs and generated by

the algorithm given in Figure 12 applied to p is in O(n · |O| · |Q| ·

(|Q| + |T |)).

Proof. Each application of Step 1 can be done in constant time:

we simply need to choose any element of a set. The first item of

Step 2(b)i also takes constant time. Concerning the second item

of this step, in order to decide whether P
?i
==⇒, it is enough to

traverse the multi-graph induced by p from each element of P.

Since traversing a graph, either using a depth-first or a breadth-

first strategy, can be done in O(|E| + |V |), where E is the set of

edges and V is the set of vertex, and P ⊆ Q, then this operation

is in O(|Q| · (|Q| + |T |)). Note that this operation also computes

the states belonging to P after ?i that are needed in the second

part of the item. Using a similar reasoning, we have that Step

2(b)ii can be done in time O(|O| · |Q| · (|Q| + |T |)) because we

have to repeat the previous process, in the worst case, for all

the elements in O ∪ {⊖}. Therefore, we have that, in the worst

case, the time needed to compute a test case with n inputs is

in O(n · (|Q| · (|Q| + |T |) + (|O| · |Q| · (|Q| + |T |)))), that is, in

O(n · |O| · |Q| · (|Q| + |T |)).

The final part of this section consists of proving that the de-

rived test suites are indeed complete with respect to the �tr im-

plementation relation. First, we provide two auxiliary results.

Proposition 10. Let q = (Q, q0, I,O,T) be a tockLTS and t =

(Q′, q′
0
, I ∪ O ∪ {⊖},T ′, F) ∈ Test�tr

(q) be a test. Let σ ∈

(I ∪ O ∪ {⊖})∗ such that t
σ
==⇒ and let q′ ∈ Q′ be the unique

state such that t
σ
==⇒ q′. We have that q′ ∈ F if and only if

σ ∈ Ttraces(q).

Proof. We will prove the result by induction on the length of σ.

The base case, with σ being the empty sequence, is immediate

because t can only reach the initial state (by construction, it

belongs to F) and the empty sequence is always a trace of q.

Inductive hypothesis: the result holds if the sequence has

length less than k (k > 0). Let us suppose that σ has length

k. Therefore, σ = σ1a and the result holds for σ1. First, note

that σ1 must reach a state belonging to F because there are no

outgoing transitions departing from states in Q′\F. Therefore,

by induction, σ1 ∈ Ttraces(q). Depending on whether a is

an allowed/unexpected input, an output or a tock, the transition

of the test case labelled by a can be produced, respectively, by

Step 2(b)i (if a ∈ I) and Step 2(b)ii (otherwise). In all cases

it is straightforward to check that the reached state after a be-

longs to F if and only if a can be performed from the states

belonging to q after σ1. In other words, this holds if and only

if σ = σ1a ∈ Ttraces(q).

Proposition 11. Let I and O be countable disjoint sets of in-

puts and outputs respectively. Let q ∈ TockLTS(I,O) and

σ ∈ Ttraces(q). There exists a test case t = (Q′, q′
0
, I ∪ O ∪

{⊖},T ′, F) ∈ Test�tr
(q) such that t

σ
==⇒ q′ and q′ ∈ F.

Proof. We will prove the result by induction on the length of σ.

The base case, with σ being the empty sequence, is immediate

because it is enough to consider the test case built after applying

the initialisation of the algorithm given in Figure 12, entering

the loop, choosing the only existing pair of Qaux, and choosing

the option (a) in Step 2. This process produces an empty test,

with one final state, and we have q′
0

ǫ
=⇒ q′

0

Inductive hypothesis: the result holds if the sequence has

length less than k (k > 0). Let us suppose that σ has length

k. Therefore, σ = σ1a and the result holds for σ1. Again, we

have that the state of the test reached after performing σ1 be-

longs to F. Let qσ1
be this state. Note that at this stage we

will have that (q after σ1, qσ1
) ∈ Qaux. In addition, since σ is

a trace of q, we have (q after σ1)
a
==⇒. If a is an input then we

will apply Step 2(b)i; if a is an output or a tock, then we will

apply Step 2(b)ii. In both cases, the reached state belongs to F.

Independently of the way we complete this test, we have that

the requested property holds.

Theorem 14 (Soundness of Test�tr
(q)). Let I and O be count-

able disjoint sets of inputs and outputs respectively. Let p, q ∈

TockLTS(I,O) and t ∈ Test�tr
(q). If p⌉⌈t fails then p �tr q does

not hold.

Proof. If p⌉⌈t fails then there exists a sequence σ ∈ (I ∪ O ∪

{⊖})∗ reaching a non-final state of the automaton p⌉⌈t from its

initial state. First, by Lemma 1 we have that σ ∈ Ttraces(p).

Second, since we reach a non-final state of the test case and

by Proposition 10, we have that σ < Ttraces(q). Therefore,

Ttraces(p) * Ttraces(q) and we conclude that p �tr q does

not hold.

Example 14. Consider again our running example p, the test

case t1 given in Figure 9 (left) and the system p1 given in Fig-

ure 11 (top). In Example 13 we saw that t1 ∈ Test�tr
(p) and in

Example 12 we obtained that p1⌉⌈t1 fails. The soundness of our

framework allows us to state that p1 �tr p does not hold even

without computing the traces of both processes.

Theorem 15 (Exhaustiveness of Test�tr
(q)). Let I and O be

countable disjoint sets of inputs and outputs respectively. Let

p, q ∈ TockLTS(I,O). If p �tr q does not hold then there exists

t ∈ Test�tr
(q) such that p⌉⌈t fails.

Proof. If p �tr q does not hold then there exists σ ∈ (I ∪

O ∪ {⊖})∗ such that σ ∈ Ttraces(p) but σ < Ttraces(q).

Let σ′ ∈ Ttraces(q) be the longest sequence such that there

exists σ′′ such that σ = σ′σ′′. Note that σ′ might be empty but

σ′′ cannot be empty. So, σ′′ = aσ′′′ and σ′a < Ttraces(q).

17

By Proposition 11 we can build a test case whose set of traces

includes σ′. If we extend this test case to consider a, we will

have that a reaches a non-final state of the test, denoting the

fail of the application of the test case if this state is reached.

Obviously, this state is reached because σ′a is a trace of t and

a trace of p and applying Lemma 1, it is also a trace of p⌉⌈t.

Therefore, p fails t, as requested.

Corollary 1 (Completeness of Test�tr
(q)). Let I and O be

countable disjoint sets of inputs and outputs respectively. Let

p, q ∈ TockLTS(I,O). We have that p �tr q if and only if for all

t ∈ Test�tr
(q) we have that p⌉⌈t does not fail.

8.2. Complete test suites with respect to �T

In order to capture refusals, we have to increase the testing

power of tests. We slightly modify the notion of test case given

in Definition 22 by including two new types of action. First, we

will add the capability to test the existence of a refusal. Second,

we will be able to test refusals such that its performance, fol-

lowed by a tock action, will detect a faulty behaviour.

Definition 25 (test). Let I and O be countable disjoint sets of

inputs and outputs respectively. An I/O-test case with refus-

als (or simply test case when I and O can be inferred from the

context and it is clear that we are taking into account refusals)

is an acyclic and deterministic automaton p = (Q, q0, I ∪ O ∪

R(I ∪ O) ∪ P(R(I ∪ O)) ∪ {⊖},T, F) such that for all q ∈ F we

have that either there are no outgoing transitions from q or the

following three restrictions hold:

• Observe any possible output and passing of time. For each

a ∈ O ∪ {⊖} there exists qa ∈ Q such that (q, a, qa) ∈ T.

• Continue with at most one input or refusal. There exists at

most one a ∈ I ∪ R(I ∪ O) such that there exists qa ∈ Q

such that one of the following hold.

– a ∈ I and (q, a, qa) ∈ T, or

– a ∈ R(I ∪ O), (q, a, qa) ∈ T, qa ∈ F and there exists

q′a ∈ Q such that (qa,⊖, q
′
a) ∈ T. This is the only

transition departing from qa.

• Check unexpected refusals. There exist A ∈ P(R(I ∪ O)),

qA ∈ F and q′
A
∈ Q\F such that (q,A, qA), (qA,⊖, q

′
A

) ∈

T. The last one is the only transition departing from qA.

In addition, we require that non-final states, denoting that the

testing process has failed, are deadlocked, that is, if q < F then

there does not exist a ∈ I ∪ O ∪ R(I ∪ O) ∪ P(R(I ∪ O)) ∪ {⊖}

and q′ ∈ Q such that (q, a, q′) ∈ T.

We use T (I,O)R to denote the set of I/O-tests with refusals.

Similarly to our previous notion of test, tests with refusals

will have X and × states and states representing the potential

application of an input ?i to the SUT. In this case, this applica-

tion will be again paired with the potential to observe any output

and the passing of time. In addition, tests will be able to observe

that the SUT cannot perform a certain set of actions. We will

use this option with two goals: check that the SUT does not

have unexpected refusals and continue testing after observing

an allowed refusal. In the former case, we use a unique trans-

ition, labelled by a set belonging to P(R(I ∪ O)), to include all

the refusals that the SUT should not observe. In both cases, in

order to observe a refusal in testing, we have to make sure that

it is followed by the performance of a tock action. An obvi-

ous corollary of the previous definition is that any sequence of

transitions performed by a test case can have, at most, one trans-

ition labelled by a set inP(R(I∪O)). This fact will be explicitly

used in the proof of some of the results in this section.

Next, we define the application of a test case with refusals to

an SUT. Again, we will say that the application of the test case

has failed if a non-final state of the test case can be reached.

Definition 26 (test application). Let I and O be countable

disjoint sets of inputs and outputs respectively. Let p =

(Q, q0, I,O,T) be a tockLTS and t = (Q′, q′
0
, I ∪ O ∪ R(I ∪

O)∪P(R(I ∪O))∪ {⊖},T ′, F) be an I/O-test with refusals. We

define the application of the test case t to the system p, denoted

by p⌉⌈t, as the automaton (Q × Q′, (q0, q
′
0
), I ∪ O ∪ R(I ∪ O) ∪

P(R(I ∪O))∪ {⊖, τ},T ′′,Q× F) where T ′′ is the smallest set of

transitions fulfilling the following rules

• If (q1, τ, q2) ∈ T then for all q′ ∈ Q′ we have

((q1, q
′), τ, (q2, q

′)) ∈ T ′′.

• For each a ∈ I ∪O∪ {⊖}, if (q1, a, q2) ∈ T and (q′
1
, a, q′

2
) ∈

T ′ then ((q1, q
′
1
), a, (q2, q

′
2
)) ∈ T ′′.

• If q1

R(A)
−−−→ q1, with q1 ∈ Q, and (q′

1
,R(A), q′

2
) ∈ T ′ then

((q1, q
′
1
),R(A), (q1, q

′
2
)) ∈ T ′′.

• If q1

R(A)
−−−→ q1, with q1 ∈ Q, R(A) ∈ A and (q′

1
,A, q′

2
) ∈ T ′,

then ((q1, q
′
1
),A, (q1, q

′
2
)) ∈ T ′′.

We say that the application of t to p has failed if there is a

sequence of transitions belonging to T ′′ departing from (q0, q
′
0
)

and reaching a state belonging to Q × (Q′\F); otherwise, we

say that the application was successful.

The differences with respect to Definition 23 appear in the

new third and fourth clauses. If the test case offers a refusal and

the process is able to refuse that set, then they will synchronise.

Taking into account the structure of tests, where the offering

of a refusal is always followed by a tock, the next performed

action will be ⊖. If the test case offers a set of refusals such

that the process is able to refuse at least one of these refusals,

then the process and the test case simultaneously evolve.

The next result is an adaption of Lemma 1 and its proof is

immediate.

Lemma 2. Let I and O be countable disjoint sets of inputs and

outputs respectively. Let p ∈ TockLTS(I,O), t be an I/O-test

with refusals and σ ∈ (I ∪O∪R(I ∪O)∪P(R(I ∪O))∪ {⊖})∗.

We have that p⌉⌈t
σ
==⇒ if and only if t

σ
==⇒ and there exists σ′ ∈

(I∪O∪R(I∪O)∪{⊖})∗, that can be formed from σ by replacing

each occurrence of each set of refusalsA ∈ P(R(I∪O)) by one

of its elements R(A) ∈ A, such that p
σ′

==⇒.

18

1 Xstart

4 X3 ×2 × 5 × 6 × 7 ×

10 X9 ×8 × 11 × 12 × 13 ×

16 X15 ×14 × 17 × 18 × 19 ×

22 X21 X20 × 23 × 24 × 25 X

26 X

?s
!t !m !l

!b
⊖

!t
!m !l !b

⊖
?o

⊖
!t !m !l

!b
?o

R(A)
!t !m !l

!b
⊖

⊖

where A = {!t, !m, !l, !b, ?s, ?o, ? f } and unexpected refusals

have been omitted.

Figure 13: I/O-test with refusals

Moreover, we have the following results concerning the mem-

bership of σ to TRtraces(p).

1. If either the last or the penultimate action of σ belongs to

P(R(I ∪ O)), that is, σ = σ′′A or σ = σ′′A⊖ then σ′′ ∈

TRtraces(p). In the latter case, there exists R(B) ∈ A

such that σ′′R(B)⊖ ∈ TRtraces(p).

2. If the last action of σ belongs to R(I ∪ O), that is, σ =

σ′′R(A) then σ′′ ∈ TRtraces(p).

3. Otherwise, σ = σ′ and σ ∈ TRtraces(p).

Next we present an algorithm to derive tests from a specifica-

tion such that an SUT conforms to the specification with respect

to �T if and only if the SUT successfully passes all the tests of

the suite. The algorithm is a variation of the one given in Fig-

ure 12 to take into account refusals. Again, the application of

the algorithm to a specification produces a single test. If we

consider all the non-deterministic choices in the algorithm (the

choice in Step 2 between the options (a) and (b) and the choice

of the input or refusal in Step 2(b)i) then we obtain a test suite.

The new algorithm is given in Figure 14.

Definition 27. Let q be a tockLTS. We denote by Test�T(q) the

smallest set including all the tests that can be derived by apply-

ing the algorithm given in Figure 14 to q.

Example 15. Let p be our running example (see Example 2)

and t be the test case given in Figure 13. We have that t ∈

Test�T(p).

Next we study the computational complexity of the new al-

gorithm. Again, we will assume that we have finite sets of in-

puts, outputs, states and transitions. This time, we will use as

unit of measure the number of inputs and expected refusals ap-

pearing in the test case (this number is equal to the number of

non-trivial iterations of the main loop).

Theorem 16. Let p = (Q, q0, I,O,T) be a tockLTS. The space

needed to store a test case with a total of n inputs and expec-

ted refusals and generated by the algorithm given in Figure 14

applied to p is in O(n · (2|I| + |O| · |Q|)).

Proof. Each application of Step 2(b) generates at most, |O| + 5

new states in the test case and as many transitions. The dif-

ference with respect to the proof of Theorem 12 is that we now

have two additional states and transitions for the set of unexpec-

ted refusals and if we apply a refusal instead of an input then

we produce two states and transitions instead of just one. Simil-

arly, the set Qaux increases by at most |O|+2 pairs, storing again

each pair belonging to Qaux a single state and a subset of Q.

However, we have to take into account that a transition of

the test case does not have a small amount of information. In

the previous case, the information stored in a transition was an

action. However, in the new framework each iteration adds

a transition labelled by a set of unexpected refusals. There-

fore, in the worst case, we need space in O(2|I|) to store these

transitions. Note that although refusals are subsets of I ∪ O,

we can omit outputs because they can be always added to

any refusal (see Proposition 5). Therefore, we have that the

space needed to compute a test case with a total of n inputs

and/or expected refusals, including both the space needed for

the test case and auxiliary space needed to construct it, is in

O(n·|O|+n·(|O|+2|I|)+n·(|O|·|Q|)), that is, inO(n·(2|I|+|O|·|Q|)).

Theorem 17. Let p = (Q, q0, I,O,T) be a tockLTS. The time

needed to produce a test case with n inputs and expected refus-

als and generated by the algorithm given in Figure 14 applied

to p is in O(n · |Q| · (|Q| + |T |) · (|O| + 2|I|)).

Proof. The main difference with respect to the proof of The-

orem 13 is that each iteration of the main loop needs to com-

pute whether each refusal set is expected or not for the set

of states that we are processing: unexpected refusals are al-

ways used (Step 2(b)iii) while expected refusals can be used

in Step 2(b)i.B. Since we can omit outputs, as explained in the

proof of Theorem 16, each iteration needs additional processing

in O(2|I|) with respect to an iteration of the previous algorithm.

Therefore, we have that, in the worst case, the time needed to

compute a test case with n inputs and/or expected refusals is in

O(n · |Q| · (|Q| + |T |) · (|O| + 2|I|)).

The final part of this section involves proving that the derived

test suites are indeed complete with respect to the �T imple-

mentation relation. We will follow a similar methodology to

the one previously used for �tr and start with some auxiliary

results.

Proposition 12. Let q = (Q, q0, I,O,T) be a tockLTS and t =

(Q′, q′
0
, I ∪O∪R(I ∪O))∪P(R(I ∪O))∪ {⊖},T ′, F) be a test.

Let σ ∈ (I ∪ O ∪ R(I ∪ O)) ∪ P(R(I ∪ O)) ∪ {⊖})∗ be such that

t
σ
==⇒ and let q′ ∈ Q′ be the unique state such that t

σ
==⇒ q′. We

have that q′ ∈ F if and only if one of the following hold

19

Input: A specification q = (Q, q0, I,O,T).

Output: A test case with refusals t = (Q′, q′
0
, I ∪ O ∪ R(I ∪ O)) ∪ P(R(I ∪ O)) ∪ {⊖},T ′, F).

Initialization

Set a fresh state q′
0

as initial state; Q′, F := {q′
0
}; T ′ := ∅; Qaux := {({q0}, q

′
0
)}.

Loop

While Qaux , ∅ do

1. Choose (P, q′) ∈ Qaux; Qaux := Qaux\{(P, q
′)}.

2. Select one of the following alternatives.

(a) Successful termination (by construction, q′ ∈ F).

(b) Continue testing: apply an input (expected or not) or refusal, observe outputs and tock and look for unexpected refusals.

i. Apply an input or a refusal. Choose one of the following options.

A. Apply an input. Choose ?i ∈ I and

• Create a fresh state qi; Q′ := Q′ ∪ {qi}; T ′ := T ′ ∪ {(q′, i, qi)}.

• If P
?i
==⇒ then Qaux := Qaux ∪ {(P after ?i, qi)}; F := F ∪ {qi}.

B. Apply an expected refusal. Let RP = {R(A) ∈ R(I ∪ O)|P
R(A)
====⇒}. If RP , ∅ then choose R(A) ∈ RP and

• Create two fresh states qA and q′
A
; Q′ := Q′ ∪ {qA, q

′
A
}; T ′ := T ′ ∪ {(q′,R(A), qA), (qA,⊖, q

′
A
)}.

• Qaux := Qaux ∪ {(P after ⊖, qA′)}; F := F ∪ {qA, q
′
A
}.

ii. Observe outputs and tock. For each a ∈ O ∪ {⊖} do

• Create a fresh state qa; Q′ := Q′ ∪ {qa}; T ′ := T ′ ∪ {(q′, a, qa)}.

• If P
a
==⇒ then Qaux := Qaux ∪ {(P after a, qa)}; F := F ∪ {qa}.

iii. Look for unexpected refusals. LetA = {R(A) ∈ R(I ∪ O)|P 6
R(A)
====⇒} and

• Create two fresh states qA and q′
A

. Q′ := Q′ ∪ {qA, q
′
A
}; T ′ := T ′ ∪ {(q′,A, qA), (qA,⊖, q

′
A

)}.

• F := F ∪ {qA}.

Figure 14: Test derivation II: the �T relation

• σ ∈ TRtraces(q), or

• there exists R(A) ∈ R(I ∪ O) such that σ = σ1R(A) and

σ1 ∈ TRtraces(q), or

• there exists A ∈ P(R(I ∪ O)) such that σ = σ1A and

σ1 ∈ TRtraces(q). In this case, for all R(A) ∈ A we

have that σ1R(A)⊖ < TRtraces(q).

Proof. First, note that the last two actions of σ cannot be A⊖

because we would reach a non-final state of the test. We will

prove the result by induction on the length of σ. The base case,

with σ being the empty sequence, is immediate because t can

only reach the initial state (by construction, it belongs to F) and

the empty sequence is always a trace of q.

Inductive hypothesis: the result holds if the sequence has

length less than k (k > 0). Let us suppose that σ has length

k. Therefore, σ = σ1a and the result holds for σ1. First, note

that σ1 must reach a state belonging to F because there are no

outgoing transitions departing from states in Q′\F. We consider

three cases.

If a ∈ I ∪ O ∪ {⊖}, taking into account the observation

that we made in the beginning of the proof, then we reason

as in the proof of Proposition 10. Depending on whether a

is an allowed/unexpected input, an output or a tock, the trans-

ition of the test labelled by a can be produced, respectively, by

Step 2(b)iA (if a ∈ I) and Step 2(b)ii (otherwise). In all cases

it is straightforward to check that the reached state after a be-

longs to F if and only if a can be performed from the states

belonging to q after σ1. In other words, this holds if and only

if σ = σ1a ∈ Ttraces(q).

If a ∈ R(I ∪ O) then σ′ must finish with an action belonging

to a ∈ I ∪ O ∪ {⊖} because there cannot be two consecutive

occurrences of single refusals (because each single refusal must

be followed by a tock). Therefore, σ1 ∈ Ttraces(q).

If a ∈ P(R(I ∪ O)), again, we must have that the last action

of σ1 belongs to a ∈ I ∪ O ∪ {⊖} (it cannot be a single refusal

because they are always followed by tock and there can be at

most one occurrence of an action belonging to P(R(I ∪ O)) in

a sequence performed by a test). Again, we conclude σ1 ∈

Ttraces(q). Moreover, by construction we trivially have the

second part of the result, that is, for all R(A) ∈ A we have that

σ1R(A)⊖ < TRtraces(q).

The proof of the next result is an obvious adaption of the

proof of Proposition 11 and, therefore, we omit it. In particular,

note that the sequences considered in the result do not contain

elements of P(R(I ∪O)) because they are (timed refusal) traces

of a process.

Proposition 13. Let I and O be countable disjoint sets of in-

puts and outputs respectively. Let q ∈ TockLTS(I,O) and

20

σ ∈ TRtraces(q). There exists a test case t = (Q′, q′
0
, I ∪

O ∪ R(I ∪ O)) ∪ P(R(I ∪ O)) ∪ {⊖},T ′, F) ∈ Test�tr
(q) such

that t
σ
==⇒ q′ and q′ ∈ F.

Theorem 18 (Soundness of Test�T(q)). Let I and O be count-

able disjoint sets of inputs and outputs respectively. Let p, q ∈

TockLTS(I,O) and t ∈ Test�T(q). If p⌉⌈t fails then p �T q does

not hold.

Proof. If p⌉⌈t fails then there exists a sequence σ ∈ (I ∪ O ∪

R(I∪O))∪P(R(I∪O))∪{⊖})∗ reaching a non-final state of the

automaton p⌉⌈t from its initial state. We have two possibilities:

σ ∈ (I ∪ O ∪ R(I ∪ O)) ∪ {⊖})∗ or σ = σ′A⊖, with σ′ ∈

(I ∪ O ∪ R(I ∪ O)) ∪ {⊖})∗ and A ∈ P(R(I ∪ O)). Note that σ

cannot end with an action belonging to R(I ∪O))∪P(R(I ∪O))

because transitions labelled by these actions reach final states.

Consider the first case, σ ∈ (I ∪ O ∪ R(I ∪ O)) ∪ {⊖})∗. By

Lemma 2 we have that p
σ
==⇒ and since σ does not end either

with a refusal or a set of refusals we obtain σ ∈ TRtraces(p).

Second, since we reach a non-final state, we apply Proposi-

tion 12 and given the fact that only one of the three possibilities

is viable (again, σ does not end with either an element belong-

ing to P(R(I ∪O))∪R(I ∪O)) we have that σ < TRtraces(q).

Therefore, TRtraces(p) * TRtraces(q) and we conclude

that p �T q does not hold.

In the second case we have σ = σ′A⊖, with σ′ ∈ (I ∪

O ∪ R(I ∪ O)) ∪ {⊖})∗ and A ∈ P(R(I ∪ O)). Apply-

ing Lemma 2 we have that there exists R(B) ∈ A such that

σ′′ = σ′R(B)⊖ ∈ TRtraces(p). Applying Proposition 12 we

have that σ′ ∈ TRtraces(q) (note that σ′ reaches a final state

because this sequence can be extended). Taking into account

the definition of A in Step 2(b)iii of the derivation algorithm,

this set contains the refusals R(A) such that q cannot perform

R(A)⊖ after performing σ′. In particular, it cannot perform the

sequence R(B)⊖ and, therefore, σ′′ < TRtraces(q). Thus,

TRtraces(p) * TRtraces(q) and we conclude that p �T q

does not hold.

Theorem 19 (Exhaustiveness of Test�T(q)). Let I and O be

countable disjoint sets of inputs and outputs respectively. Let

p, q ∈ TockLTS(I,O). If p �T q does not hold then there exists

t ∈ Test�T(q) such that p⌉⌈t fails.

Proof. If p �T q does not hold then there exists σ ∈ (I ∪

O ∪ R(I ∪ O)) ∪ {⊖})∗ such that σ ∈ TRtraces(p) but σ <

TRtraces(q). Let σ′ ∈ TRtraces(q) be the longest sequence

such that there exists σ′′ such that σ = σ′σ′′. Note that σ′

might be empty but σ′′ cannot be empty. So, σ′′ = aσ′′′ and

σ′a < TRtraces(q). Now, we distinguish two cases.

If a < R(I ∪ O) then we proceed as in the proof of The-

orem 15. By Proposition 13 we can build a test case with

trace σ′. If we extend this test case to consider a, then we

will have that a reaches a non-final state of the test, denoting

the fail of the application of the test case if this state is reached.

Obviously, this state is reached in p⌉⌈t because σ′a is a trace of

t and a trace of p and applying Lemma 2, it is also a trace of

p⌉⌈t. Therefore, p fails t, as requested.

If a ∈ R(I ∪ O), that is, a = R(B) for a certain B ⊆ I ∪ O,

then we know that a is followed by a tock action. Therefore, we

have σ = σ′R(B) ⊖ σ′′′, with σ′ ∈ TRtraces(q), σ′R(B)⊖ <

TRtraces(q) and σ′R(B)⊖ ∈ TRtraces(p). In other words,

we have q
σ′

==⇒ but q 6
σ′R(B)⊖
=======⇒. Again, by Proposition 13 we can

build a test case with trace σ′. We will have that R(B) will be a

member of the set of refusalsA built after applying step 2(b)iii

to the state that we reach in the test case t after performingσ′. If

we apply this test case to p, taking into account that p
σ′R(B)⊖
=======⇒,

we have that p fails t, as requested.

Corollary 2 (Completeness of Test�T(q)). Let I and O be

countable disjoint sets of inputs and outputs respectively. Let

p, q ∈ TockLTS(I,O). We have that p �T q if and only if for all

t ∈ Test�T(q) we have that p⌉⌈t does not fail.

9. Conclusions and future work

There has been significant interest in testing from formal

models since this brings the potential for automated systematic

testing. In order to test from a formal model one requires an im-

plementation relation that says what it means for the system un-

der test (SUT) to be a correct implementation of the specifica-

tion. This paper considered cyclic models, in which behaviours

are of the form of sequences of observable actions separated by

discrete time intervals. The work was motivated by the use of

cyclic simulators in a number of areas, including robotic sys-

tems.

Although many implementation relations are variants of the

well known ioco implementation relation, ioco and its timed

versions were not suitable for cyclic models. As a result,

there was a need to define novel implementation relations that

take into account the discrete nature of time in cyclic models.

We defined two types of implementation relation that differ in

whether or not it is possible to observe the situation in which

a model can refuse a set of actions. There were three variants

of each type of implementation relation, with these varying in

how unspecified inputs are treated.

We introduced two alternative characterisations of timed re-

fusal trace inclusion. First, we showed how one can define an

automaton whose language is exactly the set of timed refusal

traces of a model; this allows one to express correctness in

terms of formal language containment for automata. We also

showed how one can define timed refusal trace inclusion in

terms of the observations that can be made by an observer inter-

acting with processes (the specification and SUT); this demon-

strates that timed refusal trace inclusion corresponds to the no-

tion of observation for our models.

Finally, we introduced two testing frameworks that appropri-

ately capture our main implementation relations. Specifically,

we gave test derivation algorithms such that a process conforms

to a specification if and only if the process successfully passes

all the tests that can be derived from the specification.

There are several possible lines of future work. Regarding

the testing of deployed robots, as opposed to testing in a sim-

ulation, we would like to further explore the role of the envir-

21

onment in our framework. Although one can test within a sim-

ulation (using a model of the environment), in practice the real

environment will not behave like the model. As a result, it is

necessary to address this ‘reality gap’ when testing the actual

deployed robot. We believe that it will be possible to map the

tests produced using the proposed algorithms to tests that can

be used in testing a deployed robot. However, it is likely that

there will also be a need to have additional tests that explore

the reality gap, possibly based on a search-based approach that

aims to maximise observed differences between the simulation

of the environment and the actual environment.

There are also several possible lines of future work associ-

ated with the formalism used, test theory, and test generation

algorithms. It would be interesting to explore conditions un-

der which models can be expressed as Finite State Machines,

allowing the use of the associated test generation algorithms.

More generally, there should also be scope to introduce addi-

tional test generation algorithms, possibly including algorithms

that take into account fault models that describe the faults that

might occur. Sometimes it is difficult to interact with the sys-

tems in which we are interested. In such situations, it is ne-

cessary to use a more passive testing approach. An approach

might build on our previous work that considers the role of

asynchronous communications [22, 32, 33]. There is the po-

tential to enrich models to include, for example, probabilities

or continuous variables (i.e. hybrid systems) and, again, our

previous work [23] will be a starting point. Finally, we plan to

carry out case studies with robotic systems.

References

[1] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer

Science, 126:183–235, 1994.

[2] P. Ammann and J. Offutt. Introduction to Software Testing. Cambridge

University Press, 2nd edition, 2017.

[3] R. V. Binder, B. Legeard, and A. Kramer. Model-based testing: where

does it stand? Communications of the ACM, 58(2):52–56, 2015.

[4] S. Bonfanti, A. Gargantini, and A. Mashkoor. A systematic literature

review of the use of formal methods in medical software systems. Journal

of Software: Evolution and Process, 30(5):e1943, 2018.

[5] P. van den Bos, R. Janssen, and J. Moerman. n-Complete test suites for

IOCO. Software Quality Journal, 27(2):563–588, 2019.

[6] W. Bożejko and G. Bocewicz, editors. Modelling and Performance Ana-

lysis of Cyclic Systems. Springer, 2019.

[7] L. Brandán Briones and E. Brinksma. A test generation framework for

quiescent real-time systems. In 4th Int. Workshop on Formal Approaches

to Testing of Software, FATES’04, LNCS 3395, pages 64–78. Springer,

2004.

[8] A. Cavalcanti, J. Baxter, R. M. Hierons, and R. Lefticaru. Testing robots

using CSP. In 13th Int. Conf. on Tests and Proofs, TAP’19, LNCS 11823,

pages 21–38. Springer, 2019.

[9] A. Cavalcanti, P. Ribeiro, A. Miyazawa, A. Sampaio, M. Conserva Filho,

and A. Didier. RoboSim Reference Manual. Technical report, University

of York, 2019.

[10] A. Cavalcanti, A. Sampaio, A. Miyazawa, P. Ribeiro, M. S. Con-

serva Filho, A. Didier, W. Li, and J. Timmis. Verified simulation for

robotics. Science of Computer Programming, 174:1–37, 2019.

[11] A. R. Cavalli, T. Higashino, and M. Núñez. A survey on formal active

and passive testing with applications to the cloud. Annales of Telecom-

munications, 70(3-4):85–93, 2015.

[12] R. de Nicola and M. C. B. Hennessy. Testing equivalences for processes.

Theoretical Computer Science, 34:83–133, 1984.

[13] J. Fitzgerald, J. Bicarregui, P. G. Larsen, and J. Woodcock. Industrial de-

ployment of formal methods: Trends and challenges. In A. Romanovsky

and M. Thomas, editors, Industrial Deployment of System Engineering

Methods, pages 123–143. Springer, 2013.

[14] R. van Glabbeek. The linear time-branching time spectrum II. The se-

mantics of sequential processes with silent moves. In 4th Int. Conf. on

Concurrency Theory, CONCUR’93, LNCS 715, pages 66–81. Springer,

1993.

[15] R. van Glabbeek. The linear time-branching time spectrum I. The se-

mantics of concrete, sequential processes. In J.A. Bergstra, A. Ponse,

and S.A. Smolka, editors, Handbook of process algebra, chapter 1. North

Holland, 2001.

[16] D. Harel. Statecharts: A visual formulation for complex systems. Science

of Computer Programming, 8(3):231–274, 1987.

[17] L. Heerink and J. Tretmans. Refusal testing for classes of transition sys-

tems with inputs and outputs. In 19th Joint Int. Conf. on Protocol Spe-

cification, Testing, and Verification and Formal Description Techniques,

FORTE/PSTV’97, pages 23–38. Chapman & Hall, 1997.

[18] R. M. Hierons. Testing from partial finite state machines without harmon-

ised traces. IEEE Transactions on Software Engineering, 43(11):1033–

1043, 2017.

[19] R. M. Hierons. FSM quasi-equivalence testing via reduction and ob-

serving absences. Science of Computer Programming, 177:1–18, 2019.

[20] R. M. Hierons, K. Bogdanov, J.P. Bowen, R. Cleaveland, J. Derrick,

J. Dick, M. Gheorghe, M. Harman, K. Kapoor, P. Krause, G. Luettgen,

A.J.H Simons, S. Vilkomir, M.R. Woodward, and H. Zedan. Using formal

specifications to support testing. ACM Computing Surveys, 41(2):9:1–

9:76, 2009.

[21] R. M. Hierons, J.P. Bowen, and M. Harman, editors. Formal Methods and

Testing, LNCS 4949. Springer, 2008.

[22] R. M. Hierons, M. G. Merayo, and M. Núñez. An extended framework for

passive asynchronous testing. Journal of Logical and Algebraic Methods

in Programming, 86(1):408–424, 2017.

[23] R. M. Hierons and M. Núñez. Implementation relations and probabilistic

schedulers in the distributed test architecture. Journal of Systems and

Software, 132:319–335, 2017.

[24] J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to Automata

Theory, Languages, and Computation. Addison-Wesley, 3rd edition,

2006.

[25] World robotics 2018. International Federation of Robotics. Statistical de-

partment, 2018.

[26] ISO/IEC JTCI/SC21/WG7, ITU-T SG 10/Q.8. Information Retrieval,

Transfer and Management for OSI; Framework: Formal Methods in Con-

formance Testing. Committee Draft CD 13245-1, ITU-T proposed recom-

mendation Z.500. ISO – ITU-T, 1996.

[27] M. Krichen and S. Tripakis. Conformance testing for real-time systems.

Formal Methods in System Design, 34(3):238–304, 2009.

[28] D. Lee and M. Yannakakis. Principles and methods of testing finite state

machines: A survey. Proceedings of the IEEE, 84(8):1090–1123, 1996.

[29] R. Lefticaru, R. M. Hierons, and M. Núñez. An implementation relation

for cyclic systems that uses refusals and discrete time. In 17th Int. Conf.

on Software Engineering and Formal Methods, SEFM’19, LNCS 11724,

pages 393–409. Springer, 2019.

[30] R. Marinescu, C. Seceleanu, H. Le Guen, and P. Pettersson. A Research

Overview of Tool-Supported Model-based Testing of Requirements-based

Designs, volume 98 of Advances in Computers, chapter 3, pages 89–140.

Elsevier, 2015.

[31] G.H. Mealy. A method for synthesizing sequential circuits. Bell System

Techical Journal, 34:1045–1079, 1955.

[32] M. G. Merayo, R. M. Hierons, and M. Núñez. Passive testing with

asynchronous communications and timestamps. Distributed Computing,

31(5):327–342, 2018.

[33] M. G. Merayo, R. M. Hierons, and M. Núñez. A tool supported methodo-

logy to passively test asynchronous systems with multiple users. Inform-

ation & Software Technology, 104:162–178, 2018.

[34] M. G. Merayo, M. Núñez, and I. Rodrı́guez. Formal testing from timed

finite state machines. Computer Networks, 52(2):432–460, 2008.

[35] A. Miyazawa, P. Ribeiro, W. Li, A. Cavalcanti, J. Timmis, and J. Wood-

cock. RoboChart: modelling and verification of the functional behaviour

of robotic applications. Software & Systems Modeling (to appear), 2019.

[36] G. J. Myers, C. Sandler, and T. Badgett. The Art of Software Testing. John

Wiley & Sons, 3rd edition, 2011.

[37] C. Newcombe, T. Rath, F. Zhang, B. Munteanu, M. Brooker, and

22

M. Deardeuff. How Amazon web services uses formal methods. Commu-

nications of the ACM, 58(4):66–73, 2015.

[38] A. Petrenko and N. Yevtushenko. Testing from partial deterministic

FSM specifications. IEEE Transactions on Computers, 54(9):1154–1165,

2005.

[39] A. Petrenko, N. Yevtushenko, and G. von Bochmann. Testing determ-

inistic implementations from their nondeterministic FSM specifications.

In 9th IFIP Workshop on Testing of Communicating Systems, IWTCS’96,

pages 125–140. Chapman & Hall, 1996.

[40] I. Phillips. Refusal testing. Theoretical Computer Science, 50(3):241–

284, 1987.

[41] E. Rohmer, S. P. N. Singh, and M. Freese. V-REP: A versatile and scal-

able robot simulation framework. In 26th IEEE/RSJ Int. Conference on

Intelligent Robots and Systems, IROS’13, volume 1, pages 1321–1326.

IEEE Computer Society, 2013.

[42] A. W. Roscoe. Understanding Concurrent Systems. Texts in Computer

Science. Springer, 2010.

[43] J. Schmaltz and J. Tretmans. On conformance testing for timed systems.

In 6th Int. Conf. on Formal Modeling and Analysis of Timed Systems,

FORMATS’08, LNCS 5215, pages 250–264. Springer, 2008.

[44] M. Shafique and Y. Labiche. A systematic review of state-based test

tools. International Journal on Software Tools for Technology Transfer,

17(1):59–76, 2015.

[45] J. Tretmans. Model based testing with labelled transition systems. In

Formal Methods and Testing, LNCS 4949, pages 1–38. Springer, 2008.

23

	Introduction
	Technical context and related work
	Background and models
	Cyclic models
	Traces and automata
	Timed models

	Implementation relations based on traces
	Timed refusal traces
	Implementation relations with refusals
	Alternative characterisation based on observers
	Test generation
	Complete test suites with respect to tr
	Complete test suites with respect to T

	Conclusions and future work

