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Highlights: 

 

 This paper contributes to the understanding of the taste heterogeneity of travelers to pre-

peak discount pricing strategy.  

 Naturalistic data from smart card data users in Beijing before and after a policy intervention 

is used in this regard. 

 Four groups of travelers with heterogeneous characteristics are classified by constructing 

a latent class model. 

 Different targeted policy recommendations for each group of travelers are proposed in 

order to improve the policy effect.  
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Abstract:  

Studies of travelers’ response behavior to transportation demand management is receiving 

substantial attention among researchers and transport operators in recent years. While previous 

studies in this area have generally assumed that the sensitivity of travelers to different factors is 

homogeneous and relies on survey responses, which may be prone to self-reporting errors and/or 

subject to behavioral incongruence. Relying on naturalistic data, this paper aims to investigate the 

behavioral response to pre-peak discount pricing strategy in the context of the Beijing subway with 

a special focus on the heterogeneity among the travelers. Anonymous smart card data from 5946 

travelers before and after the introduction of a peak avoidance policy in Beijing are used to 

construct a latent class choice model to capture the sensitivity to different factors and the associated 

taste heterogeneity of travelers. Given the passive nature of the data, the model can offer more 

realistic outputs. The results indicate that there is substantial heterogeneity in travelers’ responses 

to the peak avoidance policy, and that they can be probabilistically allocated to four latent classes. 

For all classes of travelers, the decision to shift their departure to off-peak is affected by the 

monetary saving, the required change in departure time and the frequency of travel, but in different 

magnitudes. In particular, only two classes of travelers (who exhibit lower standard-deviation in 

pre-intervention departure time) show significant sensitivity to price changes indicating that the 

discount policies are more likely to be effective for these groups. The rest of travelers are largely 

price insensitive – warranting the need for non-monetary incentives as opposed to fare discounts. 

To the best of our knowledge, this study is the first to innovatively apply the LCC framework to 

analyze travelers’ heterogeneous behavior using large-scale smart card data without socio-

demographic information. The findings can provide guidance to the subway authority in devising 

differential peak avoidance policies targeted for different groups of users, which are likely to be 

more effective than the current ‘one size fits all’ approach.  

 

Keywords: peak avoidance choice, latent class choice model, smart card data, heterogeneous 

behavioral response, targeted policy 
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1 Introduction 

Public transportation, subways in particular, are crucial components of an efficient mega-city 

around the world. Unfortunately, the subway systems are under much pressure. Demand levels 

higher than the capacity are yielding immense congestion costs and leading to loss of social welfare 

in the subway similar to those of the road transport sector (Tirachini et al., 2013). The city selected 

as the case study is the Chinese capital Beijing which with its population of 22 million and high 

growth rate over the past few decades is a megacity getting worldwide interest. The increased 

demand for commute travel results in strongly increasing congestion in subway system (Wang et 

al., 2018). Beijing subway has an average occupancy rate of 135% and as many as 4-5 travelers 

crowded into one square meter of standing space during rush hours (Zhang et al., 2014). Beijing 

can be regarded as a microcosm of big cities suffering from similar public transport crowding 

issues around the world (Wei, 2012). To reduce congestion, cities’ managers have tried measures 

to encourage subway travelers to avoid traveling during the peak hours. Among these, fare 

discounts have been the most common and have to some extent been effective in spreading peak 

traffic across different urban rail transit systems. The Beijing Subway launched a pricing strategy 

to promote peak avoidance in December 2015. As a part of this policy, travelers can enjoy a 30% 

discount on the fare if they depart from selected stations on the Changping Line and Batong Line 

before 7 a.m. Similar discounts or differential pricing have also been implemented in other big 

cities, examples including the ‘Travel early travel free’ project in Singapore (Pluntke & Prabhakar, 

2013; Yang & Lim, 2018), the ‘Early bird’ project in Hong Kong (Halvorsen et al., 2016), and 

‘Free before 7’ project in New Zealand (Currie, 2009), etc. Meanwhile, additional measures, 

including advertising, incentivizing employers to allow flexible work schedules, and providing 

real-time information on subway crowding levels, have also been adopted, either in isolation or as 

complementary to differential pricing policies (Yang & Lim, 2018).  

    Travelers’ travel responses to peak avoidance policies are complex and influenced by various 

external factors (such as incentives) and travelers’ own attributes (such as commuting and social 
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demographic characteristics). Previous studies on travelers’ peak avoidance decisions have 

generally assumed that the sensitivity of travelers to different factors is homogeneous (Ben-Elia & 

Ettema, 2011a, b; Zhang et al., 2014; Wang et al., 2018). Consequently, such models result in ‘one 

size fits all’ policy recommendations. However, the homogeneity assumption ignores the fact that 

there are different types of subway travelers (Zou et al., 2018; Halvorsen et al., 2019), who are 

likely to have different sensitivities towards the incentives, leading to substantial taste 

heterogeneity.   

On a parallel stream, several studies have acknowledged the systematic heterogeneity among 

the travelers and segmented them based on observed socio-demographics. However, these studies 

have relied on stated preference (SP) surveys (Zhang et al., 2014; Wang et al., 2018). Although 

the SP approach provides responses on a large set of hypothetical scenarios at a low cost, it is 

criticized for its lack of realism, hypothetical bias, and behavioral incongruence, which may lead 

to errors and bias in the responses (Dixit et al., 2017). These limitations call into question the 

applicability of the results of these studies to policy making. 

To fill these gaps, this study investigates the behavioral response to peak avoidance policy 

using naturalistic data with a special focus on modeling the taste heterogeneity of the travelers. In 

order to achieve this goal, smart card data generated from the automatic fare collection system of 

the Beijing Subway have been used. Smart card data from before and after the implementation of 

the discount fare policy have been used to develop latent class choice (LCC) models (Ben-Akiva 

et al. 2002) of peak avoidance, where the travelers are probabilistically segmented into different 

classes according to their travel attributes. The results of the LCC model can be used to formulate 

targeted policy measures replacing the ‘one size fits all’ approach.  

The remainder of this paper is organized as follows. Section 2 presents the literature review. 

Section 3 presents the data. Section 4 describes the model construction. Section 5 analyzes the 

estimation results. Section 6 presents the discussion and implications of the study. Finally, Section 

7 summarizes the paper and sets the agenda for future research directions. 
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2 Literature review 

2.1 Modelling peak-avoidance behavior 

In order to attenuate the travel demand during rush hours, many countries and regions have 

tried to use traffic demand management policies to encourage travelers to change their preferred 

travel routine (Taylor et al., 1997). In terms of the policy perspective, previous researchers have 

explored the influence of various incentives and penalties on individuals’ peak avoidance behavior. 

Leblanc et al. (2013) tested the potential response to seven plans for peak avoidance implemented 

thus far, including providing High Occupancy Vehicle passes, Apple credits, cash, lottery tickets, 

donations, and congestion charges. Combining an SP survey with a nested Logit model, they found 

that the willingness of commuters to change their behaviors varies across incentives. Ben-Elia and 

Ettema (2011a) explored different levels and types of rewards applied in the Netherlands to 

encourage drivers to avoid driving at peak hours. Their results suggest that rewards can be effective 

tools in changing commuting behavior. In Beijing, Zhang (2014) conducted an SP survey among 

Beijing subway commuters and found that schemes such as providing snack discount coupons, 

flexible work schedules, and fare concessions are the most effective in encouraging peak 

avoidance behavior. In addition to investigating policies, previous studies have examined other 

explanatory factors, including socio-demographic attributes, flexibility of work hours, attitudes 

towards commuting alternatives, travel information, carriage environment, and weather factors 

(Peer & Verhoef, 2016; Basu et al., 2012; Wardman & Whelan et al., 2011). Moreover, based on 

evaluation results, previous studies have provided suggestions regarding ways to make peak 

avoidance policies more convincing and effective. Discussion angles include the degree of 

incentives (Halvorsen et al., 2019), temporal coverage (Yang & Lim, 2018; Peer & Verhoef, 2016), 

spatial coverage (Zou et al., 2018), policy promotion (Greene-Roesel et al., 2018), and policy mix 

(Zhang et al., 2014). However, these policy recommendations are often of a ‘one size fits all’ type. 

In the context of energy consumption, Knittel and Stolper (2019) find that selecting targeted groups 

using machine learning techniques to formulate targeted policies can improve the effectiveness 
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and efficiency of policies. To the best of our knowledge, previous transport studies that use 

naturalistic data have not looked at this aspect. 

Modeling traveler responses to peak avoidance policies has been an important focus in these 

studies. Conventional choice models, such as the multivariate logit model (Ben-Elia & Ettema, 

2011a, 2011b), multivariate probit model (Zhang et al., 2014), and binary logit model (Halvorsen 

et al., 2019) have been used to maximize the utility of choosing peak avoidance by incorporating 

individual socioeconomic characteristics and mode attributes (Ben-Akiva et al., 1999). However, 

the naturalistic data sources are typically anonymous and do not have information about the 

sociodemographic characteristics of the travelers.  Among previous studies evaluating subway 

peak avoidance policies using smartcard data, only Halvorsen et al. (2019) and Wang et al. (2018) 

have considered the heterogeneity of travelers and classified subclasses through K-means. 

However, these two papers did not construct choice models to explore the heterogeneous 

behavioral responses of different groups, which has left the behavior mechanism unexplored.  

In order to device targeted policy measures, it is essential to capture the way in which the 

heterogeneity among travelers leads to differences insensitivity toward different influencing 

factors (Walker & Li, 2007). Among various approaches to incorporating the taste heterogeneity 

among travelers, the latent class choice model (LCC) is a widely used and powerful method 

(Gopinath, 1995; Magidson, 2003). LCC captures unobserved preference heterogeneity by 

assuming that dividing the travelers into a discrete number of classes can sufficiently represent the 

taste variation (Shen et al., 2006; Greene & Hensher, 2003). The LCC approach has been applied 

in various transportation contexts: trip scheduling preferences (Peer & Verhoef, 2016), travel mode 

choice behavior (Vij et al., 2013), attitude consideration (Hess et al., 2013), and driving behavior 

(Choudhury et al., 2008, Braitman & Braitman, 2017). Based on the LCC specification, these 

papers drew constructive conclusions regarding the latent heterogeneity in preferred choices.  

2.2. Behavior modeling using Smart Card data 

The widespread application of smart cards in recent years offers new possibilities to observe 
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and record travelers’ behaviors. Automated fare collection (AFC) systems help researchers to 

better estimate, predict, and validate transport theories and models (Vlahogianni et al., 2015). In 

subway AFC systems, trip records such as date, enter/exit time, and enter/exit station numbers, are 

recorded when travelers swipe their cards on a card reader. Smart card data have been widely used 

to estimate travel attributes, such as the origin–destination (OD) matrix (Munizaga et al., 2010; 

Alsger et al., 2015), travel mode identification (Long et al., 2012), travelers’ route choice mode 

(Ma et al., 2017; Jánošíková et al., 2014), trip purposes (Lee & Hickman, 2014; Alsger et al., 2018) 

and traveler flow on different routes (Tavassoli et al., 2018). Compared with the traditional dataset, 

this new data source has advantages in terms of accuracy, continuity, large-scale application, and 

cost efficiency (Zhao et al., 2018; Zhang et al., 2017; Kieu et al., 2015; Liu et al., 2019). 

However, smart card data are usually anonymous and do not include socioeconomic attributes 

(e.g., gender, age, career, income, etc.) or detailed travel information (e.g., trip purposes, access 

and egress modes, etc.) (Bagchi et al., 2005; Anda et al., 2017; Jain et al., 2014). To overcome 

these limitations, many researchers have attempted to mine indirect and latent information from 

smart card data, such as journey time reliability (Rahbar et al., 2017), job and housing dynamics 

(Huang et al., 2018), traveler classification (Halvorsen et al., 2019) and policy response (Zou et 

al., 2018), etc. (see Zannat and Choudhury 2019 for a comprehensive review).  

Smart card data have also been used to capture the change in travelers’ behavior in response 

to subway peak avoidance policy (Yang & Lim, 2018; Zou et al., 2018). However, Zou et al. 

(2018) only estimated the retiming elasticity of different travelers and did not construct a choice 

model to analyze the tradeoff among different factors influencing the travelers’ behavior. Yang 

and Lim (2018), on the other hand, have used the method of choice modeling, but without 

considering taste heterogeneity. Hence, this paper fills a research gap. To the best of our 

knowledge, this study is the first to use the LCC framework to analyze large-scale smart card data 

and can offer more realistic outputs, given the massive passive nature of the data. 
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3 Data  

3.1 Smart card data 

The discount pricing strategy was implemented on December 28, 2015 and provided a 30% 

discount for travelers who checked in before 7:00 a.m. This policy was piloted at 16 stations on 

the Batong Line and Changping Line on weekdays. Data from 20 working days, before and after 

the policy’s implementation, are used in the analyses. As smart card data does not include 

demographic variables, this study selects the data from travelers whose most frequent origin station 

is Zhuxinzhuang station, in order to better control for income and other unobserved socio-

demographic variables (Huang et al., 2018). Zhuxinzhuang station is located on the Changping 

Line, as shown in Figure 1.  
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Figure 1. Studied station of this paper-Zhuxinzhuang station1 

The dataset included 738680 observed trip records from 19843 unique smart cards. Given our 

interest in habitual travelers traveling during peak hours before the introduction of the policy, only 

the following types of travelers have been used in our analyses: (a) those who travel at least one 

day a week (b) those who have departure times between 7:00 a.m. and 9:00 a.m. before the  

                                                             

1 The map is based on: https://www.bjsubway.com/station/xltzs/ 
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implementation of the policy. After applying these two screening criteria, 437168 trips from 5946 

peak-hour travelers are retained. 

As shown in Table 1, the smart card database includes 5 fields: card ID, check-in time, origin 

station ID, check-out time, and destination station ID. As an example, the first card user 

(1000751085xxxxx) entered station 9429 at 08:52, and exited from station 0103 at 10:37 on 

November 30, 2015. On December 1, 2015, the traveler entered and exited from the same pair of 

stations at 08:21 and 10:08, respectively. With one-to-one correspondence between smart cards 

and travelers, we can track the travel behavior of a specific traveler over time. 

Table 1. An excerpt from smart card data 

Card ID Check-in time Origin station Check-out time Destination station  

1000751085xxxxxx 20151130085200 9429 103707 0103 

1000751085xxxxxx 20151201082100 9429 100826 0103 

… … … … ... 

1000751017 xxxxxx 20151130081100 9429 95601 0104 

… … … … … 

3.2 Identification of variables 

The key variable of interest to the policymakers is whether a traveler moves forward his/her 

departure time from peak hours to pre-peak. If a traveler’s median departure time falls into the 

peak hours before the policy (t1) and shifts to pre-peak hours afterward (t2), the traveler is regarded 

as a ‘shifted traveler’. In other words, a shifted traveler (y=1) is defined as follows: 

1 21, 7 : 00 , 7 : 00

0,

t am t am
y

else

 
 


                      (3) 

Among the 5946 travelers, 212 travelers shifted from peak to pre-peak. Hence, the rate of 

shifting is approximately 3.6%. The median value of each traveler’s pre-policy departure time is 

treated as his/her preferred departure time (Peer & Verhoef, 2016). 

The candidate explanatory variables used in the model are shown in Table 2. 
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Table 2. Variable definition 

 Variables   Description  Range  Categorical representation in 
the model (if applicable) 

Trip  

characteristics 

Monetary saving  The fare savings 
associated with pre-peak 
travel. 

0.9-2.7 RMB -  

The required 
change in 
departure time  

 

The amount of time a 
traveler would have to 
shift his/her departure 
time from the preferred 
departure time to avail 
the discounted fare. 

0-120 minutes -  

Travel frequency  

 

Average of number of 
days using subway in 
morning per week before 
the policy. 

1- 5 times/week -  

Temporal travel 
characteristics 

Trip duration  

 

Median duration time in 
subway of the period 
before the policy. 

0-120 minutes 

 

1: 0-20 min  

2: 20-40 min  

3: 40-60 min  

4: > 60 min 

Standard 
deviation of the 
first-trip 
departure times 

 

Standard deviation of the 
first-trip start time - a 
measures the stability of 
the start time before the 
policy.  

0-120 minutes 1: 0-30 min 

2: 30-60 min 

3: >60 min 

Spatial travel 
characteristics 

The number of 
traveled OD 
pairs 

The number of unique 
OD pairs traveled before 
the policy – smaller 
values denote higher 
spatial stability.   

1-5 pairs 1: 1 pair 
2: >1 pair 

Ticket fare Median ticket price of 
the period before the 
policy.  

3-9 RMB 1: 3,4 RMB 

2: 5 RMB 

3: 6 RMB 

4: >6 RMB 

It should be noted that Beijing’s subway fare is distance-based and that the trip duration is 

related to the travel distance to some extent. However, travelers with the same fare or travel 

distance can have different travel duration depending on routes and/or congestion levels, due to 

differences in transfer time and queuing time during boarding. As a result, we keep both trip 
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duration and ticket fare. In addition, in order to facilitate the calculation, we regard 5:00 a.m. as 0, 

and the value increases by 1 for every 1 minute increase in departure time. 

4 Model structure 

A traveler’s decision to switch from peak to off-peak is likely to be affected by travel time, 

travel cost, frequency, reliability (i.e., standard deviation of travel time), crowding level, required 

shift from the original departure time, etc. (Peer & Verhoef, 2016; Wang et al., 2018). The 

sensitivity to these factors, however, is likely to vary substantially among travelers with different 

travel patterns (e.g., regular vs. irregular, long vs. short distance travelers, etc.), as well as with 

socio-demographic characteristics. This prompted us to test the applicability of latent class choice 

(LCC) models, which acknowledge that (a) there are unobserved (latent) groupings among the 

decision makers and the members of each latent class have similar sensitivity towards an attribute 

and that (b) the group memberships can be probabilistically inferred from the data (Ben-Akiva et 

al. 2002). Although the socio-demographic characteristics of the travelers are unobserved in the 

anonymous smart card data, the travel patterns can be inferred given the panel nature and used as 

indicators of the class membership. It may be noted that while traditional clustering methods can 

be used to divide the travelers into different classes deterministically, LCC offers probabilistic 

class assignment and joint estimation of the class membership utilities and the choice utilities, 

which leads to more efficient estimates (Hess, 2014). The details of the LCC model structure are 

presented below.  

 The LCC model consists mainly of two sub-models, a class-membership model and a class-

specific choice model, as shown in Figure 2. 
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Figure 2. Latent class choice model 
The class-specific choice model represents the choice behavior of each class and varies across 

latent classes. The conditional probability of observing a choice i by a traveler n belonging to class 

cn (𝑦𝑖𝑛) can be expressed as follows： 𝑃(𝑦𝑖𝑛|𝑐𝑛, 𝑋𝑖𝑛) = exp⁡(𝛽𝑐𝑛𝑋𝑖𝑛|𝑐𝑛)∑ exp⁡(𝛽𝑐𝑛𝑋𝑗𝑛|𝑐𝑛)𝑗              (1) 

where traveler n belongs to latent class cn , 𝑋𝑖𝑛 represents the explanatory variables associated 

with alternative i and traveler n , 𝛽𝑐𝑛 and represents the coefficients corresponding to cn.  

The unconditional probability of observing a choice i by an individual n can hence be 

deduced from the following:     𝑃(𝑦𝑖𝑛|𝑋𝑖𝑛, 𝐼𝑛) = ∑ 𝑃(𝑐𝑛|𝐼𝑛)𝑃(𝑦𝑖𝑛|𝑐𝑛, 𝑋𝑖𝑛)C𝑐=1                      (2) 

where 𝐼𝑛  represents the explanatory variables and/or indicators associated with the class 

membership, and C denotes the total number of classes.  

Assuming that the observations of different travelers are independent and the correlation 

among decisions by the same traveler is captured by the class membership component, the log-

likelihood function for all observed travelers is given by:  𝐿𝐿 = ∑ 𝑙𝑛𝑃(𝑦𝑖𝑛|𝑋𝑖𝑛, 𝐼𝑛)𝑁𝑛=1                           (3) 
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Parameters of the class-membership model 𝑃(𝑐𝑛|𝐼𝑛) and class-specific choice model 𝑃(𝑦𝑖𝑛|𝑐𝑛, 𝑋𝑖𝑛)  are estimated simultaneously by maximizing this function using Latent Gold 

software.   

5 Results 

The number of classes in the LCC model has been determined empirically without any prior 

hypotheses. The goodness-of-fit values and the associated conclusions regarding class membership 

are presented first, followed by a detailed estimation of the basic model (no latent class) and the 

final model (with latent classes). 

5.1 Determining the number of classes 

The number of classes is not predetermined but is determined empirically based on goodness-

of-fit statistics as well as the behavioral intuitiveness and statistical significance of the model 

parameters (Walker & Li, 2007). With the same specifications as the number of classes, models 

with 1–5 classes are estimated. Among the variables in Table 2, the trip duration, standard deviation 

of the first-trip start times, the number of traveled OD pairs, and ticket fare have been tested as 

indicators of traveler classification. Monetary savings, the required change in departure time, and 

travel frequency are used as explanatory variables in the choice component2. 

In Table 3, the goodness-of-fit of the models, such as BIC, AIC, and log-likelihood, provides 

the basis for selecting the appropriate number of latent classes. In general, the lower the AIC and 

BIC, the better the model according to the statistics (Walker & Li, 2007). The results indicate that 

models with classification are preferred over the model without classification. Based on the BIC, 

the 2-class model has the best performance. However, AIC suggests that the 4-class model is 

superior. Considering the behavioral intuitiveness and statistical significance of the model 

                                                             

2 ‘Ticket fare’ and ‘Travel frequency’ have been tested both for class membership and choice component and retained 
in the components based on the coefficient signs and statistical significance. 
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parameters, the results of the 4-class model provide a more meaningful behavioral interpretation 

in terms of capturing travelers’ heterogeneity. Therefore, the 4-class model is selected in this study. 

In the following sections, we discuss the details of the 4-class model. 
Table 3. Overview of model estimation results  

Number of classes LL BIC(LL) AIC(LL) 
1 -641.156 1617.074 1290.312 

2 -590.710 1317.074 1267.421 

3 -569.409 1337.850 1240.818 

4 -560.534 1520.847 1213.085 

5 -549.114 1619.656 1218.228 

5.2 Class-specific choice model without latent class 

The class-specific choice model without latent class, which is treated as the base model, is 

shown in Table 4.  

Table 4. Class-specific choice model without latent class 

Variables  Basic model 
Coefficient z-value 

Monetary saving 1.100* 1.782 

Required change in departure time -1.549*** -21.012 

Travel frequency -0.700*** -2.888 

Intercept 2.129*** 3.996 

Note: *** indicates |z|>=2.58, ** indicates 1.96<=|z|<2.58, and * indicates 1.64<=|z|<1.96 

    Estimated coefficients indicate that monetary saving, the required change in departure time, 

and travel frequency affect peak avoidance choice behavior. The greater the fare savings from 

choosing peak avoidance, the more travelers tend to depart before 7:00 a.m. Then, the required 

change in departure time negatively influences travelers’ choices. That is, the higher the required 

change, the lower is the probability of shifting. Moreover, travelers with larger travel frequencies 

have lower probabilities of changing their behavior. These results are in line with expectations.  

5.3 Latent class choice model 

5.3.1 Class-membership model 

    The estimation results show that the proportions of classes 1–4 are approximately 33.9%, 
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32.5%, 23.3%, and 10.3%, respectively. Coefficients vary significantly between different 

categories, and each class consists of travelers with different travel characteristics. The detailed 

results of the 4-class model are shown in Table 5, which helps us to explore the different behavioral 

responses across different classes of travelers. 
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Table 5. Class-membership model estimation results1 

 

Classification Class 1 Class 2 Class 3 Class 4 

Class size 0.3392 0.3248 0.2332 0.1029 

Indexes Coefficient z-value Coefficient z-value Coefficient z-value Coefficient z-value 

Standard deviation of the first-trip start times 
   

1      -0.3219    -0.5722 -0.1127 -0.1954 1.0466 1.0394 -0.612 -0.5329 

2 0.3282 0.4293 0.0125 0.0157 2.2126** 2.0266 -2.5533 -1.3905 

3 -0.0063 -0.0069 0.1002 0.1076 -3.2592* -1.7825 3.1653*** 2.697 

Trip duration     

1 1.5478 1.5626 0.1455 0.1177 -2.0944 -1.2584 0.4011 0.4642 

2 0.616 0.6219 0.609 0.5521 -1.1015 -1.0463 -0.1235 -0.2038 

3 1.1659 1.0122 -2.7814 -1.2144 1.4574 1.063 0.1581 0.1663 

4 -3.3297** -2.1553 2.0269 1.3696 1.7384 1.1227 -0.4357 -0.3495 

Ticket fare   

1 -0.7012 -0.6855 -1.4593* -1.836 3.3352* 1.8634 -1.1748 -1.1639 

2 -0.3828 -0.455 0.898 0.9136 -0.467 -0.6515 -0.0482 -0.0813 

3 -0.5135 -0.6283 0.6704 0.8255 -0.8438 -1.0764 0.687 1.3797 

4 1.5975 0.7479 -0.1092 -0.1006 -2.0243 -1.7654 0.536 0.629 

The number of traveled OD pairs   

1 0.0618 0.4048 0.1592 0.9616 0.446** 2.256 -0.225 -1.4594 

Note: *** indicates |z|>=2.58, ** indicates 1.96<=|z|<2.58, and * indicates 1.64<=|z|<1.96 
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Figure 3 and Figure 4 show the descriptive statistics of the classification indicators 311 

and travel characteristics of the four different classes, respectively, to further highlight 312 

the differences between the classes.  313 

 314 

Figure 3. Latent classes profiling-Weighted average value of indicators  315 

 316 

Figure 4. Latent classes profiling- Weighted average value of the traveling 317 

characteristics  318 
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According to the results of the class-membership model, variable distributions and 319 

the traveling characteristics of each classification group, different types of travelers that 320 

correspond to each group are identified. 321 

(1) Class 1. Short-distance, low variation travelers. This group of travelers’ 322 

commuting time in the subway is generally no more than 1 hour; the departure time is 323 

fixed with low time flexibility, and the destination station is fixed. Moreover, they spend 324 

the least time traveling in the subway system. Correspondingly, their average departure 325 

time is the latest. 326 

(2) Class 2. Long-distance, low variation travelers. The travelers in class 2 327 

are similar to those in class 1, with some differences. They have the longest travel 328 

duration and largest average ticket fare. Correspondingly, their average departure time 329 

is the earliest.  330 

(3) Class 3. Multi-transfer, low variation travelers. Compared with the first 331 

group, these travelers have lower ticket fares and longer duration of travel. This 332 

suggests that they spend more time in the process of subway transfer or waiting for a 333 

train. Their departure times are the most fixed. 334 

(4) Class 4. Flexible, high variation travelers. The most distinctive feature of 335 

this group of travelers is that they have lower temporal and spatial stability than the 336 

other 3 groups. 337 

5.3.2 Class-specific choice model 338 

The estimated results of the class-specific choice model with 4 classes are shown 339 

in Table 6. The differences in the magnitude and statistical significance (confirmed by 340 

the Wald test) of the estimates confirm the hypothesis regarding significant taste 341 

heterogeneity across classes.  342 

Table 6. Class-specific choice model with latent class 343 

Variables 
Class 1 Class 2 Class 3 Class 4 Wald 

Coefficient z-value Coefficient z-value Coefficient z-value Coefficient z-value Value P-value 

Monetary saving 19.4162*** 3.2641 9.3635** 1.97 5.2297 1.3948 0.4682 0.181 16.16*** 0.001 

The required change 

in departure time  
-1.6336*** -4.5104 -1.5457*** -4.3599 -5.0792*** -4.1574 -2.9868*** -5.0472 10.57** 0.014 

Travel frequency 0.3358 0.3041 -0.3709 -1.426 1.322 0.6932 -2.7185*** -3.8119 9.99** 0.019 

Intercept -10.9827*** -2.6674 6.3442* 1.9589 7.1084* 1.7156 12.1047*** 3.9363 24.54*** 1.9e-5 
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Note: *** indicates |z|>=2.58, ** indicates 1.96<=|z|<2.58, and * indicates 1.64<=|z|<1.96 344 

Among the variables, monetary saving and the required change in departure time 345 

have the greatest influence on class 1 and class 3, respectively, while class 4 is the most 346 

sensitive to travel frequency and least sensitive to monetary saving.  347 

5.4 Inference of the results: plotting the changes in choice probabilities 348 

In order to provide a visual representation of the nonlinear effects of monetary 349 

saving and the required change in departure time on travelers' travel time choice, we 350 

plotted the probabilities of choosing peak avoidance against the different levels of 351 

money-saving and required change in departure time separately. The majority of 352 

respondents, regardless of class, have a travel frequency of four days per week which 353 

is controlled (unchanged) in our analysis. The fare savings associated with pre-peak 354 

travel are controlled to 1.5 yuan (average discount available) when we consider the 355 

effect of the required change in departure time. Moreover, the required change in 356 

departure time for travelers is maintained at 40 min (the highest peak of sample traveler 357 

flow appeared at 7:40 a.m.), when we test the effect of monetary saving.  358 

Figure 5 shows the probability of choosing peak avoidance for class 1 and class 2 359 

as a function of the amount of monetary saving. The results of class 3 and class 4 are 360 

not shown in this graph because they are very insensitive to such savings; the amount 361 

of savings required for these classes to switch to off-peak travel is much larger than the 362 

maximum ticket price. This shows how challenging it is to persuade subway users who 363 

belong to class 3 and class 4 to avoid rush hour consciously through ticket discount 364 

policies.  365 

However, the discount policy does affect travelers from class 1 and class 2, which 366 

covers more than half of the total respondents. It may be noted, however, that the 367 

intuitive notion of ‘more monetary saving, higher peak avoidance probability’, is not 368 

entirely valid. The probability only changes in a specific price range. For class 1, this 369 

range is from 3.5 yuan to 4 yuan. When the amount of monetary saving does not reach 370 

3.5 yuan, their travel time will not change even though the amount of monetary saving 371 

increases. Meanwhile, their probability of avoiding rush hour is equal to 1 for 4 yuan 372 
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and hence discounts beyond 4 yuan will not result in any further shift. Similarly, the 373 

sensitive price range for class 2 is from 4.5 yuan to 5.5 yuan. This finding has important 374 

policy implications.  375 

 376 

Figure 5. Individual effect of monetary saving 377 

Figure 6 shows the peak avoidance probability for each class as a function of the 378 

required change in departure time. Similar to the effect of monetary saving, the peak 379 

avoidance probability of each class only changes within a specific range. In general, 380 

travelers from class 4 and class 3 have the probability of avoiding rush hour only when 381 

the gap between the discount time and their usual time of departure does not exceed 6 382 

minutes. This strict requirement may also mean that it is difficult for travelers from 383 

class 3 and class 4 to avoid peak time. Relative to this, travelers in class 1 and class 2 384 

have higher flexibility in terms of departing early. In class 2, especially, a discount 385 

policy that starts 20 min before travelers’ usual departure time can change their travel 386 

behavior.   387 

  388 

Figure 6. Individual effect of the required change in departure time 389 

In addition, in order to provide a visual representation of the correlation between 390 

monetary saving and required change in departure time, we plotted the equal probability 391 

curves for each class. Figure 7 shows the equal probability curves for the peak 392 

avoidance probability of 20%. This result is in line with the information of Figure 5 and 393 

Figure 6. The marginal rate of substitution of monetary savings for the required change 394 
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in departure time is quite low for class 3 and class 4. This illustrates that travelers of 395 

these classes are not are not easily influenced by ticket discounts. A policy that requires 396 

a smaller change in departure time can have a larger effect. For class 1 and class 2, the 397 

MRS value is much higher. For class 1, the effect of no required change in departure 398 

time equals 0.2 yuan of monetary saving. With an increase in the required change in 399 

departure time, the two variables as considered almost equally important. For class 2, 400 

the required change in departure weighs more in the decision to avoid peak hours. 401 

  402 

 Figure 7. Equal probability curve (20% probability of peak avoidance) 403 

6 Discussion and implications  404 

Beijing subway fare discount policy and the availability of smart card data provide 405 

a good opportunity for us to study the heterogeneity of travelers and how to design a 406 

targeted peak avoidance policy based on real-life conditions. The behavioral 407 

characteristics of travelers mined from the original data are more reliable and authentic 408 

compared to self-reported data, which helps us identify the heterogeneity of travelers. 409 

We will discuss the results in the following two aspects: behavior and policy. 410 
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From the perspective of behavior, the results reveal a heterogeneous impact of 411 

policy and commuting factors depending on the type of traveler. Previous studies on 412 

peak avoidance using naturalistic data have not focused on this aspect. By predicting 413 

the latent classes of travelers, the results of this study not only demonstrates the 414 

influence of the heterogeneity of the traveler behavior, but also quantifies the source of 415 

the heterogeneity. 416 

From the results, it can be seen that the travelers of class 1 and class 2 are relatively 417 

more sensitive to money and less sensitive to time, and they are most likely to accept 418 

the discounted fares to change their departure times. Their travel characteristics are 419 

consistent with the most common office workers: the departure time is regular, and the 420 

travel destination has a very small standard deviation. Although the smart data lacks 421 

demographic variables, we can infer some latent information indirectly. The subway 422 

station used in the analyses is located near the 6th ring road3 in Beijing and far from the 423 

city center. Previous studies have shown that the income of common office workers 424 

living in this location is relatively lower than those living near the city center who have 425 

a more suitable job-housing balance (Huang et al., 2018). Meanwhile, travelers with 426 

lower incomes tend to have lower value of time (Börjesson et al., 2012). Therefore, they 427 

are more sensitive to incentives of monetary saving, and less sensitive to the required 428 

change in departure time (Peer & Verhoef, 2016). This is consistent with the result of 429 

road peak-avoidance (Ben-Elia & Ettema, 2011b). 430 

The travelers of class 3 also meet the characteristics of office workers but is 431 

different from the first and second types of travelers. The salient characteristic of the 432 

third group is a short commute (lowest fares), but with a long duration of travel, 433 

indicating multiple transfers during the subway commute congested travel routes that 434 

lead to time spent getting through crowds (Wu & Huang, 2009). As their journey is the 435 

most complicated and uncertain, their departure time is the most fixed, and they are the 436 

most sensitive to the required change in departure time among the four types of travelers 437 

                                                             

3 Beijing’s network of arterials is in hub-and-spoke structure, including six main ring roads that are fed 
by nine more freeways. The larger the number of ring road, the farther away from the city center. 
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(Ettema & Timmermans, 2006). It is difficult for such travelers to change their behavior 438 

under existing policies, as shown in Figure 5.  439 

The class 4 is relatively flexible in terms of travel and is the smallest group out of 440 

the four. Their departure times are the least stable and they have the most varied travel 441 

destinations. Interestingly, in previous research, high peak avoidance willingness is 442 

always associated with high time flexibility (Zhang et al., 2014; Peer & Verhoef, 2016). 443 

However, in this case, it is difficult to persuade the fourth group to choose to change 444 

their behavior, as shown in section 5.4. It may be noted that such constraints regarding 445 

time flexibility are often not well captured in SP surveys, denoting the high risk of 446 

biased estimates on SP-based peak-avoidance analyses. On the other hand, considering 447 

the high flexibility, there may be a high representation of travelers with relatively high 448 

incomes and flexible jobs in this group. This would help explain why they are the most 449 

insensitive to little monetary savings and are more sensitive to time. Moreover, a higher 450 

travel frequency is negatively correlated with a switch in departure time in response to 451 

the policy. Such travelers are less willing to change their previous habits. 452 

The results and discussion above indicate that the subway authority could improve 453 

the current simple fare discount policy. Bamford (1987) points out that transport 454 

policies that target specific travelers are likely to be more effective than generic 455 

strategies. Based on travelers’ heterogeneous taste, giving each individual a specific 456 

targeted incentive may be the most effective in theory, but infeasible in practice. Instead, 457 

the targeted method can be approached through the use of more homogeneous groups 458 

to increase the efficiency and effectiveness of the treatment. The policy suggestions 459 

listed below can account for different traveler characteristics by targeting certain groups 460 

to ease the inconvenience of a change in behavior. 461 

The travelers of class 1 and class 2 have the highest proportion and are the main 462 

target population of the policy. For them, monetary incentives are attractive. However, 463 

the actual discount amount is not considered sufficient because of how low the fares are 464 

to begin with. In our case, the first and second types of travelers need a discount of 465 

approximately 5 yuan to change their behavior. One option would be to increase 466 

existing discounts. Referring to the “Travel early travel free” in Singapore, the discount 467 
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scheme can even change to free fare for peak avoidance. The advantage of the free fare 468 

policy is that short-term large-scale incentives may have a persistent effect after the 469 

policy is cancelled (Yang & Lim, 2018; Peer & Verhoef, 2016). The disadvantage is 470 

that such incentives increase the financial burden for the subway operators. Moreover, 471 

travelers whose original departure time is before 7:00 a.m. can enjoy the discount 472 

without any behavior change. This leads to inefficiencies in the cost-benefits analysis. 473 

Another solution would be the application of other forms of monetary incentives. For 474 

example, in other scenarios, a lottery with the same expected value is more effective 475 

than a fixed amount of money reward (Halpern et al., 2011). Setting up a lottery with a 476 

large monetary prize with low probability of winning, could be a more attractive 477 

incentive to price sensitive travelers. In addition, incentives should be structured to 478 

reward behavior change rather than pre-existing behavior, such as by establishing a 479 

behavior baseline (e.g., travel in peak hours) and rewarding change from that baseline 480 

(e.g., shift from peak hours to off-peak hours). This would allow policymakers to 481 

increase the rewards for those targeted, using the same financial budget.  482 

For the travelers of class 3, the greatest resistance to behavior change may arise 483 

from uncertainty. Sending customized travel information would therefore be an option 484 

regarding this group. The negative effects of travel time uncertainty can be reduced by 485 

providing travelers with travel time information, allowing them to better estimate their 486 

expected travel time and thereby reduce re-scheduling costs (Ettema & Timmermans, 487 

2006). For those who have many transfers and relatively long transit times, the subway 488 

operator can provide targeted trip reports based on their historical trip data, informing 489 

travelers of their current travel conditions and possible changes after peak avoidance, 490 

which would help the travelers to achieve a better trade-off. Meanwhile, based on big 491 

data analysis and increasingly popular travel apps, targeted information intervention 492 

becomes possible at a low cost. 493 

The class 4 is not sensitive to monetary incentives. Current forms of incentives are 494 

therefore insufficient to persuade them to change behavior, as shown in Figure 5 and 495 

Figure 6. One consideration is that policymakers can ignore these travelers because of 496 

the low proportion. However, as these travelers have the greatest time flexibility, they 497 
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are actually the travelers who have the ability to re-schedule their departure times. The 498 

next step is to find the right form of intervention to motivate them. Beyond monetary 499 

incentives, other forms of interventions, such as social norms and information, are all 500 

worth exploring the policy potential. 501 

It may be noted that in addition to the factors considered, in future research, it is 502 

important to further consider the temporal and spatial heterogeneity and develop 503 

differentiated strategies. In particular, as the longer required change in departure time 504 

prevents travelers from switching, the optimum departure windows can be different 505 

depending on the travel times (including transfer times) from a station to the city center 506 

to help reduce the required change in departure time. In addition, since the results 507 

indicate, the composition of demand (i.e. the proportion of the four traveler classes) is 508 

important for the effectiveness of the fare-discount policy, based on the proportion of 509 

the four classes of travelers, targeted measures can be designed for different stations. 510 

For instance, discount policies may have potential high effect in stations located far 511 

away from city center which serve large number of travelers of class 2. Thus, policy 512 

makers can design the discount policy based on these departure stations. In contrast, for 513 

travelers in stations close to the city center, such discounted fares may not be as 514 

effective. Then, the policy makers should consider taking other measures instead. 515 

7 Conclusion and further research 516 

This paper has explored travelers' heterogeneous behavioral responses to the 517 

Beijing peak avoidance policy using smart card data. Considering the heterogeneity of 518 

travelers, a latent class choice model is applied to segment travelers into four groups, 519 

and the elasticities of different traveler types are also obtained. From a policy 520 

perspective. According to the above analysis results, different travelers indeed respond 521 

to the discount policy and change their behaviors to a certain degree. Based on the 522 

behavioral implications mined from the results, different targeted policy 523 

recommendations for each group of travelers are proposed in order to achieve better 524 
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impacts. 525 

The results of the paper are applicable to Beijing - which is regarded as a 526 

microcosm of the other big cities in China and the rest of the world. Further, the 527 

innovative application of the LCC framework to analyze travelers’ heterogeneous 528 

behavior using large-scale smart card data (without socio-demographic information) 529 

can be useful in analyzing peak-avoidance behavior in other mega-cities struggling with 530 

excessive crowding during the peak. 531 

No research is without limitations. Limited by smart card data, this study cannot 532 

account for demographic variables in the model. In the analysis process, these variables 533 

are controlled only by selecting data from a single site, which may make the conclusion 534 

less solid to some extent. In future studies, more diverse case areas and data are needed. 535 

SP survey data and built environment data around the stations should be considered 536 

together with the smart card data to investigate the behavior in a wider window. 537 

Meanwhile, limited by the acceptability of the dataset, this study only considers the 538 

short-term effect of the policy. Finally, in practice, whether the differentiated targeted 539 

policies can achieve better results and lead to better welfare (as expected) requires 540 

future research – potentially a field experiment to validate the findings. 541 
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