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RepAtt: Achieving Swarm Coordination through Chemotaxis

Simon O. Obute1, Philip Kilby2, Mehmet R. Dogar1 and Jordan H. Boyle3

Abstract— Swarm foraging is a common test case application
for multi-robot systems. In this paper we present a novel
algorithm for improving coordination of a robot swarm by
selectively broadcasting repulsion and attraction signals. Robots
use a chemotaxis-inspired search behaviour based on the
temporal gradients of these signals in order to navigate towards
more advantageous areas. Hardware experiments were used
to model and validate realistic, noisy sound communication.
We then show through extensive simulation studies that our
chemotaxis-based coordination algorithm significantly improves
swarm foraging time and robot efficiency.

I. INTRODUCTION

Swarm robotics applies intelligent coordination behaviours

observed in natural swarms to solve multi-robot problems

[1]. Swarms in nature have the impressive ability of ac-

complishing complex tasks by following simple rules. For

example, ants are able to forage food from locations that

are beyond their individual sensory capabilities by following

pheromone trails which other ants have laid. An individual

agent in the group does not have access to global knowledge

of the world and relies only on interaction with its immediate

environment (and sometimes memory of previous experi-

ence) to make autonomous control decisions. The swarm

paradigm presents a means of using decentralized control,

local communication and sensing to allow multi-robot sys-

tems automate tasks that are inefficient or impossible for

single robots. The actions of individual agents collaborating

with other swarm members produces emergent behaviours

that solve tasks such as aggregation, clustering, exploration,

navigation and foraging among others in robust, scalable and

flexible ways [2].

Foraging is a canonical test case for swarm robotics

which involves collective search and transport of objects to

a specific deposit site known as the nest [3]. It has diverse

potential real-world applications for automating farming pro-

cesses, planetary exploration, hazardous waste clean-up or

search and rescue [4]. It also integrates within a single

agent robotic tasks such as vision, exploration, manipulation,

communication and transport. In this paper we introduce

the Repulsion-Attraction (RepAtt) algorithm, which uses
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simple communication and a chemotaxis-inspired behaviour

to improve coordination in a swarm of foraging robots.

Our approach emphasizes extreme algorithmic simplicity and

demonstrates the power of minimalist bio-inspired search

algorithms. By foregoing complex communication systems,

the algorithm lends itself to simple, low cost hardware

implementations.

Section II reviews coordination in swarm foraging, while

our RepAtt algorithm is introduced in Section III. In Sec-

tion IV we present work on optimizing RepAtt parameters,

demonstrate that the algorithm still works well with realistic,

imperfect communication signals and show that RepAtt

scales well with swarm size. Finally, concluding remarks and

future directions are presented in Section V.

II. REVIEW OF COORDINATION FOR SWARM FORAGING

A key means of achieving cooperation among swarm

members during foraging is through communication. This

has mostly been realized through a shared memory, the

environment or direct communication [1].

In shared memory implementations, all robots have access

to a shared medium to write and read information, which

gives swarm robots a global means of communication. In

[5], robots that locate attractants (objects to forage) use

the shared medium to notify all swarm members of the

target’s location. Ref. [6] used the global knowledge of

percentage of targets found and environment covered by

the swarm to adapt the foraging strategy. Major drawbacks

of this approach are issues related to scalability, increased

complexity of individual robots and inconsistency with the

swarm paradigm of local sensing and communication. A

closely related approach is the use of a central nest as

means of exchanging information among the swarm, where

only robots within a limited range of the nest are able to

communicate [7], [8].

Achieving cooperation using the environment as a com-

munication medium involves modification of the search

space using “markers” or “beacons” to provide information

that guides the search behaviour of foraging robots. This

approach is largely inspired by stigmergy based coordination

mechanisms, such as pheromones observed in ant colonies.

The work in [9] used robots to form stationary beacon

networks that broadcast hop counts of their proximity to the

nest and target locations, thereby forming a gradient to be

used by foraging robots to locate and transport targets to

the nest. In [10], pre-deployed flying robots were used to

form beacon networks that communicated target locations

to ground robots. Swarm robots in [11] used pheromone

information on RFID tags placed at crossroads to optimise



their paths while performing waste management within a

model city. Ref. [12] used an LCD screen platform, where

light intensity was used to display pheromone level for

robots to sense with a downward-facing camera. A major

challenge for this communication approach is finding an

effective and scalable means of “marking” the environment

beyond controlled laboratory environments.

In direct communication, robots adapt their behaviour to

improve foraging efficiency based on information exchanged

with neighbouring robots. For example, in [9], robots used

range sensors to control their distance from their neighbours

while maintaining a foraging front around the nest. In

[13], robots used light to communicate locations of found

targets. In [14] and [15], robots communicated their foraging

success to other swarm members to improve the swarm’s

performance. In [16], robots applied repulsive “force” to

nearby agents when searching for targets and reduced this

force when transporting targets. Direct communication faces

design challenges regarding the type of information robots

should exchange, handling interactions with multiple neigh-

bours simultaneously, and robustness and reliability of the

communication media. Our approach shows that an analogue

signal that degrades with distance and relies on the natural

physics of the environment to handle multiple signals simul-

taneously can be used as a simple but effective means of

direct communication among a swarm of foraging robots.

The biological foundation for our approach is the chemo-

taxis behaviour observed in micro-organisms such as the

Escherichia coli bacterium [17] and Caenorhabditis ele-

gans nematode [18], whose motions are characterized by

near-linear runs (‘swimming’ mode) with occasional turns

(‘tumbling’ mode) that randomise the organism’s next run

direction. The probability that an individual E. coli or C.

elegans will perform a tumble at any given moment depends

on the change in concentration of chemical attractant (or

repellent) it senses during exploration of the environment. If

conditions are improving (increase in attractant or decrease

in repellent chemical) the organism suppresses tumbles in

favour of swimming, whereas worsening conditions lead to

increased probability of tumbling. The simple but elegant

approach of responding to the change over time means

that a non-directional analogue sensor is sufficient for the

organisms to aggregate around regions of high attractant con-

centrations or disperse to low repellent areas. In our proposed

swarm algorithm, the robots themselves selectively propagate

repellent and attractant signals that degrade exponentially

with increasing distance to provide a flexible coordination

mechanism to improve foraging efficiency of swarm robots.

Furthermore, the robots sense and broadcast these signals

selectively depending on the state they are in, thereby cre-

ating a dynamic sensory landscape. These properties make

our approach different from the biological foundations of our

algorithm and its previous robotic implementations in [17]

for localising sound source and in [19], where swarm robots

foraged energy from light spots in their environment.

III. SWARM COORDINATION

A. Communication Model

RepAtt is based on the use of a communication mechanism

whose intensity decreases smoothly with increasing distance

from the source. The exponentially degrading signal of

Equation 1 [20] was used, where Ak
ij is the strength of signal

type k sensed by robot i, located dij metres away from signal

source j. A0 is the signal strength at the source, while α

and Ae are the attenuation factor and mean ambient sound

level - properties dependent on environment condition. Total

signal strength sensed by a robot, Iki (t), at any location in

the world is the sum of same-type signals at that location

(Equation 2), where n is the total number of robots and k

is the signal type. We consider two signal types that robots

can sense and broadcast: repulsion (k = r) and attraction

(k = a) signals. To sense increase or decrease of attraction

and repulsion signals, robots compute the difference in signal

intensity between two time steps (Equation 3). It is important

to note that RepAtt does not consider the nature of signal

degradation (logarithmic, linear, exponential, inverse square

law) or the size of signal’s change. RepAtt uses only the

sign of the change (that is, whether it is positive or negative

change).

Ak
ij = A0e

−αdij +Ae (1)

Iki (t) =
n
∑

j=1,j 6=i

Ak
ij (2)

∆Iki (t) = Iki (t)− Iki (t− 1) (3)

The parameters of Equation 1 were obtained through exper-

iments using Turtlebot2 hardware platforms, speakers and

omnidirectional microphones as described in our previous

work [20]. These parameters are: A0 = 299.18, α = 0.12
and Ae = 48.18. To test RepAtt’s robustness to noisy

communication, the experiments also quantified noise in

the sound signals, which was found to average 6% of

signal intensity. This noise was then modelled as a normal

distribution with mean of 0 and deviation of 0.06 as shown

in Equation 4.

Bk
ij = Ak

ij

(

1−N
(

0, 0.062
))

(4)

An average filter was introduced to RepAtt to make it

robust to noisy communication. This simple filtering system

involved each robot maintaining a limited queue size of

attraction and repulsion signals. The robot then uses the

average of the signals in its queue as its current signal

intensity level and compares this value with a previously

computed average to determine the change in signal inten-

sity. An equivalent effect could be easily implemented in

hardware through electronic low-pass filtering. The notation

for this is Nx-Qy, which represent x% noise level and

y time-step filter queue size. Thus N0-Q1, represents 0%

noise and instantaneous signal measurements, while N100-

Q40 represent 100% (of the experimentally-obtained value)

noise level and queue size of 40 signal measurements. This

modifies Equations 2 and 3 to Equations 5 and 6 respectively.



Algorithm 1 Swarm Foraging Algorithm

1: Initialize Parameters: tumble probability Pb, robot capacity
cap, attraction multiplier am, attraction divisor ad, repulsion
multiplier rm, repulsion divisor rd, tumble mean µ, tumble
deviation σ

2: while true do
3: if obstacle encountered then
4: Enter Obstacle Avoidance State
5: else if cap == 0 then
6: Go home and drop collected targets
7: else
8: Pt = Pb, Gr = 1, Ga = 1

9: if found == 0 then
10: Broadcast Repulsion Ar

i

11: else if found > cap then
12: Broadcast Attraction Aa

i

13: if ∆Iri > 0 then
14: Gr = rm
15: else if ∆Iri < 0 then
16: Gr = 1/rd
17: if ∆Iai > 0 then
18: Ga = 1/ad

19: else if ∆Iai < 0 then
20: Ga = am

21: Pt = Pb ×Gr ×Ga

22: if found > 0 then
23: Go and pick up closest target
24: else if rand(0,1) < Pt then
25: make random turn of N

(

µ, σ2
)

26: else
27: make straight motion

Iki (t) =

t
∑

b=t−y+1

(

n
∑

j=1,j 6=i

Bk
ij(b)

)

y
(5)

∆Iki (t) = Iki (t)− Iki (t− y) (6)

B. Repulsion-Attraction Algorithm (RepAtt)

The task for RepAtt is to improve coordination of swarm

robots with limited capacity searching for targets in an

unknown environment and returning them to a central nest.

Algorithm 1 is a pseudocode description of RepAtt. The

coordination behaviour executed by a robot at each time step

depends on whether the robot is in the searching, acquiring,

homing or obstacle avoidance states, which are described in

the subsequent paragraphs.

Obstacle Avoidance State (3 - 4) is used by robots

to avoid static (nest and walls) and dynamic (other robots)

obstacles when it bumps into them. It turns 45◦ to the left

for obstacles on its right (or to the right for obstacles on its

left) and random angle greater than 90◦ for obstacles in its

front. It then makes a random linear motion between 0 and

1m before transitioning to either the searching, acquiring or

homing states.

Homing State (5 - 6) is activated when the robot’s

capacity, cap, is full. In this state, the robot heads to

the nest (it is assumed that the nest broadcasts a homing

signal) and deposits the collected targets. The robot ignores

attraction and repulsion signals from nearby robots until it

has successfully offloaded all foraged targets at the nest.

The Acquiring State (22 - 23) is activated when a robot

detects target(s) within its visual range (found > 0). The

robot navigates to the nearest target to pick it up. During

this process, it broadcasts the attraction signal if it detects

more targets than its current carrying capacity, found > cap

(11 - 12). Thus searching robots within communication range

can sense the attraction and appropriately adapt their search

behaviour.

Searching State (24 - 27) is when a robot does not

sense any target item to forage within its visual range

(found = 0). The robot broadcasts a repulsion signal (9

- 10) to its neighbours while using random walk to search

for targets. Its goal in this state is to minimize the repulsion

(Ir) and maximize the attraction (Ia) signals it senses. This is

achieved by detecting the change in intensity of these signals

between two time steps (Equation 3 or 6). A robot increases

its turning probability (more tumbles) when moving in the

wrong direction, i.e. when ∆Ir > 0 or ∆Ia < 0. Doing

this increases a robot’s likelihood of reorienting itself in

the desired direction. On the other hand, when the robot

senses a positive gradient for attraction (∆Ia > 0) or

a negative repulsion gradient (∆Ir < 0), it reduces its

turning probability (longer swims), which in turn helps the

robot to maintain its current direction for a longer period of

time and consequently approach a region that increases its

likelihood of finding a target. Lines 13 - 21 represent this

turn probability adaptation, where am ≥ 1, ad ≥ 1, rm ≥ 1
and rd ≥ 1 are predefined constants.

In Algorithm 1, the Random Walk algorithm (RW) used

as a baseline in Section IV can be achieved by setting

am = 1, ar = 1, rm = 1 and rd = 1. This disables

tumble probability adaptation by robots based on attraction

and repulsion gradients, making them explore with constant

probability of turning.

C. Adaptive Large Neighbourhood Search (ALNS)

The ALNS heuristic presented in [21] is a centralized,

offline route computation algorithm that has been shown

to be very effective in many transportation problems. We

modelled the target foraging task of the swarm using ALNS

to represent a centralized coordination approach to multi-

robot foraging.

In the ALNS approach, the robots’ foraging route is

computed offline, using the nest as drop-off location for

all robots with full capacity. The exact setup described in

[21] was implemented, where the simulated annealing route

optimization was performed for 25,000 iterations, with a

maximum of 50 or 100 visits removed in each iteration.

The searching state of RepAtt is replaced with the offline

simulated annealing optimization of the large neighbourhood

search. Robots used the optimized ALNS routes as waypoints

when foraging. This approach therefore gives a lower bound

on the total foraging time. However, it is not scalable or

robust to changes in target locations or swarm size.



(a) (b) (c) (d) (e)

Fig. 1: (a) One50m, (b) Two50m, (c) Four50m, (d) Half50m, (e)
Uniform50m. Plot of initial world states, for 50 m × 50 m worlds.
Targets are purple, black ‘+’ is nest and yellow blob represent the
robots. For 100 m × 100 m worlds, target and robot locations
were kept constant, while world width and length dimensions were
doubled.

The Random Walk and ALNS approaches are used to

allow comparison of the RepAtt coordination mechanism’s

performance against two extremes: absence of coordination

(Random Walk); and a near-optimal solution based on com-

plex centralized coordination with perfect knowledge of the

environment (ALNS).

IV. EXPERIMENTS AND RESULTS

A. Simulation Setup

The Gazebo Simulation platform was used to simulate

robots under 5 target distributions, 2 world sizes, variable

parameter settings and swarm sizes, under noiseless and

noisy communication settings. A simulation time step of

25ms was used and each simulation was repeated 30 times.

The number of targets used was 200 and the swarm task was

to locate and pick up 90% of these targets in each world

setup (sample setups are shown in Figure 1). Each robot in

the swarm moved with velocity of 0.605 m/s and spent 5

seconds stationary to process each target it finds to simulate

the target pick up process. Other algorithm parameters are:

Pb = 0.0025 applied at every time step, robot targets capacity

5, target detection distance of 3 metres, µ = 1800 and

σ = 900. The µ and σ values were chosen to mimic the

approximate 180◦ turns observed in chemotactic behaviour

of biological organisms such as C. elegans.

B. Chemotaxis Gains Optimization

The attraction and repulsion gains, am, ad, rm and rd play

significant roles in the performance of RepAtt because they

affect the responsiveness of robots to changes in communi-

cated signals. To investigate their effects and find the best

combinations for swarm foraging robots, am and rm were

selected from 1, 2, 4, 6, 8, 10 while ad and rd were selected

from 1, 10, 50, 100, 1000. This resulted in 900 different

combinations of these gains. Each gain combination was

used by robots performing RepAtt in the 10 world setups,

with each simulation experiment repeated 30 times under

noiseless (N0-Q1) and noisy (N100-Q40) communication.

Thus, 540,000 simulations were performed (900×30×10×2)

to search for best performing gain combinations. A specific

combination is represented as Aammadd−Rrmmrdd.

In each simulation, the task was for a swarm of 36

robots with capacity of 5 targets to pick up 180 targets in

the world. The performance of each of the 900 parameter

combinations was then sorted and assigned scores such that

the combination with the shortest mean time had score of 1

and longest mean time got score of 900. Total score was

computed by summing the scores across the 10 different

world setups, with the best parameter combination attaining

the lowest overall score (ultimately we used only the N100-

Q40 results to select the best parameters, because this

is the more realistic configuration). Sample results from

the ranking are shown in Fig. 2a and 2b, where foraging

times are normalized based on time taken by Random Walk

(A1m1d−R1m1d). N100-Q40 data points were used to sort

the rankings, and the corresponding performance for N0-Q1

has also been included in the plots. The results indicate that

in clustered environments (for example One100m, Fig. 2a)

increasing parameters that aid attraction toward targets (i.e.

am and ad) and minimizing repulsion parameters (i.e. rm
and rd) produced better results. In addition, an am value of

4 performed better than 10 because of noise in the attraction

signal - when am is too large, robots would make too many

turns and explore only a limited area due to inaccurate

gradient measure.

In less clustered environments (for example Uni-

form100m), only rd played a major role in swarm per-

formance, where the best parameter combination was

A1m10d−R1m100d. The results indicate that parameters

that helped robots to make more tumbles when moving in

the wrong direction (i.e. am and rm) negatively impacted

RepAtt, while parameters that aided swimming (ad and rd)

positively affected RepAtt’s performance.

Overall, the best parameter combination was

A4m100d−R1m10d, which is clearly an integration of

the best parameters for clustered and uniform target

distributions. In addition, the difference between best

and worst performing combinations in One100m (0.30

vs 1.95) compared to Uniform100m (0.74 vs 1.48)

indicates that communication has more significant impact

in highly clustered environments in comparison to uniform

environments.

C. Communication Noise Filtering

Moving from an idealised noiseless communication signal

(N0-Q1) to the realistic noisy model (N100-Q1) in our

simulated foraging task initially had an extremely detrimental

effect, making RepAtt’s performance only comparable to

Random Walk (RW) as shown in Fig. 2c, where the opti-

mized RepAtt gains of am = 4, ad = 100, rm = 1 and

rd = 10 were used. However, including the average filter

with queue size of 8, 20, 40, 80, 120 improved RepAtt’s

performance. In addition, excessively large queue sizes (for

example 80 or 120) decreased RepAtt’s performance because

robots lost too much information to make the gradient

useful for its current location. Queue size of 40 gave best

performance across the 10 world setups in comparison to

other queue sizes when working with noisy communication.

D. Foraging Performance Results

The simulation results for the 5 target distributions in

50 m× 50 m and 100 m × 100 m world sizes are shown
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Fig. 2: Results represent mean of 30 independent repetitions for a swarm of 36 robots, y-axis represent time normalized based on
performance of Random Walk. (a) and (b): Aammadd−Rrmmrdd match the respective gains in the legend. N100-Q40 foraging times
were used to sort the x-axis and corresponding data for N0-Q1 have been included in the plots. (c): Variation of average filter queue size,
RepAtt gains of am = 4, ad = 100, rm = 1 and rd = 10 were used because they gave best foraging performance. Error bars represent
95% confidence interval.
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(b) 100 m × 100 m worlds

Fig. 3: Time taken in seconds to pick up 90% of targets for different
world scenarios, normalised using the time taken by Random Walk.
Each bar represents the mean of 30 simulation repetitions (also
given numerically above each bar). The error bars represent 95%
confidence interval. The optimized RepAtt gains of am = 4, ad =

10, rm = 1 and rd = 10 were used for N0-Q1 and N100-Q40.

in Figs. 3a and 3b respectively for a swarm size of 36

robots for Random Walk (RW), N100-Q40, N0-Q1 and

ALNS algorithms. The optimized RepAtt gains of am = 4,

ad = 100, rm = 1 and rd = 10 were used.

In comparison with Random Walk, RepAtt improved

swarm coordination and decreased the foraging time in all

target distributions for both world sizes. In the 50 m× 50 m

world size, this improvement was 77% in the One50m world,

which is more than half of the improvement offered by

ALNS (90%). Similarly, the remaining four distributions

recorded significant improvements in foraging time, with

the weakest effect (33% improvement) in the Uniform50m

world. For the 100 m × 100 m world size, where the

search space was quadrupled, RepAtt also achieved excellent

coordination to exploit target regions. Its improvements over

Random Walk were 83%, 63%, 37%, 71% and 32% for

the One100m, Two100m, Four100m, Half100m and Uni-

form100m distributions respectively. This is compared to

ALNS’s values of 94%, 88%, 79%, 90% and 70% for the

respective distributions.

It is logical that coordination would have a greater ben-

eficial effect for highly clustered distributions. This is the

reason for large performance gaps between Random Walk

and ALNS in the One, Two and Half cluster distributions

and relatively smaller margins for the less clustered Four

and Uniform worlds. It is also for these distributions that

RepAtt gained the most improvements over Random Walk.

Comparing N100-Q40 and N0-Q1, noise reduced the

effectiveness of RepAtt by 8% (in Uniform100m) to 43% (in

One100m). Nonetheless, N100-Q40 performed well under

the different target distributions with performance ranging

between 30% to 77% of the time taken by the Random Walk

algorithm compared to ALNS’s 6% to 31%.

These results indicate that this simple RepAtt algorithm

is an effective mechanism for achieving swarm coordination

when performing foraging tasks. They also show that the

presence of noise, distribution of targets and size of the world

can have positive and negative impacts on the algorithm’s

performance. The effectiveness of the algorithm is more

pronounced when targets are clustered in smaller regions.

E. Scalability of RepAtt

One advantage of swarm robotics is that it presents im-

proved efficiency in solving problems. We test the scalability

of RepAtt by comparing the efficiency improvements as the

number of robots varied from 1 to 100. Efficiency in this

foraging task is computed as shown Equation 7 where n is

swarm size, tp is number of targets picked up, ttp is time

to pick up tp targets and Er is relative efficiency (Equation

8). Thus, n = 1 represents a relative efficiency of 1, while

Er > 1 and Er < 1 represent improvement and degradation
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Fig. 4: Relative efficiency was computed based on tp = 180, where total targets were 200. Each simulation was repeated 30 times and
error bars represent 95% confidence interval. The optimized RepAtt gains of A4m100d−R1m10d were used.

in efficiency respectively.

En =
tp

n
×

1

ttp
(7)

Er =
En

E1

(8)

Fig. 4a and 4b show that RepAtt exhibited good scalability

performance by improving relative efficiency by a factor

of 5.82 when there was no communication noise (N0-Q1).

With realistic noise, N100-Q40 always maintained efficiency

improvement of more than a factor of 2. However, Random

Walk was at best able to maintain swarm efficiency as one

would expect due to the lack of coordination. In Fig. 4c

and 4d, the lack of coordination in Random Walk caused

swarm efficiency to continuously degrade as swarm size

increased, while RepAtt was able to maintain good efficiency

improvement, especially for the Uniform100m world. In

general, swarm efficiency is expected to drop as swarm size

increases beyond some acceptable level. This is due to the

effects of robot-to-robot interference, size of the search area

and limited resources available for robots to forage.

V. CONCLUSION

We have presented RepAtt, a simple yet effective swarm

coordination algorithm. It significantly improves the effi-

ciency of the underlying test case application of swarm

foraging, even when using a realistic and far from ideal com-

munication model that is grounded in physical experiments

with un-optimised hardware. RepAtt is based on the concept

of selective broadcasting of simple analogue repulsion and

attraction signals among swarm agents, which they use to

adapt their turning probability while searching for targets.

The end result was a significant improvement in the swarm’s

coordination, which we measured by analysing the swarm’s

foraging time in 10 different world scenarios.

In future work, we will work on implementing better noise

filtering for the swarm to improve communication as well as

research alternative communication media that could be used

in place of sound. We will also test our full algorithm using

multiple physical robot platforms to further investigate and

validate this coordination mechanism for the swarm within

foraging and other applications.
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