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A Computational Model for Predicting Perceived Musical Expression

in Branding Scenarios

The article describes the development of a computational model predicting
listener-perceived expressions of music in branding contexts. To address the
‘semantic gap’ between audio signals and complex brand identities, population-
representative ground truth from multi-national online listening experiments was
combined with machine learning of music branding expert knowledge, and audio
signal analysis toolbox outputs. A mixture of random forest and traditional
regression models is able to predict average ratings of perceived brand image on
four dimensions of the employed GMBI music branding inventory. Resulting
cross-validated prediction accuracy (R?) was Arousal: 61%, Valence: 44%,
Authenticity: 55%, and Timeliness: 74%. Audio descriptors for rhythm,
instrumentation, and musical style contributed most to prediction. Adaptive sub-

models for different marketing target groups further increase prediction accuracy.

Keywords: music information retrieval, listener modelling, recommendation

systems, audio branding, machine learning

Introduction

Until now, commercial algorithmic music indexing and recommendation systems have
predominantly focused on predicting consumers’ musical preferences and choices when
listening to music. In this way, they help listeners to navigate the boundless digital
music archives currently available and let them discover new titles and artists for
enhancing their musical enjoyment in everyday life. Another important segment of
commercial music exploitation is the use of existing music tracks (typically: pop songs,
dance tracks and ‘hits’ from the classical repertoire) as a means for brand
communication. This practice is often called music branding (Miillensiefen & Baker,
2015) and forms an important part of audio branding (sometimes also called sonic
branding or sound branding), referring to the strategically-planned employment of

sounds and music in advertising, public relations, product design, and at the point of



sale (Jackson, 2003; Kilian, 2009; Gustafsson, 2015; Egermann, 2019). Music branding,
as a new type of exploitation of musico-cultural assets, contributes a growing number of
revenue shares in the overall music industry today. However, finding ‘suitable’ music
for communicating specific brand aims is a challenging task, given the sheer amount of
music available suitable for branding purposes and the lack of appropriate metadata.
Hence, audio branding agencies, as well as music labels and specialised stock music
providers, would benefit greatly from algorithmic software tools that help to identify
music with the ‘correct message’ from their digital archives which often hold millions
of titles. The current contribution documents major outcomes of a publicly funded
European research project that forms the statistical basis of an algorithmic solution for
automatic indexing of digital music files in terms of brand communication goals'.
Hence, the resulting computational model is thought to feed a new type of business-to-

business (B2B) music recommendation service for branding purposes.

Music as a communicative means in advertising and branding

Early empirical works on the beneficial effects of popular music in advertising have
typically emphasised classical conditioning (Gorn, 1982), symbolic consumption
(Larsen et al., 2010), as well as attention and memory effects (Allan, 2006) as the main
acting principles of music employed in advertisements, arguably, with mixed results.
For in these studies, music was typically treated as an abstract, symbolic stimulus that
may increase the persuasiveness of an advertisement message; but, however, as a

stimulus that had no proper “message” in itself. Most newer works on music in brand

! Preliminary short papers about specific aspects of this project were already presented at

ISMIR 2016 (Herzog et al., 2016) and ESCOM 2017 (Herzog et al., 2017).



communication take a radically different approach, insofar as they literally conceive of
music as a language. They predominantly focus on so-called congruity effects (or
musical fit) in order to explain the (in-) effectiveness of music in branding, adverts and
at the point of sale (see North et al., 2016 for an extensive overview). The notion of
“fit” specifically refers to the listener-perceived semantic congruence between the
communicative meaning of a certain piece of music and the communicator-intended
identity of a certain brand, product, or service (Maclnnis & Park, 1991, Zander, 2006).
In the relevant marketing literature, the semantic content of a brand identity is typically
conceived of as the combination of brand personality and brand values (Burmann, Jost-
Benz, & Riley, 2009; Chernatony, 1999; Nandan, 2005). Both sub-dimensions of a
brand’s identity can be expressed linguistically by adjectives. While brand personality
refers to a set of human personality traits associated with a brand, such as responsible,
active, emotional, aggressive, or simple (Geuens, Weijters, & De Wulf, 2009), brand
identity typically also encompasses abstract human values, such as powerful, aesthetic,
benevolent, ecological, healthy, hedonist, stimulating, or traditional (Gaus et. al., 2010).
The empirical output of more than two decades of music congruity research in
brand communication can be summarised as follows: If the music employed as part of a
branding strategy is in itself able to communicate similar values and traits as the brand,
product or service, it will lead to significantly increased brand awareness, improved
persuasive effects of advertising measures, and finally, also to a more enjoyable
customer experience at the point of sale (North et al., 2016). Based on a seminal study
by Maclnnis and Park (1991), this general finding has since then been robustly
validated in numerous follow-up studies (e.g. Hung, 2000; North et al. 2004; Oakes &
North, 2006). Therefore, the current study draws on the theoretical concept of musical

congruity in order to understand music’s communicative role in the branding process.



Musical communication according to music psychology

How can musical congruity be achieved in branding scenarios? To understand music’s
specific ability to communicate brand identities, it is useful to draw on the functionalist
approach to communication (Brunswik, 1952), as this has already been found to be
helpful for understanding musical communication within the field of music psychology
(see Juslin, 2000, for a theoretical introduction and an empirical example). The main
notion of this approach is that, similar to a non-verbal language, musical meaning is
conveyed by evoking fuzzy (though collectively shared) emotional and semantic
associations in the listeners based on a number of partially redundant acoustic cues
contained in the sounding musical material. According to the theory, these cues form
music’s actual “vocabulary”, which is acquired as informal knowledge during music
socialisation; hence, music performers and listeners stemming from a similar musical
culture are in result able to “understand” each other (Juslin, 2000). As prototypical
musical cues, Juslin (2000) refers to music and sound parameters such as tempo,
loudness, spectrum, articulation, mode and measure, as well as sounding features of the
musical structure unfolding in time (employed scales, functional harmonics), and
finally, to the semantic content of the lyrics. Extending from this original notion, it can
be argued, that also other easily-recognisable sound features of popular music such as
genre, style, and production sound should form additional acoustical cues that also
convey an easily understandable “message”, even for musical laymen (Tagg, 2013).
Accordingly, a marketing literature review by Oakes (2007) found that
manipulation of mood, genre, score, lyrics, tempo, and timbre of the specific music
employed in adverts and branding resulted in significantly different musical congruity

effects.



Formalisation of music branding and the need for an algorithmic solution

Based on the depicted theories and empirical findings on musical congruity as the basis
of successful music branding, it is possible to formalise music branding (Miillensiefen
& Baker, 2015) as a profession: Specialised music consultants working for audio
branding agencies have to translate the attributes of a given brand identity (brand
personality and brand values, as specified by marketing strategists) into fitting musical
cues that are able to express this identity, such as melody, instrumentation, genre,
rhythm, sound (see to Figure 1). This fit is essential in order to evoke the desired
semantic congruity between a brand identity and the selected music in listeners,
resulting in the desired “brand image”’). Thereto, branding consultants have to rely on
their practical experience with musical meaning attribution from the perspective of
different audiences towards different types of music in differing contexts. In other
words, they apply their musico-cultural knowledge about the contextual meaning of
musical cues. Then, in a second step, the consultants have to identify single music
tracks or assemble playlists (from their own archive or from specialised stock music
providers) conforming to the corresponding musical attributes. Finally, audio branding
agencies also develop a specific strategy of how to practically employ the selected
music in a specific branding campaign and sell this concept together with the rights to
use the created/chosen music to their customers (see Bronner & Hirt, 2009 for an
overview on the general challenges of audio branding practice).

One significant challenge for the work of music consultants when creating a
music branding strategy is the sheer breadth of online music archives combined with a
lack of brand-relevant metadata describing the tracks in these archives in a proper way
for the music branding task. Even experienced senior music consultants are typically not

able to oversee the attributes of music existing in their own archive, much less those



from music available in other archives, not to mention the attributes of the breadth of
new music released every day.

Anticipating this problem, music consulting agencies, record labels and
providers of stock music archives for advertisements have begun to tag the contents of
their music archives in terms of genre, style, mood, tempo, and instrumentation.
However, the taxonomy behind these tags, as well as the tagging itself, is often
inconsistent. Moreover, the available metadata are rarely extensive enough to provide
satisfactory results for search requests originating from the complex structure of a given
brand identity. This challenge, which forms a practical obstacle for small European
audio branding agencies to take part in a global music exploitation market, gave rise to
a publicly funded, comprehensive research and development project from which we
present selected findings in the current paper.

The objective of our research was to develop an algorithmic solution for
predicting perceived musical expression in branding scenarios (as depicted in the
theoretical framework above) based on social research methods, knowledge from music
psychology and employing existing music information retrieval (MIR) techniques.
Importantly, we did not aim at substituting the music consultants’ work with an
algorithm, but rather to provide them with a practical tool that helps with preselecting a
range of suitable “fitting” music for their everyday work and to thereby empower them

to focus on final decisions that truly demand their (human) expertise.

- place Figure 1 here -

The General Music Branding Inventory (GMBI)

For algorithmic modelling of the translation process described in the theoretical part

above and depicted in Figure 1, it is first necessary to identify the relevant semantic



elements of any given brand identity that can successfully be encoded into musical cues
and also be successfully decoded by typical music listeners into a brand image. A
further challenge for this task is that consumers from different social milieus and
cultures and with different musical expertise might draw on different linguistic terms to
describe perceived musical expression. Moreover, the descriptive terminology of
consumers may only partly overlap with that of branding experts. Addressing these
challenges systematically, a four-dimensional model of musical expression in branding
contexts measurable by the General Music Branding Inventory (GMBI) was presented
by Herzog and colleagues (Herzog, Lepa, Steffens, et al., 2018; Steffens et al., 2018).
The underlying questionnaire GMBI_ 22 consists of 22 adjectives and was developed
empirically following results from an audio branding expert focus group and a
marketing expert survey (Herzog, Lepa, Schonrock, et al., 2017; Herzog et al. 2020).
Within two pilot studies, a word list representing the central elements of a brand identity
that can also be expressed through music, was generated (the Music Branding Expert
Terminology — MBET). In the next step, the MBET list underwent comprehensive
listening tests with a large number of consumers from different countries who were
presented with a large range of music titles. Resulting ratings were analysed with
Exploratory Factor Analysis (Fabrigar et al., 1999) using orthogonal Crawford-
Ferguson Rotation (Browne, 2001) and the obtained factor solution was optimised by
stepwise item deletion based on modification indices and with the aim to achieve
language invariance (Steenkamp & Baumgartner, 1998). The result was a condensed list
of 22 questionnaire items (GMBI 22) which operationalises a four-dimensional
parametric musical expression space. These dimensions are able to capture the most
important aspects of contemporary typical brand identities that can be communicated

with popular music (see Table 1): We find two emotion expression dimensions (Arousal



/ Valence), as well as two brand value dimensions (Authenticity / Timeliness) which

together represent the essence of music branding communication.

- place Table 1 here -

Study Aim: Predicting perceived brand-relevant musical expression using MIR

features

Since dimensions of perceived musical expression for branding contexts have been
successfully formalised by the GMBI 22 instrument, the aim of the current study was to
develop a computational model that is able to predict the GMBI scores of any given
piece of music based on music information retrieval (MIR) techniques. In terms of
machine learning, this study aimed to solve a regression problem, as this approach has
been shown to empirically perform better than a discrete classification approach when it
comes to predicting higher-order human responses to music such as emotions (Yang et
al., 2017).

However, perceived expression of music in branding contexts is not to be
conceived of as an inherent quality of audio files, but may partly lie ‘in the ear of the
beholder’. Prior studies dealing with the semantic expression of music (Bonneville-
Roussy, Rentfrow, Xu, & Potter, 2013; Shevy, 2008) demonstrate that members of
different social milieus, countries, gender and generations tend to attribute slightly
different semantic expressions to the very same musical pieces. Further, there is
virtually no valid ‘Big Data’ information basis in terms of existing MIR datasets or
exploitable user transactions on existing online music platforms, that would deliver
ground truth data on perceived semantic expression of a large number of music tracks.

Hence, a knowledge-based recommendation approach (Burke, 2000) drawing on



manually acquired ground truth by means of a large-scale online survey appeared as the
single realistic option for developing a valid prediction model for perceived musical

expression.

Research questions and summary of research design

In summary, the aim of the current contribution was to develop a computational model,
which can predict perceived musical expression for the branding context, taking into
account social differences with regard to the perception of musical meaning. By
drawing on an experimental online survey approach, we aimed on answering the

following three research questions:

(1) To which degree can we predict perceived musical expression (as measured by
the GMBI_22) in the context of music branding?

(2) What is the explanatory power of different kinds of audio descriptors regarding
perceived musical expression?

(3) To what extent can we increase the prediction accuracy for perceived musical
expression, when modelling inter-individual differences, represented by typical

marketing target groups?

To approach these research questions, we created ground-truth data by
conducting two multi-national online listening experiments. In the course of the
experiments, 10,144 European listeners rated the perceived fit between GMBI items and
549 presented musical excerpts. Furthermore, we extracted 487 different audio features
from the same excerpts, drawing on up-to-date audio signal analysis and music
information retrieval techniques, including a number of high-level music descriptors
that had been developed before by employing supervised machine learning of music

branding expert knowledge (describing e.g. genre or instrumentation of a track).



Combining acquired ground truth with the MIR features, we then applied two
different machine learning methods (hierarchical stepwise regression and random
forest regression) in order to test which model family would perform best in predicting
the GMBI scores and ultimately identified the best method for each GMBI factor
dimension. Then, we analysed resulting models with regard to the explanatory
contribution of different audio descriptor blocks. Finally, to approach the problem of
modelling inter-individual differences in perceived musical expression, we developed
adaptive model variants for typical marketing target groups, aiming to further increase

the predictive accuracy of the overall computational model.

Materials and methods

In this section, we describe the development of a computational model for predicting
perceived musical expression in branding scenarios. We initially describe the
composition of the music stimulus set chosen for the listening experiment and the
prediction model development. Following this, we present the methodology of the
online listening experiments leading to a large data set of listener ratings and resulting
in factor scores based on the GMBI 22 instrument. Afterwards, we present the
development and extraction of audio descriptors for the computational prediction
models, which include machine learning of branding expert music knowledge on one
hand and the application of available MIR toolboxes on the other. Finally, we describe
the statistical development of the final computational prediction models. Figure 2

provides a graphical overview of the methodological steps described in this chapter.

- place figure 2 here -



Music stimulus set for listening experiments and prediction models

All music recordings used in the presented study stem from the library of the
collaborating audio branding agency HearDis containing approximately 100,000 music
pieces. Many of the tracks are well-known popular music titles from the past decades,
extended by various dance music tracks and some “hits” from the classical repertoire.
The library was organised in ten different musical genres (Blues, Classical, Dance,
Folk, Hip Hop, Jazz, Pop, Rock, Soul/Funk, and World Music) and 61 musical styles
(sub-genres, e.g. Fusion Jazz, see Table 2 for a complete list). In addition to genre and
style adherence, branding experts of the agency also tagged the pieces with additional
information on dominant instrumentation (13 classes, plus 5 classes representing the
existence and gender of vocal parts), as well as in terms of dominant production timbre,
with the 6 mutually exclusive tags hard, soft, warm, cold, bright, and dark.

For the online listening experiments, a sub-sample of 549 tracks was manually
selected by the experts, with nine representative tracks for each musical style. The
choice of tracks reflects extensive discussions and agreement among six of the
cooperating agency’s professional music consultants. For each style, it comprises of the
nine pieces that were deemed to best represent the complete musical spectrum of the
respective style. After an agreement had been reached for all styles, in a second step, an
independent group of three further audio branding experts verified the plausibility of
each track per style, leading to further optimisation of the final selection.

Subsequently, excerpts of approximately 30 seconds were taken from each
digital audio file, comprising the first transition from verse to chorus of the tracks. The
aim of this step was to provide suitable stimuli for the planned online listening
experiments, ensuring that participants would be able to rate multiple tracks in a

reasonable amount of time, thereby employing a well-established economical practice in



music psychology research. Afterwards, the resulting files underwent a perceptual
loudness adjustment: Based on a reference track representing the mean loudness of the
complete music stimulus set, the level of all other tracks was corrected individually by a
mastering engineer, since a mere automatic loudness adjustment is typically not enough
to accommodate for differing production schemes concerning loudness and dynamics
which are found with music from different decades and styles. Finally, each track
excerpt received a smooth fade-in and fade-out and was then MP3-encoded (Stereo, 320

Kbit/s) for the online listening experiments.

Online listening experiments

In order to generate ground truth on the branding-relevant perceived musical expression
of the 549 chosen music track excerpts, we conducted comprehensive online listening
experiments within three European countries. Specifically, two consecutive
experimental survey waves were realised with the support of commercial online-access
panel providers which systematically recruited participants according to requested
quotas and provided participants with a monetary compensation. During the first wave,
183 music excerpts (three from each style) were presented to 3,485 listeners from the
UK, Spain and Germany, with the sample containing an equal distribution of members
from each country, gender, educational background (ISCED 0-2, 3-4, 5-8) and age
group (18-34, 35-51, 52-68).

Each participant in the first wave rated four randomly chosen music excerpts by
means of the GMBI 22 questionnaire. During the second wave of listening
experiments, 366 music excerpts (six from each style) were presented to 6,659 listeners
from the UK, Spain and Germany, with the sample again containing an equal number of
residents of each country, but population-representative relative shares for each gender,

educational background and age group (with fully “crossed” quotas, meaning that e.g.



also the quota of gender within each age group in each education group in each country
was representative to corresponding population shares). Each participant in the second
wave rated six randomly chosen excerpts by means of the GMBI 22 questionnaire.

The listening experiments’ procedure always started with the collection of
participants’ socio-demographic information and a short sound test for calibrating audio
playback volume. In the second wave, a short initial questionnaire with 38 Likert items
measuring SINUS meta milieu membership was additionally administered, in order to
represent typical marketing target groups beyond socio-demographics (SINUS meta
milieus are a well-established multi-lingual commercial operationalisation of lifestyle-
groups in international marketing; see Homma & Ulktzhoffer, 1990 for a theoretical
introduction; see SINUS, 2017 for an overview of the current version of the instrument
which clusters consumers into nine groups called “meta milieus”, the labels of the
resulting nine meta milieus are provided in the bottom nine rows of Table 5).

After the initial questions, the first 30s music excerpt was played, followed by
the instruction to rate the subjectively perceived degree of fit between the music and the
22 adjective items of the GMBI 22 questionnaire, which were presented in a random
order, using a 6-point scale for the ratings. In the UK, GMBI 22 items were presented
in English, in Germany in German, and in Spain in Spanish.

After the first trial, the subsequent track excerpts were presented in exactly the
same way (3 further excerpts per person in wave 1, and 5 further excerpts per person in
wave 2). Random music excerpt selection was programmed for both waves in a way to
enforce equal playback probability for each track within the 54 groups formed by
combinations of all socio-demographic variables. In total, each online experiment took
about 15-30 minutes and ended with a short questionnaire asking for participants’

musical preferences and the audio playback set up they used.



Development and extraction of audio descriptors

The audio descriptors used as predictors in the computational prediction model
developed in this paper are derived from two different sources: Machine learning of

branding expert music knowledge and existing MIR toolboxes.

Machine learning of branding expert music knowledge

In order to include branding experts’ music knowledge in our planned prediction model,
we first applied supervised learning of all the tags contained in the collaborating audio
branding company’s music archive (genre, style, instrumentation, vocals_existing,
vocals_gender, production timbre, see Table 2). For this purpose, 17,163 representative
full music tracks were chosen from the library, to represent at least 100 tracks of each
style and all possible combinations of descriptor tags. Note that none of the tracks
utilised in the subsequent listening experiments in wave 1 or 2 were part of this
procedural step. For each of the six families of expert tags, a machine-learning (ML)
model was trained. We employed the IRCAM _classification meta-framework (Burred &
Peeters, 2009; Peeters et al., 2015), which allowed us to train a ML classifier given a set
of exemplary music tracks belonging to a given tag.

Using the provided training sets, and after exclusion of the few tracks with
ambivalent tagging, we found that all classifications could be realised as single-label
classifications. This means that a given music track belongs only one tag within a given
tag family as opposed to multi-label classifications where a given track can belong to
several tags within a given tag family simultaneously. The following feature-based ML

approach is implemented in IRCAM _classification:

(1) extracting a large set of audio features using the ircamdescriptor software

library (Peeters, 2004)



(2) modelling their behaviour over time using AR-vector models, Modulation
Spectrum and/or Universal Background-Model / GMM-Supervectors

(3) performing feature space projection using Principal Component Analysis (PCA)
and/or Linear Discriminant Analysis (LDA)

(4) performing supervised training of the final classifier using Support Vector

Machine (SVM).

It should be noted that IRCAM _classification is a meta-framework which
automatically finds the best combinations of parameters for a given task (discriminating
between tags with a given tag family). For this reason and due to matters of space, we
do not provide the specific values of e.g. identified SVM kernel parameters for each
classifier in the results section; however, we do document the final classification
accuracy benchmarks (see Table 2). The six ML classification models resulting from
this procedure (vocals gender, vocals_existing, instrumentation, genre, style,
production timbre) were finally applied to the 549 music tracks selected for the online
listening experiments. Each track was then characterised by its membership
probabilities concerning each tag, of each tag family. This led to a set of 95 machine
learning-based descriptors (the sum of all tag classes, see Table 2), representing the
individual tag probabilities to be used later as input for the prediction model of

perceived musical expression.

Extraction of further audio descriptors using existing MIR toolboxes

To gather further meaningful audio and music descriptors for the prediction model, an
extensive signal analysis of the 549 music tracks was conducted, mainly drawing on
existing MIR software toolboxes. The resulting set of content descriptors relates either

to musical characteristics (such as the tempo or key) or to global sound characteristics



(such as the frequency bandwidth of the audio signal). To create a comprehensive
musical description, we employed IRCAM beat (Peeters, 2006b, 2011; Peeters &
Papadopoulos, 2011) in order to represent rhythm and tempo (9 descriptors),

IRCAM _keymode (Peeters, 2006a) to represent mode and key (12 descriptors), as well
as IRCAM chord (Papadopoulos & Peeters, 2011) in an adapted version (Steffens et al.,
2017) that is able to represent typical chord successions and functional harmonics (13
descriptors).

Moreover, we utilised IRCAM _descriptor (Peeters, 2004) to represent the
overall sound of the music track in terms of e.g. sinusoidal components, roughness or
mean energy in specific frequency bands (42 descriptors). Finally, the
IRCAM timbre toolbox (Peeters, Giordano, Susini, Misdariis, & McAdams, 2011) was
employed to gather 316 further descriptors suitable to represent production specific
audio features, e.g. frequency band limitations typical for certain decades of pop music.

Since the computational model to be developed was thought to later feed a fully-
automatic recommender system that does not need any user intervention, we analysed
full audio tracks and drew on the toolboxes’ default options only. In summary, we
gathered 392 audio and music descriptors (e.g. timbre, mode, tempo) and 95 machine
learning-based descriptors (e.g. genre, style and instrumentation, see previous

paragraph) for the prediction model.

Computational prediction model development

In the previous sections we have described the construction and characteristics of the
variables used for the computational prediction model (see Figure 3). In the following,

we document the statistical procedures taken to answer the three research questions.



- Place Figure 3 here -

Data pre-processing

After initial data cleaning, factor scores of the four GMBI dimensions Arousal, Valence,
Authenticity and Timeliness were calculated based on the ratings obtained in the
listening experiments of both waves. This was done by employing robust maximum
likelihood estimation (MLR) of factor scores (Fabrigar et al., 1999) using the statistical
software package MPlus 6 (Muthén & Muthén, 2010) and specifying the GMBI 22
factor measurement model (see Table 1) which draws on the ESEM-approach with
target rotation (Asparouhov & Muthén, 2009). Initially, we performed a language
invariance test (Steenkamp & Baumgartner, 1998), resulting in scalar invariance, then
we accordingly fitted the final multiple-group ESEM factor model (three groups
representing the three language versions of the questionnaire) constraining factor
loadings and item intercepts to be equal across groups and factor inter-correlations to
zero, resulting in a good measurement model fit of X?=21092.550; df=627; p<0.01;
RMSEA=0.043; CFI=0.959; SRMR=0.030 based on n=53344 observations. During
estimation of factor model and scores, the clustered structure of data (repeated
measurements within individuals, two different waves with different cluster sizes) was
addressed by using a robust sandwich estimator procedure implemented for such
scenarios in MPlus.

Subsequently, we determined arithmetic means of resulting factor scores for
each of the 549 track excerpts across the whole sample of participants (based on about
80-110 ratings per track). These ‘track-based’ factor scores were then merged with

scores of the 487 audio and music descriptors (resulting from ML=machine learning of



music branding expert knowledge, as well as IRCAM=existing IRCAM toolboxes),
constituting a reduced dataset, henceforth denoted as population sample.

In the same way, we calculated mean GMBI factor scores for 29 relevant
marketing target groups formed by two-way-interactions of socio-demographic
variables, as well as for the nine SINUS meta milieus (see column 1 in Table 5 for their
labels). Resulting mean GMBI factor scores drew on approximately 10 to 60 ratings per
track and were again merged with the scores of the 487 audio descriptors. The resulting
38 datasets are henceforth denoted as target group samples.

As the GMBI 22 factors were orthogonal by design and thus uncorrelated, four
separate regression problems had to be solved for the whole population sample, as well
as for the 38 separate target group samples. For each of the required partial models, all
487 (mostly metric) predictor variables in terms of audio descriptors were potentially
useful. To address this combined feature selection and prediction problem, a stratified
9-fold cross-validation procedure was performed with the population sample in order to
develop the population models: Therefore, we split the dataset by assigning the first
eight tracks of each style (488 observations) to a training dataset and the one remaining
track per style (61 observations) to a test dataset. In the next fold, we repeated this
procedure, now leaving out the second track of each style for the test dataset, etc.

Finally, we applied z-standardisation on the numeric variables of the training
datasets first and afterwards on test datasets, both based on determined training dataset
scales (mean and variance estimations of predictor variables). This resulted in nine
different, style-representative training datasets and nine disjunct holdout datasets for
testing, which we then used for a later 9-fold cross-validation with resulting model R?s

being the average across all nine folds.



For the development and testing of the 38 target-group-specific sub-models, we
drew on wave 1 data (183 observations) as holdout and wave 2 data (366 observations)
as training sample. Note that a folding procedure was not deemed feasible in this
procedural step due to low sample size. Similar to the population sample, we first
applied z-standardisation on training datasets and then on the respective holdout
datasets based on previously determined training dataset scales (mean and variance
estimations of predictor variables). Figure 4 depicts the resulting training and test
datasets used for the development and selection of prediction models for perceived
musical expression and for target-group-specific sub-models as described in the

following sections.

- Place Figure 4 here —

Training and selection of final regression models

In order to address research question 1, we trained prediction models for the four factors
(Arousal, Valence, Authenticity and Timeliness) based on the nine different training
datasets derived from the population sample as depicted in Figure 4. We tested two
different model types, hierarchical stepwise regression and random forest regression.
The rationale for this was to compare a rather traditional social science modelling
approach that is based on linearity (stepwise regression) with a modern machine
learning approach (random forest regression) that can handle non-linearity and complex
interactions (Strobl, Malley, & Tutz, 2009). Random forests were estimated using the
cforest function of the ‘party’-package for the statistical software environment R
(Hothorn, Hornik, Strobl, & Zeileis, 2019) while hierarchical stepwise regression was

performed using the statistical software package IBM SPSS 25, drawing on the



regression function. For each model family, we first tuned hyper-parameters (see results
section below for details) with the whole sample from both waves in a grid-like fashion,
drawing on the Arousal scores and taking R* as an optimisation criterion. Hierarchical
stepwise regression models were realised by entering predictor variables in a block-wise
fashion (the blocks where either composed by toolbox origin or machine learning
descriptor group, see Table 4 column 1 for a list of all predictor blocks). Then, we
performed a stepwise variable selection procedure (forward/backward-method) within
each block. During the course of initial hyper-parameter tuning, we also compared
every possible order of functional variable blocks, since, due to the hierarchical nature
of linear regression analysis, this could affect estimation results. As a selection criterion
for the final model family to choose for each of the four dependent variables, we
compared averaged R? across all nine CV-folds resulting from using either hierarchical
stepwise regression or random forest regression. R*> was always calculated by dividing
the explained sums of squares by the total sums of squares throughout the whole study.
After completing model family selection, we trained the chosen model variant again,
now drawing on the whole population sample dataset encompassing both waves, in

order to increase the informational basis for the final models.

Estimation of audio descriptor block importance for the final models

In order to address research question 2, we calculated incremental R? for each predictor
block of the hierarchical stepwise regression solution. We drew on the respective model
family previously selected for each of the four musical expression factors (see Table 4).
In order to achieve maximum comparability, in spite of overlapping explanatory
potential of predictors, we used the same order of blocks for the random forests as we
had established for the hierarchical stepwise regression. We did this to get an estimate

for the importance of different types of audio descriptors in the final prediction models,



drawing on the full population sample.

Training and selection of target-group-specific sub-models

Finally, to address research question 3, we calculated separate models for the 38 target
group samples, now drawing on the individual training datasets derived from the 38
target group samples (see Figure 4). For estimating the target group sub-models, we
always employed the same model type and hyper-parameters that had been found to be
best for the population sample (hierarchical stepwise regression for Arousal and
Timeliness, random forest regression for Valence and Authenticity). When resulting
predictive R? values for the holdout sample fell below the R? acquired with the
population model, we discarded the target-group-specific model. However, in cases
where the fit was better than the R? reachable with the population model, an adaptive
model for the respective target group was trained, now drawing on the full target group

sample (training and test data).

Results

Results of machine learning of branding expert knowledge

In the following, we document the final results of the machine learning of branding
expert knowledge which was realised with the IRCAM _classifcation software

framework.

- place Table 2 here -

The machine learning of the various classifiers led to very robust results (see

Table 2). Classification of three out of six tag categories (genre, style, and



vocals_existing) was accomplished with over 90% accuracy. Recognition of
instrumentation (81% accuracy) and production_timbre turned out to be more difficult
(82% accuracy). Finally, retrieval of the three tag categories of vocals gender was most
difficult (76% accuracy).

Hence, machine learning of branding expert resulted in reliable automatic
higher-order music classifiers that we could employ to produce high-level music
descriptors for the sample of 549 tracks used in the listening experiment. In this way,
we obtained probability values from each of the classifiers for each track which
complemented the other lower-order descriptors stemming from existing audio analysis

toolboxes.

Multivariate computational prediction model for musical expression

In the following, we document the four final partial prediction models for musical
expression (population models) we gained by applying the machine learning procedures
described in the method section to the listening test dataset. Results firstly apply to
hyper-parameters identified for the two different ML approaches under investigation.
For hierarchical stepwise regression, we determined a forward-backward approach with
p_in=.05 and p_out=.10 to be the solution leading to highest R? by employing grid-
based hyper-parameter optimisation. Then as the last “hyper-parameter” (in a more
qualitative sense), we also compared every possible order of functional variable blocks
(which were roughly composed by toolbox origin / tag type). The best order in terms of
highest resulting R? turned out to be (from first to last): IRCAM beat, IRCAM keymode,
IRCAM chord, ML _Instrumentation, ML Musical style, ML _Musical genre,

IRCAM descriptor, ML _Production_timbre, ML Branding suitability,

IRCAM timbre_toolbox.



- place Table 3 here -

Training R? obtained for these model variants for each of the four dependent
variables and R? for the 9-fold-cross validation procedure are documented in Table 3.
Results indicate that random forest regression (RFR) provided the best solution for
Valence and Authenticity, with hierarchical stepwise regression (HSR) resulting in
lower R?, both for training and CV results. For Arousal and Timeliness, however,
hierarchical stepwise regression clearly performed better. Resulting R? from training
the four selected population model variants with the full sample are Arousal (HSR) =
84%, Valence (RFR) = 77%, Authenticity (RFR) = 83%, Timeliness (HSR) = 85%. Note
that these values are probably overestimating true future performance; however, they
reveal the explanatory potential of the model, which is further expanded in the

following paragraph.

Explanatory power of specific audio descriptor blocks

The estimated incremental R?s for the single predictor blocks of the two hierarchical
stepwise regression models and the two random forest models (see Table 4) provide a
clear picture concerning predictor importance in the finalised full prediction model for
musical expression in branding contexts: For the dimensions Arousal and Timeliness,
the audio descriptors for instrumentation and musical style resulting from machine
learning of expert tags as well as the audio descriptors from /RCAM beat describing
rhythm and tempo of music represent the most important types of predictors. Harmonic
descriptors of music tracks stemming from /IRCAM keymode and IRCAM chord as well
as production sound descriptors (stemming from IRCAM descriptor and

IRCAM timbre_toolbox) play a minor role.



- place Table 4 here -

In contrast, for the two dimensions Valence and Authenticity, rhythmic aspects
of music as measured by /[RCAM _beat play a considerably more important role,
followed again by machine-learned instrumentation descriptors. Musical style, however,
only plays a minor role for predicting perceived musical expression in these two
dimensions. Here, IRCAM timbre toolbox and IRCAM descriptor together were able
to predict only a lesser amount of variance, followed by harmonics as grasped by
IRCAM chord, which all appear to be of minor importance. Moreover, descriptors of
IRCAM keymode led to a decrease of R? in the selected random forest models selected
for Valence and Authenticity.

Finally, a general result across all GMBI dimensions is that production timbre
descriptors, IRCAM keymode, as well as musical genres do not substantially contribute
to the prediction of perceived musical expression in branding context (the more fine-
grained musical styles partly do), while rhythmic aspects of music, as well as the more
fine-grained expert knowledge about dominant instrumentation gathered through

supervised machine learning, appears to be essential.

Testing for improved prediction accuracy of target-group-specific sub-models

For the target-group-specific prediction models, we employed the same model types as
were selected as population models, but trained them with the training datasets of the
respective target group sample. As R? results of this procedure demonstrate (see Table
5), target-group-specific adaptive models turned out to be advantageous in the majority
of cases (87 out of 152), For the remaining 65 cases, the population model proved equal

or better in predicting GMBI factor scores for target groups. For some combinations of



target groups and GMBI factors, the target group models were especially beneficial to
predict perceived musical meaning. This applies to predictions for the target group
‘Sensation-oriented’ (for all factors, except Authenticity) as well as to the SINUS meta
milieu ‘Adaptive navigators’, where a substantial increase due to target group-specific
prediction modelling was achieved for Valence (+0.15) and Authenticity (+0.17).

Furthermore, a notable increase in accuracy could be observed for Valence
predictions for the three target groups ‘UK’ (+0.11), ‘Spain’ (+0.09) and ‘Germany’
(+0.18), whereas almost no positive or negative difference was measured across all four
GMBI factors for the three different age cohorts ‘age 18-34°, ‘age 35-51" and ‘age 52-
68’.

The only two target groups exhibiting an increase across all four musical
meaning factors were ‘Spain’ and ‘Spain, female’. Note that the mean prediction
accuracy of the four population models for the complete ‘population’ (see Table 5, row
1), which was taken as a baseline here, is lower than our main prediction results (see
Table 3), in which 488 tracks were used for model training, compared to only 366 tracks
in the analysis documented here. Note further that the strongest target group
heterogeneities were in general observed for Valence, hence this factor also benefited

most from the adaptive approach.

- place Table 5 here -

Discussion

In the present paper, we have documented the development of a ground truth-based,
computational prediction model for perceived musical expression in the branding

context, which will be turned into a publicly available fully-automatic B2B music



recommendation system addressing the needs of audio branding agencies and online

music libraries in the near future. Given the statistical results obtained, the model is able
to predict branding-relevant musical expression of popular music tracks as measured by
the GMBI (in three different languages) with a high accuracy ranging between 44-74%.

Specifically, our final models will be able to predict the Arousal and Timeliness
dimensions of musical expression as measured by the GMBI 22 with an accuracy
somewhere in between 61-74%, while the Valence and Authenticity dimensions may be
predicted with an accuracy of somewhere in between 44-55%. Interestingly, random
forest regression models displayed their well-known advantages in grasping non-
linearities and complex interactions only for the Valence and Authenticity dimensions of
branding-relevant musical expression. This might be explained by empirical findings
from music psychology, that musical communication cues often seem to work in a
linear-additive fashion (Eerola, Friberg, & Bresin, 2013).

While there is a lack of prior machine learning studies concerning the two brand
value dimensions (Authenticity and Timeliness) that could be compared to our findings,
our results for the two emotional expression dimensions (4rousal and Valence) perform
quite well compared to prior studies in this area. Equivalent studies also drew on a
regression approach, musically diverse stimuli and the Arousal/Valence model to
predict perceived musical emotion (Leman, Vermeulen, De Voogdt, Moelants, &
Lesaffre, 2005; Yang et al., 2008; Tuomas Eerola, Lartillot, & Toiviainen, 2009; Han,
Ho, Dannenberg, & Hwang, 2009; Schmidt, Turnbull, & Kim, 2010; Gingras, Marin, &
Fitch, 2014; Saari et al., 2016). To the best of our knowledge, better results were only
achieved by Eerola et al. (2009), in terms of Arousal R>=77%, Valence R>=70% with 5-
fold CV, who only drew on a comparably narrower repertoire of 360 film music

excerpts. Any other results of the above-quoted studies clearly fall below what we



present in this study in terms of predictive power and/or size of the music sample.
Additionally, it is important to note that, since our prediction models are based on
regression logics, even slightly biased predictions may still be expected to form
sufficiently reasonable estimations of a music track’s correct place in the four-
dimensional musical expression space mapped by GMBI_22. Given that our developed
prediction models will be implemented in a fully automatic recommender system that
will not incorporate any form of preceding user or expert tags, our results appear to be
very satisfying.

Furthermore, analysis of the most important explanatory predictor blocks that
we calculated (Table 4) demonstrate that machine-learned branding expert music
knowledge and audio descriptors from existing signal analysis tool boxes both
contribute approximately equal weight to the models’ prediction accuracy, partly
differing in size between the GMBI dimensions. It thus appears to be the branding
experts’ implicit knowledge about musical styles and instrumentation together with
easily derivable rhythm and tempo of music tracks that are decisive for a good
prediction of perceived musical expression in branding contexts.

In addition, our study approached the challenge of target-group-specific musical
meaning attribution. For the 29 different socio-demographic target groups and nine
SINUS consumer milieus in three European countries, the prediction accuracy could be
increased in 87 out of 152 cases by drawing on adaptive sub-models. These gains will
also improve the prediction results of a fully automatic recommender system in
development. While the overall gain is arguably not large across all tested sub-models
in terms of the answer to research question 3, we still think that in applied scenarios
where it is important to address specific target groups, the additional benefits of up to

23% in R? for some of the groups will be considered substantial.



Our analysis of target-group specificity further brought about interesting
heterogeneities in terms of consumers’ attribution of musical expression. Principally,
we found differences in the Valence model’s prediction performance across the three
countries UK, Germany, and Spain. This finding is in line with prior research on
culture-dependent influences on music listening behaviour (Pichl, Zangerle, Specht, &
Schedl, 2017) and valence responses to music (Egermann, Fernando, Chuen, &
McAdams, 2015). Therefore, a general recommendation to future developers of
recommendation systems is to always include culturally adaptive modelling when

addressing perceived emotions or semantics of music.

Limitations

One limitation of the approach to music branding recommendation presented in the
present study is typical for ground-truth based prediction models employed in
knowledge-based recommender systems (Burke, 2000): It is an open empirical question,
to what degree the perceived branding-relevant musical expression of popular music
pieces may underlie changes over time and across new listener generations. Hence, to
keep up flexibility towards possible future changes in perceived music semantics, the
latent music listener knowledge contained in the prediction models demands systematic
updates through future online listening experiments providing the necessary ground
truth in the forthcoming years.

A second limitation is the still pending real-world evaluation of the algorithmic
solution for music branding that was developed by the study depicted in this paper.
While results of the 9-fold cross-validation already demonstrate an expectable
performance accuracy of our final models with “unseen” music titles, it will
nevertheless be necessary to validate its actual performance in real music branding

campaigns.



Conclusions and outlook

As a next developmental step, we will implement the final prediction models depicted
in this study into a licensable software library providing users of digital music archives
with the functionality to index any given piece of music with a valid score for each of
the four GMBI dimensions and the underlying GMBI items. In this way, the branding-
relevant expressive content of a music track can be estimated automatically. As a result,
users of this system will be able to easily search their music archive for music tracks
that fit best to a given brand identity.

A first operational scenario and validation test bed for the GMBI prediction
model will be a commercial software tool to be presented soon by our project partner
HearDis. It automatically generates playlists based on any given brand identity and
target group profile. These playlists are then used to feed an in-store music player
application, which can be used by retail stores interested in music branding at the point
of sale. To this end, an additional brand filter software module was developed that uses
the GMBI factor loading matrix and the estimated GMBI item reliabilities as input.
Salespersons will have the ability to define a set of GMBI factor and/or item values that
represent their intended brand characteristics best. The system will thus be able to
generate music playlists with complex search constraints adapted to very specific
marketing tasks and target groups. For any track in a music library that has been
previously indexed by the prediction module described in this paper, it is then possible
to calculate the Euclidian distance to the given search vector. After entering possible
additional constraints in terms of genre, tempo and audio quality; for example, a playlist
containing a requested number of least distant tracks adhering to given search

constraints, will be returned.



Additional software modules allow for seamless streaming playback of the
playlist at the point of sale and additionally include management of artists’ playback
royalties. One of our EU project partners is the clothing retail company Piacenza that
will perform an initial validation of the system in their shops. Since the public-private
partnership research project depicted throughout this paper is based on public funding,
results of this real-world evaluation will be published in the public domain. Future
works by our project group will simultaneously evaluate the possible benefits of
employing the prediction model presented here for addressing basic musicological

research questions regarding musical meaning attribution.
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Tables

Table 1. GMBI 22 questionnaire instrument - factor solution and measurement model

for perceived musical expression in branding contexts

Item / Factor | Arousal (-) | Valence Authenticity Timeliness
relaxing 0.782 0.185 0.311 0.102
soft 0.740 0.181 0.250 0.066
chilled 0.723 0.140 0.233 0.152
warm 0.581 0.473 0.395 0.050
loving 0.566 0.360 0.421 0.085
happy 0.210 0.781 0.264 0.179
bright 0.187 0.706 0.315 0.243
playful 0.160 0.664 0.281 0.238
friendly 0.422 0.648 0.358 0.113
authentic 0.270 0.334 0.656 0.144
honest 0.372 0.324 0.649 0.113
detailed 0.288 0.228 0.632 0.248
intellectual 0.356 0.083 0.631 0.261
trustworthy 0.409 0.347 0.605 0.151
creative 0.223 0.314 0.590 0.381
passionate 0.315 0.346 0.578 0.155
natural 0.463 0.350 0.540 0.053
modern 0.132 0.214 0.090 0.804
futuristic 0.088 0.035 0.162 0.688
young 0.111 0.347 0.082 0.677
contemporary | 0.257 0.204 0.249 0.591
innovative 0.207 0.216 0.482 0.559

Note. Coefficients are standardised item weights, values >.5 set in bold, factors are orthogonal,

polarity of Arousal is inversely interpreted due to item formulations



Table 2. Results of machine learning of branding expert music knowledge

Classifier Class labels No of
) Accuracy | Recall F1 score
(Tag family) (Tags) classes
Blues, Classical, Dance, Folk,
genre Hip Hop, Jazz, Pop, Rock, 10 0.92 0.62 0.62
Soul/Funk, World Music
style St)./le tags are provided below 61 0.98 0.45 0.45
this table*
Acapella, Acoustic-Guitar,
Brass, Choir, Electric-Guitar,
Live D hestral
instrumentation tve Drums, Orchestral, 13 0.81 0.42 0.42
Percussions, Piano, Speech,
Strings, Synthetic Drums,
Whistle
vocals_existing yes, no 2 0.92 0.92 0.92
vocals_gender male, female, mixed 3 0.76 0.63 0.63
hard, soft, , cold, bright,
production timbre | L > SOt Wt €O%d, BIg 6 0.82 0.46 0.46

dark

*Class labels of style classifier: Afro, Ambient, AOR, Asian, Balearic, Balkan, Blues,

Boogaloo, Boogie, Bossa-Nova, Broken-Beats, Calypso, Chanson, Classical-Jazz, Classic-
Rock, Contemporary-Classical, Contemporary-Folk, Country, Dancehall, Deep-House, Disco,
Downbeat, Dream-Pop, Drum & Bass, Dubstep, Easy-Listening, EDM, Electro, Electro-Pop,
Electro-Rock, Flamenco, Folkloric, Funk, Fusion-Jazz, Hip-Hop, Historical-Classical, House,
Indie-Dance, Indie-Pop, Indie-Rock, Krautrock, Latin, Mainstream, Northern-Soul, Nu-Jazz,

Oriental, Progressive-Rock, Punk, R&B, Rare-Groove, Reggae, Reggaeton, Rock & Roll,
Samba, Schlager, Smooth-Jazz, Soul, Tango, Tech-House, Traditional-Folk, UK-Funky




Table 3. Machine learning results for prediction model selection (training set vs. cross-

validation)
. R? R?
Variable Model type (training) (9-fold CV)

Hierarchical stepwise regression 87 .61

Arousal
Random forest regression .83 .60
Hierarchical stepwise regression .73 38

Valence
Random forest regression .80 44
Hierarchical stepwise regression 79 .54

Authenticity
Random forest regression .86 55
Hierarchical stepwise regression 85 74
Timeliness

Random forest regression .85 .66

Note: coefficients of finally selected model types set in bold



Table 4. Relative explanatory potential of predictor blocks obtained with the

hierarchical stepwise regression (HSR) and random forest regression (RFR) approach as

selected for the four dependent variables (based on population sample)

Predictor block Arousal Valence Authenticity Timeliness
R? (HSR) R? (RFR) R? (RFR) R? (HSR)
IRCAM beat 18 51 .63 32
IRCAM keymode .03 -12 -.13 .01
IRCAM chord (adapted) .04 .04 .04 .02
ML Instrumentation 24 21 .19 21
ML Musical style 23 .06 .04 25
ML Musical genre - .01 .01 -
IRCAM descriptor .07 .04 .02 .02
ML Production timbre .01 - - -
IRCAM timbre toolbox .04 .02 .03 .02
X R? .84 7 .83 .85




Table 5. Increase of prediction accuracy (R?) per target group when using specific target

group models instead of the population model for predicting GMBI factor scores;

number of underlying consumer ratings for each target group given in parentheses

Target group Arousal Valence Authenticity Timeliness
R? pop. R? | R?pop. R | R?pop. R | R?pop. R?
model incr. model incr. model incr. model incr.
population (53,344) 0.68 0 0.39 0 0.45 0 0.69 0
male (26,667) 0.63 | no gain 0.37 | no gain 0.47 | no gain 0.62 0.01
female (26,677) 0.62 0.01 0.35 0.03 0.37 | no gain 0.69 | no gain
UK (17,512) 0.63 0.01 0.19 0.11 0.39 0.05 0.64 | no gain
Spain (17,677) 0.63 0.05 0.41 0.09 0.13 0.01 0.47 0.11
Germany (18,155) 0.50 0.04 0.06 0.18 0.45 | no gain 0.64 | no gain
age 52-68 (18,074) 0.59 0.02 0.31 | no gain 0.45 | no gain 0.57 0.05
age 35-51(17,805) 0.63 | no gain 0.38 | no gain 0.23 0.06 0.64 | no gain
age 18-34 (17,465) 0.63 | no gain 0.32 0.04 0.39 0.03 0.67 0.02
male, age 52-68 (9,196) 0.57 | no gain 0.26 | no gain 0.44 | no gain 0.53 | no gain
female, age 52-68 (8,878) 0.51 0.03 0.27 0 0.35 | no gain 0.48 0.07
male, age 35-51 (8,941) 0.56 | no gain 0.36 | no gain 0.19 0.10 0.53 0.02
female, age 35-51 (8,864) 0.39 0.01 0.05 0.10 0.06 0.02 0.45 | no gain
male, age 18-34 (8,530) 0.34 0.12 0.22 0 0.32 0.04 0.53 0.02
female, age 18-34 (8,935) 0.58 | no gain 0.29 0.03 0.28 0.02 0.64 0.01
UK, male (8,676) 0.57 | no gain 0.16 0.06 0.40 0.07 0.53 0.02
UK, female (8,836) 0.49 0.10 0.16 0.15 0.29 0.01 0.61 | no gain
Spain, male (8,913) 0.56 0.01 0.33 0.05 0.11 | no gain 0.42 0.06
Spain, female (8,764) 0.56 0.06 0.35 0.08 0.09 0.05 0.38 0.11
Germany, male (9,078) 0.39 0.08 0.07 0.16 0.44 0 0.54 | no gain
Germany, female (9,077) 0.45 | no gain 0.03 0.14 0.33 | no gain 0.59 | no gain
UK, age 52-68 (6,064) 0.36 0.12 0.19 0.07 0.34 0 0.54 | no gain
UK, age 35-51 (5,855) 0.54 0.03 0.11 0.04 0.15 0.07 0.53 | no gain
UK, age 18-34 (5,593) 0.57 | no gain 0.11 0.15 0.23 0.1 0.47 | no gain
Spain, age 52-68 (5,892) 0.54 0.05 0.27 0.02 0.31 | no gain 0.23 0.14
Spain, age 35-51 (5,934) 0.54 | no gain 0.32 0.06 -0.02 0.12 0.42 | no gain
Spain, age 18-34 (5,851) 0.50 0.01 0.33 0.07 -0.18 0.20 0.44 0.06
Germany, age 52-68 (6,118) 0.45 | no gain -0.03 0.23 0.30 | no gain 0.42 | no gain
Germany, age 35-51 (6,016) 0.36 0 0.02 0.11 0.24 0.01 0.54 | no gain
Germany, age 18-34 (6,021) 0.30 0.08 0.09 0.05 0.39 | no gain 0.55 | no gain
Established (4,044) 0.51 | no gain 0.09 0.02 0.35 0.05 0.50 | no gain
Intellectuals (3,912) 0.50 | no gain 0.20 0.05 0.25 0.05 0.35 | no gain
Performers (3,996) 0.45 | no gain 0.13 0.08 0.29 0.12 0.31 | no gain
g”ss;‘;;‘;p"l“a“ Avantgarde 044 | nogain |  033| 009| 034 004| 055 nogain
Adaptive Navigators (4,344) 0.54 | no gain 0.00 0.15 0.12 0.17 0.40 | no gain
Modern Mainstream (5,766) 0.53 0.02 0.30 | no gain 0.18 0.01 0.42 | no gain
Traditionalists (3,954) 0.59 | no gain 0.30 0 0.15 0.10 0.49 | no gain
Consumer Materialists (4,014) 0.37 0.06 0.26 0.06 0.05 0.22 0.26 | no gain
Sensation-Oriented (6,804) 0.20 0.14 0.16 0.16 0.06 | no gain 0.04 0.19
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