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Combining diverse neural nets

AMANDA J . C . S HARKEY a n d NOEL E . S HARKEY

Department of Computer Science, University of She�eld, UK

Abstract

An appropriate use of neural computing techniques is to apply them to problems such as condition

monitoring, fault diagnosis, control and sensing, where conventional solutions can be hard to

obtain. However, when neural computing techniques are used, it is important that they are

employed so as to maximise their performance, and improve their reliability. Their performance is

typically assessed in terms of their ability to generalise to a previously unseen test set, although

unless the training set is very carefully chosen, 100% accuracy is rarely achieved. Improved

performance can result when sets of neural nets are combined in ensembles and ensembles can be

viewed as an example of the reliability through redundancy approach that is recommended for

conventional software and hardware in safety-critical or safety-related applications. Although there

has been recent interest in the use of neural net ensembles, such techniques have yet to be applied to

the tasks of condition monitoring and fault diagnosis. In this paper, we focus on the bene®ts of

techniques which promote diversity amongst the members of an ensemble, such that there is a

minimum number of coincident failures. The concept of ensemble diversity is considered in some

detail, and a hierarchy of four levels of diversity is presented. This hierarchy is then used in the

description of the application of ensemble-based techniques to the case study of fault diagnosis of a

diesel engine.

1 Introduction

There are a number of reasons for supposing that neural computing techniques might be usefully

employed on safety-critical, or safety-related projects. For certain tasks, neural computing can

provide an attractive alternative to conventional software engineering systems, or mathematical

programming solutions. Neural nets are often easy to implement, e�cient, and once trained, fast to

execute (especially in parallel hardware). Multi-layer feedforward networks have been shown to be

universal approximators (White et al., 1992). That is, they can approximate any function given a

su�ciently representative sample of the input-output pairs of the function (and su�cient complex-

ity).

Neural computing techniques are not a panacea; their e�ective use depends on careful selection

of the tasks and problems to which they are applied. When a task can readily be accomplished by

means of conventional code, a neural net is unlikely to result in better performance. Consider, for

instance, the simple example of a function for deciding whether the length of a line described by a set

of coordinates is greater than a reference length. This may be accurately determined using a simple

program but requires the generation, selection and combination of many nets to achieve anything

approaching comparable performance (Partridge and Yates, 1996).

The type of tasks for which neural nets provide an attractive option are to be found when the data

is noisy, where explicit knowledge of the task is not available, when execution speed is required and

when the task could change in time. Such situations are often found in areas such as control,

diagnosis and sensing, since physical data are usually noisy and incomplete, and a precise program



speci®cation in these areas can be di�cult to obtain. It is possible to envisage a useful, if subsidiary,

role for neural nets in the safety-critical industry, in which they are employed for continuous on-line

monitoring of individual components such as fans, engine combustion quality, or cooling systems.

And in fact there has been an increasing amount of work using neural nets for tasks such as fault

diagnosis (e.g., Boek, 1991; Duyar and Merrill, 1992), condition monitoring (e.g., MacIntyre et al.,

1993), and more recently, fault detection (e.g., Marko et al., 1996; Worden, 1997).

If neural nets are to employed in safety-critical, or safety-related areas, it would make sense to

adopt some of the standard procedures for reducing the number of errors, or at least mitigating their

e�ect. One of the standard procedures applied to software relies on the concept of reliability through

redundancy. This concept is one that can be usefully applied to neural computing. Reliability

through redundancy, and diversity, are two approaches which are referenced in existing safety

standards, as discussed by Croll et al. (1995). Thus the international IEC65A standard, which is

speci®cally aimed at 'Software for Computers in the Application of Industrial Safety-Related

Systems', identi®es a number of techniques to deal with faults, one of which is that of N-version

programming. Similarly, the Health and Safety Executive (UK) guidelines for designing Safety

Related Computer Control Systems advocate the adoption of both diversity and redundancy based

techniques to guard against failures.

The basic idea of N-version programming, is to produce N versions of a program such that the

versions fail independently (Littlewood and Miller, 1989). These can then be combined by means of

a majority vote to produce a more reliable system. This idea of diversity of failure can be used to

improve the performance of neural nets. Diverse nets can be combined to produce a more reliable

output.

The idea of combining nets to improve performance is not new; (e.g., Breiman, 1992, 1994;

Drucker et al., 1994; Hansen and Salamon, 1990; Perrone and Cooper, 1993; Sharkey et al., 1996;

Tumer and Ghosh, 1996; Wolpert, 1992). See Sharkey (1996) for a review of this work. However,

although these researchers consider the combining of nets for the purposes of improved perfor-

mance, they do not address the idea from the perspective of software engineering, and N-version

programming. Sharkey and Partridge (1994) also present an account of combining neural nets in

terms of software engineering and diversity, but they do not discuss the relationship to other neural

net research on ensemble combination. Similarly, although neural nets have been applied to fault

diagnosis and condition monitoring problems, previous work in these areas has not, to our

knowledge, made use of the technique of combining diverse nets in order to improve performance.

This paper discusses the bene®ts of putting together these three areas: (a) combining nets, (b)

reliability through redundancy, and (c) condition monitoring and fault diagnosis.

In what follows, we shall examine in more detail the way in which the concepts of diversity, and of

reliability through redundancy can be applied to neural nets, and in particular to the problem of

fault diagnosis. We shall begin with the notion of diversity; and then turn to a consideration of the

methods which can be employed to create a set of redundant nets which fail diversely. We shall

illustrate the utility of some of these methods by describing some recent research in our laboratory in

which combinations, or ensembles of nets have been used to improve the performance of a fault

diagnosis system for a diesel engine.

2 Diversity

The notion of network combination for the formation of more reliable ensembles can be traced back

to Nilsson (1965), and the notion of combining evidence is evident in a variety of ®elds (e.g.,

econometrics and forecast combining; Granger, 1989). The advantage of combining nets, is that of

avoiding the loss of information that might result if the best performing net of a set of several were

selected and the rest discarded. This idea of exploiting, rather than losing, the information contained

in imperfect estimators, is central to the notion of combining neural nets for improved performance.

Much of the work in this area has focussed on establishing appropriate methods by which sets of

nets can be combined. Methods of combining, or merging the outputs of multiple nets include:
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ensemble averaging (Lincoln and Skrzypek, 1990; Breiman, 1994; Hansen and Salamon, 1990;

Perrone and Cooper, 1993), weighted averaging (Hashem and Schmeiser, 1993), majority voting,

(Sharkey et al., 1996), stacked generalisation (Wolpert, 1992) merging regression predictors

(Breiman, 1992), and combining beliefs in the Dempster±Shafer sense (Rogova, 1994; Xu et al,

1992).

A complementary alternative to concentrating on the means by which the members of an

ensemble are to be combined, is to look at the composition of the nets included in an ensemble, and

to attempt to come up with a set of nets which can be e�ectively combined. It is clear that, to state

the obvious, there are no advantages to combining nets which exhibit identical generalisation. In

much of the work on combining nets, sets of nets have been generated through the blind application

of a particular method (e.g., varying the initial weight settings, the topology of the net, or the

content of the training set). The contrasting approach relies on active attempts to generate sets of

nets that can be e�ectively combined in an ensemble. What is needed for e�ective combination is a

set of nets, each of which generalises well and makes only a small amount of errors. However, where

errors are made, it is important that they are not shared by all the nets in the set or ensemble. This

idea can be expressed in terms of diversity.

The term ``diversity'' has origins in the software engineering literature (e.g. Littlewood andMiller

1989). The aim is to increase the reliability of conventionally programmed solutions by combining

programs which failed independently, or whose failures were uncorrelated. The point is to combine

programs which when they do fail, fail on di�erent inputs. The same idea can be applied to

ensembles of neural nets so that failures on one net can be compensated by successes on others.

When applied to neural computing, the concept of diversity is inextricably linked to that of

generalisation. Therefore in our examination of the relevance of the concept of diversity to neural

computing, we shall focus on the notion of generalisation.

2.1 Generalisation and diversity

Generalisation is the term used to refer to the ability of neural nets to produce a correct response

when tested on inputs it has not been trained on. An account of generalisation in neural nets, or

more particularly, Multi-Layer Perceptrons (MLPs), relies on the distinction between training and

testing. An example of a multi-layer net consisting of a layer of input units, a layer of hidden units,

and a layer of output units is shown in Figure 1. There are weighted connections between the input

units, and the hidden units, and between the hidden units and the output units where the weight

associated with the connection indicates its strength. Such nets can be trained to map a set of inputs

onto a set of outputs, where the inputs and outputs are either binary or continuously valued

representation vectors. This mapping may be arbitrary, between randomly associated pairs, or it

may be functional, i.e., between sets of ordered pairs.

When nets are trained using the backpropogation learning rule (Rumelhart et al., 1986), the

mapping between an input and an output occurs in two time steps. At time t
1

the input state vector, v

is translated into hidden unit space as a vector, h, by an update function f �v� � h. Standardly, the

update function for the j
th hidden unit is hj � 1=1� e

ÿx, where x is the weighted sum of the inputs to

the unit. At time step t
2

, the hidden unit states are propagated to the outputs by the same update

function f �h� � o.

During training, the actual output is compared to the required output, or target, and the error is

backpropogated through the network such that the weighted connections between all the units are

adjusted in the right direction. These steps may be repeated until the correct output is produced

(within a certain error tolerance) in response to each input. During testing, the weights are no longer

adjusted and the performance of the net can be tested by presenting new inputs, and observing the

output.

When a net is tested on inputs, an output will be produced that re¯ects the way in which the

weights have been set up as a consequence of training. Where the novel input is su�ciently similar to

the inputs on which the net was trained, the output produced by the net can be correct (although it
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should be noted that neural nets are good at interpolation, rather than extrapolation). This ability to

generalise can be seen as both an advantage and a disadvantage. It is an advantage in that it makes it

possible to achieve good performance on a problem for which the total set of ordered pairs that

de®nes the function is not available for training (either because it is not known, or because it is too

large, and possibly unbounded). However, it can also be seen as a disadvantage since the

generalisation performance of nets is rarely perfect. It is for this reason, that the concepts of

reliability through redundancy, and of diversity can be so usefully applied to neural computing.

The idea of generalisation is further illustrated in Figure 2 which consists of Venn diagrams for

ordered pairs corresponding to a target function and for alternative functions that are also

compatible with the training set.1 In these diagrams, the target or desired function is shown as a

closed circle, where S represents a training sample and T represents a test set. A net trained on a

training sample of the ordered pairs which constitute the target function can be tested on another

sample of the ordered pairs, T , as shown in Figure 2(a).

The reason why neural nets are imperfect estimators (i.e., why they often correctly generalise to

less than 100% of the test set) is that, as shown in Figure 2(b), the sample on which a net is trained

may be compatible with an alternative function such as that represented by the set of ordered pairs

labelled P0 (see Denker et al., 1987; Sharkey and Sharkey, 1995c, for similar accounts). Another way

of putting this is to say that the ``guess'' made about the target function on the basis of the training

sample is not quite correct, and results in the induction of an alternative function.

Since the generalisation performance of a net can only be determined with respect to test sets it is

important that e�orts are made to develop test sets that are representative of the target function, and

which do not contain any of the input-output pairs used for training (or the level of correct

generalisation will be arti®cially in¯ated). The usual way in which a test set is constructed is by

taking a random sample of the set of possible input-output pairs that constitute the target function,

having ®rst excluded those input-output pairs used for training.

In the same way that generalisation performance is determined with reference to a test set,

diversity is also de®ned with respect to a particular test set. A pair of nets can be said to be diverse

with respect to a test set if they make di�erent generalisation errors on that test set, and not to be

diverse when they show the same pattern of errors.2 Thus, in Figure 2(c) the nets that induced the

Figure 1 A feedforward net with two weight layers and three sets of units

1 A common misunderstanding of these Venn diagrams is to think of them as representing an ordered input

space. They actually represent an unordered set of ordered pairs, i.e., the set of of ordered pairs that constitutes

the target function. Thus the position of the S or T in Figure 2(a) does not indicate anything about their

distribution in input space.

2 Here we assume that a particular output is in error if it is not within a speci®ed tolerance level of the target

output.
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alternative functions P1, P2 and P3 can be described as diverse. What matters here is the

distribution of failures. Two nets might have taken di�erent numbers of cycles to train, and might

consist of di�erent sets of weights, but if they show the same patterns of generalisation and both fail

on the same inputs in the test set, they represent the same solution, and can be said not to exhibit any

diversity.

Sets of nets can be combined to exploit the diversity they exhibit. For example, if the individual

members of a set of nets have each induced a function that di�ers from the target function, such as

leads to the situation represented by the intersecting dashed circles in Figure 2(c) and 2(d), then

there is something to be gained from their combination. In Figure 2(c), it can be seen that between

them, the dashed circles corresponding to the sets of ordered pairs, P1, P2 and P3 cover the test

sample (labelled T). Therefore, an alternative to choosing the net which shows the best performance

on the test set is to use a combination of the nets which have induced alternative functions. By

combining the nets appropriately it might be possible to construct an ensemble which exhibits 100%

generalisation on the test set. This would represent an improvement over the selection of any of the

individual nets since none of them will produce a correct response for all the elements in the test set.

In Figure 2(d) there is an area of the test set which is not included in either P4 or P5. Even here, it is

apparent that better generalisation on the test set will be achieved if the nets that have induced the

alternative functions corresponding to the sets of ordered pairs P4 and P5 are combined, than if

only P4 were used.

2.2 Levels of diversity

We have found it useful to go a step further than characterising sets or pairs of nets as diverse or not,

Figure 2 Training and testing neural nets. In these Venn diagrams closed circles are used to represent the set

of ordered pairs (input/output) for the target function. The sets of ordered pairs corresponding to alternative

functions (P0
; P1; P2; P3; P4; P5) are also shown as dashed circles. In (a), the set of ordered pairs de®ning the

target function is shown, together with ordered pairs that make up the training sample, S, and the test sample,

T . In (b) the dashed circle represents a set of ordered pairs corresponding to a function other than the target

function, one that is also compatible with the training set S. In (c) and (d) more than one training set is shown.

Again, the closed circle represents the set of ordered pairs for the derived function, and the dashed circles

represent sets of ordered pairs corresponding to alternative functions which are compatible with (ie contain) a

training set S.
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and to talk about the level of diversity they exhibit3. It is possible to identify four levels of diversity

which a set of arti®cial neural networks (ANNs) can exhibit with respect to a test set, ranging from

the ideals of Level 1 and Level 2 Diversity to the minimum diversity of Level 4. An advantage of this

hierarchy is that the level of diversity exhibited by a set of nets also gives a good indication of the

best way of combining them.

Level 1 Diversity: there are no coincident failures, and the function is covered. By no coincident

failures, we mean that there were no inputs that resulted in failure for more than one net. By

function coverage, we mean that for every input in the test set there is always a net that produces the

correct output. When the outputs of the ensemble are combined by means of a majority vote, the

correct output will always be produced, since only one net will ever fail on each tested input. Level 1

Diversity is an ideal to aim for in ensemble performance on a test set. This level requires n > 2

(where n is the number of nets in the ensemble).

Level 2 Diversity: there are some coincident failures, but the majority is always correct, and the

function is covered. Level 2 Diversity does not meet all of the criteria of Level 1, since it does allow

some coincident failures. However in ensembles that exhibit Level 2 Diversity, the majority is always

correct. Thus, although a particular input pattern might result in an error on more than one net, the

number of correct outputs for that input pattern from ensemble members will always be greater than

the number of errors. Therefore 100% performance on the test set will still be achieved. This level

requires n > 4. (n > 4 is required to make it possible for the correct response to be in the majority

even when two nets fail). It is possible that a Level 2 system is upwardly mobile in that removing

some of the ANNs could eliminate the coincident failures and lead to a Level 1.

Level 3 Diversity: a simple majority vote will not always result in the correct answer, but the nets in

the ensemble do cover the function such that the correct output for each input pattern in the test set

is always produced by at least one net (see Figure 2(c)). This means that it might be possible to

weight the outputs of the nets in such a way that either the correct answer was always obtained, or at

least that the correct output was obtained often enough that generalisation was improved. Some of

the more complex methods of combining ensembles might be appropriate (e.g., weighted averaging

(Perrone and Cooper, 1993) or stacked generalisation (Wolpert, 1992)). It is possible that a set of

ANNs that exhibits Level 3 Diversity may contain subsets of ANNs with either Level 1 or Level 2

Diversity and thus, like Level 2, Level 3 may be upwardly mobile.

Level 4 Diversity: the function is not entirely covered by the ANNs. Level 4 Diversity can never be

reliable since there are failures that are shared by all of the ANNs (see Figure 2 (d)). However,

although Level 4 can never be upwardly mobile, it can still be used to improve generalisation,

provided that it ful®ls the criteria for minimal diversity that there should be at least two ANNs in an

ensemble such that there is at least one correct input generalisation in each that is not shared by the

other. This level is equivalent to the minimal diversity, or ``useful diversity'' identi®ed by Partridge

and Gri�th (1995).

To summarize; the level of diversity achieved by an ensemble can be only estimated through an

examination of the coincident failures on a test set. If there are no coincident failures, the ensemble

exhibits an estimated Level 1 Diversity with respect to that test set; if there are some coincident

failures, but the majority is always correct, the ensemble exhibits an estimated Level 2 Diversity; and

if there are coincident failures, and the majority is not always correct, the ensemble exhibits either an

estimated Level 3 or Level 4 diversity depending on whether or not there are some inputs which fail

on all the members of the ensemble.

The concept of diversity employed in the de®nitions of these levels is related to the ideas

expressed by Krogh and Vedelsby (1995) in their discussion of ensemble ambiguity (which in turn is

3 Although previously (Sharkey and Sharkey, 1995b, 1997; Sharkey, 1996) we have used the term type, instead

of level.
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related to the concept of variance, Geman et al., 1992), and byWolpert (1992) when he suggests that

what is required is that the nets should be mutually orthogonal. Levels of diversity however di�er

from these approaches because they take account of the overall accuracy of the ensemble output.

That is, rather than simply requiring that the nets should disagree over some inputs, the level of

diversity indicates the form that this disagreement takes and the extent to which it results in

coincident failures.

3 Creating diverse ensembles

In the preceding section we examined the notion of diversity, and provided an account of the levels

of diversity which can be exhibited by an ensemble. In this section, we shall consider ways of

creating ensembles of neural nets that exhibit high levels of diversity.

The neural computing methods which can be employed for ensemble creation di�er from those

used for the same purpose in software engineering, where e�orts to create diverse programs have

made use of di�erent teams of programmers (Knight and Leveson, 1986), di�erent types of

programming language (Adams and Taha 1992) and di�erent speci®cations (Ramamoorthy et al.,

1981). In fact, in software engineering there have been relatively few reported uses of the concept of

reliability through redundancy because of the di�culties (and cost) of generating program versions

which fail on di�erent inputs. For example, consider the cost involved in employing separate teams

of programmers to develop alternative solutions. And even when separate teams of programmers

are employed, there is evidence (Knight and Leveson, 1986) that they still tend to make similar

errors due to the occurrence of common misunderstandings of certain aspects of tasks. By contrast,

in neural computing, there are several aspects of neural net training which can be altered at little

cost, and which, arguably, are less susceptible to shared comprehension failures. The candidate

manipulanda, for the extensional programming of neural nets (c.f. Sharkey and Sharkey, 1995a)

include the set of initial weights from which a net is trained, the architecture of the net, the input and

output representations, and the content of the training sets. The question then is which of these

manipulanda are more likely to lead to ensembles with high levels of diversity?

First, to achieve some diversity, it is important that the component nets in an ensemble show

di�erent patterns of generalisation. Nets trained on di�erent training sets are more likely to show

di�erent patterns of generalisation than nets trained on the same training set from the starting point

of di�erent initial conditions, or with di�erent numbers of hidden units, or using a di�erent

algorithm. This follows from the observation that it is the data on which a net is trained that

determines the function it extracts (i.e., the guess that it makes about the target function). Thus two

nets, each trained on di�erent data sets, might be expected to induce, or guess, di�erent alternative

functions on the basis of those data sets. On the other hand, nets trained on the same data, but from

the starting point of di�erent sets of initial weights could induce the same function, namely that

implied by the training data.

In support of the reasoning that di�erent patterns of generalisation are more likely to result from

changes in the training set, we can point to the paucity of evidence that nets trained on the same

training set from di�erent initial conditions, or with di�erent numbers of hidden units, generalise

di�erently. It has been argued (Kolen and Pollack, 1990) that backpropogation is sensitive to initial

conditions, and the susceptibility of backpropagation to local minima is well known. However, this

sensitivity/susceptibility is re¯ected in whether or not it is able to learn the training data (i.e.,

converges), and how many cycles it takes to do so. It seems that there is usually only one function

that is induced on the basis of a set of data. Thus di�erent nets that have been successfully trained on

the same training data are likely to induce the same function. This analysis is supported by the

empirical results reported by Sharkey et al. (1995) who found that nets trained from di�erent initial

conditions did di�er in the number of training cycles they took to converge, and in whether or not

they were able to learn that training data. However, Sharkey et al. (1995), also found that nets that

had successfully learnt the training data showed the same patterns of generalisation. In other words,

the nets had induced the same (alternative) function, or made the same guess about the target
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function. Similarly, we can expect that alterations in the the number of hidden units would a�ect

whether or not a net was able to learn the training data, but that nets that had learnt the training

data would make the same guesses about the target function.

There is then reason to suppose that di�erent patterns of generalisation are more likely to be

obtained from nets that are trained on di�erent training sets than through the manipulation of other

neural net parameters. There are a number of alternative ways in which di�erent training sets could

be created. Techniques designed to produce di�erent training sets include cross validation and

bootstrapping (Raviv and Intrator, 1996; Krogh and Vedelsby, 1995); non-linear transformations

(Sharkey et al., 1996); injection of noise during training (Raviv and Intrator, 1996); data from

di�erent sensors (Sharkey et al., 1996); the boosting algorithm (Drucker et al., 1994); and the use of

di�erent methods of preprocessing. Cross-validation and bootstrapping both involve taking over-

lapping subsamples of a data set. Non-linear transformations, and injection of noise during training

involve changing the inputs in a training set such that a new function is computed. Data from

di�erent sensors refers to the situation where the same classi®cation can be made on the basis of

more than one kind of input. For instance, in a study of engine faults, if a diagnosis could be made

on the basis of either a measure of in-cylinder pressure, or in-cylinder temperature, then these two

measures would be an example of data from two sensors (see section 3, case study). In the boosting

algorithm, successive nets are trained on input-output pairs that have been ®ltered by previous nets.

The choice between such methods of ensemble creation will inevitably be determined, to an

extent, by the availability of the data. For example, the technique termed Data from Di�erent

Sensors (DDS) will only be applicable where such data exists. Similarly, the boosting algorithm,

which requires large amounts of data, will only be appropriate where data is in plentiful supply.

However, as well as the availability of the data, the main consideration is to choose a method which

will result in ensembles that exhibit good diversity (e.g., Level 1 or 2).

As was discussed above, a requirement for diversity is that the component nets in an ensemble

should show di�erent patterns of generalisation. Although there is reason to suppose that all the

methods which involve varying the data might result in di�erent patterns of generalisation, some

methods may be more e�ective than others. Those methods which promote di�erences in the kind of

patterns which are included in a training set are likely to be particular e�cacious in this regard.

Thus, the ®ltering involved in the boosting algorithm forces the training sets to be di�erent.

Similarly data taken from di�erent sensors is likely to be di�erent in kind. Nonlinear transforma-

tions, and di�erent methods of preprocessing, also systematically change the data in the training set

and are likely to result in di�erent patterns of generalisation. Because the former methods promote

di�erences in the content of the training set they are likely to be more e�ective than methods such as

cross-validation and bootstrap which rely on taking di�erent samples of the same master data set.

Sampling can result in the same patterns of generalisation (it is quite possible for the same function

to be extracted from di�erent data sets), and there is no extra process here to promote di�erences

between the samples.

A further reason for supposing that sampling methods such as cross-validation or bootstrap may

be less e�ective is that they may result in individual nets which each generalise less well. High levels

of diversity are more likely to be achieved if as well as showing di�erent patterns of diversity, the

individual nets in an ensemble all generalise well. The more failures each net exhibits, the more likely

that the errors, when made, will overlap with those made by other nets. For instance, if each net only

makes errors on 0.5% of the test set, it is more likely that the errors when made will not overlap than

it would be if each net made errors on 50% of the training set. Taking smaller samples from a larger

data set is likely to reduce the level of generalisation achieved by each net in an ensemble. Smaller

training sets are likely to result in less good generalisation, unless we know enough about the

problem to select the training set very carefully. A similar point is made by Tumer and Ghosh (1996)

when they explored di�erent methods of varying training sets, but found that the bene®ts of the

resulting ensembles were reduced by the e�ect of using small training sets.

In summary, the argument made in the preceding paragraphs is that high levels of diversity are

more likely to be achieved through the use of methods that promote di�erent patterns of
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generalisation, whilst not resulting in lower levels of generalisation. We suggest that the methods

such as boosting, data from di�erent sensors, and transformations of the input are most likely to

ful®ll these requirements.

We shall conclude this section with a more detailed description of two of these methods However,

we should ®rst make a further important point about ensemble creation, and that is that it can be

facilitated through the use of selection. Rather than simply generating a set of nets through the

application of some method, and then combining them, it makes sense to select amongst a larger

pool of candidate members for a set of nets that can be e�ectively combined.

The idea of selecting nets for ensemble combination was raised by Perrone and Cooper (1993),

when they suggested not including near identical nets. There are di�erent ways in which such

selection can be undertaken; for instance, di�erent approaches to selection can be found in the

following papers: Hashem (1996), Opitz and Shavlik (1996), Partridge and Yates (1995) and

Sharkey and Sharkey (1997). The selection of nets for e�ective combination can be based on

performance on a test set, and its e�ectiveness checked on a further test (or validation) set.

Our approach to selection has been to base it on estimates of the levels of diversity as outlined

earlier, and to repeat the selection process until an ensemble is found that exhibits the required level

of diversity. As opposed to trying all possible combinations, this process can be usefully guided by

examining the correlations between pairs of nets, where the product-moment correlation coe�cient

between n pairs of observations, whose values are �xi; yi� is calculated as follows.

r �

P

n

i�1

�xi ÿ �x��yi ÿ �y�
�������������������������������������������������������������

�
P

n

i�1

�xi ÿ �x�2��
P

n

i�1

�yi ÿ �y�2�

q

Where correlations are close to zero, nets are likely to share a minimum number of coincident

failures.

We have used the correlation matrix as a heuristic guide to which nets can be e�ectively

combined. It is possible, on the basis of this matrix, to select pairs of nets which show a low

correlation between their failures. Further testing can then be carried out to ®nd a set of three nets

which show a minimum (or an absence) of coincident failures.

3.1 Two methods of ensemble creation

Data from di�erent sensors or the DDS method, provides a way of obtaining a set of training sets,

each of which generalise well, but di�erently. Like boosting, this method is appropriate only under

certain circumstances; that is, when the same output classi®cation can be computed on the basis of

di�erent sensor readings. The input-output relationships in nets trained on data from di�erent

sensors will di�er, even if they are trained on the same fault classi®cation. There is therefore reason

to suppose that the functions extracted by nets trained on di�erent sensory data will di�er, and lead

to di�erent patterns of generalisation. Evidence in support of this conclusion is provided by Sharkey

et al. (1996), and is summarised in the next section of this paper.

Non-linear transformations of data (NLT): an e�ective way of creating nets which generalise well,

but di�erently, is to start with a training set which permits good generalisation. Further training sets

can then be created by distorting that training set in di�erent ways. The NLT method involves

creating a new training set by distorting the inputs (for example, by testing them on a randomly

initialised net, and treating the outputs as new versions of the inputs). This approach is best used in

conjunction with selection methods; eliminating distorted training sets which cannot be trained on

the original classi®cation, or which can be trained, but result in the same patterns of generalisation.

The method can be thought of as being equivalent to preprocessing the data in di�erent ways. A

similar e�ect can be obtained by adding noise to di�erent samples of data (Raviv and Intrator,

1996), or by pruning the inputs (Tumer and Ghosh, 1996). An advantage of the NLTmethod is that,

unlike boosting, it does not require large amounts of data to be available, and unlike the DDS

method, does not require the presence of data from di�erent sensors.
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Thus, in terms of guidelines about which techniques are likely to result in the most reliable forms

of diversity with respect to a test set, our recommendation is to use the DDS method when it is

possible to assemble good training sets using data from more than one source. Failing that,

techniques like the NLTmethod, which rely on preprocessing, or distorting a training set in di�erent

ways, are likely to be particularly e�ective. Both these methods, or any others which might be

adopted, should be used in conjunction with testing and selection of potential ensembles on the basis

of the number of coincident errors they make. Admittedly this process takes time and is

computationally expensive (although not as expensive as the process of generating independent

versions of conventional software). Nonetheless, where nets are being applied in a safety-critical, or

safety-related area, the extra time and expense needed to produce a more reliable system can readily

be justi®ed.

Having argued that two methods (DDS and NLT) are likely to provide e�ective means of

creating diversity in ensembles, in the next section we shall report an example of their application in

a particular case study. In this case study, the two methods are shown to provide e�ective means of

creating diverse ensembles. They produce better results than training from di�erent sets of initial

weights, or randomly assembling disjoint training sets.

4 Applying diversity-promoting methods in a diesel engine case study

In a diesel engine case study (Sharkey et al., 1996), nets were trained to diagnose two combustion

faults on the basis of simulated data from a ship's engine corresponding to in-cylinder pressure and

temperature. The data were generated from the MERLIN diesel performance simulator (shown to

produce results which are almost identical to those of a real engine; Banisoleiman, 1993). The

simulator was used to generate data corresponding to two combustion faults (i) Retarded injection

of fuel, (ii) Advanced injection of fuel, and to (iii) Ideal combustion.

An early aim of this research was to examine the feasibility of replacing the standard method by

which a skilled marine engineer examines indicator diagrams for discrepancies with ideal indicator

diagrams, with a neural net system which could be used to monitor combustion quality during every

engine cycle, and to provide immediate warnings of faults (Gopinath, 1994). The rapid detection of

combustion condition in a marine engine is crucial since undetected faults can rapidly become

compounded and even result in total breakdown. In the subsequent research, described here, the

same data formed the basis of an investigation of the e�ectiveness of ensembles of nets at increasing

generalisation performance.

In initial experimentation, nets were trained to perform this classi®cation on the basis of a sample

of the available data, and then tested for their ability to generalise to two sets of previously unseen

set of data. Training, and test sets were generated using the MERLIN simulator based on data

corresponding to in-cylinder pressure, in-cylinder temperature and a combination of the two (for

further details see Sharkey et al., 1996). The two master data sets of pressure and temperature were

divided into a Test Set 1 (a test set of 314 example pairs), Test Set 2 (a second test set of 100 example

pairs), and nine training sets of 150 example pairs (50 from each class).

For three types of data (Pressure, Temperature, and Combined Pressure and Temperature), nets

were trained on nine (non-overlapping) training sets, from nine di�erent sets of initial weights,

resulting in a total of 3681 trained nets. When the trained nets were tested on Test Set 1, the average

generalisation performance for nets trained on pressure data was 98.33% (where the best net got

99.4% of Test Set 1 correct, and the worst got 96.8% correct), whilst for nets trained on temperature

data the average correct generalisation performance was 98.15%, and for nets trained on combined

data it was 98.45%. It should be apparent that these generalisation ®gures leave room for

improvement through the application of diversity-creating methods.

We shall describe the application to this fault diagnosis task of two ensemble-creation methods:

DDS, or Data from more than one sensor, and NLT, or Non-linear transformations of input.
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4.1 Data from di�erent sensors

Looking at the e�ect on ensemble diversity of using data from di�erent sensors arose naturally in

the context of the Diesel Engine case study, since data corresponding to both in-cylinder pressure,

and in-cylinder temperature were available. As described above, nets could be trained to perform

the fault diagnosis on the basis of either Pressure, Temperature, or a combination of the two. It was

therefore possible to test these trained nets on the appropriate version 4 of Test Set 1, and to draw up

the correlation matrix for nets trained on these measures. These are shown in Tables 1, 2 and 3. For

Table 1 Correlations between nets trained on Temperature and Pressure data. Temperature labelled from T1

to T9, corresponding to nine di�erent training sets used. Pressure also labelled from P1 to P9, corresponding to

nine di�erent training sets used

T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8 T 9

P 1 70.02 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01

P 2 70.03 0.16 0.29 0.01 0.01 0.01 0.11 0.03 0.01

P 3 70.02 0.22 0.37 0.01 0.01 0.01 0.15 0.02 0.01

P 4 70.03 0.02 0.01 0.02 0.01 0.01 0.03 0.03 0.02

P 5 70.03 0.02 0.01 0.02 0.01 0.02 0.03 0.03 0.02

P 6 70.03 0.02 0.01 0.01 0.01 0.39 0.02 0.11 0.01

P 7 70.02 0.23 0.40 0.01 0.01 0.01 0.16 0.02 0.01

P 8 70.03 0.02 0.01 0.02 0.01 0.25 0.03 0.06 0.02

P 9 70.02 0.01 0.01 0.01 0.01 0.01 0.02 0.02 0.01

Table 2 Correlations between nets trained on Pressure and Combined data

P 1 P 2 P 3 P 4 P 5 P 6 P 7 P 8 P 9

C 1 70.01 0.01 0.01 0.01 0.01 0.46 0.01 0.01 0.02

C 2 70.03 0.20 0.23 0.02 0.60 0.25 0.18 0.05 0.03

C 3 70.02 0.26 0.24 0.02 0.16 0.32 0.24 0.01 0.02

C 4 70.03 0.02 0.02 0.02 0.09 0.28 0.02 0.02 0.03

C 5 0.11 0.02 0.01 0.00 0.41 0.31 0.02 0.03 0.03

C 6 0.23 0.02 0.02 0.02 0.01 0.62 0.02 0.01 0.03

C 7 70.02 0.29 0.26 0.02 0.04 0.31 0.26 0.01 0.02

C 8 70.03 0.02 0.03 0.01 0.56 0.45 0.02 0.04 0.03

C 9 70.02 0.01 0.01 0.02 0.05 0.36 0.01 0.01 0.02

Table 3 Correlations between nets trained on Temperature and Combined data

T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8 T 9

C 1 0.48 0.38 0.02 0.03 0.02 0.02 0.13 0.02 0.29

C 2 0.06 0.30 0.30 0.02 0.01 0.01 0.30 0.01 0.02

C 3 70.01 0.50 0.77 0.01 0.01 0.01 0.77 0.01 0.02

C 4 0.07 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02

C 5 0.06 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02

C 6 70.01 0.01 0.01 0.01 0.01 0.69 0.01 0.01 0.02

C 7 0.08 0.26 0.50 0.03 0.02 0.01 0.50 0.02 0.01

C 8 0.03 0.02 0.02 0.03 0.02 0.22 0.03 0.02 0.04

4 For comparisons to be meaningful, it is important that all versions of the test set corresponded to the same set

or sequence of engine cycles (containing both faulty and normal data). This ensures that what is being done is to

take an engine cycle and to classify it into one of the three combustion categories, on the basis of three di�erent

input measurements (Pressure, Temperature and Combined).
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the purposes of comparison, Table 4 shows the correlations between nets trained on the same

Pressure data from di�erent initial weights, and Table 5 shows the correlations obtained between

nets trained on di�erent subsets of the Pressure data.

The correlations shown are the correlations between the output failures of nets trained under

di�erent conditions and were computed using the product-moment correlation coe�cient (see

section 3). Correlations take values between ÿ1 and +1. Using binary data (presence/absence of

error), a correlation close to +1 indicates that there is a linear relationship between the two

variables such that an error made by one kind of net is usually accompanied by an error on the other

kind of net. By contrast, a correlation close to ÿ1 implies that the two variables produce opposite

results, and that when one net fails the other succeeds, and vice versa. When the correlations in a

correlation matrix are close to zero, this suggests that the two variables fail independently. The ideal

situation, where two methodologies both result in good generalisation and show few, or no, shared

errors will be represented by correlations that are close to zero. Therefore the tables can be examined

to see the extent to which they show high correlations, or low correlations, bearing the ideal

situation in mind.

The rows and columns of Tables 1, 2 and 3 are labelled either with a ``T'' for Temperature, a ``P''

for Pressure or a ``C'' for combined. Each entry represents the correlation between two methodol-

ogies (data sources), each methodology being represented by nine di�erent versions (nets trained

from nine di�erent random seeds), using statistical methods derived from Littlewood and Miller

(1989). Table 1 shows the correlations between the outputs of nets trained on Temperature data, and

the outputs of nets trained on Pressure data; Table 2 shows the correlations between the outputs of

nets trained on Combined data with nets trained on Pressure data; and Table 3 shows the

correlations between the outputs of nets trained on Combined data with nets trained on

Temperature data. In Table 4 the correlations between nets trained on Pressure data from di�erent

random initial conditions are shown; the rows and columns being labelled RIC 1±9 to indicate

di�erences in the random initial conditions used. In Table 5 the rows and columns are labelled Train

1±9 to indicate di�erences in the mutually exclusive training sets used, all of which consisted of

Pressure data.

Table 4 Correlations between nets trained from di�erent Random Initial Conditions

RIC 2 RIC 3 RIC 4 RIC 5 RIC 6 RIC 7 RIC 8 RIC 9

RIC 1 0.971 0.948 0.974 0.943 0.959 0.963 0.963 0.945

RIC 2 0.971 0.969 0.963 0.979 0.971 0.972 0.951

RIC 3 0.969 0.951 0.959 0.972 0.975 0.974

RIC 4 0.943 0.963 0.983 0.985 0.976

RIC 5 0.972 0.950 0.936 0.927

RIC 6 0.978 0.960 0.954

RIC 7 0.990 0.977

RIC 8 0.975

Table 5 Correlations between nets trained on di�erent training sets

Train2 Train3 Train4 Train5 Train6 Train7 Train8 Train9

Train1 0.268 0.319 0.675 0.536 0.368 0.467 0.446 0.760

Train2 0.832 0.477 0.684 0.173 0.705 0.727 0.499

Train3 0.567 0.563 0.196 0.902 0.486 0.608

Train4 0.629 0.262 0.574 0.594 0.871

Train5 0.626 0.551 0.733 0.703

Train6 0.250 0.453 0.314

Train7 0.465 0.650

Train8 0.649
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Examination of Tables 1, 2 and 3 shows that low correlations were obtained when the

comparison was between nets trained on di�erent sources of data. These low correlations imply

that, as discussed above, the two methodologies fail independently. The correlations seem

particularly low when contrasted to those shown in Table 4, where the comparison was between

nets trained on di�erent initial conditions, and the correlations are all greater than 0.9. These high

correlations imply that when inputs result in errors on one methodology, they also result in errors on

the other methodology. Similarly (although to a lesser extent), higher correlations were also

obtained when the comparison was between randomly selected di�erent training sets, all based on

Pressure data (Table 5). Here the lowest correlation obtained as a result of using non-overlapping

training sets was 0.173, with the highest being 0.871. By contrast, 75% of the correlations in Tables

1, 2 and 3 were within 0.05 of zero correlation. Using the correlation matrices as a guide (i.e.,

focusing on those nets whose pairwise correlations are close to zero) it was possible to select three

nets trained on di�erent sources of data which together made no coincident errors on Test Set 1

(Level 1 Diversity), and thus showed 100% correct generalisation performance. When combined by

means of a majority voter they similarly showed 100% correct generalisation to Test Set 2.

4.2 Non-linear transformations

The NLT method of using non-linear transformations of the input in order to promote diversity in

an ensemble is particular to our laboratory (Sharkey et al., 1996). It is best thought of as analogous

to using di�erent preprocessing methods on a set of data, although it bears some similarity to the

idea of adding noise to the inputs (Raviv and Intrator, 1996). The method involves creating new

training sets from an original, by means of transforming the inputs, and then constructing an

ensemble which consists of a net trained on the original data, and nets trained on transformed data.

In an application of the NLT method of nonlinear transformations to the case study of fault

diagnosis of a ship's engine, the starting point was to take a net trained on a set of pressure data.

When tested this net generalised correctly to 99.3% of Test Set 1. Two di�erent transformations of

this training set, Transformation A and Transformation B, were then selected from amongst a

number of others. They were selected because when nets trained using these transformations were

tested on Test Set 1, they showed no coincident failures with either each other, or the original

training set.

Transformation A: the pressure data input patterns were transformed by using another ANN with

two layers of weights, called a transformation net (TN), shown as Transformation A in Figure 3.

The transformation of the inputs was accomplished by training the TN to autoencode the pressure

data by reproducing the input vector as output. Once trained, only the input layer of weights in the

TN was used to transform the input data, as shown in Figure 3. Thus ANN
1

was trained on the

classi®cation task with the TN hidden unit activations as input. After training, ANN
1

exhibited

98.1% correct generalisation on Test Set 1. To enable testing the test sets have to be similarly

transformed by passing their inputs across the relevant transformation net. In this case, the test set

was transformed by passing the inputs across the autoencoding net, and treating the hidden unit

representations as the transformed test inputs.

Transformation B: the input for ANN
2

, was the output from the set of untrained randomly selected

weights that constituted a TN (rather than the hidden unit activation as in TransformationA). After

training, ANN
2

exhibited 95.7% correct generalisation on the appropriately transformed Test Set 1.

These transformations can be thought of as equivalent to taking a single data set, and creating

di�erent versions of it by using di�erent preprocessing methods.

An ensemble put together as shown in Figure 3. One net (ANN
3

) was trained on a set of Pressure

data; two other nets (ANN
1

and ANN
2

) were trained on the same set of data after it had been

transformed as described above. These transformations are illustrated in Figure 3; for ANN
1

the

inputs were transformed by training them on another task and then treating the resulting hidden
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unit representations as the inputs. For ANN
2

, the inputs were transformed by passing them across a

random, untrained net, and treating the resulting outputs as inputs. What this heuristic methodol-

ogy requires is that several transformations are attempted, and selected amongst on the basis of their

ability when tested on a test set to produce outputs which show a low correlation with the original or

other transformations. Many such transformations either result in data sets which nets cannot learn,

or which are highly correlated with the original. Once nets which show a low correlation with one

another have been identi®ed, selection can then be further re®ned so as to choose a set of nets which

when combined in an ensemble yield 100% performance on a veri®cation set. The performance can

be further tested by looking at the performance of the ensemble on a further test set not used for this

selection (i.e., Test Set 2).

When considered in isolation, each of the three ANNs describe here exhibited high generalisation

performance, but none were at 100%. However, when combined by means of a majority voter as

shown in the system shown in Figure 3, there were no coincident failures on either Test Set 1 or Test

Set 2, and thus the majority of ANNs was always correct. This is because the transformations were

selected on the basis that they resulted in good generalisation, and did not show any coincident

failures with the original net when tested on the Test Set 1. Thus, it has been shown that this

transformation methodology can lead to an estimated Level 1 Diversity with respect to a test set.

The pairwise correlations, and absence of coincident failures, can be seen in Table 6.

These results, and those reported under the preceding heading ``Data from di�erent sources'',

provide an illustration of the application of diversity-promoting techniques to a fault diagnosis task.

They demonstrate that substantially improved performance can be obtained as a result of employ-

ing a neural net system that consists of an ensemble of neural nets. The two ensembles considered

here were each combined by means of a simple majority voter, and exhibited 100% performance on

two test sets, representing an improvement of 1.67% over the average performance of nets trained

on the basis of pressure data and an improvement of 1.85% over the average performance of nets

trained on the basis of temperature data. Of course, the nets could have been combined by some

other method (e.g., stacked generalisation, Wolpert, 1992; weighted averaging, Hashem and

Figure 3 Health monitoring in a ship's engine
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Schmeiser, 1993), but the point is that their ``error independence'' allows them to be e�ectively

combined through the simple method of majority voting.

5 Conclusions

If neural nets are indeed ``imperfect estimators'', the question might be raised as to whether there

was any reason to use them at all in areas in which reliability and accuracy were important. The ®rst

answer to this question is to suggest that neural computing techniques should only be employed for

tasks where they can outperform alternatives. Such tasks are likely to be those that involve physical

data, with their typical characteristics of noise and incompleteness. Taking this approach implies a

subsidiary role for neural nets in the safety-critical industry, in which neural computing techniques

are used to monitor or diagnose individual components, rather than to provide a complete system.

This approach would bene®t from further work on the most e�ective ways of integrating neural

computing solutions to control, monitoring and sensing tasks into conventional systems. Another

possibility, considered elsewhere, is to use neural computing as a means of increasing the diversity of

a set of solutions to a problem by including a neural net version alongside conventional ones.

A second way of responding to concerns about the use of neural computing techniques in the

Safety-Critical industry is to concentrate on ways of increasing the reliability of neural computing.

In this paper we have considered the recent research emphasis on combining nets for the formation

of more reliable ensembles. The argument was made that better results will be obtained from neural

net ensembles when the generalisation patterns of the member nets di�er, and there are few

coincident errors. A hierarchy of four levels of diversity was presented. In this hierarchy, the

diversity exhibited by an ensemble with respect to a test set can range from Level 1, where the

member nets do not share any failures and the majority is always correct, to the minimal diversity of

Level 4, where the correct output is not obtained for all the patterns in the test ®le, but some

improvement in performance is still achieved as a result of combining.

An account of this hierarchy was followed by a consideration of the requirements which need to

be ful®lled by an ensemble that exhibits a high level of diversity. First, the component nets in the

ensemble will need to show di�erent patterns of generalisation. It was argued that nets trained on

di�erent training sets are more likely to generalise di�erently than nets created through variations in

their initial conditions, or their topology. Second, high levels of diversity are more likely to be

achieved when the nets in an ensemble each generalise well. Fewer errors reduces the chance of

overlap. Third, it was pointed out that better results can be obtained if an ensemble-creation method

is used in conjunction with selection such that nets are only included in an ensemble if they show the

required level of diversity with respect to a test set.

Two methods of ensemble creation, DDS and NLT are discussed in more detail. Both of these

methods encourage di�erent patterns of generalisation without relying on sampling methods that

can reduce the size of the training set with a consequent reduction in generalisation ability. Both can

also be used in conjunction with selection. Their e�cacy is supported by the account of the Level 1

Diversity obtained when they were applied to a fault diagnosis task. The engine fault diagnosis case

Table 6 Pairwise correlations between nets from three

methodologies; Original, Transformation A and Trans-

formation B. Number of coincident failures shown in

brackets

Orig TM A TM B

Orig 70.0306 (0) 70.0173 (0)

TM A 70.0302 (0)

TM B
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study also provides an illustration of the bene®ts of making use of insights about combining nets in

an applied domain.

In considering the possible role of neural computing in the safety-critical industry, it is important

to take a realistic view of its strengths and weaknesses. An admitted weakness of the present

approach is that assessment of the e�ect of combining nets, and the determination of diversity level,

depends on the composition of the particular test set(s) used. Clearly care needs to be taken to

ensure that this test set is representative of the target function, and that it does not overlap in content

with the training set. Nonetheless, a reliance on testing methods is a problem common both to all

neural computing approaches, and to software engineering. Since the ensemble-based approach

reviewed here can result in signi®cantly improved performance, it makes sense to adopt it as an

essential component of the appropriate use of neural computing techniques.
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