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Summary statement 

Greig and Bulgakova show that the cross-talk between cell adhesion dynamics and 

actomyosin regulates epithelial cell shape. The p120-catenin protein facilitates this cross-talk 

through modulating Arf1 and RhoA signalling. 
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Abstract 

Precise regulation of cell shape is vital for building functional tissues. Here, we study the 

mechanisms which lead to the formation of highly elongated anisotropic epithelial cells in the 

Drosophila epidermis. We demonstrate that this cell shape is the result of two counteracting 

mechanisms at the cell surface which regulate the degree of elongation: actomyosin, which 

inhibits cell elongation downstream of RhoA signalling, and intercellular adhesion, 

modulated via clathrin-mediated endocytosis of E-cadherin, which promotes cell elongation 

downstream of the GTPase Arf1. We show that these two mechanisms do not act 

independently but are interconnected, with RhoA signalling reducing Arf1 recruitment to the 

plasma membrane. Additionally, cell adhesion itself regulates both mechanisms: p120-

catenin, a regulator of intercellular adhesion, promotes the activity of both Arf1 and RhoA. 

Altogether, we uncover a complex network of interactions between cell-cell adhesion, the 

endocytic machinery, and the actomyosin cortex, and demonstrate how this network regulates 

cell shape in an epithelial tissue in vivo. 
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Introduction 

The morphogenesis of all tissues requires precise control over the shape of individual cells. In 

epithelia, which outlines all cavities and surfaces of animal bodies, a variety of cell shapes is 

observed. Cell shape is determined by mechanical properties, which define cell geometry 

based on intracellular and intercellular forces (Chalut and Paluch, 2016; Lecuit and Lenne, 

2007). At the cell surface, mechanical properties are determined by an interplay of two 

factors: cortical actin and intercellular adhesion (Lecuit and Lenne, 2007; Winklbauer, 2015).  

 The first factor, cortical actin, is a meshwork of actin filaments crosslinked by 

specific cross-linking proteins and myosin motors at the cell surface (Chugh and Paluch, 

2018). Cortical tension is predominantly generated by the activity of non-muscle Myosin II 

(MyoII) motors, which act to minimize the contact area between cells by pulling on actin 

filaments, although the architecture of these filaments also contributes to tension regulation 

(Blankenship et al., 2006; Chugh et al., 2017; Clark et al., 2014). One of the best documented 

regulators of cortical contractility is the GTPase RhoA (Spiering and Hodgson, 2011). Its key 

effector is the enzyme Rho-Kinase (Rok), which is recruited to membranes by the activated 

form of RhoA, where it phosphorylates myosin light chain, leading to activation of MyoII 

and an increase of actin contractility (Amano et al., 2010; Kawano et al., 1999; Kureishi et 

al., 1997; Leung et al., 1995).  

The second factor, intercellular adhesion, is the property of one cell binding to it 

neighbours using specialized proteins on its surface. In epithelia, this is mediated by 

Adherens Junctions (AJs), with E-cadherin (E-cad) being the principle component. This 

transmembrane protein binds to E-cad molecules on adjacent cells (Takeichi, 1977; van Roy 

and Berx, 2008). Intercellular adhesion often opposes cortical tension by increasing the 

contact surface between cells (De Vries et al., 2004; Lecuit and Lenne, 2007), and its strength 

is proportional to both the levels and dynamics of E-cad at the cell surface (Foty and 
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Steinberg, 2005; Troyanovsky et al., 2006). The latter largely relies on the processes of 

endocytosis and recycling, which constantly remodel AJs (Kowalczyk and Nanes, 2012).  

The p120-catenin (p120ctn) protein family are the key regulators of E-cad 

endocytosis in mammalian cells, through directly binding the juxtamembrane domain of E-

cad (Daniel and Reynolds, 1995; Garrett et al., 2017; Ireton et al., 2002; Oas et al., 2013; 

Shibamoto et al., 1995; Yap et al., 1998; Yu et al., 2016). This family is represented by a 

single gene in invertebrates, such as Drosophila, whereas humans have 7 members with 

different expression patterns and functional requirements (Carnahan et al., 2010; Gul et al., 

2017; Hatzfeld, 2005). Most studies have focused on the founding family member, p120ctn, 

however other members, d-catenin and ARVCF, seem to have similar functions (Davis et al., 

2003). In mammalian cells, p120ctn is required to maintain E-cad at the plasma membrane: 

uncoupling p120ctn from E-cad or reducing expression results in complete internalization of 

E-cad (Davis et al., 2003; Ireton et al., 2002; Ishiyama et al., 2010), as the binding of p120ctn 

to E-cad conceals endocytosis triggering motifs (Nanes et al., 2012; Reynolds, 2007). This 

model of p120ctn activity has recently been augmented, when it was found that p120ctn can 

also promote endocytosis of E-cad through interaction with Numb (Sato et al., 2011). 

By contrast, in Drosophila  and C. elegans, p120ctn was thought to play only a 

supporting role in adhesion as genetic ablation failed to replicate the effects observed in 

mammalian systems (Myster et al., 2003; Pacquelet et al., 2003; Pettitt et al., 2003). This was 

thought to be due to the greater similarity of invertebrate p120ctn to mammalian d-catenin, 

ablation of which is similarly viable in mice (Carnahan et al., 2010; Israely et al., 2004). 

However, d-catenin expression is restricted to neural and neuroendocrine tissues (Ho et al., 

2000), which is likely to explain the mildness of knockout phenotypes, whereas invertebrate 

p120ctn is broadly expressed in both epithelia and neurons (Myster et al., 2003), suggesting 

potential functional similarity with mammalian p120ctn which shares the broad expression 
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pattern (Davis et al., 2003). It has recently been reported that Drosophila p120ctn is required 

to stabilize E-cad in the pupal wing (Iyer et al., 2019) and promotes the endocytosis and 

recycling of E-cad in the embryo and larval wing discs (Bulgakova and Brown, 2016). This 

indicates an evolutionary conservation of p120ctn function, where depending upon the 

context, p120ctn either inhibits or promotes E-cad endocytosis. 

 Another protein family regulating E-cad endocytosis is the Arf GTPases, which 

recruit coat proteins to facilitate the intracellular trafficking (Donaldson and Jackson, 2011). 

The first family member, Arf1, is classically viewed as Golgi resident and responsible for 

anterograde transport from the Golgi to the plasma membrane (Donaldson and Jackson, 2011; 

McMahon and Boucrot, 2011). Recently, however, Arf1 was detected at the plasma 

membrane, where it co-operates with Arf6-dependent endocytosis (Humphreys et al., 2013; 

Padovani et al., 2014). In Drosophila, Arf1 is required for endocytosis in the early syncytial 

embryo (Humphreys et al., 2012; Lee and Harris, 2013; Rodrigues et al., 2016), and interacts 

with E-cad and another component of AJs, Par-3 (Shao et al., 2010; Toret et al., 2014). 

 Cortical actin and intercellular adhesion do not exist in isolation but are intimately 

interconnected. Intracellularly E-cad interacts with other catenin proteins: E-cad binds b-

catenin, with a-catenin binding b-catenin and actin, thus directly linking E-cad to cortical 

actin (Ozawa et al., 1990; Shapiro and Weis, 2009). In addition to direct linkage, cortical 

actin and intercellular adhesion share common regulators. In mammalian epithelial cells, 

RhoA localises to AJs, where E-cad complexes create local zones of active RhoA by 

recruiting Ect2 GEF through a-catenin (Priya et al., 2013; Ratheesh et al., 2012). In these 

cells, p120ctn has a context-dependent role in RhoA regulation: it can inhibit RhoA directly 

or indirectly via p190RhoGAP; direct its spatiotemporal activity; or activate it (Anastasiadis 

et al., 2000; Derksen and van de Ven, 2017; Lang et al., 2014; Taulet et al., 2009; Yu et al., 

2016; Zebda et al., 2013). The role of p120ctn in the RhoA pathway in Drosophila is unclear 
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(Fox et al., 2005; Magie et al., 2002). However, RhoA itself regulates E-cad and is required 

for establishment of E-cad-mediated adhesion (Braga et al., 1997). In Drosophila, RhoA 

promotes the regulated endocytosis of E-cad by Dia and AP2 (Levayer et al., 2011). 

Conversely, RhoA activity antagonises E-cad endocytosis in the early embryo (Lee and 

Harris, 2013), indicating a context-dependent role of RhoA in E-cad endocytosis. Further, E-

cad endocytosis can direct actin remodelling (Hunter et al., 2015). 

 Here, we investigated the interplay between cortical actin, specifically the 

actomyosin, and E-cad-mediated adhesion in the elongated cells of the late embryonic 

epidermis in Drosophila. This cellular elongation is accompanied by a reciprocal anisotropy 

of cortical tension and E-cad adhesion. p120ctn is directly involved in shaping these cells by 

both influencing the endocytosis of E-cad and modulating cortical tension. We found that the 

mechanism of this p120ctn dual function is dependent on interactions with two GTPase 

pathways: RhoA to increase cortical tension and inhibit endocytosis, and Arf1 to promote 

endocytosis. Finally, we show that the interplay between these two GTPase pathways 

downstream of p120ctn participates in shaping the morphology of cells in vivo.  
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Results 

1) Anisotropy of actomyosin and adhesion in the epidermis of stage 15 Drosophila embryos 

The epidermal cells of stage 15 Drosophila embryos are elongated in the direction of the 

dorsal-ventral embryo axis and have an average aspect ratio of 6.1 ± 1.3 (ratio between 

lengths of the long and short cell axes, mean ± SD, Fig. 1A-E). Consistent with the elongated 

shape, these cells have two distinct types of cell border: long borders, which are orthogonal to 

the anterior-posterior axis of the embryo (AP borders), and short borders, which are 

orthogonal to the dorsal-ventral axis (DV borders, Fig. 1B-D’).  

 These cells exhibit an asymmetric distribution of intercellular adhesion components, 

specifically, the levels and dynamics of E-cad. In these differentiated cells, E-cad localises 

asymmetrically with a 1:2 AP:DV ratio (Fig. 1J, Table S1, and Bulgakova et al., 2013) in a 

narrow continuous band of mature AJs (Adams et al., 1996; Tepass and Hartenstein, 1994). 

This asymmetry is due to an accumulation at the DV borders of a specific pool of E-cad, 

which is dynamic due to its endocytic trafficking (Bulgakova et al., 2013).  

 Further to the asymmetry of E-cad, cortical tension and MyoII are also anisotropic 

between the AP and DV borders. MyoII is enriched at the AP borders (AP:DV@2:1, Table 

S1, Fig. 1G-H), consistent with previous reports (Bulgakova et al., 2013; Simoes et al., 

2010). As the accumulation of MyoII has been linked to cortical tension (Priya et al., 2015; 

Scarpa et al., 2018; Yu and Fernandez-Gonzalez, 2016), we compared tension between the 

AP and DV borders using microablation and measured the initial recoil as it is proportional to 

the tension (Liang et al., 2016; Mao et al., 2013). We used an E-cad tagged at its endogenous 

locus (E-cad-GFP, Huang et al., 2009) to label cells and quantify recoil (Fig. 1I-K, Movies 

S1-2). While the initial recoil was positive for the AP borders, showing that they are under 

tension, it was negative for the DV borders, suggesting that they are under compression (Fig. 
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1J). Intriguingly, the initial reduction in the distance between the vertices of the DV borders 

was followed by expansion which exceeded the original border length (Fig. 1K).  

Overall, the elongated shape of these epidermal cells coincides with inverse 

anisotropies in actomyosin dependent tension and the levels and dynamics of adhesion 

complexes. Therefore, we investigated how the interplay between cortical tension and 

adhesion at the cell surface produces cell shape. 

 

2) p120ctn influences cell shape, RhoA signalling and cortical tension   

Members of the p120ctn family regulate both the actin cytoskeleton and cadherin trafficking 

and are thus good candidates to mediate their interplay. We investigated if the function of 

p120ctn, with only one family member in Drosophila, affected the shape of cells. We 

overexpressed p120ctn under the control of a UAS promoter (UAS::p120ctn) in the posterior 

half of each embryonic segment using the engrailed::GAL4 (en::GAL4) while marking the 

cells using UAS::CD8-Cherry (Fig. 2A). To exclude potential differences between the 

compartments we used an external control: an engrailed compartment expressing two copies 

of UAS::CD8-Cherry to balance the Gal4:UAS ratio (Fig. 2A). The cells expressing 

UAS::p120ctn appeared distorted and had a reduced aspect ratio (p<0.0001, Fig. 2A-B). We 

complemented this analysis by using a p120ctn mutant (Fig. 2A, and Bulgakova and Brown, 

2016). Unexpectedly, the loss of p120ctn also reduced the cell aspect ratio in the engrailed 

compartment (p=0.001, Fig. 2C-D). This differs from the previous report (Bulgakova and 

Brown, 2016), which can be attributed to inherent difference between the engrailed-positive 

and -negative compartments (Fig. S1A). This difference was not accounted for in the 

previous report and is likely to mask the effect of p120ctn depletion. Therefore, altering the 

levels of p120ctn changes elongation of cells in the Drosophila epidermis. 
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 Another regulator of cell shape is cortical actomyosin, which is influenced by 

RhoA-signalling. As p120ctn family members regulate RhoA-signalling, we examined the 

interaction between p120ctn and RhoA in our system using its downstream targets: non-

muscle MyoII. p120ctn overexpression increased the amount of MyoII-YFP at the AP 

borders (p=0.006, Fig. 2E-F). Conversely, in the p120ctn mutant embryos MyoII-YFP was 

reduced at the AP borders (p=0.01, Fig. 2G-H). The MyoII-YFP amounts at the DV borders 

were not affected in either case (p=0.47 and p=0.45, Fig. 2F,H). We complemented these 

experiments by using a tagged kinase-dead variant of Rok (RokKD-Venus, Simoes et al., 

2010), previously used as a readout of Rok localisation and activity (Bulgakova et al., 2013; 

Simoes et al., 2010), and a biosensor of RhoA activity – the RhoAGTP-binding domain of 

anillin (RBD-GFP, Munjal et al., 2015) to directly examine RhoA activation. Both RokKD-

Venus and RBD-GFP had the same localisation and were affected in the same manner as 

MyoII-YFP (Fig. S1B-G). Overexpression of p120ctn led to elevated RokKD-Venus and 

RBD-GFP at the AP borders (p=0.0043 and p=0.08, respectively, Fig. S1B-C, F-G), whereas 

p120ctn loss abolished RokKD-Venus asymmetry due to a reduction at the AP borders 

(p=0.013, Fig. S1D-E). These findings support that these three readouts can be used 

interchangeably. As a control we also measured total F-actin using LifeAct-GFP (Riedl et al., 

2008). We found that it localised symmetrically and was not affected by altering p120ctn 

levels (p>0.99, p=0.63, Fig. S1H-I). These results indicated that p120ctn activates RhoA 

signalling specifically at the AP borders in a dose-dependent manner in epidermal cells.  

 Due to this correlation between p120ctn levels and RhoA signalling on the AP 

cell borders, we measured the cortical tension at these borders in p120ctn overexpressing and 

mutant cells (Fig. 2I-K, Movies S1, 3-4). The overexpression of p120ctn increased both the 

total recoil distance and the initial recoil velocity (0.36 µm/sec in comparison to 0.13 µm/sec, 

p<0.0001, Fig. 2J-K). Conversely, in p120ctn mutant cells both the total recoil distance and 
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initial velocity (0.07 µm/sec) were decreased (p=0.022, Fig. 2J-K). This demonstrated that 

cortical tension correlates with p120ctn levels.  

 Overall, the changes in p120ctn levels altered the shape of epidermal cells, with 

the levels of p120ctn positively correlating with the activity of RhoA signalling and cortical 

tension at the AP borders. The DV borders displayed no change in the activity of RhoA 

signalling, indicating an anisotropic action of p120ctn. 

 

3) p120ctn regulates E-cad amounts and dynamics within adhesion sites. 

The other factor which contributes to cell shape is intercellular adhesion. p120ctn binds to the 

intracellular domain of E-cad, which regulates its endocytosis (Bulgakova and Brown, 2016; 

Iyer et al., 2019; Nanes et al., 2012; Reynolds, 2007; Sato et al., 2011). Using a ubiquitously 

expressed p120ctn tagged with GFP (Ubi::p120ctn-GFP), we determined that p120ctn co-

localised with E-cad, mimicking its localisation with an enrichment at the DV borders (r = 

0.868, p <0.00001, Fig. 3A-C). Note that in this system, the antibody against the N-terminus 

of p120ctn fails to reproduce the localisation of the full-length GFP tagged p120ctn (Fig. 

S2A). Given this co-localisation, we examined if changes in E-cad levels were observed 

when altering the levels of p120ctn. Overexpression of p120ctn increased E-cad-GFP levels 

at both borders (p<0.0001 and p=0.023, Fig. 3D-E, see Fig. 2A). Conversely, the loss of 

p120ctn resulted in an isotropic decrease in E-cad-GFP (p=0.008 and p=0.035, Fig. 3F-G). 

 Next, we overexpressed p120ctn-GFP (UAS::p120ctn-GFP) driven by en::GAL4 

to compare p120ctn and E-cad localisation in the same cell. We detected an AP:DV ratio of 

2:3 for both E-cad and p120ctn (Fig. 3H-J). The lower than usual AP:DV ratio of E-cad was 

similar to that observed when untagged p120ctn was overexpressed. As this E-cad 

distribution was identical to the distribution of p120ctn itself, we concluded that additional E-

cad molecules are recruited as a protein complex with p120ctn. 
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The strength of cell adhesion and the number of adhesion complexes are regulated by 

endocytosis, and p120ctn has been shown to inhibit and promote E-cad endocytosis in 

mammalian and Drosophila cells (Bulgakova and Brown, 2016; Ireton et al., 2002; Nanes et 

al., 2012; Sato et al., 2011; Xiao et al., 2003). Therefore, we used Fluorescence Recovery 

After Photobleaching (FRAP), which reveals the stable fraction of the protein, which does 

not exchange on the timescale of the experiment, and the mobile fraction. The E-cad-GFP 

mobile fraction was 70% for DV and 60% for the AP borders in control cells, with 30% and 

40% of protein being immobile, respectively (Fig. 3K-M, for best-fit data see Table S1).  

 E-cad-GFP was less dynamic at both border types in p120ctn overexpressing cells 

(Fig. 3K-M). The immobile fractions were approximately 60% and 50% for AP and DV 

borders, which resulted in a decrease of the mobile fraction to 40% and 50% (p=0.0023 and 

p<0.0001 relative to control, Table S1). This is similar to the changes in the dynamics of E-

cad-GFP in p120ctn mutants, where an increase in the immobile E-cad-GFP fraction is also 

observed (Fig. S2B-D, and Bulgakova and Brown, 2016). Therefore, while p120ctn levels 

correlate with the levels E-cad at the plasma membrane, both overexpression and loss of 

p120ctn lead to an increase of the immobile E-cad fraction. Next, we sought to determine the 

mechanism of these changes in E-cad dynamics and how they contribute to cell shape. 

 

4) p120ctn and RhoA regulate E-cad via clathrin-mediated endocytosis 

To ascertain if the increase of immobile E-cad-GFP by altered p120ctn levels was due to an 

impairment of endocytosis we examined clathrin. We used the Clathrin Light Chain (CLC) 

tagged with GFP (UAS::CLC-GFP, Loerke et al., 2005; Wu et al., 2001b), to monitor clathrin 

behaviour in the plane of AJs by performing FRAP (Fig. 4A-C). CLC-GFP incorporates 

functionally into clathrin-coated pits (Chang et al., 2002; Gaidarov et al., 1999; Kochubey et 

al., 2006), and its recovery in FRAP reflects endocytic dynamics: immobile fractions of 
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CLC-GFP increased in HeLa cells with downregulated endocytosis (Wu et al., 2001a). CLC-

GFP expressed using  en::GAL4 was found in spots on the plasma membrane in the plane of 

AJs and in the cytoplasm (Fig. 4A), a localisation consistent with its function (Kaksonen and 

Roux, 2018). p120ctn overexpression reduced the mobile fraction of CLC-GFP by 30% 

(p<0.0001, Fig. 4C-D). A similar reduction in CLC-GFP mobile fraction by 25% was found 

in p120ctn mutants (p<0.0001, Fig. 4C,E). These reflect the changes observed in E-cad 

FRAP, suggesting that CLC-GFP recovery is a valid proxy for E-cad dynamics in these cells.  

 As p120ctn overexpression resulted in anisotropic activation of RhoA signalling, 

we asked whether this alone was responsible for the changes in E-cad. We directly inhibited 

the RhoA pathway using dominant negative RhoA (RhoADN). RhoADN, expressed 

constitutively using en::GAL4, resulted in a complete loss of E-cad at the membrane by stage 

15 of embryogenesis, therefore, we acutely induced the expression of the RhoADN using 

ubiquitously expressed temperature sensitive GAL80ts and a temperature shift for 4 hours at 

12 hours after egg laying (Pilauri et al., 2005). This acute downregulation reduced the 

amounts of E-cad-GFP at the AP borders (p=0.0078, Fig. 4F-G). Note that in this case E-cad 

asymmetry was reduced in control cells, likely due to the effects of temperature shift. Due to 

the punctate pattern of E-cad-GFP potentially affecting the average intensity measurements, 

we also measured the total protein on the plasma membrane. We found a reduced E-cad-GFP 

total protein content following the acute downregulation of RhoA (p<0.0001, Fig. S2H).  

 In a complementary experiment, we expressed a constitutively-active RhoACA to 

elevate RhoA signalling directly (Fig. 4H). The expression of RhoACA increased the amounts 

of E-cad-GFP, specifically at the DV but not the AP borders (p<0.0001 and p=0.34, Fig. 4I), 

consistent with an ectopic activation of RhoA signalling at the DV borders. We then asked if 

this increase could be explained by a larger immobile fraction of E-cad-GFP. Using FRAP, 

we observed a significant increase in the immobile fraction of E-cad-GFP at both borders 
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(p=0.02 and p<0.0001, Fig. 4J-L). To further explore if this increase in the immobile E-cad 

was linked to clathrin-mediated endocytosis, we measured the dynamics of clathrin in the 

plain of AJs using FRAP. Indeed, the mobile fraction of CLC-GFP was reduced by 40% 

(p<0.0001, Fig. S2E-G). This finding was consistent with the increase of both E-cad levels 

and immobile fraction in cells overexpressing the RhoA activator RhoGEF2, and the opposite 

effect upon its downregulation (Bulgakova et al., 2013).  

 Overall, these data suggest that p120ctn leads to an activation of RhoA signalling 

at the AP borders, which increases both the total amount and immobile fraction of E-cad at 

these borders, most likely by preventing E-cad endocytosis. 

 

5) The localisation of the GTPase Arf1 at the cell plasma membrane depends on p120ctn 

and RhoA, and promotes clathrin-mediated endocytosis 

Elevated RhoA signalling resulted in an increase of immobile E-cad and inhibited clathrin-

mediated endocytosis, however immobile E-cad was also increased when RhoA signalling 

was downregulated in p120ctn mutants. Therefore, we sought to identify the molecules 

responsible for this E-cad immobilization in p120ctn mutants. We examined if the GTPase 

Arf1, which has been reported to interact with E-cad (Shao et al., 2010; Toret et al., 2014), 

acts downstream of p120ctn using a GFP-tagged variant of Arf1 (UAS::Arf1-GFP, Lee and 

Harris, 2013). UAS::Arf1-GFP has a reduced affinity for ArfGAPs and ArfGEFs, and a 

reduced nucleotide exchange rate (Jian et al., 2010), which allowed us to study Arf1 without 

hyperactivating the pathway. 

 UAS::Arf1-GFP localised to both the Golgi apparatus and plasma membrane (Fig. 5A, 

Fig. S3A), consistent with previous reports (Lee and Harris, 2013; Shao et al., 2010). The 

Golgi-resident Arf1 appeared in large puncta throughout the cytoplasm (Fig. 5A, Fig. S3A). 

The localization of Arf1-GFP at the plasma membrane was most apparent at the centre of the 
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AJs (Fig. S3D). In the control, this Arf1-GFP localisation to the plasma membrane was 

symmetrical between the AP and DV borders (p=0.36, Fig. 5B). The loss of p120ctn resulted 

in a uniform decrease in the amount of Arf1-GFP at both borders (p<0.0001 and p<0.0001, 

Fig. 5B), suggesting that p120ctn promotes Arf1 localisation. 

Considering the known function of Arf1 in trafficking, we tested if the reduction in 

Arf1 activity was responsible for the increase in immobile CLC-GFP in the p120ctn mutants. 

We expressed a constitutively active Arf1 (Arf1CA) in p120ctn mutant embryos and measured 

the FRAP of CLC-GFP (Fig. 5E-G). In this case, the mobile fraction of CLC-GFP was no 

longer different from the wild-type control (p=0.19, Fig. 5G, Table S1), demonstrating that 

the expression of Arf1CA rescues the clathrin dynamics in the p120ctn mutant. This is 

consistent with Arf1 acting downstream of p120ctn, providing a link between the p120ctn–E-

cad complex and the clathrin-mediated endocytic machinery. Further, we measured the 

dynamics of Arf1-GFP itself using FRAP (Fig. 5H-I): Arf1-GFP at the plasma membrane 

recovered almost completely within 25 sec (Fig. 5I), which indicated a highly dynamic 

exchange, consistent with the known activation kinetics (Rouhana et al., 2013). 

 Curiously, the overexpression of p120ctn also reduced Arf1-GFP at the AP borders 

(p=0.02, Fig. 5C-D). Although the reduction of Arf1 at the DV borders was not significant 

(p=0.37), its distribution remained uniform (p=0.18). As GTPases often regulate each other 

(Baschieri and Farhan, 2012; Singh et al., 2017), we asked whether this reduction was a 

consequence of p120ctn elevating RhoA signalling. We measured the membrane levels of 

Arf1-GFP in cells expressing RNAi against RhoGEF2 (RhoGEF2-RNAi, Fig. 6A), which 

reduces Rok amounts specifically at the AP borders (Bulgakova et al., 2013). The 

downregulation of RhoGEF2 resulted in an increase in the amount of Arf1-GFP at both 

borders (p=0.049 and p=0.022, Fig. 6B), demonstrating that RhoA signalling negatively 

regulated Arf1 localisation to the plasma membrane.  
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To further test if the reduction in Arf1-GFP following the overexpression of p120ctn 

was due to the elevated RhoA signalling, we simultaneously expressed UAS::p120ctn with 

RhoGEF2-RNAi (Fig. 6C-D). Indeed, we found an increase in Arf1-GFP at the plasma 

membrane at both borders in this case (p=0.0014, p=0.0031, Fig. 6D). To complement these 

experiments we hyperactivated the RhoA signalling using RhoACA. We detected a reduction 

of Arf1-GFP localisation at the DV but not the AP cell border (p=0.86, p=0.025, Fig. 6E-F), 

further evidencing the negative action of RhoA signalling on the recruitment of Arf1-GFP to 

the plasma membrane. It was surprising that RhoGEF2-RNAi led to a uniform elevation of 

Arf1-GFP, as it affected Rok only at the AP borders (Bulgakova et al., 2013). Indeed, Arf1 

was uniformly localised at the plasma membrane in all cases. We inferred that the effect of 

RhoGEF2-RNAi on Arf1 at the DV borders was indirect: reduced RhoA signalling results in 

elevated recruitment of Arf1 at the AP borders, followed by rapid redistribution around the 

cell periphery and an overall elevation of Arf1-GFP at the cell surface. 

Finally, to ask if Arf1 has any action on RhoA and actomyosin, we measured the 

membrane localisation of MyoII-YFP upon the upregulation of Arf1 signalling using Arf1CA 

(Fig. S3B). MyoII-YFP localisation was indistinguishable between control and Arf1CA 

expressing cells (Fig. S3C), suggesting that RhoA signalling in the embryonic epidermis is 

independent of Arf1. Overall, we concluded that Arf1 was reduced at the plasma membrane 

in p120ctn overexpressing cells due to the elevation of RhoA signalling. The reduction of 

Arf1 upon loss of p120ctn appeared independent of RhoA and we suggest that it is caused by 

reduction of Arf1 recruitment and/or activation by p120ctn.  

 

6) Adhesion dynamics regulate cells shape. 

So far, we demonstrated that p120ctn regulates actomyosin via RhoA signalling, and E-cad 

dynamics via both RhoA and Arf1. Next, we asked how this regulatory network contributes 
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to the cell shape changes caused by altered p120ctn levels. We first examined how the 

inhibition and hyperactivation of Arf1 alone affected cell shape using a dominant-negative 

Arf1 (Arf1DN, Fig. 7A). Prolonged exposure to Arf1DN resulted in small rounded cells (Fig. 

S3E), with no surviving larvae, consistent with previous reports (Carvajal-Gonzalez et al., 

2015), likely due to gross perturbation of post-Golgi protein transport causing cell death (Jian 

et al., 2010; Luchsinger et al., 2018). Therefore, we acutely induced the expression of 

Arf1DN, using a temperature sensitive GAL80ts. The cells which expressed the Arf1DN had a 

reduced aspect ratio (p=0.003, Fig. 7A-B). This suggests that the reduction of endocytosis, 

and therefore increased immobile E-cad, is sufficient to reduce the cell aspect ratio. This 

conclusion is also supported by the reduced aspect ratio observed in other phenotypes in 

which the immobile fraction of E-cad was increased: namely the overexpression of p120ctn 

and the expression of RhoACA (p<0.0001, Fig. 7C-D). To test if an increase in E-cad 

immobility is alone sufficient to reduce cell elongation, we used an alternative approach to 

inhibit E-cad endocytosis by overexpressing a dominant-negative dynamin: Shibire (ShiDN, 

Fig. 7E). Expression of ShiDN increases the immobile fraction E-cad at the plasma membrane 

similarly to the loss of p120ctn (Bulgakova et al., 2013). Indeed, cells expressing ShiDN had a 

reduced aspect ratio in comparison to control (p=0.0002, Fig. 7E-F).  

 Finally, to investigate if the perturbations in Arf1 and RhoA signalling caused by 

changes in p120ctn levels were responsible for the defects in cell morphology, we performed 

genetic rescue experiments. We expressed Arf1CA in the p120ctn mutant embryos and found 

that the aspect ratio reduction was completely rescued (p=0.57 in comparison to control, Fig. 

7G-H). To complement this, we downregulated RhoA signalling using RhoGEF2 RNAi in 

cells overexpressing p120ctn (Fig. 7I). The aspect ratio of these cells was again 

indistinguishable from the control (p=0.99, Fig. 7J). Therefore, the defects in cell elongation 
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caused by the loss or elevation of p120ctn are rescued by compensating for the Arf1 and 

RhoA signalling pathways respectively. 

 Overall, these results indicate that the dynamics of intercellular adhesion, 

mediated via endocytosis of E-cad, is an important factor in determining the elongation of 

epidermal cells. 

 

Discussion 

Epithelial cells in vitro are usually isotropic, and the application of external stretching or 

compressing forces induce an initial anisotropy in their shape (elongation), which is quickly 

resolved through cell rearrangements and divisions, or tissue three-dimensional deformation 

(Duda et al., 2019; Latorre et al., 2018; Nestor-Bergmann et al., 2019). By contrast, there are 

multiple examples of highly anisotropic elongated cells in whole organisms, including 

mammalian skin and the epidermal cells used in this study (Fig. 8A, Aw et al., 2016; Box et 

al., 2019). These elongated shapes are necessary for correct tissue and organism 

morphogenesis (Box et al., 2019; McCleery et al., 2019).  

 In this study, we focused on the regulation of such elongated cell shape through 

the cross-talk between E-cad-mediated adhesion and cortical actomyosin. We provide in vivo 

evidence that p120ctn, a known regulator of E-cad dynamics and endocytosis (Bulgakova and 

Brown, 2016; Ireton et al., 2002; Nanes et al., 2012; Sato et al., 2011), mediates this cross-

talk and regulates cell shape. It does so by promoting the activities of at least two small 

GTPases with opposing effects on E-cad dynamics: RhoA, which inhibits E-cad turnover, 

and Arf1, which promotes it (Fig. 8B). We show an interplay between these GTPases with 

RhoA preventing the localisation of Arf1 to plasma membrane (Fig. 8B). As a result, both the 

depletion and overexpression of p120ctn lead to an increase of immobile E-cad at the cell 

surface: depletion is likely to do so through directly limiting Arf1 recruitment to the plasma 



 18 

membrane, while overexpression does so through elevating RhoA activity, which then 

inhibits Arf1. Finally, while p120ctn normally colocalises with E-cad and is at higher levels 

on the DV borders, we show that it regulates RhoA activity only at the AP borders, 

suggesting a tension-dependent function for p120ctn. 

 We demonstrate that the elongated cell shape is accompanied by anisotropic 

forces in the epidermis: while the AP borders are under tension, the DV borders are under 

compression. Most previous laser ablation experiments have reported positive velocities of 

the initial recoil when the vertices of the manipulated junction move apart (Sugimura et al., 

2016). The only exception apart from our work, to our knowledge, is the case of anisotropic 

tissue stress in the amnioserosa, where a similar negative recoil was observed during germ-

band retraction (McCleery et al., 2019). This germ-band retraction drives the elongation of 

epidermal cells (Gomez et al., 2016; McCleery et al., 2019). We suggest that the anisotropic 

pushing by the amnioserosa is likely to be the source of observed compression, as also 

suggested previously (Hirano et al., 2009). 

 In the case of an isotropic tissue, the behavior of cells can be represented as those 

of soap bubbles (Hayashi and Carthew, 2004), which tend to minimizing their surfaces. This 

leads to the shift of vertices after ablation to new positions so that the distance between them 

increases. Such a situation in usually modelled as a Kelvin-Voigt fiber (Fernandez-Gonzalez 

et al., 2009). In the case of anisotropic cells, which are strongly elongated, the situation can 

be different depending on which type of border is ablated (Fig. 8C). In the case of AP 

borders, the distance between the vertices is increasing as cells obtain freedom to minimize 

their surfaces (Fig. 8C). However, in the case of DV borders, the released stress enables cells 

anterior and posterior to the border to expand due to the same surface minimization 

mechanism, decreasing the distance between vertices as observed in the experiments (Fig. 

8C). It can be concluded that the Kelvin-Voigt fiber model is not directly applicable to such 
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anisotropic cells. We speculate that this is a strongly dynamic process: swift reduction of the 

distance results in over-compression, leading to expansion. We suggest that this process is 

governed by surface tension of cell membranes and should resemble oscillations of soap 

bubbles (Saye, 2017). It is still unclear if, after expansion, a new compression stage can start. 

 We have shown that the increase of immobile E-cad, and thus the inhibition of 

junctional remodelling, following expression of Arf1DN, ShiDN, RhoACA, and loss of p120ctn 

(Fig. 8D), prevents the elongation of the cells in the Drosophila embryonic epidermis (Fig. 

8B), suggesting a central role for E-cad dynamics in cell elongation. The contractility of 

actomyosin normally acts to reduce the surface length whereas the levels of adhesion acts 

oppositely (Lecuit and Lenne, 2007). Indeed, the strongest reduction in cell elongation was 

observed upon the expression of RhoACA, which increased the immobile fraction of E-cad 

and activated actomyosin contractility. At the same time, an increase in immobile E-cad 

seems sufficient to reduce the junctional length as observed both in p120ctn mutant cells and 

those expressing Arf1DN. Therefore, we propose that cell elongation is the product of the 

counteraction of E-cad dynamics and cortical contractility. 

While the roles of RhoA and p120ctn in E-cad endocytosis are long-established 

(Davis et al., 2003; Ellis and Mellor, 2000), the Arf1-dependent recruitment of clathrin had 

only been shown to occur at the Golgi by recruiting the Adaptor 1 protein (Carvajal-Gonzalez 

et al., 2015). The function of Arf1 at the plasma membrane has been described in dynamin-

independent endocytosis, which was presumed to be clathrin-independent (Kumari and 

Mayor, 2008). We have shown that Arf1’s capacity to recruit clathrin is exploited by p120ctn 

to facilitate the endocytosis of E-cad. Whether this requires AP2, a plasma membrane clathrin 

adaptor, has yet to be determined. This finding provides a mechanistic insight into the pro-

endocytic activity of p120ctn (Bulgakova and Brown, 2016; Sato et al., 2011) and elaborates 
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the number of known p120ctn interactors. The activities of Arf1 and RhoA are antagonistic, 

which was also seen during the cellularization of the early embryo (Lee and Harris, 2013).  

 In contrast to Arf1, the regulation of RhoA by p120ctn has been shown in many 

studies, although the exact effects and mechanisms seem to be context-dependent 

(Anastasiadis et al., 2000; Derksen and van de Ven, 2017; Lang et al., 2014; Taulet et al., 

2009; Yu et al., 2016; Zebda et al., 2013). We demonstrate that in the epidermal cells of 

Drosophila embryos, p120ctn leads to activation of RhoA at the AP but not DV borders (Fig. 

8B). In contrast, we show that p120ctn loss uniformly reduces recruitment of Arf1 to the 

plasma membrane. However, we also find that Arf1 is very dynamic and the changes at the 

DV borders, for example upon the downregulation of RhoGEF2, are likely to be an indirect 

consequence of the effect at the AP borders (Fig. 8B). It is therefore currently unclear if 

p120ctn performs any direct activity at the DV borders, or promotes RhoA and Arf1 

signalling only at the high-tension AP borders. Indeed, recent evidence has suggested 

p120ctn has mechanosensing properties (Iyer et al., 2019). Using laser ablation we 

demonstrated that p120ctn modulates tension at these AP borders, providing evidence for the 

role of p120ctn in mechanotransduction. It is yet to be determined if p120ctn is directly 

sensing the tension though a conformational change similarly to other components of cell-cell 

adhesion such as a-catenin and vinculin (Bays and DeMali, 2017; Yao et al., 2014), or is 

regulated by another mechanotransducer.  

 Altogether, our findings demonstrate that cell elongation in a tissue is regulated 

through the opposing action of actomyosin contractility and adhesion endocytosis, which are 

however closely interconnected and regulate each other. Adhesion components modify 

actomyosin while the latter alters adhesion endocytosis. Considering that all of the molecules 

studied are expressed in all epithelia across evolution, we speculate that this system is likely 

to be more broadly applicable in development and a general feature of cell biology. 
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Materials and Methods 

Fly stocks and genetics 

Flies were raised on standard medium. The GAL4/UAS system (Brand and Perrimon, 1993) 

was used for all the specific spatial and temporal expression of transgenic and RNAi 

experiments. The GAL4 expressional driver used for all experiments was engrailed::GAL4 

(en::GAL4, Bloomington number 30564). The following fly stocks were used in this study 

(Bloomington number included where applicable): E-cad-GFP (shg::E-cad-GFP, 60584), E-

cad-Cherry (shg::E-cad-Cherry, 59014), UAS::CD8-Cherry (27392),  UAS::CLC-GFP (7109), 

UAS::Arf1-GFP (gift from T.Harris), Zipper-YFP (Myosin II-YFP, Kyoto Stock Center 

115082), sqh::RokK116A-Venus (gift from J.Zallen), UAS::Arf1-T31N (DN) and UAS::Arf1-

Q71L (CA) (Dottermusch-Heidel et al., 2012), UAS::Rho1-N19 (DN) (7328), UAS::Rho1-

V14 (CA) (7330), UAS::RhoGEF2-RNAi (VDRC 110577), ubi::AniRBD-GFP (RBD-GFP, 

Munjal et al., 2015), tubulin::GAL80TS (7017), ubi::p120ctn-GFP (7190), UAS::p120ctn-GFP 

(7192), UAS::ShibireK44A (ShiDN, 5822), and UAS::LifeAct-GFP (57326). The p120ctn 

mutant embryos (p120ctn308/ Δp120) were derived from crossing two stocks: homozygously 

viable p120ctn308 females (Myster et al., 2003) with homozygously lethal Df(2R)M41A8/ 

CyO, twi::Gal4, UAS::GFP males (740). Thus, the p120ctn mutants examined lacked both 

maternal and zygotic contributions. In all experiments when necessary, additional copies of 

UAS::CD8-Cherry were used to balance the Gal4:UAS ratio across genotypes in each dataset. 

 

Embryo collection and fixation 

Embryos were collected at 25°C at 3-hour time intervals and allowed to develop at 18°C for 

21 hours to reach the desired developmental stage, except for the acute induction 

experiments, where embryos were allowed to develop for 13 hours at 18°C and shifted to 

29°C for 4 hours. Then embryos were dechorionated using 50% sodium hypochlorite (bleach, 
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Invitrogen) in water for 4 minutes, and extensively washed with deionized water prior to 

fixation. Fixation was performed with a 1:1 solution of 4% formaldehyde (Sigma) in PBS 

(Phosphate Buffered Saline) and heptane (Sigma) for 20 minutes on an orbital shaker at room 

temperature. Embryos were then devitellinized in 1:1 solution of methanol and heptane for 20 

sec with vigorous agitation. Following subsequent methanol washes the fixed embryo 

specimens were stored at -20°C in methanol until required.  

 

Embryo live imaging  

Embryos were collected and dechorionated as described above. Once washed with deionized 

water embryos were transferred to apple juice agar segments upon microscope slide. Correct 

genotypes were selected under a fluorescent microscope (Leica) using a needle. Embryos 

were positioned and orientated in a row consisting of 6-10 embryos per genotype. Following 

this, embryos were transferred to pre-prepared microscope slides with Scotch tape and 

coverslip bridge and embedded in Halocarbon oil 27 (Sigma). Embryos were left to aerate for 

10 minutes prior to covering with a cover slip and imaging. 

For laser ablation, following orientation and positioning the embryos were transferred 

to a 60mm x 22mm coverslip which had been pre-prepared by applying 10 µl of Heptane 

glue along a strip in the middle of the coverslip orientated with the long axis. The coverslip 

was attached to a metal slide cassette (Zeiss), and the embryos were embedded in Halocarbon 

oil 27 before imaging. 

 

Molecular cloning  

The p120ctn full length cDNA was obtained from Berkeley Drosophila Genome Project 

(BDGP), supplied in a pBSSK vector. This was sub-cloned into a (pUAS-k10.attB) plasmid 

using standard restriction digestion with NotI and BamHI (New England Biolabs) followed 
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by ligation with T4 DNA ligase (New England Biolabs) and transformation into DH5a 

competent E.coli cells (Thermo Fisher Scientific). Prior to injection plasmids were test 

digested and sequenced (Core Genomic Facility, University of Sheffield). Plasmids were 

prepared for injection using standard miniprep extraction (Qiagen) and submitted for 

injection (Microinjection service, Department of Genetics, University of Cambridge) into the 

attP-86Fb stock (Bloomington stock 24749). Successful incorporation of the transgene was 

determined by screening for (w+) in the F1 progeny. 

 

Immunostaining  

The embryos were washed three times in 1 ml of PBST (PBS with 0.05% Triton) with gentle 

rocking. Blocking of the embryos prior to staining was done in 300 µl of a 1% NGS (Normal 

Goat Serum) in PBST for 1 hour at room temperature with gentle rocking. For staining the 

blocking solution was removed, 300 µl of the primary antibody: 1:100 rat anti-E-cad 

(DCAD2, DSHB), 1:10 mouse anti-engrailed (4D9, DSHB), or 1:500 anti-Golgi (Golgin-245, 

Calbiochem) in fresh blocking solution was added and the embryos were incubated overnight 

at 4°C with orbital rotation. Then, embryos were washed three times with 1 ml of PBST. A 

300 µl 1:300 dilution of the secondary antibody (goat Cy3- or Cy5-conjugated IgG, 

Invitrogen) was added, and the embryos incubated either overnight at 4°C with orbital 

rotation or for 2 hours at room temperature. Then embryos were washed three time with 

PBST, following which they were incubated with 50-70 µl of Vectashield (Vector 

Laboratories) and allowed to equilibrate for a period of 2 hours before being mounted on 

microscope slides (Thermo).  

 

Microscopy, data acquisition and FRAP 



 24 

All experiments except for laser ablation were performed using an up-right Olympus FV1000 

confocal microscope with a 60x/1.40 NA oil immersion objective. ShiDN expressing embryos 

and the corresponding control were imaged using 100x/1.40 NA UPlanSApo objective. All 

measurements were made on dorsolateral epidermal cells of embryos, which were near or just 

after completion of dorsal closure, corresponding to the end of Stage 15 of embryogenesis. 

For fixed samples 16-bit images were taken at a magnification of 0.051µm/pixel (1024x1024 

pixel XY-image) or 0.062 µm/pixel (ShiDN embryos and the corresponding control) with a 

pixel dwell of 4µm/pixel. For each embryo, a Z-axis sectional stack through the plane of the 

AJs was taken, which consisted of six sections with a 0.38 µm intersectional spacing. The 

images were saved in the Olympus binary image format for further processing. 

 For E-cad FRAP (adapted from Bulgakova et al., 2013) 16-bit images were taken at a 

magnification of 0.093 µm/pixel (320x320 pixel XY-image). In each embryo, several circular 

regions of 1 µm radius were photobleached at either DV or AP junctions resulting in one 

bleach event per cell. Photobleaching was performed with 8 scans at 2 µs/pixel at 50-70% 

488 nm laser power, resulting in the reduction of E-cad-GFP signal by 60–80%. A stack of 6 

z-sections spaced by 0.38 µm was imaged just before photobleaching, and immediately after 

photobleaching, and then at 20 s intervals, for a total of 15 minutes. 

As rate of endocytosis depends on external factors, such as temperature [103], controls were 

examined in parallel with experimental conditions in all experiments with CLC-GFP. For 

CLC-GFP FRAP, 16-bit images were taken at a magnification of 0.051µm/pixel (256x256 

pixel XY-image). In each embryo a single plane was selected in centre of the AJ band using 

E-cad-Cherry for positioning. An area encompassing a transverse region orthogonal to the 

axis of the engrailed expressing cells was selected (140x60 pixels) and photobleached with 1 

scan at 2 µm/pixel using 100% 488nm laser power resulting in reduction of CLC-GFP signal 

by 70-80%. Images were taken using continuous acquisition at a frame rate of 2 sec-1. Prior to 
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bleaching a sequence of 10 images was taken, and a total of 400 frames corresponding to 3.5 

minutes were taken.  

Data processing and statistical analysis 

Membrane intensity and cell shape: Images were processed in Fiji (https://fiji.sc) by 

generating average intensity projections of the channel required for quantification. Masks 

were created by processing background-subtracted maximum intensity projections using the 

Tissue Analyzer plugin in Fiji (Aigouy et al., 2016). Quantification of the membrane 

intensity at the AP and DV borders and cell elongation (aspect ratio) was done as described 

previously using a custom-built Matlab script (Bulgakova and Brown, 2016) found at 

https://github.com/nbul/Intensity. In short, cells were identified as individual objects using 

the created masks, and their eccentricities were calculated. The aspect ratio was calculated 

from the eccentricity as 𝐴𝑅 = 1/√1 − 𝑒!, where e is eccentricity. At the same time, the 

individual borders were identified as objects by subtracting a dilated mask of vertices from a 

dilated mask of cell outlines. The mean intensity and orientation of each border were 

calculated. The average border intensities (0-10° for the AP and 40-90° for the DV borders 

relatively to cell mean orientation) were calculated for each embryo and used as individual 

data points to compare datasets. The average cytoplasmic intensity was used for the 

background subtraction. In the case of quantification of Arf1-GFP membrane intensity, due 

to high Arf1-GFP presence inside cells both in Golgi and cytoplasm, the mean intensity of 

embryonic areas not expressing the GFP-tagged transgene were used for background 

subtraction. Statistical analysis was performed in Graphpad Prism 

(https://www.graphpad.com/scientific-software/prism/). First, the data was cleaned using 

ROUT detection of outliers in Prism followed by testing for normal distribution (D'Agostino 

& Pearson normality test). Then, the significance for parametric data was tested by either a 

two-way ANOVA or two-tailed t-test with Welch’s correction.  
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Total Protein: A dilated mask, outlining the cell perimeter and encompassing the plasma 

membrane signal, was used to measure the cumulative intensity of pixels.  

E-cad FRAP: Images were processed by using the grouped Z-projector plugin in Fiji to 

generate average intensity projections for each time-point. Following this the bleached ROI, 

control ROI and background intensity were manual measured for each time point. This data 

was processed in Microsoft Excel. First the intensity of the bleached ROI at each time point 

was background subtracted and normalized as following: 𝐼	# =	 (𝐹# − 𝐵𝐺#) (𝐹𝐶# − 𝐵𝐺#),⁄  

where Fn – intensity of the bleached ROI at the time point n, FCn – intensity of the control 

unbleached ROI of the same size at the plasma membrane at the time point n, and BGn – 

background intensity, measured with the same size ROI in cytoplasm at the time point n. 

Than the relative recovery at each time point was calculated using the following formula: 

𝑅# = (𝐼# − 𝐼$) (𝐼% − 𝐼$)⁄ , where In, I1 and I0 are normalized intensities of bleached ROI and 

time point n, immediately after photobleaching, and before photobleaching respectively. 

These values were input to Prism and nonlinear regression analysis was performed to test for 

best fit model and if recoveries were significantly different between cell borders or 

genotypes. The recovery was fit to either single exponential model in a form of 𝑓(𝑡) = 1 −

	𝐹&' − 𝐴$𝑒
() *!"#$⁄ , or to bi-exponential model in a form of 𝑓(𝑡) = 1 − 𝐹&' − 𝐴$𝑒

() *!"#$⁄ −

𝐴!𝑒() *#%&'⁄ , where Fim is a size of the immobile fraction, Tfast and Tslow are the half times, and 

A1 and A2 are amplitudes of the fast and slow components of the recovery. An F-test was used 

to choose the model and compare datasets. 

CLC-GFP FRAP: Measurements of all intensities, i.e. the bleached ROI, control ROI and the 

background, and normalization were done with a custom-build Matlab script 

(http://github.com/nbul/FRAP) using the same algorithm as described for E-cad FRAP. 

Curve fitting and statistical analysis was performed in Graphpad Prism using a nonlinear 

regression analysis as described for E-cad FRAP. 
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Laser Ablation 

Nanoablation of single junctions was performed to provide a measure of junctional tension. 

The Drosophila embryonic epidermis is uniquely suited to the study tissue compression in 

vivo. Though tissue compression can lead to events such as bending, buckling, and folding in 

epithelia, epithelia can accommodate large and rapid compressive forces extremely well 

(Wyatt et al., 2020). Additionally, the ability of the embryonic epidermis to buckle is 

abolished by the presence of vitelline membrane, which limits any tissue movement outside 

of its z-plane. Embryos were imaged on a Zeiss LSM 880 microscope with an Airyscan 

detector, an 8-bit image at 0.053 µm/pixel (512x512 pixel XY-Image) resolution with a 63x 

objective (1.4 NA) at 5x zoom and 2x averaging was used. An illumination wavelength of 

488 nm and 0.5% laser power were used. Images were captured with a 0.5 µm z-spacing. 

Narrow rectangular ROIs were drawn across the centre of single junctions and this region 

was ablated using a pulsed TiSa laser (Chameleon), tuned to 760 nm at 45% power. 0.95 

µsec/pixel dwell for a single Z-stack iteration was used for pulse duration. Embryos were 

imaged continuously in a z-stack consisting of 3 z-slices. The distance between the vertices at 

the ends of ablated junctions was measured throughout the time course of the experiment and 

was expressed as a proportional change in distance relative to pre-ablation length. Statistical 

analysis was performed in Graphpad Prism: using a two-tailed t-test with Welch’s correction.  
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Figure 1. Cell anisotropy of the stage 15 Drosophila embryonic epidermis.  

A-D. Overview of the stage 15 Drosophila embryo. (A) A cartoon sketch of a stage 15 

Drosophila embryo. Dorsolateral epidermis indicted by red box. (B) A schematic of the two 

cell borders: the longer Anterior-Posterior (AP, red) and the short Dorsal-Ventral (DV, blue). 

(C) Apical view of the epidermis highlighted in red box (A), cells are outlined by E-cad-GFP 

(green), engrailed compartment marked by UAS::CD8-Cherry (magenta). (D-D’) Magnified 

image indicated in the box (C) displayed using two colour (D) or single channel (D’ E-cad-

GFP in grey). (E) Aspect ratio of cells and (F) amounts of E-cad-GFP at the AP and DV cell 

borders in embryos expressing only E-cad-GFP. (G) MyoII-YFP in the same plane as E-cad. 

(H) Amounts of MyoII-YFP at the cell borders in control embryos. (I) Laser ablation of AP 

border (left panel) and a DV border (middle and right panels) in epidermal cells of embryos 

expressing E-cad-GFP in otherwise wild type background. Image is an overlay of pre-

ablation (green) and post-ablation (magenta). The arrows indicate the connected vertices of 

the ablated membrane used to measure initial recoil. Large arrow on left panel shows area of 

ablation, large arrow on right panel indicates AP displacement late in DV ablation 

experiment (time T in seconds, T+1 is immediate post ablation, T50 is the endpoint). (J) The 

initial recoil of the AP and DV membranes. (K) Time series of ablation experiment 

measuring distance between vertices. Scale bar is 10 µm. Statistical analysis was a two-tailed 

students t-test with Welch’s correction. All membrane intensity and ablation data are in Table 

S1. ****, P < 0.0001. Each dot represents an individual embryo, n number for intensity was 

10-20 embryos per genotype with a minimum of 27 cells imaged per embryo. For ablation 

two junctions per embryo and border were averaged to give a mean value per embryo. 
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Figure 2. p120ctn levels affect cell shape, actomyosin, and cortical tension.  

(A) Apical views of epidermis expressing UAS::CD8-Cherry (left) and co-expressing it with 

UAS::p120ctn (right) using en::GAL4 with E-cad-GFP (green, top; grey, bottom) and 

UAS::CD8-Cherry (magenta). (B) Aspect ratio of the control (UAS::CD8-Cherry) and 

UAS::p120ctn expressing cells. (C) Control and p120ctn-/- mutant epidermal cells marked by 

E-cad-GFP (grey). engrailed-positive cells are outlined (red). (D) Aspect ratio of control and 

p120ctn-/- mutant cells. (E) Apical views of epidermis expressing MyoII-YFP (grey, bottom) 

in control expressing UAS::CD8-Cherry (left) or co-expressing it with UAS::p120ctn (right) 

using en::GAL4 (magenta, top). Cell outlines visualised using E-cad antibody (green, top). 

(F) Levels of MyoII-YFP at both cell borders in p120ctn overexpressing embryos. (G) 

MyoII-YFP (grey) in control and p120ctn-/- mutant cells. (H) MyoII-YFP levels in control 

and p120ctn-/- mutant cells. All membrane intensity data are in Table S1. Scale bars – 10 µm. 

(I) Laser ablation of AP cell borders in control (left), p120ctn overexpression (middle), and 

p120ctn-/- mutant (right). Images are an overlay of pre-ablation (green) and post-ablation 

(magenta). The small arrows indicate the connected vertices of the ablated membrane used to 

measure recoil. The large arrows represent the position of microablation. (J) The initial recoil 

velocity of the membranes in the three genotypes. (K) Time series of ablation experiment 

measuring distance between vertices. Statistical analysis was done using two-way ANOVA 

(difference between cell borders) or a two-tailed students t-test with Welch’s correction 

(aspect ratio and laser ablation). All best-fit and membrane intensity data are in Table S1. *, P 

< 0.05; **, P < 0.01 ****, P < 0.0001. Each dot represents an individual embryo, n number 

was 10-20 embryos per genotype with a minimum of 24 cells imaged per embryo. For 

ablation 2 junction per embryo and border were averaged to give a mean value per embryo. 
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Figure 3. p120ctn regulates both the levels and dynamics of E-cad.  

(A) Apical view of epidermal cells expressing a Ubi::p120ctn-GFP with cell borders 

visualised by transgene itself (grey, left) and stained with E-cad antibody (grey, right). (B) 

Pearson’s correlation of the signal intensities between E-cad and Ubi::p120ctn-GFP. (C) 

Levels of Ubi::p120ctn-GFP. (D-E) Apical views (D) and levels of E-cad-GFP (E) in 

embryos overexpressing UAS::p120ctn. (F-G) Apical views (F) andlevels of E-cad-GFP (G) 

in epidermis of control and p120ctn-/- mutant cells. (H) Localisation of UAS::p120ctn-GFP 

(left) and E-cad (visualized with  antibody, right). (I-J) The levels of the UAS::p120ctn-GFP 

(I) and E-cad (J) in the UAS::p120ctn-GFP expressing cells. (K-M) Dynamics of E-cad-GFP 

measured by FRAP. Representative examples (K) and quantification (L-M) of E-cad-GFP 

FRAP in control and UAS::p120ctn expressing cells. Panels in K show the DV cell border 

region bleached (Position P, red circle) at the prebleach (Time T-1), bleach (Time T0), and 

the end (Time T900) time points. Time is in seconds. Average recovery curves (mean ± 

s.e.m.) and the best-fit curves (solid lines) are shown in L-M. engrailed-positive cells are 

outlined (red, D and H). All best-fit and membrane intensity data are in Table S1. Statistical 

analysis was done using two-way ANOVA or a two-tailed students t-test with Welch’s 

correction. Scale bars – 10 µm. *, p < 0.05, **, p < 0.01, ****, p < 0.0001. Each dot 

represents an individual embryo, n number was 10-20 embryos per genotype with a minimum 

of 24 cells imaged per embryo. For FRAP 8-10 embryos were used, with two AP and DV cell 

borders measured and averaged per embryo. 

 

Figure 4. p120ctn and RhoA change the dynamics of clathrin-mediated endocytosis.  

(A-E). The localisation and dynamics of UAS::CLC-GFP in control, p120ctn overexpressing 

(UAS::p120ctn), and p120ctn-/- mutant embryos. (A) Distinct puncta (spots, magenta in left 

and black in right images, red arrows) are observed at the membrane and in the cytoplasm. 
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Cell outlines are visualized by anti-E-cad antibody (green, left). (B) Schematic of FRAP 

experiments: green cells - the engrailed compartment which expresses transgenes, red box - 

the region bleached encompassing an area spanning the compartment in a single Z-plane in 

the middle of the AJ. (C-E) Representative examples (C) and quantification (D-E) of CLC-

GFP FRAP in control, UAS::p120ctn, and p120ctn-/- mutant cells. Panels in C show the 

region bleached (Position P, red box) at the prebleach (Time T-1), bleach (Time T0), and the 

end (Time T200) time points. (F-G) Representative example (F) and levels (G) of E-cad-

GFP in cells expressing RhoADN for 4 hours compared to internal control. Cells expressing 

transgenes are marked with an antibody for Engrailed (magenta). (H-I) Representative 

examples (H) and levels (I) of E-cad-GFP in RhoACA expressing cells. (J-L) Representative 

examples (J) and quantification (K-L) of E-cad-GFP FRAP in control and RhoACA 

expressing cells. Panels in J show the DV cell border region bleached (Position P, red circle) 

at the prebleach (Time T-1), bleach (Time T0), and the end (Time T900) time points. Time in 

C and J is in seconds. Average recovery curves (mean ± s.e.m.) and the best-fit curves (solid 

lines) are shown in D, E, K, and L. All best-fit and membrane intensity data are in Table S1. 

Scale bars – 10 µm. Statistical analysis was done using two-way ANOVA or a two-tailed 

students t-test with Welch’s correction. **, p < 0.01 ****, p < 0.0001. Each dot represents an 

individual embryo, n number was 10-20 embryos per genotype with a minimum of 24 cells 

imaged per embryo. For FRAP 8-10 embryos were used, with a single rectangular band 

encompassing an engrailed stripe used per embryo for UAS::CLC-GFP, and with two AP and 

DV cell borders measured and averaged per embryo for E-cad-GFP. 

 

Figure 5. Arf1 is downstream of p120ctn and promotes clathrin mediated endocytosis. 

(A) Apical views of epidermis expressing UAS::Arf1-GFP (Arf1, magenta, left; grey, right). 

Cell outlines are visualized with E-cad antibody (green, left). The large UAS::Arf1-GFP 
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puncta in the cytoplasm (large arrow in A) mark the Golgi. UAS::Arf1-GFP at the plasma 

membrane is indicated (small arrow in A). (B) Levels of UAS::Arf1-GFP in control and 

p120ctn-/- mutant cells. (C) Apical views of cells co-expressing UAS::Arf1-GFP with 

UAS::p120ctn. (D) Levels of UAS::Arf1-GFP in control and p120ctn overexpressing 

embryos. (E) Localisation of UAS::CLC-GFP (grey, right; magenta, left) in control, 

expressing UAS::CLC-GFP alone (top), and embryos expressing a constitutively active Arf1 

(Arf1CA) in p120ctn-/- mutants (bottom). Cell borders visualized with E-cad antibody (green, 

left). (F-G) Representative examples (F) and quantification (G) of FRAP of UAS::CLC-GFP 

in the Arf1CA; p120ctn-/- embryos. (H-I) Representative examples (H) and quantification (I) 

of Arf1-GFP FRAP in control cells at both cell borders. Panels in F and H show the region 

bleached (Position P, red box) at the prebleach (Time T-1), bleach (Time T0), and the end 

(Time T200 or T20) time points. Time is in seconds. Average recovery curves (mean ± 

s.e.m.) and the best-fit curves (solid lines) are shown in G and I. Statistical analysis was done 

using two-way ANOVA. **, p < 0.01;****, p < 0.0001. All best-fit and membrane intensity 

data are in Table S1. Each dot represents an individual embryo, n number was 10-20 embryos 

per genotype with a minimum of 22 cells imaged per embryo. For FRAP 8-10 embryos were 

used, with a single rectangular band encompassing an engrailed stripe per embryo for 

UAS::CLC-GFP, and two AP and DV cell borders measured and averaged per embryo for 

Arf1-GFP. 

 

Figure 6. Arf1 recruitment to the cell surface is inhibited by RhoA activity. 

(A-B) Apical view (A) and amount (B) of UAS::Arf1-GFP in control (top) and cells 

expressing RhoGEF2 RNAi (bottom). (C-D) Apical view (C) and amount (D) of UAS::Arf1-

GFP in control cells expressing UAS::p120ctn with CD8-cherry (top) and cells co-expressing 

UAS::p120ctn with RhoGEF2 RNAi (bottom). (E-F) Apical view (E) and amount (F) of 
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UAS::Arf1-GFP in control and cells expressing RhoACA. Expressing cells are visualized with 

UAS::Arf1-GFP (grey, right; magenta, left) and cell outlines with antibody against E-cad 

(green, left) in A, C, and E. Statistical analysis between cell borders measured by two-way 

ANOVA. *, p < 0.05; **, p < 0.01. All best-fit and membrane intensity data are in Table S1. 

Each dot represents an individual embryo, n number was 10-20 embryos per genotype with a 

minimum of 26 cells imaged per embryo. 

 

Figure 7. Reduced cell elongation after inhibition of the E-cad dynamics leads and its 

rescue by modulating Arf1 and RhoA signalling. 

(A-B). Apical views (A) and cell aspect ratio (B) of epidermal cells following the 

downregulation of Arf1 (post induction of Arf1DN expression for 4 hours). (C-D) Apical 

views (C) and cell aspect ratio (D) following upregulation of RhoA signalling using a 

constitutively active construct (RhoACA). (E-F) Apical views (E) and cell aspect ratio (F) of 

epidermal cells following the inhibition of endocytosis using the expression of the dominant-

negative variant of dynamin (ShibireDN). (G-H) Apical views (G) and cell aspect ratio (H) in 

control, p120ctn mutants, and cells expressing Arf1CA in control or p120ctn mutant. (I-J) 

Apical views (G) and cell aspect ratio (H) in control, and cells expressing UAS::p120ctn 

alone, RhoGEF2 RNAi alone, or co-expressing of UAS::p120ctn with RhoGEF2 RNAi . Cell 

outlines are visualized by E-cad-GFP. Statistical analysis is a two-tailed students t-test with 

Welch’s correction and for the rescue experiments a one-way ANOVA with Dunnett’s post-

hoc test. Scale bars – 10 µm. *, p < 0.05;  ***, p < 0.001, and ****, p < 0.0001. All best-fit 

and membrane intensity data are in Table S1. Each dot represents an individual embryo, n 

number was 10-20 embryos per genotype with a minimum of 17 cells imaged per embryo.  
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Figure 8. Models of cell shape regulation, laser ablation experiments and a summary of 

phenotypes.  

(A) Schematic illustration of cellular anisotropy in the embryonic epidermis of stage 15 

Drosophila embryos. E-cad and p120ctn (blue) are enriched at the DV borders, whereas 

MyoII and Rok (green) at the AP borders, while Arf1 (magenta) is uniform. The long AP 

borders are under tension, while the short DV borders are under compressive force. (B) 

Model of cell shape regulation by actomyosin and E-cad dynamics. AP borders: High 

cortical tension and actomyosin contractility inhibit cell elongation, whereas adhesion 

dynamics promotes it. Actomyosin is activated downstream of RhoA signalling, while Arf1 

GTPase promotes clathrin-mediated endocytosis. RhoA additionally inhibits this endocytosis 

by either directly or indirectly preventing Arf1 localisation (dashed lines). Finally, both 

RhoA and Arf1 are activated downstream of p120ctn at the long AP borders. DV borders: 

Tension and RhoA activity are low and are not regulated by p120ctn. Arf1 promotes E-cad 

endocytosis at the DV borders. Arf1 is highly diffusive and its levels at the DV borders are 

likely to be influenced by recruitment at the AP borders via diffusion (magenta arrow). It is 

unclear whether Arf1 or other molecules are regulated by p120ctn, nor if E-cad dynamics 

contributes to cell shape at this border (question marks). (C) Schematic interpretation of laser 

ablation in the embryonic epidermis. Middle: before ablation with indicated cells and 

vertices involved. Left: ablation of AP cell border. Surface minimization by cells C1 and C3 

shifts the position of the released vertices a and b to new positions a’ and b’ (arrows), 

increasing the distance. Right: ablation of DV cell border. Expansion of cells C2 and C4 to 

minimize their surfaces reduces the distance between vertices b and c to new positions b’ and 

c’. (D) Summary of the cell shape phenotypes and protein distributions in the genotypes 

presented in the study.  
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Supplementary information 
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Figure S1. Morphological differences between compartments in embryonic epidermis 

and effects of p120ctn levels on RokKD-Venus, RDB-GFP and LifeAct-GFP. 

(A) Aspect ratio of cells in the engrailed-positive (+en) and -negative (-en) compartments in 

embryonic epidermis. (B-E) Levels of RokKD-Venus following p120ctn level changes. (B) 

Representative examples (B, D) and levels (C, E) of RokKD-Venus in cells overexpressing 

UAS::p120ctn-GFP (B-C) or p120ctn-/- mutants (D-E). Cell outlines visualized with E-cad 

antibody (grey or green, left), RokKD-Venus visualized using rainbow intensity spectrum 

(right). (F-G) Representative images (F) and levels (G) of RBD-GFP in the epidermal cells 

of control and UAS::p120ctn-GFP expressing embryos. Cell borders were visualized with 

antibody against E-cad (green in F). (H-I) Representative images (H) and levels (I) of 

cortical actin visualized using UAS::LifeAct-GFP (green, left; grey, right). Cell outlines are 

visualized with E-cad antibody (magenta, left) Scale bars – 10 µm.  Statistical analysis 

between cell borders measured by two-way ANOVA. *, p < 0.05, **, p < 0.01. Each dot 

represents an individual embryo, n number was 10-20 embryos per genotype with a minimum 

of 9 cells imaged per embryo. 
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Figure S2. p120ctn antibody staining fails to replicate localisation of GFP tagged 

variant, while p120ctn loss leads to increase of immobile fraction of endogenously 

tagged E-cad-GFP and Rho regulatory construct effects the dynamics of CLC. 

(A) Apical view of epidermal cells of ubi::p120ctn-GFP expressing embryos. The 

localisation of the p120ctn-GFP (left) compared to the localisation of E-cad stained with an 

antibody (middle), and the staining pattern of the anti-p120ctn antibody in the same cells 

(right). (B-D) Representative examples  (B) and quantification (C-D) of E-cad-GFP FRAP in 

p120ctn-/- mutant cells. Panels in B show the DV cell border region bleached (Position P, red 

circle) at the prebleach (Time T-1), bleach (Time T0), and the end (Time T900) time points. 

Time is in seconds.  Average recovery curves (mean ± s.e.m.) and the best-fit curves (solid 

lines) are shown. All best-fit and membrane intensity data are in Table S1. (E-G). 

Localisation (E) and FRAP (F-G) of clathrin (UAS::CLC-GFP, grey, right; magenta, left) in 

cells co-expressing RhoACA (bottom) and control co-expressing UAS::CD8-Cherry (top). Cell 

borders are visualized by anti-E-cad antibody (green). Panels in F show the region bleached 

(Position P, red box) at the prebleach (Time T-1), bleach (Time T0), and the end (Time T400) 

time points. Time is in seconds. Average recovery curves (mean ± s.e.m.) and the best-fit 

curves (solid lines) are shown in G. (H) The total levels of E-cad-GFP on the plasma 

membrane of control and RhoADN expressing cells. Scale bars – 10 µm. Statistical analysis 

was done using a two-tailed students t-test with Welch’s correction. ****, p < 0.0001. Each 

dot represents an individual embryo, n number was 10-20 embryos per genotype with a 

minimum of 26 cells imaged per embryo. For FRAP 8-10 embryos were used. 
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Figure S3. Arf1-GFP localization to the Golgi apparatus and plasma membrane, and 

effects of ArfCA on MyoII-YFP, and Arf1DN on cell shape.  

A. Apical view of the dorsolateral epidermis of UAS::Arf1-GFP expressing control embryo 

with cells borders are marked by antibody staining for E-cad (black, left; white, right), Golgi 

marked by immunostaining of Trans-Golgi (black, second left; magenta, two right-most), and 

Arf1-GFP localisation in the engrailed expressing cells (black, middle; green, two right-

most). The same region is shown in main text (see Fig. 5). (B-C) Representative images (B) 

and levels (C) of MyoII-YFP (rainbow, left) in the cells expressing a constitutively active 

Arf1 (Arf1CA). Cell borders are visualized with anti-E-cad antibody (green, right). (D) Single 

plane image of Arf1-GFP in the middle of the AJ. Large arrow indicates Golgi population 

and small arrow indicates plasma membrane resident population. (I) Low magnification 

image of epidermis expressing Arf1DN. Scale bar is 10 µm. Statistical analysis between cell 

borders measured by two-way ANOVA. Each dot represents an individual embryo, n number 

was 10-20 embryos per genotype with a minimum of 17 cells imaged per embryo.  
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Table S1. Numerical values for each experiment presented in paper.  

 

Movie S1. Laser ablation of AP cell border in control embryos. Arrow indicates the ablated 

junction. Scale bar – 10 µm. 

 

Movie S2. Laser ablation of DV cell border in control embryos. . Arrow indicates the ablated 

junction. Scale bar – 10 µm. 

 

Movie S3. Laser ablation of AP cell border in UAS::p120ctn expressing embryos. . Arrow 

indicates the ablated junction. Scale bar – 10 µm. 

 

Movie S4. Laser ablation of AP cell border in p120ctn-/- mutant embryos. . Arrow indicates 

the ablated junction. Scale bar – 10 µm. 
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