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The thermodynamic behavior of out-of-equilibrium quantum systems in finite-time dynamics encompasses the
description of energy fluctuations, which dictates a series of the system’s physical properties. In addition, strong
interactions in many-body systems strikingly affect the energy-fluctuation statistics along a nonequilibrium
dynamics. By driving transient currents to oppose the precursor to the metal-Mott-insulator transition in a
diversity of dynamical regimes, we show how increasing many-body interactions dramatically affect the statistics
of energy fluctuations and, consequently, the extractable work distribution of finite Hubbard chains. Statistical
properties of such distributions as its skewness with its impressive change across the transition can be related to
irreversibility and entropy production. Even for slow driving rates, the quasi quantum phase transition hinders
equilibration, increasing the process irreversibility, and inducing strong features in the work distribution. In
the Mott-insulating phase, the work fluctuation-dissipation balance gets modified with the irreversible entropy
production dominating over work fluctuations. Because of this, effects of an interaction-driven quantum phase
transition on thermodynamic quantities and irreversibility must be considered in the design of protocols in
small-scale devices for application in quantum technology. Eventually, such many-body effects can also be
employed in work extraction and refrigeration protocols on a quantum scale.

DOI: 10.1103/PhysRevResearch.2.033167

I. INTRODUCTION

After more than a century, the increasing availability of
nanoscale technologies has challenged the community to de-
velop the well-established laws of thermodynamics beyond
the so-called thermodynamic limit [1–7]; quantum thermo-
dynamics is now extending concepts, such as heat, work,
and entropy to small few-particle quantum systems [1,8,9].
At the same time, working conditions for quantum tech-
nology devices often correspond to finite temperatures and
nonequilibrium regimes [10] so that the development of re-
lated formalism is in high demand. In quantum systems, ther-
modynamic probability distributions contain rich information
about the possible transitions between eigenstates [11] and,
more interestingly, thermal and quantum fluctuations [12–14]
and equilibration and irreversibility [15–18]. Identification of
nonclassical features in work and heat distributions of the
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quantum system is a topic under investigation with, thus far,
some interesting results for harmonics oscillators [19,20].

Quantum phase transitions (QPTs) are an exquisitely quan-
tum phenomenon, so there is interest in studying their signa-
tures on quantum thermodynamic quantities and their distribu-
tions (fluctuations) [14,16,18,21–28]. In addition, many-body
interactions, which are ubiquitous and notoriously difficult to
treat, assume an even more complex role in out-of-equilibrium
quantum systems [29,30] where, e.g., they may affect the way
the system reaches or settles into different phases. Relevant
questions are as follows: what is the role of many-body
interactions for quantum particles driven out of equilibrium,
and how do they affect quantum thermodynamical quantities?
Do they contribute or oppose reversibility [31] and thermal-
ization? What if many-body interactions induce a QPT, what
signatures appear in thermodynamic distributions? And how
do they depend on the system size?

Most of the previous studies of QPT signatures in
quantum thermodynamics focused on QPTs driven by ex-
ternal fields and/or on the sudden quench regime. They
analyzed features of quantum thermodynamic quantities,
sometimes up to the second moment of their distribu-
tion, and their evolution as the critical parameter, usu-
ally an external field, is (suddenly) driven across the
transition.

2643-1564/2020/2(3)/033167(6) 033167-1 Published by the American Physical Society
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In this paper, we consider the above questions in the
context of microscopic models for strongly correlated systems
undergoing finite-time processes at finite temperatures. With
state-of-the-art simulations, we study the nonhomogeneous
one-dimensional Hubbard model at half-filling as it is driven
out of equilibrium. Finite Hubbard chains may undergo a
precursor to the metal-Mott-insulator transition, a QPT driven
solely by many-body interactions. Considering the out-of-
equilibrium work probability distribution and its statistics, we
inspect the first three moments, related to the mean, variance,
and skewness. The latter has been to a large extent overlooked,
and we demonstrate that it allows to characterize the tran-
sition between the different coupling regimes, including the
precursor to the metal-Mott-insulator QPT (pM-QPT) as well
as the different dynamical regimes (sudden quench to nearly
adiabatic). Our results also demonstrate that, by considering
the sudden quench regime alone, one misses the contribution
of the dynamics to the QPT signatures, which becomes domi-
nant in finite-time regimes. Many-body interactions strikingly
affect the shape of the work probability distribution: Whereas
it acquires a bell shape for increasing system size and weak
interactions, this feature is completely dismantled by the pM-
QPT, which also averts the system from equilibrium. Inter-
estingly, we show that, in the Mott-insulating phase, entropy
production dominates over work fluctuations, in contrast to
the literature [32–34]. Finally, we relate the skewness with
the entropy production and propose its role as a witness of
irreversibility for many-body systems out of equilibrium.

II. DRIVEN INHOMOGENOUS HUBBARD CHAINS

The Hubbard model allows for both itinerant electron spins
(conduction band) and localized magnetic moments. It was
initially designed to describe strongly correlated systems,
such as transition metals; more recently it has been utilized
to describe systems of importance to quantum technologies,
such as cold atoms in an optical lattice, chains of trapped
ions, excitons, electrons in coupled quantum dots, or small
molecules [35–40]. Even nondriven, short Hubbard chains are
characterized by a very rich physical behavior with many-
body interactions driving a precursor to the metal-to-Mott-
insulator transition [41–43], and studies of a driven Hubbard
dimer show promising results [44,45].

Here, we consider half-filled fermionic chains
undergoing a process in which a time-dependent electric
field is applied for a finite time, ranging from fast to
close-to-adiabatic dynamics. Their Hamiltonian is H (t ) =

−J
∑L−1

j=1 (ĉ†
j,σ ĉ j+1,σ + ĉ

†
j+1,σ ĉ j,σ ) + U

∑L
j=1 n̂ j↑n̂ j↓ +

∑L
j=1 Vj (t )n̂ jσ , where ĉ

†
jσ (ĉ jσ ) are the creation (annihilation)

operators for a fermion with spin σ =↑,↓ in the jth
site, n̂ jσ = ĉ

†
jσ ĉ jσ represents the corresponding j-site

occupation, J is the hopping parameter, U is the Coulomb
on-site repulsion, and Vj (t ) = � j t/τ with � j = 10J

L−1 j

is the time-dependent linear potential that drives an
out-of-equilibrium transient current along the chain.

The system is initially in thermal equilibrium at tempera-
ture β−1 = kBT = 2.5J where not otherwise stated (where kB

is the Boltzmann constant and T is the absolute temperature)
with ρ(t = 0) = e−βH (t=0)/Zt=0, and Zt=0 = Tr[e−βH (t=0)].

The driving time τ controls the rate of the dynamics that steers
H0 = H (t = 0) to H f = H (t = τ ). The final Hamiltonian
H f is independent of τ . Our results were obtained via exact
diagonalization; the time evolution was calculated by a routine
provided by the QUTIP package [46].

III. STATISTICS OF WORK AND

MANY-BODY INTERACTIONS

The probability distribution characterizing the work [8]
performed on the closed quantum system1 is given by

P(W ) =
∑

n,m

p0
n pτ

m|nδ
[

W −
(

ǫτ
m − ǫ0

n

)]

, (1)

where p0
n is the initial-state occupation probability of the nth

eigenstate |n〉 of energy ǫ0
n of H0, and pτ

m|n is the conditional
probability for |n〉 to make a transition to the mth eigenstate
|m〉 of H f . After the unitary driving, the system will eventually
interact with the environment and get thermalized again.

The complexity of P(W ) scales with the number of the
possible energy transitions. In the systems we consider, half-
filling with zero magnetization, the number of allowed transi-
tions increases from 16 for L = 2 to 2.4 × 107 for L = 8.2

This is highlighted by Figs. 1(a) and 1(c), where P(W ) is
shown for L = 4 and L = 8 for the noninteracting case (U =

0). The exponential increase in the number of transitions
transforms the distribution from an irregular set of peaks to
a bell shape:3 changes in the type of dynamics—from (quasi)
sudden quench (τ = 0.1) to close-to-adiabatic behavior (τ =

10/J)—strongly affect the shape of the distribution, which
becomes increasingly asymmetric as τ increases. On the con-
trary, when considering the strongly interacting regime (U =

10J), Figs. 1(b) and 1(d), the shape of P(W ) seems basically
unaffected (see the Supplemental Material for animations
[47]). We attribute this behavior to the insulating phase which
de facto substantially reduces the available Hilbert space by
drastically reducing the probability of most potential transi-
tions during the dynamics.

This qualitative picture is quantified by the kth central
moments of the work distribution P(W ),

W̄
k = 〈(W − W̄ )k〉 =

∑

i

P(Wi )(Wi − W̄ )k . (2)

The moments k = 1 (mean), k = 2 (variance), and k =

3 (skewness) are shown in Fig. 2, L = 4 left and L = 8
right; the corresponding “heatmaps” for k = 3 is in Fig. 3
where the white line indicates W̄3 = 0 (see the Supplemental
Material for other heatmaps [47]). The first three moments
are strongly dependent on τ for weak interactions U < J ,

1We consider processes fast enough to be represented as (a unitary)
closed system dynamic. In other words, the calculations correspond
to the scenario where the time duration of the driving protocol τ is
much smaller than any decoherence or relaxation times.

2There are 4900 spin configurations for L = 8 having Sz = 0.
Because of the finite-time dynamics and finite temperatures, it is
currently not possible to treat numerically exactly larger systems.

3We obtain similar results for U
<
∼ J . See the distributions P(W )

for L = 4, 6, 8 and U = J in the Supplemental Material [47].
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FIG. 1. Work distribution P(W ) for fermionic Hubbard chains at
half-filling driven by a time-dependent electric potential difference.
Panels (a) and (b) refer to four-site chains, whereas (c) and (d) refer
to eight sites. The left panels (a) and (c) show the noninteracting case
(U = 0), and the right panels (b) and (d) show the strong-interaction
regime (U = 10J). Each panel displays P(W ) for different driving
times, from quasi-sudden-quench (τ = 0.5/J) to a close-to-adiabatic
(τ = 10/J) dynamics.

whereas almost τ independent for U ≈ 10J , once interactions
have driven the pM-QPT and the system becomes quasi-
insulating.4 Regardless of the huge increase in the Hilbert
space, the behavior across the transition is qualitatively in-
dependent from the system size, hinting to a possible scaling
behavior. The most striking features appear in the skewness
W̄3. For sudden quenches τ ≪ J−1, the skewness is relatively
small and depends only weakly on U (see Fig. 3). However,
for finite-time processes τ � 0.5/J, W̄3 changes sign across
the pM-QPT (white line in Fig. 3) with proper minima and
maxima bracketing the transition when τ � 2.5/J (see Figs. 3
and lower panels of Fig. 2). As U increases, the system
suffers a dynamic competition between the transient current
induced by the drive and the increasing on-site repulsion.
This leads to a dramatic change in the shape of P(W ) with
a marked asymmetry shifting from left (before the pM-QPT)
to right (after the pM-QPT). As τ increases, the region in-
between W̄3(U ) extrema shifts towards larger U ’s (see Fig. 2,
lower panels). We observe that the strong asymmetry in the
distribution and a dramatic change in this asymmetry signals
an exquisitely quantum phenomenon, such as a QPT.

4In this phase, the energy gap between any states composed solely
by spin configurations with singly occupied sites, among which the
ground state is included, is much lower than the energetic difference
between any of these states and the first excited state composed by
components having double occupied sites.
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FIG. 2. First three moments of the work distribution (as labeled)
versus U for 0.2/J � τ � 10/J and chain length L = 4 (left) and
L = 8 (right).

IV. ENTROPY PRODUCTION AND IRREVERSIBILITY

Together with the statistics of work, we can inspect how
the pM-QPT affects irreversibility. We quantify this by con-
sidering the entropy production [15,48–50],

〈	〉 = S
(

ρτ

∥

∥ρeq
τ

)

, (3)

where S(ρτ ‖ ρ
eq
τ ) = Tr ρτ (ln ρτ − ln ρ

eq
τ ) defines the Kull-

back relative entropy between the final-state ρτ = Uτρ
eq
0 U†

τ

and its equilibrium counterpart ρ
eq
τ = e−βH (t=τ )/Zt=τ with Ut

as the time-evolution operator. We note that 〈	〉/β corre-
sponds also to the energy that would be dissipated if ther-
malization would follow the finite-time driven protocol. We

2.5 5.0 7.5 10.0
τ × J

0.0

2.5

5.0

7.5

10.0

U
/J

2.5 5.0 7.5 10.0
τ × J

0.0

2.5

5.0

7.5

10.0

−76.45 −53.28 −30.12 −6.95 16.22
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FIG. 3. Heatmaps of the skewness of the work distribution, for
L = 4 (left) and L = 8 (right). The white line indicates W̄3 = 0.
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FIG. 4. Left panels: Scaled entropy production 〈	〉/L (top),
trace distance DTr (ρτ , ρ

eq
τ ) (middle), and skewness 〈W − W̄ 〉3 (bot-

tom), versus coupling strength U/J and for chains of size L = 4, 6, 8
and τ × J = 10. The arrows (top panel) and the dashed black lines
(middle and bottom) connect minima and maxima for increasing
system size. Right panels: entropy production to work fluctuations
ratio versus coupling strength U/J for chains of size L = 4, 6, 8 and
τ × J = 10 (top). Trace distance DTr (ρτ , ρ

adiab
τ ) between the final

and the corresponding adiabatic states; same parameters as for the
upper panel (bottom).

examine the entropy production in our systems in various
dynamical and coupling regimes, full results for L = 4 and
L = 8 are reported in the Supplemental Material [47].

For a finite quantum system, adiabaticity in the quantum
dynamics does not imply, in general, equilibration, hence,
to quantitatively investigate this discrepancy, we focus on
large τ results and use in addition to 〈	〉 the trace distance
[51] between the final and the corresponding equilibrium
states DTr(ρτ , ρ

eq
τ ) = Tr[

√

(ρτ − ρ
eq
τ )†(ρτ − ρ

eq
τ )]/2.5 This is

plotted in the middle left panel of Fig. 4, together with 〈	〉/L

(top left) and the skewness (bottom left) as a function of
U/J for τ × J = 10 and L = 4, 6, 8. For all the system sizes
studied, all these quantities similarly signal the pM-QPT,
moving from a minimum to a maximum. These extrema all
shift towards U = 0+ (the thermodynamic limit for the metal-
Mott-insulator QPT) as L increases (see the arrows and dotted
lines in Fig. 4, left panels). The pM-QPT pulls the final state
away from equilibrium as demonstrated by the corresponding
increase in DTr(ρτ , ρ

eq
τ ), which passes from a minimum to

a maximum, and dramatically affects the work distribution
shape as witnessed by the change in sign of the skewness.
After it, as interactions increase further, the final state draws

5A small trace distance between systems’ states guarantees that the
other physical properties are also close to the ones of the reference
state; the contrary is not always true; however, the behaviors of
the trace distance and of a corresponding suitable metric for the
local particle density when tracking nonequilibrium dynamics are,
in general, similar [56,57].

nearer to equilibrium as the system, now almost an insulator,
poorly responds to the applied field. Indeed, in this regime, the
work distribution comprises very few transitions [Figs. 1(b)
and 1(d)].

The value of the trace distance demonstrates that, in the
transition region, the final system’s state (after the driving)
remains always significantly far from equilibrium,6 even when

the skewness is zero (U/J ≈ 5 for L = 6 and 8) and the
distribution becomes more akin to the linear-response form
〈W 〉 = �F + W̄2

2kBT
, which is valid for a close-to-equilibrium

dynamics with �F = 〈W 〉 − 〈	〉/β the free-energy variation.
While for any U , the overall entropy production increases

with the system size (see the Supplemental Material [47]),
Fig. 4 shows that the entropy production per particle has a
complicated dependency on the coupling regime, decreasing
for increasing number of particles L in the metal and (quasi)
insulating phases, but displaying nonmonotonic behavior—
both with respect to U and to L—in the pM-QPT transition re-
gion. The system size affects the work distribution asymmetry
in opposite ways before and after the quasi-QPT. Before the
pM-QPT, availability of an exponentially increasing number
of transitions “regularize” the distribution [compare Figs. 1(a)
and 1(c)] contributing to the decrease in its asymmetry,
whereas, by de facto restricting the available Hilbert space,
the pM-QPT localizes the energy fluctuations in P(W ), even
for increasing size [compare Figs. 1(b) and 1(d)].

V. ENTROPY PRODUCTION AND WORK

FLUCTUATION-DISSIPATION RELATION

Close to adiabaticity, classical processes satisfy the work
fluctuation-dissipation relation 〈	〉 = β2W̄2/2 [32,33]; how-
ever, recent studies [34] suggest that, for slow quantum pro-
cesses in open systems, this is governed by the inequality,

〈	〉 � β2
W̄

2/2. (4)

We examine the effect of the pM-QPT on the work fluctuation-
dissipation relation in Fig. 4, right upper panel and show
that the transition is marked by a reversing of the inequality
(4) with work fluctuations, hence, becoming smaller than
dissipation. Most interestingly, after the pM-QPT, whereas
increasing U leads the dynamical process back to adiabaticity
(Fig. 4, right lower panel, U > 10J), dissipation remains
dominant over work fluctuations, even for very small values
of DTr(ρτ , ρ

adiab
τ ). This reversing of (4) is a many-body effect:

The pM-QPT dramatically reduces the system response to the

6The trace distance is bounded DTr ∈ [0, 1]. Because the trace
distance has a maximum, in addition to be sensitive to changes in the
system state and continuous, it is possible to establish a quantitative
meaning for the words long/short distance: A distance can be defined
as short when it is below a certain percentage of the maximum
distance [56–58]. For example, a threshold of 10% corresponds to
a short distance being, at least, one order of magnitude shorter than
the distance maximum. With this in mind, a distance of 40% to
60% of its maximum (as in Fig. 4 of the present paper) shows that
the systems are never really close; nevertheless, the variation of the
distance between the nonequilibrium and the equilibrium systems
with U and L remains substantial.
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FIG. 5. (a) Trace distance from the equilibrium state and (b) from
the adiabatically evolved state as a function of the coupling strength
U/J for L = 6 and at different inverse temperatures β. The orange
line corresponds to the T = 0-K limit for which the initial state is
the ground state.

applied field and, hence, the width of the work distribution for
all rates of driving, including slow driving (see Fig. 2, middle
panels).

In Fig. 5, we analyze the signatures of the quasi-QPT
with respect to temperature (β → ∞, 4, 0.4, and 0.04) for
DTr(ρτ , ρ

eq
τ ) and DTr(ρτ , ρ

adiab
τ ). For both distances, these

signatures are maximized at the lowest temperatures and
washed away by high temperatures. This supports these being
signatures of a QPT.

The bottom right panel of Fig. 4 shows that the change
in trace distance between the pM-QPT transition region
(roughly centered at U/J = 5) and the quasi-insulator phase
is of several orders of magnitude: e.g., for L = 8, DTr ≈ 0.6
in the transition region and DTr = 2 × 10−3 for U/J = 20.
Likewise, Fig. 5 shows a variation of DTr of two orders of
magnitude depending on temperature and coupling strength
U . We stress that these changes reflect the physics of the
system: the formation of an energy gap between states without
and with double occupation of sites for increasing U in
Fig. 4, and the loss of the pM-QPT transition signature as the
temperature increases and the system state has access to the
double-occupation high-energy states in Fig. 5.

VI. CONCLUSION

We discussed the effects of many-body interactions on the
statistics of work in inhomogeneous fermionic chains driven
for finite times. We considered dynamics from sudden quench
to quasi adiabaticity, and observed the signatures of the pre-
cursor to the metal-Mott-insulator quantum phase transition.
Our results show that, when the system is weakly interacting,
the work probability distribution P(W ) is highly sensitive to
the rate of driving, whereas it remains almost unaffected when
many-body interactions are strong.

If the chains’ length L is increased and U/J � 1, P(W )
acquires features, such as a well-defined maximum and a bell

shape. In contrast, after crossing the precursor to the QPT for
U/J � 5, the work distribution becomes localized at all the
explored values of L, strongly hindering work extraction with,
nonetheless, a price paid in a residual entropy production.
The quasi-Mott-insulating phase is associated with a striking
reduction of the number of energy transitions arising from
the dynamics so that P(W ) becomes almost independent of
the rate of variation of the external field. This feature leads
to entropy production dominating work fluctuations even for
slow processes, in contrast to the classical work fluctuation-
dissipation relation, and at differences with recent predictions
for slowly driven open quantum systems.

For dynamics beyond sudden quenches, a change in sign
and a remarkable variation in value of the skewness character-
ize the precursor to the metal-Mott-insulator transition. These
features persist even when the number of degrees of freedom
is exponentially increased. In the sudden quench regime, the
precursor to the QPT affects P(W ) only through its effects
on the initial and final Hamiltonians’ eigenstates; instead, for
finite driving times, the precursor to the metal-Mott-insulator
transition affects P(W ) twice, through its effect on the eigen-
states and by modifying the system response to the applied
drive. This leads to qualitatively different signatures of the
precursor to the QPT on the work distribution, depending on
the dynamical regime.

By comparing to the trace distance between the final and
the corresponding equilibrium states, we conclude that the
third moment of P(W ) also retains information about the
entropy production and equilibration across the precursor to
the QPT.

Experimental realizations of interacting quantum matter
could be implemented by means of small molecules and NMR
[15,31], coupled quantum dots and ion traps [52,53], or cold
atom platforms [54,55]. Our findings may help to design time-
dependent protocols which exploit many-body interactions
for, e.g., tailoring work extraction or optimizing efficiency of
a refrigeration cycle where the coolant is a strongly interacting
many-body system, yielding to novel applications of quantum
thermodynamics.
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