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Abstract
The production of negative ions is of significant interest for applications including mass
spectrometry, particle acceleration, material surface processing, and neutral beam injection for
magnetic confinement fusion. Methods to improve the efficiency of the surface production of
negative ions, without the use of low work function metals, are of interest for mitigating the
complex engineering challenges these materials introduce. In this study we investigate the
production of negative ions by doping diamond with nitrogen. Negatively biased (−20 V or
−130 V), nitrogen doped micro-crystalline diamond films are introduced to a low pressure
deuterium plasma (helicon source operated in capacitive mode, 2 Pa, 26 W) and negative ion
energy distribution functions are measured via mass spectrometry with respect to the surface
temperature (30 ◦C to 750 ◦C) and dopant concentration. The results suggest that nitrogen
doping has little influence on the yield when the sample is biased at −130 V, but when a
relatively small bias voltage of −20 V is applied the yield is increased by a factor of 2 above
that of un-doped diamond when its temperature reaches 550 ◦C. The doping of diamond with
nitrogen is a new method for controlling the surface production of negative ions, which
continues to be of significant interest for a wide variety of practical applications.
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1. Introduction

The development of negative ion sources is of signific-
ant interest due to their applications in particle acceleration
[1–5], neutron generation [6, 7], mass spectrometry [8–11],
spacecraft propulsion [12–14], nano-electronics manufactur-
ing [15], and neutral beam heating for magnetic confinement
fusion (MCF) [16–19].

One application of particular interest is the creation of
negative-ion beams suitable for MCF neutral beam injection,
which has a proposed requirement of accelerating a 40 A cur-
rent of deuterium negative ions to 1 MeV [16]. This primar-
ily utilises negative ion surface production, as distinct from
volume production, to increase the density of negative ions
close to the extraction grid [20–22].

Negative ion production from plasma facing surfaces can
be enhanced through the application of a low work function
alkali metal [22]. Current methods apply a thin layer of cae-
sium to the extraction region of the ion source [23]. This is
achieved by injecting caesium vapour into the plasma and
allowing it to condense onto the inside of the ion source [24].
There exist some limitations with this approach, such as con-
trolling the application of the caesium so that it condenses in
the right locations and at a rate that is sufficient to maintain
an optimum thickness at the extraction grid [25]. Addition-
ally, this method introduces complex engineering challenges,
e.g. equipment maintenance and potential for caesium pollu-
tion [26, 27]. Alternative materials to caesium are therefore of
interest.

Several studies have been carried out to investigate negative
ion production using alternative materials to caesium via their
exposure to low pressure electronegative plasmas. Suchmater-
ials include non-dielectric and dielectric materials including:
diamond-like-carbon (DLC) [28], novel electrides [29], highly
orientated pyrolitic graphite (HOPG) [26, 28, 30, 31], diamond
[28, 28, 30–36], and low work function materials other than
caesium (LaB6, MoLa) [27].

Dielectric materials are of particular interest as an altern-
ative to low work function metals [26]. Generally, for atoms
approaching a surface, the affinity level of the atom is gradu-
ally downshifted until it overlaps with the surface material’s
valence band. Electrons can then tunnel from the valence band
of the surface to the approaching atom and form a negative
ion, this is the so-called resonant charge transfer (RCT) pro-
cess, as summarised in [37]. For a metal, the conduction band
is situated on top of the valence band. When a newly created
ion begins to leave the surface, the probability of electron loss
through tunnelling back to the conduction band of the sur-
face is high due to the resonance between the affinity level
of the negative ion and the empty states of the conduction
band. This means that most metals produce negligible neg-
ative ions through surface ionisation processes [38]. Unlike
most metals, caesium can be used to enhance negative ion pro-
duction because it has a low work function. This increases the
distance at which the resonance between the affinity level of
the new ion and the empty conduction states occurs, reducing
the probability that the electron tunnels back to the surface
[37, 38].

In contrast to metal surfaces, where the conduction band
lies on top of the valence band, the band gap of dielectrics sup-
presses the tunnelling of electrons from a newly created neg-
ative ion back to the material’s surface. This means that a new
negative ion can travel a larger distance away from the surface
before reaching a point where its affinity level is in resonance
with the empty states of the conduction band. The increased
distance of the ion from the surface reduces the probability that
the electron associated with the new negative ion will tunnel
into the empty states of the conduction band, thereby increas-
ing the negative ion yield [26, 39].

One potential drawback to the use of dielectric surfaces is
that to generate a negative ion the atom-surface distance for a
dielectric must be much smaller than for a metal. This is due to
the larger energy gap that the occupied valence band states lie
beneath the vacuum level [37]. Fortunately, the atom-surface
interaction process is amplified by the Coulomb interaction
between a negative ion and a localised hole in the surface
material [40]. This can result in a high ionisation efficiency
as demonstrated in beam experiments [41–43]. For these reas-
ons, dielectrics are of interest as an alternative to low work
function metals for the surface production of negative ions.

Carbon surfaces are one prospective category of materi-
als that are of interest for replacing low work function metals
where negative ions are to be produced. For instance, DLC
has been used to produce negative ions from incoming neut-
ral particles for a spacecraft particle detector, when low
work function metals would not have been appropriate [44].
Of the forms of carbon, diamond has particularly beneficial
properties:

• it is a dielectric with a large band gap (5.5 eV) [45] that
suppresses the destruction of negative ions as they leave the
material’s surface;

• it can be grown to have ‘designer’ properties such as the
preferential growth of a particular crystal face to alter the
electronic structure of its surface [45];

• when it is being grown, dopants can be introduced to
change its effective work function and electron affinity
[46–49];

• it can have a negative electron affinity when the surface is
hydrogen terminated [45], which reduces its effective work
function by reducing the energy gap between the valence
band and the vacuum level. This is thought to have a posit-
ive influence on negative ion production [26];

• when heated to 450 ◦C, diamond has previously been
shown to produce five times more negative ions compared
to other forms of carbon e.g. graphite [32].

As a means of increasing the production of negative ions,
previous work with diamond has investigated using single,
nano- and micro-crystalline diamond and also p-type dop-
ing of micro-crystalline diamond (MCD) using boron [28].
The n-type doping of diamond using nitrogen has not pre-
viously been studied in this context and it is thought that it
could lead to favourable properties for negative ion produc-
tion for two reasons. Firstly, previous studies of the electronic
properties of nitrogen doped diamond have demonstrated that
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Figure 1. Schematic of the experimental setup. (a) Representative plasma parameters and potential profile between the biased sample
surface at VS and the mass spectrometer, 37 mm away. (b) Sample holder with heating element and thermocouple. (c) Mass spectrometer
showing the external grounded shield and internal extractor orifice.

nitrogen doping creates a deep donor level in the band gap of
the diamond at 1.7 eV [50]. This lowers the effective work
function to approximately 3.1 eV [51], which is lower than
boron doped diamond (3.9 eV) [51] and un-doped diamond
(∼ 4.5 eV, with hydrogenated surface and negative electron
affinity) [52]. Secondly, it is thought that having the aforemen-
tioned deep donor level of electrons close to the vacuum level
could increase the negative ion production from diamond by
creating a source of electrons close to the vacuum level [53].

In this study, we investigate the production of negative ions
from nitrogen doped diamond films in a low pressure deu-
terium plasma. Comparing micro-crystalline nitrogen doped
diamond (MCNDD) with un-doped micro crystalline doped
diamond (MCD) and previously investigatedmicro-crystalline
boron doped diamond (MCBDD) [26, 33], we consider ‘low
energy’ (11 eV) and ‘high energy’ (48 eV) ion bombardment
conditions at the surface as a mechanism for increasing the
negative ion yield. The experimental methods are described in
section 2: plasma source in 2.1, sample holder in 2.2 and the
measurement method in 2.3. The micro-crystalline diamond
samples are described in section 2.4, with the surface charac-
terisation using confocal microscopy and Raman spectroscopy
described in 2.5. The results are presented in section 3.

2. Method

The experimental setup is shown in figure 1. It consists of a low
pressure deuterium plasma source, a temperature controlled

sample holder, and a mass spectrometer for the measurement
of negative ions produced at the diamond film’s surface.

2.1. Description of the plasma source

A deuterium plasma, figure 1(a), is produced via a helicon
source operated in capacitive mode (2 Pa, 26 W), which then
expands into a diffusion chamber [54]. The pressure of the
diffusion chamber, as measured by a Baratron gauge (MKS),
is regulated via a mass flow controller (7.6 sccm, BROOKS
5850TR) in combination with a 150 mm diameter Riber gate
valve installed in front of a turbo molecular pump (Alca-
tel ATP400). To reduce experimental drifts, the experiment
source chamber and lower spherical diffusion chamber have
a base pressure of 10−5 Pa, which is lower than the base pres-
sure of a previous setup of 10−4 Pa [54].

The relatively low power coupled to the plasma source res-
ults in plasma densities of approximately 1014 m−3 in the
spherical diffusion chamber [54]. The choice of power and
pressure was for similarity with previous work [34]. The pos-
itive ion composition of the deuterium plasma is measured by
the mass spectrometer, described below, to be (84 ± 2) % D+

3
ions, (14 ± 2) % D+

2 ions and (1.1 ± 0.2) % D+ ions. The
measurement uncertainty represents the day-to-day variation
of the measured plasma composition, however the actual error
in the plasma composition due to the internal settings of the
mass spectrometer may be higher [55].
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2.2. Temperature controlled sample holder

The sample holder is shown in figure 1(b). It is attached to
a DC voltage source (Equipment Scientific Alimentation de
Laboratoire CN7C) that can negatively bias the frame that
holds the diamond sample. The voltage applied to the sample is
defined asVDC, which is distinct from the voltage at the sample
surface, VS. The sample is positioned 37 mm away from, and
perpendicular to, the plane of the mass spectrometer orifice.
This is the closest distance that the sample can be placed in
front of the mass spectrometer orifice, and is assumed to be
sufficiently small to achieve minimal negative ion signal loss.
It has previously been demonstrated that this distance has neg-
ligible effect on the shape of the negative ion distributions
measured by the mass spectrometer [28, 33].

It is worth noting that the angular dependence of the
NIEDFs for carbon materials has previously been shown to
be similar [33, 35, 36]. Therefore, a single measurement can
be used to compare between samples. A misalignment of the
sample surface normal to the mass spectrometer would pro-
duce spurious results, so to prevent this, the alignment is regu-
larly checked by rotating the sample and maximising the neg-
ative ion signal.

As shown in figure 1(b), a tungsten heating element is built
into the sample holder, which is used to heat the back of the
sample. The heating element is controlled by a PID controller
(designed and built by AXESS tech) using a K-type thermo-
couple inside the the frame of the sample holder. By fixing a
second thermocouple to the surface of the sample, its temperat-
ure is calibrated against the temperature measured by the PID.
The heating element behind the sample increases the temper-
ature of the sample’s surface up to (750± 20) ◦C.

2.3. Mass spectrometry for the measurement of negative ions

2.3.1. Mass spectrometer setup. An electrostatic quadru-
pole plasma mass spectrometer with attached energy analyser
(Hiden EQP 300) is positioned in front of the sample surface as
shown in figure 1(c). Themass spectrometer has a 100 µmdia-
meter polarisable orifice separated from the main chamber by
a 5 mm hole in a grounded shield. A grounded screen is posi-
tioned above the mass spectrometer orifice to reduce radio-
freuency (RF) fluctuations from the plasma source (not shown
in figure 1) [35, 54].

The mass spectrometer polariseable orifice potential is cal-
ibrated so that a nearly planar plasma sheath is formed in
front of the orifice, as determined by a particle-in-cell (PIC)
simulation [54].

The potential on the surface of the samples accelerates
any negative ions created through surface interactions away
from the sample and through the plasma to the mass spec-
trometer. The low pressure of the plasma means there are
few collisions between the plasma and the negative ions [54,
55]. Any collisions that do occur with the deuterium plasma
would predominantly be detachment collisions with deuterium
molecules which would neutralise the negative ions, thus pre-
venting measurement of negative ions that have undergone
collisions [18, 54, 55]. The plasma potential in front of the

mass spectrometer prevents negative ions generated through
volume production processes in the plasma from entering the
mass spectrometer, therefore the energy of any negative ions
that are measured must have been accelerated away from the
sample surface [54, 55]. The negative ions are detected at an
energy corresponding to the energy they possessed when they
were created which can then be shifted by the kinetic energy
gained between the sample and themass spectrometer [54, 55].
Presented NIEDFs are shifted to present the kinetic energy the
negative ions have at the surface of the samples. The second-
ary electrons emitted from the surface of the sample are filtered
out within the mass spectrometer.

Positive ions impacting the samples are assumed to dissoci-
ate during impact [26, 56], splitting the energy of the ion into
its component particles (i.e. for D+

3 , 3 deuterium nuclei). This
means that because the plasma is predominantly composed of
D+

3 ions, the modal energy of the ions striking the samples’
surface is EM = e(VS+Vp)/3, where Vp is the plasma poten-
tial, giving approximately 11 eV per particle at VS = −20 V
and 48 eV at VS = −130 V. We define these conditions as
‘low energy’ ion bombardment and ‘high energy’ ion bom-
bardment, respectively.

The choice of−130V ismade to align with previously pub-
lished work, whilst−20V is chosen as this is the lower limit of
what can be reasonably used to ensure effective self-extraction
of negative ions from the sample surface into the mass
spectrometer [28, 33].

2.3.2. Procedure for measurement of negative ion energy
distribution functions (NIEDFs). Measurements were under-
taken using the following method:

• the plasma was brought to steady state as determined by
measurements of the positive ion energy distributions using
the mass spectrometer;

• a bias of eitherVDC =−20V orVDC =−130Vwas applied
to the sample;

• negative ions produced following positive ion bombard-
ment accelerate through VS, cross the plasma volume and
enter the mass spectrometer where the NIEDF was meas-
ured for sample temperatures between 30 ◦C and 750 ◦C in
increments of 50 ◦C;

• in order to compare the negative ion production yields
for distinct material samples, the positive ion current was
measured to the sample surface at 30 ◦C for VDC = −20 V
and VDC = −130 V, using a copper electrode in the place
of a sample which was insulated from the sample frame
[33].This method of measurement could not be used at
high temperatures due to a temperature sensitive insulator
used to isolate the copper electrode from the sample holder
frame. Instead, in order to roughly monitor changes in the
positive ion flux onto the sample, the positive ion current to
the entire sample holder was measured using an ammeter
connected to the frame of the sample holder. This showed
that there was a thermal drift in the positive ion current to
the entire sample holder of approximately 5% irrespective
of sample at both −20 V and −130 V applied biases;
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Figure 2. Confocal microscopy images of the diamond films grown with gas phase concentrations of (a) 0 ppm, (b) 10 ppm, (c) 50 ppm and
(d) 200 ppm. The diamond crystals change in shape and size between the 4 gas phase dopant concentrations, from a mixture of (111) and
(100) faces at 0 ppm and 10 ppm to predominantly (111) faces at 50 ppm to predominantly (100) crystal faces at 200 ppm.

• the negative ion counts for each sample were integrated
with respect to energy and then divided by the positive
ion current measured neglecting the possible small changes
with temperature to the isolated sample to give the relative
negative ion yield for the sample [33]. This is given in arbit-
rary units as themass spectrometer is not calibrated to count
an absolute number of negative ions.

Recent measurements show that an absolute negative ion
flux could be measured using a magnetised retarding field
energy analyser via the technique described in [57]. A detailed
investigation of this topic remains the subject of future work,
but to provide some context for the presented results, prelim-
inary measurements have shown that the yield from HOPG
at 30 ◦C and a bias of −130 V was approximately 1% [58],
compared to caesium, for which previous studies have repor-
ted yields of 30% [59].

2.4. Sample preparation

2.4.1. Micro-crystalline boron doped diamond and micro-
crystalline diamond. As described in detail in [28], non-
doped and boron doped micro-crystalline diamond films,
MCD and MCBDD respectively, were prepared in a bell jar
reactor using plasma enhanced chemical vapour deposition
(PECVD). The boron doped samples used in this study are
comparable to the samples used in previous works where the
gas phase doping level used is high (1000 ppm) to ensure a
fully conductive diamond layer. The method of the creation of
MCD and MCBDD samples is described elsewhere [28].

2.4.2. Micro-crystalline nitrogen doped diamond. The
nitrogen doped diamond films were created using a similar
PECVD technique to the MCD and MCBDD samples of [28]
so only a brief summary is provided here. The PECVD pro-
cess utilised a bell jar reactor with a pressure of 200 mbar,
microwave power at 3 kW, substrate temperature of 850 ◦C,
background hydrogen gas mixture with a methane concentra-
tion of 5%. The ratio of nitrogen in the gas mixture was set as
a means to vary the concentration of nitrogen in the MCNDD
film. Each film was deposited on to a (100) orientated silicon
wafer.

2.5. Surface characterisation

The samples were analysed using confocal microscopy and
Raman spectroscopy prior to plasma exposure to characterise
their properties.

2.5.1. Surface morphology and crystal structure. A laser
confocal microscope (S neox, Sensofar) was used to observe
the diamond surface morphology as shown in figure 2. From
visual inspection, the crystal grains are observed to have grown
to exhibit (111) crystal faces, (100) crystal faces, or a mixture
of both, dependent on the concentration of nitrogen dopant
introduced in the gas phase during sample growth [60]. As
the gas phase nitrogen concentration is increased from 0 ppm
to 50 ppm the crystals are observed to exhibit an increased
proportion of (111) faces, with predominantly (111) faces
observed at 50 ppm. As distinct from these, the crystal grains
of the diamond film with 200 ppm gas phase doping displays
predominantly (100) faces. The diamond films grown with
200 ppm nitrogen concentration in the gas phase are different
to the other samples, due to be large crystals interspersed with
regions of what appears to be much smaller crystals with a less
pronounced crystal orientation. The size of the crystals for the
0 ppm sample, figure 2(a), are approximately 10µm,whilst the
10 ppm sample, figure 2(b), has amuch smaller average crystal
size, at approximately 1 µm. The 50 ppm sample, figure 2(c),
has a crystal size similar to the 0 ppm sample, at approxim-
ately 10 µm. The 200 ppm sample, figure 2(d), as previously
described, appears to have a distribution of large crystals sep-
arated by smaller crystals, here the average crystal size of the
larger crystals is approximately 5 µm.

2.5.2. Measurement of the relative quantity of nitrogen dop-
ing within the films. Raman spectroscopy was undertaken to
measure the relative concentration of nitrogen dopant that is
introduced into the MCD films with respect to the gas phase
nitrogen concentration present during the PECVD process.
Raman spectra were generated using a Horiba Jobin Yvon
HR800 setup. The measurements were undertaken in air using
an excitation wavelength of λL = 514 nm, × 100 object-
ive (numerical aperture of 0.9, i.e. theoretical spot radius of
0.34 µm), 600 grooves/mm grating (resulting in a resolution
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Figure 3. Raman spectra of nitrogen doped diamond samples taken
at the centre of a dominant crystal face. The spectra are presented
with the background subtracted (in order to aid clarity and
comparison between samples) and normalised to the carbon sp3
peak, observed here at 1333 cm−1. The laser wavelength used for
the measurements is 514 nm.

of about 1 cm−1), and 5 mW laser power. Measurements were
taken using 5 acquisitions of 1 second intervals over a range
of 0 cm−1 to 3000 cm−1, of which 750 cm−1 to 2500 cm−1

is presented, with the measurement taken at the centre of a
dominant crystal near the centre of the sample. A brief optical
microscopic inspection of the samples prior to taking Raman
measurements showed relatively uniform crystal distribution
across the surface of all the samples and allowed for pre-
cise targeting of a dominant crystal near to the centre of the
sample to be the subject of the Raman measurement. A quant-
itative comparison between Raman spectra has not been car-
ried out as this requires the measurement of the polarisation
of the Raman emission and a good understanding of the grain
orientation [61].

Figure 3 shows the Raman spectra from samples of nitro-
gen doped diamond with gas phase nitrogen doping of 0
ppm to 200 ppm. The spectra have been presented with
the background fluorescence removed and normalised to the
1333 cm−1 peak, which can be attributed to sp3 bonded
carbon (the diamond bond of carbon) [47, 62]. The nor-
malisation to this peak is justified due to the transparency
of the diamond films such that the measurement is integ-
rated across the sample thickness. The normalised spectra
can therefore enable a comparison between samples that
accounts for any change in the thickness of the MCNDD
film [62].

The broad peak centred at 2100 cm−1 observed in figure 3
can be attributed to nitrogen vacancy centres (NV0) that
have been introduced into the diamond [63]. This broad peak
appears, not due to vibrational modes, but due to the electronic
signature attributed to nitrogen vacancy centres and in reality
lies at an energy level of 2.15 eV. As Stokes Raman spectro-
scopy is energy loss spectroscopy, this peak appears arbitrarily
at 2100 cm−1 when using a 514 nm laser. Using another laser

to perform the Raman spectroscopy results in a change in the
wavenumber of this peak [64].

As the measurement configuration is the same for all
samples, a relative comparison of the number of nitrogen
centres in the diamond can bemade using the broad 2100 cm−1

peak. This can then be used to infer relative nitrogen concen-
tration [65]. As shown in figure 3, the ratio of the NV0 peak
to the peak centred at 1333 cm−1 increases with increasing
gas phase dopant concentration, for samples 0 ppm to 50 ppm
(200 ppmwill be discussed below). This is consistent with pre-
vious work, which showed a similar increase in the magnitude
of theNV0 characteristic peakwith an increase in the gas phase
nitrogen doping [66].

In figure 3, the Raman spectrum of the 200 ppm nitrogen
doped diamond has a peak at 1500 cm−1 that has a much
higher intensity than the other samples. This peak is of par-
ticular interest as it is associated with the sp2 bond of carbon
that has previously been associated to graphite-like bonds [62].
The ratio of the peaks at 1333 cm−1 and 1500 cm−1 implies
that there is a higher ratio of graphite in the 200 ppm dia-
mond film compared to the other samples [28, 67, 68]. The
200 ppm nitrogen doped diamond sample also exhibits a NV0

centre peak at 2100 cm−1, which is slightly lower than the 50
ppm sample, suggesting a reduction in the number of nitrogen
vacancies, and therefore, a reduction in the concentration of
nitrogen in the diamond.

The observed increase in intensity of the NV0 peaks,
increasing from 0 ppm to 50 ppm, may be attributed to both
the increase in nitrogen introduced in the gas phase and by a
change in the crystal face from a mix of (100) and (111), fig-
ure 2(a) and (b), to a primarily (111) face for which impurity
incorporation is higher than that for (100) crystals, figure 2(c).
This is consistent with the results of previous work [66, 69,
70] This same process may then account for the slightly lower
2100 cm−1 peak for the 200 ppm sample compared to the
50 ppm samples despite a four fold increase in the nitrogen
gas phase content. This decrease could be attributed to the
change in the crystal orientation (see figure 2(c) and (d)),
from a (111) dominant crystal surface for the 50 ppm sample
to predominantly (100) crystal orientation for the 200 ppm
sample.

The surface characterisation of the samples show that
the incorporation of nitrogen into the PECVD process has
multiple effects on the diamond produced, aside from only
substitutional or interstitial incorporation of nitrogen into
the diamond lattice. For these samples, separating the dif-
ference in negative ion yield due to the influence of the
crystal face or the nitrogen content in the diamond is not
possible because of the interrelated nature the presence of
nitrogen in the gas phase has with the crystal face ori-
entation and the measurable number of nitrogen vacancy
centres. This is an active area of research [71]. However
for this study, as nitrogen doping is the main influencing
factor that generates the differences between the samples, it
is reasonable to suggest that it is possible to associate the
nitrogen gas phase doping with the negative ion yield and
this is how the samples will be defined in the next sec-
tion.
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Figure 4. Negative ion yield plotted with respect to sample temperature for micro-crystalline nitrogen doped diamond (MCNDD) of doping
concentration between 0 ppm and 200 ppm for (a) VDC = −130 V and (b) VDC = −20 V. Low pressure deuterium plasma operated at 2 Pa
and 26 W. Insets for both (a) and (b) depict the highlighted region’s negative ion yield for temperatures between 400 ◦C and 750 ◦C. Solid
lines have been added to guide the eye.

3. Results

3.1. Nitrogen doped diamond: influence of the dopant
concentration

Figure 4 presents the negative ion yield fromMCNDD for dif-
ferent dopant concentrations, as measured in the gas phase
during sample preparation. In both figures 4(a) and (b) the
yield profile for MCNDD has a distinct shape. For example,
at 50 ppm, the measured yield is practically zero between a
temperature of 30 ◦C and 400 ◦C. At 450 ◦C, the yield rap-
idly increases by several orders of magnitude to a maximum
at 550 ◦C. This transition is similar for all nitrogen doped
samples with the transition occurring at temperatures ranging
from 250 ◦C to 450 ◦C. This is somewhat unlike MCD which
produces measurable negative ions for all temperatures. The
trend for MCD is a gradual increase to a maximum yield at a
temperature of 450 ◦C (−130 V, high energy bombardment)
or 400 ◦C (−20 V, low energy bombardment), there is then a
decrease in yield from this maximum yield as the temperature
is increased further to the maximum temperature of 750 ◦C.
It can also be observed that between ∼ 30 ◦C and ∼ 150 ◦C,
MCD does undergo a transition, though this is smaller than
that seen for MCNDD.

In order to understand these trends, it is important to
note that the negative ion yield measured using the technique
described in this article relies on a conductive sample surface.
A non-conductive sample would not allow negative ions to be
accelerated to the mass spectrometer at an energy which the
mass spectrometer is tuned for. The magnitude of the trans-
itions seen in figure 4 is a feature of this experimental tech-
nique which inadvertently highlights the temperature at which
samples become conductive, such that VDC = VS.

The difference in trends betweenMCNDD samples and the
un-doped diamond can be attributed to the differences in con-
ductivity between MCNDD and MCD. Previous work with

MCD has shown that it has poor conductivity close to room
temperature, which explains the increase in yield occurring
between 30 ◦C and 150 ◦C [26]. RegardingMCNDD, the tem-
perature at which the sharp increase in yield occurs appears to
be dependent on the nitrogen doping of the diamond sample.
The results of previous work suggest that the level of inter-
stitial nitrogen doping influences the conductivity of diamond
[49, 72, 73] and this sharp increase is consistent with increas-
ing nitrogen dopant concentration and its influence on the con-
ductivity of the diamond, supporting the argument that the
nitrogen incorporated into the diamond increases as gas phase
nitrogen is increased during its production. An exception to
this trend are the results for 200 ppm in both figure 4(a) and
(b), which does not exhibit a significant increase in the sample
temperature for which the film becomes conductive relative to
the 50 ppm MCNDD sample. This can be explained by con-
sidering figure 3. As discussed in section 2.5.2, the nitrogen
content measured using Raman spectroscopy suggests a nitro-
gen content that is similar for 200 ppm and 50 ppm MCNDD
samples meaning, in the absence of other influences, a sim-
ilar conductivity for these two samples could reasonably be
expected.

The maximum yield from each sample occurs at temper-
atures between 400 ◦C and 550 ◦C, which is highlighted in
the insets of figures 4(a) and (b). For the 0 ppm and 10 ppm
samples, the maximum yield occurs at 400 ◦C, whilst for
20 ppm (and 200 ppm) it occurs at 500 ◦C and for 50 ppm,
at 550 ◦C. As mentioned previously, a conductive sample sur-
face is necessary to hold a DC surface bias which is neces-
sary for the acceleration of negative ions into the mass spec-
trometer. The trend of increasing temperature for maximum
yield as dopant increases (excluding 200 ppm) could be related
to the maximum yield in these experimental conditions being
restricted by the conductivity of the samples. For example, the
maximum yield forMCD andMCNDD (10 ppm) is at the peak
of a gradual increase and decrease in yield as temperature is
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increased from∼ 30 ◦C to∼ 400 ◦C and then from∼ 400 ◦C
to∼ 750 ◦C respectively. This is most clearly observed in fig-
ure 4(b) for the 10 ppm sample. This sample is distinct from
the other MCNDD samples as the 10 ppm sample exhibits
an increase in yield as the temperature is increased (due to a
change in conductivity) then a further smaller increase up to
a maximum negative ion yield at ∼ 400 ◦C. The yield then
gradually decreases as the temperature is increased further.
The other MCNDD samples also undergo an increase in yield
due to a change in conductivity, but no further gradual increase
in yield is observed as temperature is increased.

It could therefore be reasonable to suggest that the peak
yield conditions are not observed due to a lack of conductivity
for samples with more than 20 ppm gas phase nitrogen dop-
ing. The trends observed for the 0 ppm and 10 ppm samples
suggest that a temperature of approximately 400 ◦C may be
the temperature at which these MCNDD with more than 20
ppm gas phase doping produce the highest yield. A technique
to measure negative ions that does not require a conductive
surface would be necessary to explore this further.

In figure 4(a), the effect of the nitrogen doping on the max-
imum yield is not readily observed when a bias voltage VDC
= −130 V is applied to the sample. This is unlike figure 4(b)
in which a bias voltage of VDC = −20 V is used. In this data
there is an observed difference between the nitrogen doped and
non-doped diamond. The yield in figure 4(a) for the MCNDD
samples and MCD samples is also lower than the yields from
all of the samples in figure 4(b). A higher bombardment energy
as a result of the high magnitude bias is associated with an
increase in sp2 bond formation in diamond [36]. It is reas-
onable to suggest that the reduction in yield for the higher
magnitude bias creates more sp2 defects which decreases the
yield. Additionally, if the yield is not changing with the addi-
tion of nitrogen to the diamond, it is also reasonable to sug-
gest that the nitrogen doped diamond may be more susceptible
to defect formation due to high energy bombardment which
would result in a surface state that does not enhance the negat-
ive ion yield through nitrogen doping. Additional work would
be necessary to characterise this process.

The apparent influence of nitrogen doping on the meas-
ured negative ion yield is observed in figure 4(b) where a
sample bias voltage VDC = −20 V is applied. When compar-
ing the yield at temperatures above 550 ◦C, i.e. when all of the
MCNDD films are conductive, it is observed that the negative
ion yield is higher at similar temperatures, when increasing
nitrogen dopant concentration for the 0 ppm to 50 ppm cases.
The mechanism for such an increase in yield is not imme-
diately clear and future work will be necessary to identify
the specific cause of this increase. For example, it could be
solely due to interstitial nitrogen, or a change of crystal ori-
entation or a combination of both. In any case, the increase is
correlated to the amount of nitrogen dopant with the excep-
tion of the result observed for 200 ppm gas phase doping,
which produces a comparatively lower yield compared to the
50 ppm case. Should interstitial nitrogen content be the main
cause of an increase in negative ion yield, this result can be
explained by the Raman measurements shown in figure 3. As
discussed in section 2.5.2, the Raman measurement suggests

that the diamond has a similar amount of nitrogen dopingwhen
comparing the 2100 cm−1 peak for the 50 ppm and 200 ppm
samples. However the Raman measurement also suggests that
the 200 ppm MCNDD sample has more carbon sp2 bonds
(graphite-like) than the 50 ppm sample. The reduction in yield
observed for the MCNDD (200 ppm) sample compared to
MCNDD (50 ppm) sample is therefore consistent with previ-
ous work, which observed that an increased number of sp2
bonds is less favourable to negative ion production [28, 33].
This work suggests that this is still the case with nitrogen
doped diamond samples.

3.2. Mechanism for the surface production of negative ions

NIEDFs forMCBDD andMCNDD are presented in figure 5 to
compare negative ion production processes betweenMCBDD,
a previously studied material [26], and the MCNDD samples.
In this figure the NIEDFs are normalised to the modal negat-
ive ion energy at temperatures where MCBDD and MCNDD
samples are conductive.

When considering a normalised NIEDF, a reduction in the
proportional magnitude of the NIEDF peak at low energies
will result in an increase in the apparent proportion of neg-
ative ions at high energies. The NIEDFs in figure 5(a), show
that for MCBDD the proportion of high energy ions increases
as the surface temperature increases. This is because the main
contribution to the measured yield is low energy ions, which
are predominantly created through the sputtering process, as
distinct from backscattering, due to the acceptance angle of
the mass spectrometer [26, 54]. Previous work has confirmed
this interpretation through comparison of experimental results
with SRIM simulations [36]. The physical interpretation for
the decrease in the sputtering contribution is that this is due to
a decrease in the amount of sub-surface deuterium available
for sputtering as a result of out-gassing caused by the increase
in temperature. [35, 36].

At a surface bias of VS = −20 V, i.e. the ‘low energy’
bombardment condition described in section 2.3, the high
energy tail observed in the NIEDFs in figure 5 is not produced.
Without a high energy tail, the normalised NIEDF shapes
are not strongly dependent on the deuterium surface content
[33], and comparison of the ratio of sputtered to backscattered
particles cannot be readily inferred using this approach. For
this reason, only results with a surface bias of VS = −130 V
are presented.

Comparing figure 5(a) to figure 5(b), which presents
NIEDFs for MCNDD at 550 ◦C and 750 ◦C, i.e. temperatures
at which the sample is conductive, it is observed that MCNDD
displays a similar increase in the proportion of high energy
negative ions as the sample’s surface temperature increases.
This implies that MCNDD has similar negative ion production
properties to MCBDD.

The trends for MCNDD and MCD observed in figure 4 and
discussed in the previous section can be explored in the context
of figure 5. Figure 4 shows that the yield for MCD increases
up to sample temperatures of ∼ 400 ◦C and decreases as its
temperature is increased further. This is similar to the trends
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Figure 5. NIEDFs for: (a) micro-crystalline boron doped diamond (MCBDD) at 30 ◦C, 500 ◦C and 750 ◦C, (b) micro-crystalline nitrogen
doped diamond (MCNDD) at 550 ◦C and 750 ◦C. Increases in sample temperature lead to a decrease in the number of low energy negative
ions, which results in an increase in the height of the tail of high energy negative ions when the distribution is normalised. Low pressure
deuterium plasma operated at 2 Pa and 26 W.

observed for samples of MCNDD when they are conduct-
ive. The increase and then decrease in yield as temperature is
increased, from∼ 30 ◦C to∼ 400 ◦C and then from∼ 400 ◦C
to ∼ 750 ◦C respectively, can be attributed to two processes
that combine to generate the observed trend in figure 4. The
first process is the removal of defects on the sample surface.
The heating of the sample results in an enhancement of the
etching of sp2 bonds created by the bombarding positive ions
resulting in a surface which results in a higher ratio of sp3
bonds [28]. The increased proportion of diamond bonds on
the surface increases the negative ion yield, as explored in
previous work through Raman spectroscopy [26, 28, 32, 33].
The second process is the previously discussed decrease in the
sputtering contribution to the negative ion yield due to out-
gassing of deuterium from the sample surface, as observed in
the measurements of figure 5. As temperature is increased, the
influence of each of these processes on the measured negat-
ive ion yield is observed to vary significantly. At temperatures
below ∼ 400 ◦C, the reduction in defects increases the yield,
whilst the outgassing does not cause a significant decrease in
the sputtering contribution. At temperatures above ∼ 400 ◦C,
the decrease in sputtering contribution reduces the yield by
a greater extent than the reduction in defects caused by the
elevated temperature, causing a reduction in the the measured
negative ion yield [28].

For the samples of nitrogen doped diamond with more than
20 ppm nitrogen added in the gas phase, the MCNDD film
is not conductive at temperatures where the previously men-
tioned reduction in the defects can increase yield, i.e. between
30 ◦C and 400 ◦C. A more thorough exploration of the result-
ing interplay between the reduction of defects and the decreas-
ing sputtering contribution is beyond the scope of this experi-
mental study. However, figure 5(b) suggests that the decrease
in yield due to a decrease in the sputtering contribution
is consistent with current understanding of the behaviour

of negative ion formation on micro-crystalline doped
diamond.

3.3. Negative ion yield: comparison between MCNDD,
MCBDD, and MCD

The negative ion yield with respect to sample surface temper-
ature of theMCD,MCBDD andMCNDD samples is shown in
figure 6, with high energy ion bombardment (VDC =−130 V)
shown in figure 6(a) and low energy bombardment (VDC =

−20 V) shown in figure 6(b). 50 ppm MCNDD is chosen as a
comparison toMCD andMCBDD as this produced the highest
relative negative ion yield of all the nitrogen doped diamond
samples, as shown in figure 4.

In figure 6(a), VDC = −130 V, the trends for MCD and
MCBDD are similar, with an increase in yield by a factor of
6 from 150 ◦C to 450 ◦C observed for MCD and a factor of
2 observed for MCBDD from 150 ◦C to 550 ◦C. The yield
then decreases gradually as temperature is increased further.
These results are consistent with previous work using MCD
and MCBDD citeCartry12017. The negative ion yield from
MCNDD at sample temperatures below 400 ◦C is effectively
zero. After 400 ◦C there is a rapid increase in yield by sev-
eral orders of magnitude up to 550 ◦C, as discussed in section
3.1. After 550 ◦C, the trend agrees withMCD andMCBDD. In
the high energy bombardment regime, the yield fromMCNDD
is found to be lower than MCBDD and comparable to MCD.
This suggests that the higher positive ion bombardment energy
is having a larger influence onMCNDD thanMCBDD, though
a mechanism for such a difference is beyond the scope of this
study.

In figure 6(b) for VDC = −20 V, the trends for MCD and
MCBDD are also observed to be qualitatively similar, show-
ing an increase in yield by a factor of 2 and a factor 1.5
from 150 ◦C to 400 ◦C respectively, and a gradual decrease
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Figure 6. Negative ion yield with respect to film surface temperature for micro-crystalline diamond (MCD), micro-crystalline boron doped
diamond (MCBDD) and micro-crystalline nitrogen doped diamond (MCNDD) for (a) VDC = −130 V and (b) VDC = −20 V. Low pressure
deuterium plasma operated at 2 Pa and 26 W. Solid lines have been added to guide the eye.

in yield above 400 ◦C, which has been discussed in section
3.1 [26, 33]. Figure 6(b) has a similar trend as figure 6(a)
where the yield from MCNDD at temperatures below 400 ◦C
is effectively zero. The yield increases by several orders of
magnitude between 400 ◦C to 550 ◦C, after which it decreases
gradually. At temperatures above 550 ◦C the general trend of
decreasing yield is consistent with both MCD and MCBDD,
and agrees with current understanding of these diamond films
as discussed in the previous section. Of particular interest is
that the yield forMCNDD in this low energy ion bombardment
condition is observed to be higher than MCD, and also higher
than the previously best performing type of diamond,MCBDD
[26]. At 550 ◦C, the maximum yield observed, MCNDD has
a higher negative ion yield than MCD and MCBDD by a
factor of 2 and 1.5, respectively. This therefore suggests that
controlled addition of nitrogen during the growth of diamond
using the PECVD process could be an avenue for increasing
the negative ion yield from diamond.

4. Conclusion

In this study, we have investigated the nitrogen doping of dia-
mond films as a means of increasing the negative ion yield
during exposure to a low pressure deuterium plasma (2 Pa, hel-
icon source at 26 W). For conditions where positive ions from
the plasma bulk bombard nitrogen doped diamond film with
energies of 11 eV and 48 eV, ‘low energy’ and ‘high energy’
bombardment, respectively, mass spectrometry measurements
are used to determine the negative ion yield as the film tem-
perature is scanned between 30 ◦C and 750 ◦C. For 50 ppm
nitrogen doping, introduced in the gas phase during diamond
growth using the PECVD technique, the application of low
energy ion bombardment is observed to increase the negative
ion yield by a factor of 2 compared to un-doped diamond and
a factor of 1.5 compared to boron doped diamond.
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