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Recent technological advances have led to a novel class of micro
uidicdevices which
can be rapidly fabricated by printing a 
uid onto a solid substrate wi th 
ows generated
passively via surface tension. The non-linear dependence between 
ow and the heights
of the conduits, however, prevent straightforward calculation of the resulting dynamics.
In this paper we use matched asymptotic expansions to predict how 
ow through these
devices can be tuned by changing their geometry. We begin with the simple \dumbbell"
con�guration in which two 
uid drops with di�erent sizes are connect ed by a long,
thin and narrow conduit. We calculate the time scale required for onedrop to drain
into the other and how this depends both on the geometry of the pinned contact
line and volume of 
uid deposited into the drops. Our model therefore provides the
mechanistic basis to design conduits with a particular 
uid 
ux and/or shear stress,
which are often key experimental constraints. Our asymptotic predictions are shown to
be in excellent agreement with numerical simulations even for moderate aspect ratios
(the ratio of conduit width to length). Next, we show how our results for the simple
dumbbell con�guration can be extended to predict the 
ow through net works of conduits
with multiple drops and nodes, and hence may assist in their designand implementation.
This new mathematical framework has the potential to increase the use ofsurface tension
driven micro
uidics across a wide range of disciplines as it allows alternate designs to be
rapidly assessed.

Key words:

1. Introduction
The technologies used in the fabrication of micro
uidic devices havebeen developed

for over two decades and their potential to revolutionize many areas of medicine, biology,
and chemistry have been widely discussed (Xia & Whitesides (1998);Whitesides (2006)).
Micro
uidic devices have been used to facilitate protein crystallization, genome sequenc-
ing, drug discovery, cancer diagnostics and studies of microbiological ecology (Holmes &
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Gawad (2010); Paguirigan & Beebe (2008); Whitesides (2006)). These devices facilitate
both massively high throughput assays and minimize reagent costs by manipulating
exceedingly small volumes of liquids (Renet al. (2014)). Moreover, the peculiar low
Reynolds number hydrodynamics within these devices can be harnessed to generate
carefully controlled environments that allow for systematic handling of both biological
samples and mixing chemicals (Stoneet al. (2004)). Nevertheless, there are many reasons
why a large scale `micro
uidic revolution' has not yet occurred (Sackmann et al. (2014)),
but chief among them are that (i) the materials commonly used for microfabrication (e.g.
PDMS) can be toxic to sensitive eukaryotic cell lines when not prepared properly, as well
as being incompatible with organic solvents, (ii) most micro
uidic devices are sensitive to
small perturbations and air bubbles, which means the failure of experiments is common,
and (iii) the fabrication of devices typically requires highly specialized equipment, ad-
vanced training and a dedicated clean room (Halldorssonet al. (2015); Leeet al. (2003);
McDonald et al. (2000); Mehling & Tay (2014)). All of these factors contribute to create
a signi�cant barrier to uptake by researchers from di�erent discip lines.

Classical micro
uidic devices consist of narrow conduits fabricatedusing soft lithogra-
phy (Nge et al. (2013)). External pumps are then used to move 
uid through the device.
Using such small volumes of 
uid reduces the quantity of reagents needed and the small
scale aids in running multiple experiments simultaneously. Themost common material
used in the fabrication of micro
uidic devices is polydimethylsiloxane (PDMS) (Becker &
G•artner (2008)). It has several advantages for use in micro
uidics: it is transparent and
inexpensive, and structures as small as a few nanometres can be fabricated (B�elanger &
Marois (2001)). Despite these advantages there are some drawbacks to the use of PDMS;
it can absorb small hydrophobic molecules, biasing results in cell signalling experiments
(Toepke & Beebe (2006)), it may also absorb organic solvents changing the shape of the
device (McDonald et al. (2000)). Furthermore di�erences in cellular responses have been
observed between macro-scale cultures and micro
uidic culture inPDMS based devices
(Paguirigan & Beebe (2009)). Some of the problems can be remedied by treating the
surface of the PDMS, but an alternative may be to avoid using it entirely.

An approach capable of sidestepping the barriers of traditional micro
uidic devices
has recently been developed by Walshet al. (2017). A partially wetting liquid (e.g. a
liquid that will spread on a surface until an equilibrium thickness is reached) is printed
on an unpatterned planar substrate and covered with an immiscible 
uid to prevent
evaporation. The footprint of such devices remains �xed when the contact angle is
maintained between the advancing and receding values. This hysteresis can be large
for several biologically relevant 
uids. A variety of di�erent experi mental designs of
these free surface microdeviceshave been developed, with varying degrees of complexity,
some of which are illustrated in �gures 1a{c (from Walsh et al. (2017)). In �gure 1a a
stable concentration is maintained across two laminar streams and in �gure1b di�erent
chemical dilutions are created in the four middle drops. Both of thesedevices can be
used to study the behaviour of cells in di�erent chemical environments, though the
relation between device geometry and 
ow characteristics is complex. In contrast with
conventional micro
uidic devices, where 
uid is pumped through solid conduits with a
�xed geometry, in free surface microdevicesboth the shape of the conduits and the 
ow
through them depend on the complex interplay between surface tension, buoyancy, and
viscosity. Hence it is di�cult to know a priori how to design a device with the most
favourable characteristics.

Further complications arise in analysing the experimental system ofWalsh et al. (2017),
due to their use of biological 
uids and the associated surface adsorptionof biological
macromolecules, which are known to alter interfacial properties between two immiscible
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Figure 1: (a){(c) (a){(c) Images from experiments conducted by Walsh et al. (2017)
showing some of the possible networks of drops and conduits. (d){(e) The geometry and
length scales of the simple dumbbell shaped circuit. The height of the conduit has been
exaggerated for clarity; it is barely visible in (c). (f) The composite solution as described
in x3.7. Figs (a), (c) are previously unpublished, while (b) has been reproduced with
permission from Walsh et al. (2017) with labels removed, under the creative commons
licence, http://creativecommons.org/licenses/by/4.0/
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liquids (Carvajal et al. 2011). However, even free surface devices constructed from liquids
with constant surface tension present a challenging modelling problem in their own
right and constitute a �rst step towards understanding free surface devices with more
complicated interfacial phenomena.

Free surface 
uid-
uid microdevices can be constructed with modular geometries, as
highlighted by �gure 1b, necessitating a detailed consideration of howthe basic building
blocks, namely conduits and drops, interact in a micro
uidic network. A thorough
understanding of the 
ow through the simplest circuit, consisting of two drops connected
by a single conduit so that the contact set has a \dumbbell" shape (�gure1c), is required
before progressing to more complicated networks.

A useful simpli�cation in the limit of surface tension dominating gravity is that a
sessile drop of 
uid will take on the shapeof a spherical cap and simple expressions can
be found for the contact angle and radius of curvature.Using this approximation, Walsh
et al. (2017) estimated the pressure at the base of the drop to be the Laplace pressure
with a hydrostatic correction. Then assuming that the pressure at the base of the drop
and in the conduit (near the inlet) are equal, the contact angle in the conduit can be
estimated when there is no 
ow. To address more speci�c design questions, however,
requires a more complete analysis of the dynamics of free surface devices. We anticipate
that the large disparity in length scales between the di�erent regions is likely to make
numerical solution of the full free boundary problem computationally expensive. The
disparity of length scales is, however, to the advantage of an asymptotic analysis. Thus
the aim of this paper is to derive an asymptotic model for the long-term behaviour of
viscous 
uids in a constant surface tension, free surface microdevice using the standard
thin-�lm equations (see e.g. Oron et al. (1997)) and to analyse the fundamental 
uid
dynamics of networks, such as that of �gure 1b.

In x2 we begin with a concise formulation of the lubrication equations governing the

ow in a dumbbell con�guration. In x3 we will determine the asymptotic structure of the
dumbbell problem in the distinguished limit in which the 
ow is driven by the pressure
di�erence between drops. This will show that there are three distinct regions we need
to consider and we identify the relevant time scales in each and the time scale over
which the free surface of the whole device relaxes. It is the last of these time scales
which will be most relevant for determining the duration of an experiment. On this time
scale we �nd solutions of the lubrication equations in each region and form acomposite
solution for the thickness of the liquid over the whole domain. Quality control will be
done via comparison of our asymptotic predictions with numerical simulations. We will
then be able to illustrate qualitative trends in x3.8 and x3.9. In x4 the basic components
of the simple dumbbell setup will then allow us to generalise to more complex networks.
The implications of the current work and possible directions for future development are
considered inx5.

2. Formulation
2.1. Geometry for a dumbbell shaped circuit

The simplicity of the new devices means that complex circuits can be easily and quickly
made by printing multiple drops and conduits. The simplest passive experimental set-up
is the dumbbell shape contact set shown in �gure 1c. The circuit consists of a conduit with
a rectangular base of width 2a and length L , with 
uid drops of base radii RL = � L L
and RR = � R L at either end, the subscripts L and R corresponding to the left- and
right-hand drops respectively. The circuit is then overlaid with an immiscible 
uid of
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height H above the substrate. We assume that the centres of the two drops are such that
the length L is the distance along the straight outer edge of the conduit as shown in
�gure 1e. The initial volumes deposited in each drop and their base radiican be chosen
so that there is a di�erence in pressure between the two drops. This pressure di�erence
then drives the 
uid along the conduit until the drop pressures are equalised. We letHD

denote the height scale of a drop andHC the height scale of the conduit as shown in
�gure 1d, and note that in practice HC � HD � H .

2.2. Lubrication equations

Throughout we shall assume that the 
uid contained within the contact li ne forms a
thin layer so that � = HD =L � 1. We introduce the Cartesian coordinates (x � ; y� ; z� )
and time t � , where the asterisks denote variables that are dimensional. The rigid,
impermeable substrate is on the planez� = 0 and x � is the distance along the conduit
from the intersection with the left drop as shown in �gure 1e. The location of the
free surface of the 
uid is denoted by z� = h� (x � ; y� ; t � ) with the �lm thickness
h� assumed to be single-valued and positive on the interior of the contact set 
 � .
The large advancing and small receding contact angles ensure that for most cases
the contact line @
 � is pinned. The components of velocity in the x � -, y� - and z� -
directions are denoted byu� (x � ; y� ; z� ; t � ), v� (x � ; y� ; z� ; t � ) and w� (x � ; y� ; z� ; t � ), and
we let p� (x � ; y� ; z� ; t � ) denote the corresponding pressure. The liquid in the dumbbellis
assumed to be incompressible with constant density� 1 and to be governed at leading
order (for small � ) by the lubrication equations with a constant viscosity � 1, i.e.

@p�

@x�
= � 1

@2u�

@z� 2 ;
@p�

@y�
= � 1

@2v�

@z� 2 ;
@p�

@z�
= � � 1g;

@u�

@x�
+

@v�

@y�
+

@w�

@z�
= 0 ; (2.1a{d)

for 0 < z � < h � (x � ; y� ; t � ) and (x � ; y� ) 2 
 � , where g is the acceleration due to gravity.
There is no-slip on, nor 
ux through, the substrate, so

u� = 0 ; v� = 0 ; w� = 0 on z� = 0 for ( x � ; y� ) 2 
 � . (2.2a{c)

The appropriate boundary condition on the interfaceh� depends on the overlaying liquid.
We assume that the overlaying liquid is incompressible with constant density � 2 and
governed by the Navier-Stokes equations with a constant viscosity� 2. The jump in
pressure across the free surface is assumed to be due to a constant surface tension
 . If
we further assume that the depth of the overlaying liquidH is much larger than the height
scale of the circuitHD and that the viscosity ratio � = � 2=� 1 is order unity, we �nd that,
at leading order, the only e�ect of the upper liquid layer is via the hydrostatic pressure
in the normal stress boundary condition. That is to say, the shear stress exerted by the
upper liquid is of a higher-order than that generated by the 
ow in the circuit. Thus, at
leading order, the pressure in the overlaying liquid is given byP � = � 2g(H � z� ) + patm ,
where patm is atmospheric pressure, and the boundary conditions on the 
uid interface
are given by

@u�

@z�
= 0 ;

@v�

@z�
= 0 ; w� =

@h�

@t�
+ u� @h�

@x�
+ v� @h�

@y�
; p� = P � � 
 r 2h� (2.3a{d)

on z� = h� (x � ; y� ; t � ) for ( x � ; y� ) 2 
 � . Combining (2.1c) with (2.3d) then shows that
the pressure in the underlying 
uid satis�es

p� = patm + � 2gH � 
 r 2h� � ��gh � � � 1gz� ; (2.4)
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Symbol De�nition Typical values Units

� 1 Dynamic viscosity (water) 1 � 10� 3 kg m� 1 s� 1

� 2 Dynamic viscosity (FC40) 4 :05 � 10� 3 kg m� 1 s� 1


 Surface tension (water/FC40) 4 � 10� 2 kg s� 2

� 1 Density (water) 1 � 103 kg m� 3

� 2 Density (FC40) 1 :85 � 103 kg m� 3

g Gravitational acceleration 9 :81 m s� 2

H Depth of overlaying liquid 3 mm
H D Maximum height of drop < 3 mm
L Conduit length 1 :5{30 mm
a Half conduit width 0 :15{0:75 mm
RL ; RR Base radii of left and right drops 1{4 mm
vL ; vR Volume of 
uid in left and right drops 2{20 µl

� H D =L < 0:6 |
� a=L 0:005{0:5 |
Bo (� 2 � � 1)gL2=
 0:5{188 |
� L ; � R RL =L; R R =L 0:03{2:7 |

Table 1: The physical parameters for water (the typical 
uid that forms d evices) and
FC40 (the typical overlaying 
uid) at room temperature and pressur e, the typical range
of geometric parameters used and the dimensionless parameters. All dimensional values
are from Walsh et al. (2017).

where �� = � 2 � � 1. The velocity components are then found from (2.1), (2.2) and (2.3):

u� =
1

2� 1

�
z� 2 � 2h� z�

� @p�

@x�
; v� =

1
2� 1

�
z� 2 � 2h� z�

� @p�

@y�
: (2.5a,b)

Finally (2.1d), (2.2c) and (2.3c) give

@h�

@t�
= r �

�
h� 3

3� 1
r p�

�
for (x � ; y� ) 2 
 � , (2.6)

where r = ( @=@x� ; @=@y� ) is the two-dimensional gradient operator. Thus the equation
we have to solve for the interface height is given by

@h�

@t�
+ r �

�
1

3� 1
h� 3r

�

 r 2h� + ��gh � �

�
= 0 for ( x � ; y� ) 2 
 � , (2.7)

with zero height on the contact line, no 
ux through the contact line and subject to a
suitable initial condition.

2.3. Nondimensionalisation and boundary conditions

We suppose that the drops may be large enough that we must account for the e�ects
of gravity, but not so large that gravity dominates the e�ects of surface tension. We then
use the drop height and conduit length to nondimensionalise the vertical and horizontal
components respectively. We anticipate that di�erent physical e� ects will be dominant at
di�erent time scales, but we initially use the time scale of capillary action in the drops,
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obtained by balancing the terms in (2.7). Thus, we nondimensionalise by scaling

x � = Lx; y � = Ly; z � = HD z; t� =
3� 1L
� 3


t;

u � =
�

� 1

(u; v; �w ) ; h� = HD h; p� =



�L
p + patm + � 2gH � � 1gHD z:

The de�nitions of physical parameters and the typical values that have been used in
experiments are summarised in the upper section of table 1. The governing equation for
the interface height (2.7) is then given by

@h
@t

= r �
�
h3r p

�
; p = �r 2h � Bo h for (x; y) 2 
; (2.8a,b)

where the Bond number is de�ned asBo = ( � 2 � � 1) gL2=
 and 
 denotes the rescaled
contact set bounded by the pinned contact line@
. The Bond number has been de�ned
so that it is positive when the overlaying liquid has higher density than the liquid in the
circuit, as is typical in experiments (see table 1), although our model will still be valid
for negative Bond numbers. The interface height is zero on the contact line and there is
no 
ux through the contact line, so we impose the boundary conditions

h = 0 ; h3 @p
@n

= 0 for ( x; y) 2 @
; (2.9a,b)

where @=@nnow denotes the outward normal derivative on @
. Finally an initial
condition H(x; y) needs to be prescribed for the interface height at timet = 0, i.e.

h(x; y; 0) = H(x; y) for ( x; y) 2 
 , (2.10)

The leading-order model (2.8){(2.10) is applicable for small� = HD =L, which we recall
to be the ratio of the drop height scale and conduit length scale, and depends on four
dimensionless parameters: the Bond numberBo, which gives a measure of the importance
of gravitational forces compared to surface tension; the dimensionlessradii of the bases
of the two drops � L and � R , as shown in �gure 2; and, �nally the aspect ratio of the
conduit � = a=L, which gives a ratio of the conduit width to length. The typical values of
the dimensionless parameters are shown in the lower-half of table 1. We shall consider in
x3 the most physically relevant distinguished limit in which Bo; � L ; � R = O(1) as � ! 0.

2.4. Global mass conservation

One of our main aims will be to predict the time scale over which the volumes of the
two drops equilibrate; i.e. the time scale of drop drainage. We divide the contact set

into three regions: the conduit region is de�ned by 
 C = f (x; y) : 0 < x < 1; jyj < � g,
then the left-hand drop region is bounded by a circular arc of radius� L which intersects
the conduit at ( x; y) = (0 ; � � ), while the right-hand drop region is similarly de�ned as
shown in �gure 2. We de�ne the volumes in the left drop, conduit and right drop to be
given by

VL (t) =
ZZ


 L

h dx dy; VC (t) =
ZZ


 C

h dx dy; VR (t) =
ZZ


 R

h dx dy: (2.11a{c)

Since there is no 
ux of liquid through the pinned contact line, the total volume in the
device is given by the initial volume, V , as follows

VL + VC + VR =
ZZ




H(x; y) dx dy = V: (2.12)
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@



 L 
 R

 C


 JL 
 JR

1 � R� L

O(� )

O(� )

Figure 2: The dimensionless contact set with each of the domains labelled: 
 L and 
 R

are the bases of the drops;
 C is the rectangular conduit, with a length of 1 along its
outer edge and a width of 2� ; 
 JL and 
 JR are the junction regions where the drops
intersect the conduit and @
 is the pinned contact line.

The dimensionless area of, and 
ux through, a cross-section of the conduit in an x-plane
(with 0 < x < 1) are given at leading order by

A(x; t ) =
Z �

� �
h dy; Q(x; t ) =

Z �

� �

Z h

0
u dz dy = �

Z �

� �
h3 @p

@x
dy: (2.13a,b)

Integrating (2.8) over the conduit cross-section then gives

@A
@t

+
@Q
@x

= 0 for 0 < x < 1. (2.14)

Alternatively, integrating (2.8) over the three regions 
 L , 
 C and 
 R shows that the
volume of liquid in each region evolves according to the ordinary di�erential equations
given by

dVL

dt
= � QL (t);

dVR

dt
= QR (t);

dVC

dt
= QL (t) � QR (t); (2.15a{c)

where we have de�nedQL (t) = Q(0; t) and QR (t) = Q(1; t) to be the 
uxes where the
conduit connects to the left and right drop respectively. The expressions (2.14) and (2.15)
will play a key role in our scaling and subsequent asymptotic analysis, in which they will
be used to close the leading-order governing equations (rather than proceeding to higher
order).

3. Asymptotic analysis for a long, thin conduit
3.1. Asymptotic structure and time scales

The two main aims of the dumbbell set-up are (i) for the pressure di�erence between
the two drops to be the dominant mechanism that drives 
uid through th e conduit; and
(ii) for the 
ux through the conduit to vary slowly over time. To achi eve aim (i) we
require the pressure in the drops and conduit to be comparable, where the dimensionless
pressure in a drop is O(1). In the conduit we scaley � � , then balancing the pressure
with the �rst term on the right-hand side of (2.8b) shows that we must p rint liquid of
thicknessh � � 2 in the conduit in order for the pressures to balance. To achieve aim (ii)
we require the conduit to be long and narrowi.e. � � 1. We will show that the resulting
asymptotic structure consists of �ve regions: two drops with contact sets 
 L and 
 R ,
a narrow and thin conduit with contact set 
 C , and two small junction regions with
contact sets 
 JL and 
 JR connecting together the drops and conduit, as illustrated in
figure 2.
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Given our assumptions about the geometry of the device we can now describe the
di�erent physical time scales and show that drainage (the time scale onwhich the pressure
equilibrates) acts on a much longer time scale than anything else in the model. In the
three regions we have de�ned we can use a dominant balance argument in (2.8) to �nd
the time scale of capillary action in each region. In the conduit region we scale with
y � � and h � � 2; in the junction region we scale with x; y; h � � . These scalings and
(2.8) give us the dimensionless time scales of capillary action in the junction and conduit,
respectively, astJ � � and tCW � � � 2. Since we assume that the conduit is much longer
than it is wide tCW is the time scale of relaxation (of the free boundary) across the width
of the conduit. The time scale of relaxation of the free boundary along the length of the
conduit is found by balancing the terms in (2.14). The cross-sectional area and 
ux in
the conduit in (2.13) are also rescaled withy � � and h � � 2, so that A � � 3 and Q � � 7;
hence the time scale for relaxation along the length of the conduit istCL � � � 4. The
drainage time scale is then found by balancing the terms in (2.15). With the same length
scales as above for the 
ux, we still haveQ � � 7, but the relevant length scale for the
volume givesVL = O(1) (since all the 
uid is contained in the drop regions at leading
order). Thus the time scale for drop drainage istDD � � � 7.

We have identi�ed �ve time scales thus far, each depending on the conduit aspect ratio
� . They are, respectively, the relaxation time scales for the junction, drops, conduit width
and conduit length and the drainage time scale:

tJ � �; t D � 1; tCW �
1
� 2 ; tCL �

1
� 4 ; tDD �

1
� 7 : (3.1a{e)

To achieve slowly varying 
uxes and stresses we needtDD to be much larger than tCL ,
and we can also already see that the drainage time scale is very sensitive to � , so that
the geometry is an important factor in achieving a given 
ux.

3.2. Quasi-steady solution in the drops

The leading-order analysis is the same in each drop, so we give only the details for the
left-hand one. The conduit is in the much smaller junction region, soat leading order
the relevant contact set in the drop is the circular disc 
 L 0 of radius � L with centre
(x; y) = ( � � L ; 0). For t � tD � 1, the pro�le is quasi-steady, with spatially uniform
pressure at leading order. The boundary condition (2.9a) holds at leading order on the
boundary of the contact set except at the origin (i.e. on @
L 0=f (0; 0)g); at the origin we
must instead match with the junction region. Since the height scale in the junction region
is of O(� ), the relevant matching condition is that the leading-order �lm thic kness tends
to zero as (x; y) ! (0; 0), with ( x; y) 2 
 L 0. Hence, at leading order the drop pro�le is
as if there was no junction region and therefore axisymmetric.

We introduce the polar coordinate r =
p

(x + � L )2 + y2 measuring radial distance
from the centre of the circular contact set of the left-hand drop. Then, expanding h �
hL (r; t ) and p � pL (t) as � ! 0, we deduce from (2.8){(2.9) the familiar leading-order
governing equations given by

@2hL

@r2
+

1
r

@hL
@r

+ Bo hL = � pL for 0 < r < � L , (3.2)

with jhL (0; t)j < 1 and hL (� L ; t) = 0; the pressure is related to the leading-order drop
volume by the conservation of mass constraint that

2�
Z � L

0
r h L dr = VL (t); (3.3)

where VL (t) now denotes the leading-order volume in the left-hand drop (for small� ).
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Thus the leading-order problem in the left-hand drop has been reduced to the classical
one of �nding the shape of a static liquid drop with constant surface tension and gravity,
which has been well studied with well known interface shape whenthe contact angle is
small (see, for instance, Chesters (1977) and Thomson (1886)). Subject to the additional
constraint that we require the drop thickness and pressure to be positive away from the
contact line (as discussed below), the solution forBo 6= 0 is given by

hL =

0

@
J0

� p
Bo r

�

J0

� p
Bo � L

� � 1

1

A pL

Bo
; hR =

0

@
J0

� p
Bo r

�

J0

� p
Bo � R

� � 1

1

A pR

Bo
; (3.4a,b)

where Jn is the Bessel function of the �rst kind of order n and the pressures are a linear
function of the volume given by pL = � L VL and pR = � R VR (where VR (t) now denotes
the leading-order volume in the right-hand drop for small � ). The constants relating the
pressure to the volume in the left- and right-hand drops are de�ned as

� L =
Bo J0

� p
Bo � L

�

�� 2
L J2

� p
Bo � L

� ; � R =
Bo J0

� p
Bo � R

�

�� 2
R J2

� p
Bo � R

� : (3.5a,b)

Since the square root of the Bond number appears in the argument of the Bessel functions
in (3.4){(3.5), they have an imaginary argument when the liquid in the cir cuit is denser
than the overlaying liquid ( i.e. Bo < 0). In this case the solution may written in terms
of modi�ed Bessel functions; these give a pro�le which decreases monotonically from
the origin, whereas the original Bessel functions are oscillatory. We donot allow for
solutions with either negative drop thicknesses or negative pressure anywhere;hL , hR ,
pL and pR are everywhere positive if and only if � L

p
Bo < � and � R

p
Bo < � , where

� � 2:405 is the smallest positive root ofJ0. There is therefore a critical Bond number
BoC = min

�
� 2=� R ; � 2=� R

�
beyond which at least one of the leading-order quasi-steady

solutions above would cease to exist. However, we must also ensure that the contact line
remains pinned,i.e. that the contact angle remains between the receding and advancing
values. This constraint is even more restrictive than the one on theBond number, and
best addressed once we have derived the corresponding leading-order solutions in the
conduit and junction region, so we defer a discussion until later on (see section 3.8).

3.3. Quasi-steady solution in the conduit

The footprint of the conduit is a rectangle of width 2� and length 1. On the long edges
of the conduit the interface will have zero height where the contactline is pinned. The
appropriate boundary condition at the ends will be derived below by matching with the
junction regions. As with the solution in the drops we note that the problem of 
ow in
a 
uid rivulet has also been well studied (see, for instance, Paterson et al. (2013), and
Towell & Rothfeld (1966)). Earlier we deduced that we needh � � 2 in order for the
pressure di�erence between the drops to be the dominant mechanism driving the 
ow.
Thus we rescale the governing equations with

y = � by; h = � 2 bhC :

Provided t � tCW � � � 2, the pressure is then spatially uniform in eachx-plane at
leading order. Expandingbh � bhC (x; by; t) and p � pC (x; t ) as � ! 0 in (2.8b) then gives

@2bhC

@by2 = � pC for � 1 < by < 1. (3.6)
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SincebhC = 0 at by = � 1 for 0 < x < 1, we deduce that the interface height has a parabolic
pro�le in each cross-section given by

bhC =
pC

2

�
1 � by2�

: (3.7)

It follows from (2.13) that the corresponding leading order expressionsfor the area and

ux in the conduit are given by

A �
2
3

� 3pC ; Q � �
1
35

� 7 @
@x

�
p4

C

�
as � ! 0. (3.8a,b)

3.4. Quasi-steady solution in the junction regions

The junction regions, which connect the conduit to the drops, are indicated by the
boxes in �gure 2. Without loss of generality we will consider only the junction connecting
the conduit to the left drop. Since the �lm thickness is of O(1) in t he drops the pertinent
scalings in the left-hand junction region are given by

x = � ex; y = � ey; h = �eh:

The contact line of the left-hand drop then satis�es
�

� ex +
q

� 2
L � � 2

� 2

+ � 2ey2 = � 2
L for ex 6 0, (3.9)

so that it lies at ex = 0 for jeyj > 1 at leading order as� ! 0 with ey = O(1). The leading-
order geometry of the contact set in the junction region is therefore as illustrated in �gure
3: the contact set of the drop �lls the left half-plane ex < 0, while that of the conduit
�lls the semi-in�nite strip jeyj < 1, ex > 0. The interface height in the junction region is
governed by (2.8), with the solution needing to match with the conduit solution (3.7) as
ex ! 1 and with the drop solution (3.4) as ex2 + ey2 ! 1 in the left half-plane, with (2.9)
still holding on the contact lines at ex = 0, ey > 1. For t � tJ � � , the evolution is again
quasi-steady with spatially uniform pressure at leading order. However, the disparity in
the �lm thicknesses in the drop, junction and conduit regions (where h is of O(1), of
O(� ) and of O(� 2), respectively) means that we must now proceed to second-order in the
analysis in order to span these length scales: expandingh � eh0(ex; ey; t) + � eh1(ex; ey; t) and
p � pJL (t) as � ! 0, we �nd that eh0 and eh1 satisfy the leading- and second-order problems
summarised in �gure 3 in which we have also recorded the boundary conditions on the
contact line and the far-�eld conditions that must be imposed in order to match with the
adjoining drop and conduit. The mean curvature of the leading-order �lm thickness is
equal to zero because the leading-order pressure appears �rst in thesecond-order problem
for the correction to the �lm thickness. We note that if the leading-or der pressure were
an order of magnitude larger then it would not be possible to match it with the pressures
in the adjoining drop and conduit (as detailed below); nor would it be possible to match
the leading-order �lm thickness with that in the drop (because this requires the leading-
order �lm pro�le to be linear in the far-�eld). At leading order the h eight is zero on the
contact line (given by (2.9)) and also tends to zero in the conduit asex ! 1 since the
interface height is O(� ) there. Expanding the solution in the drop (3.4) as r ! � �

L gives
the leading-order far-�eld condition as ex2 + ey2 ! 1 , where the leading-order contact
angle � L is given by

� L =
J1

� p
Bo � L

�

p
Bo J0

� p
Bo � L

� pL : (3.10)
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(a)

ex

ey

eh0 ! 0
as ex ! 1

eh0 = 0

eh0 = 0

eh0 = 0

eh0 = 0

r 2eh0 = 0
in 
 J

eh0 � � � L ex
as ex2 + ey2 ! 1

(b)

ex

ey

eh1 �
pC (0; t)

2

�
1 � ey2�

as ex ! 1

eh1 = 0

eh1 = 0

eh1 =
�

ey2 � 1
2� L

�
@eh0

@ex

eh1 =
�

ey2 � 1
2� L

�
@eh0

@ex

r 2eh1 = � pJL (t)
in 
 J

eh0 � eh1

as ex2 + ey2 ! 1

Figure 3: (a) The leading-order problem in the junction region. (b) The second-order
problem in the junction region, whereeh1 = � L

�
ex2 � ey2

�
=(2 � L ) � pL ex2=2. The junction

region is de�ned as
 J = f (ex; ey) : ex < 0g [ f (ex; ey) : jeyj < 1; ex > 0g, see text for details.

At second order the interface height is still zero on the contact linein the conduit, but
on ex = 0 we have to take account of the curvature of the contact line. In the conduit
the far-�eld condition comes from matching with the conduit solution ( 3.7). To �nd the
leading-order far-�eld condition in the drop we expanded (3.4) asr ! � �

L : the next term
in this expansion gives the far-�eld condition at second order.

The boundary value problems in �gure 3 may be solved using standard conformal
mapping techniques (see, e.g. Driscoll & Trefethen (2002)). We �nd the leading-order
solution to be given implicitly by

eh0 =
2� L

�
Re

�
f � 1(ez)

�
; (3.11)

where ez = ex + i ey and the transform ez = f (� ) maps the lower half � -plane to the junction
region in the ez-plane and is given by

f (� ) =
2i
�

� p
� 2 � 1 + sin � 1

�
1
�

��
; (3.12)
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Figure 4: Plots of the leading-order solution and the second-order correction in the
junction region for Bo = 8 and � L = 0 :5. The location of the substrate is indicated
by the grid with the conduit extending in the positive ey-direction. (a) The leading-order
solution given by (3.11). (b) The second-order solution given by (A 14).

where � = � + i � . At O( � ) the governing equation for the interface height is r 2eh1 =
� pJL (t) in 
 J . Substituting the conduit far-�eld condition therefore gives pJL (t) =
pC (0; t); similarly substituting the drop far-�eld condition gives pJL (t) = pL (t); we
deduce that the pressure passes straight through the junction at leading order, i.e.

pJL (t) = pL (t) = pC (0; t): (3.13)

To �nd the next order solution we �rst subtract from eh1 the far-�eld solution in the
drop as ex2 + ey2 ! 1 , so that we are again solving Laplace's equation in the junction
region. This will allow us to use the same conformal mapping techniques as we did for
the leading-order problem. The details are presented in Appendix A. Anexample of the
leading- and second-order solutions are shown in �gure 4. As we approach the corner
along the contact line the slope of both these solutions becomes in�nite. This will have
implications for the pinning of the contact line as we shall discuss inx3.8.

3.5. Conduit relaxation

As detailed in x3.1, the conduit relaxes on the time scaletCL � � � 4; this was derived
from (2.13). Using (2.13), (2.14) and making the rescalingt = (70=3) � � 4� , we derive an
equation for the conduit pressure on the time scale of conduit relaxation:

@pC
@�

=
@2

@x2
�
p4

C

�
for 0 < x < 1, � > 0. (3.14)

In x3.4 we deduced that the leading-order pressure in the junction regions is spatially
uniform and equal to the pressure in the adjacent drop and conduit as longast � tJ � � .
Since tCL � tJ as � ! 0, the pressure at the ends of the conduit will be equal to the
pressure in the corresponding drop. Furthermore, sincetDD � tCL the leading-order
pressure in the drops will not have changed, so the relevant boundaryconditions for
(3.14) are given by

pC (0; � ) = pL (0); pC (1; � ) = pR (0) for � > 0; (3.15a,b)

where the pressures in the left- and right-hand drops,pL and pR , can be related to their
respective volumes,VL and VR , by (3.5)). The problem is closed by prescribing an initial
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Figure 5: (a) and (b) Numerical solution of the conduit relaxation problem (3.14){(3.16)
for di�erent boundary conditions (drop pressures), where the initial pro�le is linear. The
dashed line is the steady-state solution given by (3.17). In (a)� = 0 ; 0:0064; 0:0320,
whereas in (b) � = 0 ; 0:0005; 0:0020. (c) The evolution of the left-hand drop volume
given by (3.20) and (3.21) forV=V = 0 :4; 0:7; 0:9; in each case� = 0 :25 and (3.22) shows
that the solutions tend to 0:8.

condition of the form

pC (x; 0) = P(x) for 0 < x < 1. (3.16)

For a positive and su�ciently regular initial pro�le we anticipate the long-time attractor
to be the steady-state solution, so that

pC !
��

p4
R � p4

L

�
x + p4

L

� 1
4 as � ! 1 . (3.17)

Examples of the solution of the time-dependent problem are shown in �gures 5a and
b (solid lines); they tend to (3.17) (dashed line) as� increases and the steady state is
reached much faster when the initial pressure gradient is increased.

3.6. Droplet drainage

On the time scale of drainagetDD � � � 7, the pressure in the conduit is quasi-steady
and therefore given by the right-hand side of the expressions in (3.17).We can then use
(3.8b) to �nd that the 
ux in the conduit on this time scale is given by

Q � � 7 p4
L � p4

R

35
: (3.18)

When � � 1 most of the 
uid is contained in the drops, with the conduit containin g
very little 
uid. We can therefore use (2.15) to �nd ODEs for the volum e in each drop.
Substituting (3.18) into (2.15a,b) gives

dVL

dt
� � � 7 p4

L � p4
R

35
;

dVR

dt
� � 7 p4

L � p4
R

35
: (3.19a,b)

Since the drop pressure is a linear function of the volume (with theconstants of
proportionality given by (3.5)) we can write (3.19) entirely in terms of th e drop volumes.
At leading order the volume in the conduit scales with � 3 (as can be seen from (2.11b)).
Assuming that VL (0); VR (0) � � 3, at leading order the total volume V is given by the
sum of the volumes of the two drops, which is a constant since no 
uid is leaving the
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system. If we then rescale time witht = 35=(V 3� 4
R ) � � 7T, we need only solve a single

ODE given by

@
@T

�
VL

V

�
=

�
1 �

VL

V

� 4

� � 4
�

VL

V

� 4

; (3.20)

where � 4 = � 4
L =� 4

R . To close this problem we will need an initial volume for the left drop
of the form

VL (0) = V: (3.21)

The powers of four in (3.20) suggest that there could be multiple steady-state solutions,
but we �nd that only one of them is real and in the range [0; V ], so the volume of the
left drop can only tend to one value given by

VL

V
!

1
1 + �

as T ! 1 : (3.22)

Equation (3.20) is separable which allows us to easily �nd an implicit solution, which in
the case of� = 1 collapses to

VL

V
=

1
2

�
1 +

1
p

Ae2T � 1

�
; A = 1 +

1

(2V � 1)2 : (3.23)

Some examples of the evolution of the left-hand drop volume are plotted in�gure 5c for
di�erent initial volumes.

3.7. Numerical validation

In this section we will describe our numerical simulations of the full thin-�lm boundary
value problem given by (2.8){(2.10) on the domain indicated in �gure 1e, and compare
the results with the asymptotic predictions we have obtained. Thenumerical simulations
are performed with COMSOL Multiphysics R
 via the thin-�lm 
ow toolbox, using
COMSOL's \�ne mesh" option and in-built algorithms that suitably re�ne the mesh
in narrow regions of the domain geometry (COMSOL MULTIPHYSICS R
 v.5.4 2018).

We specify the initial volumes of the two drops; with this we can form a piecewise
approximation to the interface height and pressure using (3.4) in thedrops and (3.7) and
(3.17) in the conduit. There will be discontinuities at either end of the conduit so we
initially run the simulation on the junction relaxation time scale tJ to smooth out the
initial condition. We use this piecewise construction of the initial condition rather than
a composite solution because it is easier to implement and the junction regions relax on
a much faster time scale than those we are interested in. For intermediate values of �
(� > 0:5) the numerical solution can be found in a matter of seconds, but as anticipated,
for smaller values of� we �nd run times can increase by multiple orders of magnitude.
This underlines how our asymptotic approach can facilitate the rapid prototyping of
micro
uidic system designs.

In �gure 6 we compare the solution of (3.20) with numerical solutions for various small
values of � . In each simulation only the width of the conduit was altered and the initial
drop volumes were �xed. In �gure 6a we see good agreement over a range of values of�
for the volumes of the left (upper dashed line) and right (lower dashed line) drops as a
function of time. The drainage solution can also be used to �nd the shear stress in the
conduit. In the x-direction the leading-order dimensionless shear stress on the substrate
is given by

s =
@u
@z

�
�
�
�
z=0

= � h
@p
@x

=

�
� 2 � y2

� �
p4

L � p4
R

�

8
p

p4
L � (p4

L � p4
R ) x

; (3.24)



16 S. N. Calver, E. A. Ga�ney, E. J. Walsh, W. M. Durham and J. M. Oliver

where the dimensional shear stress iss� = 
s=L . The maximum shear stress is ony = 0
at either x = 0 or x = 1 depending on the direction of the 
ow; the maximum will be at
the junction near the conduit outlet. In �gure 6b we compare the absolute maximum of
the shear stress found inComsol with the asymptotic prediction in (3.24). Again, as �
is decreased we see good agreement. For the 
ux given by (3.18), we �rst rescale with

Q =
V 4� 4

R

� 735
Q; (3.25)

then we �nd larger relative errors as can be seen in �gure 6c, especiallyon shorter time
scales. Nevertheless there is still good agreement as� is decreased. This is shown in
�gure 6d, where the root mean squared error of the 
ux over a unit time interval on
the drainage timescale can be seen to decrease linearlyas � is reduced by more than an
order of magnitude. Furthermore, this behaviour is also consistent with the root mean
squared 
ux error over a unit time converging linearly to zero as the asymptotically
small parameter is reduced, evidencing the validity of both the asymptotics and the
�nite element simulations.

We are now in a position to construct a piecewise additive composite solution for
the �lm height over the whole contact set 
 . Since the solutions found in the drop
and conduit regions are only valid in those regions we form a piecewise solution. In the
left drop the composite solution is found by adding the junction solution to the drop
solution and then subtracting the overlap; in this case the two leading terms in the limit
ex2 + ey2 ! 1 as shown in figure 3. The solution in the right drop is found in a similar
way. In the conduit, 0 < x < 1, we must �nd the junction solutions at either end of
the conduit and add them both to the conduit solution (given by (3.7) and (3.17));
the overlaps are then the conduit solutions atx = 0 and at x = 1, so these are both
subtracted. An example of the composite solution for the interface is shown in �gure 1f;
the dimensionless parameters used areBo = 20, � L = 0 :5, � R = 0 :4, � = 0 :05, VL = 0 :03
and VR = 0 :03; since the base radii of the drops are di�erent the same volumes will give
di�erent pressures. In figure 7 we plot the composite interface height (dashed line) along
the centre of the conduit, i.e. on y = 0 for di�erent values of � . The left and right panels
show the pro�le in the respective drop regions and the central panelsshow the solution
in the conduit region. The solid line shows the corresponding numerical solution; we see
particularly good agreement in the drop regions as� is decreased. In the conduit the
composite solution is able to pick out the location of the dip in conduit height near the
outlet (the 
ow is from left to right), although it predicts a less sh arp decrease in pro�le
height. This dip is where the maximum shear stress occurs in the numerical solution.

3.8. Maintaining a pinned contact line

An important feature of these devices are the large advancing and small receding
contact angles, � a and � r respectively, which allows the volume of 
uid in a drop to
change signi�cantly without the contact line moving. The particular val ues are highly
dependent on the materials and 
uids used, though Walshet al. (2017) observe values
of � r � 0:05 radians and� a � 1:2 in their experiments (while Lee et al. (2015) measure
� r � 0:5 and � a � 1:0 for water in decane on hydrophilic surfaces).Using the leading-
order solutions (3.4) and (3.7), the contact angles in the left- and right-hand drops and
the conduit, denoted by � L (t), � R (t) and � C (x; t ) respectively, are given by

� L =
J1

� p
Bo � L

�

p
Bo J0

� p
Bo � L

� pL ; ; � R =
J1

� p
Bo � R

�

p
Bo J0

� p
Bo � R

� pR ; � C = � pC : (3.26a{c)
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Figure 6: Comparison ofComsol solutions with model predictions for di�erent values of
the small parameter � . In each case the calculations were performed using� L = � R = 1
and Bo = 2 with the initial volumes VL (0) = 0 :2 and VL (0) = 0 :1. (a){(c) The solid
lines show the numerical solution for � = 0 :01; 0:1; 0:2 and the dashed line shows the
asymptotic approximation. We compare (a) the drop volumes, given by (3.20);(b) the
maximum shear stress on the substrate given by (3.24) withy = 0 and x = 1; and (c)
the 
ux given by (3.18) and (3.25). (d) The root mean squared error of the 
ux over a
unit time interval for di�erent values of � , where QN is the numerical solution.

Since we are in the thin-�lm limit ( � � 1) we will have � L ; � R ; � C < � a . The same,
however, cannot be said of the contact angle in the junction regions; as we saw in x3.4
the contact angle tends to �= 2 at the corners where the drop meets the conduit. In
practice the contact line near this corner will move outwards until the contact angle falls
to the advancing angle. We expect the smoothing of the corner to happenon a length
scale of the width of the conduit and on a timescale not much larger than thatof capillary
action in the junction regions. On the time scale t � tCL � � � 4, the smallest contact
angle in the conduit will occur at the outlet where pC = min ( pL ; pR ). As we are focusing
on the distinguished limit in which Bo; � L ; � R = O(1) as � ! 0 we deduce that the
contact angle in the conduit is always less than in the drops, so that theleading-order
contact angle is everywhere | subject to the caveat above concerningthe corners |
greater than or equal to the receding contact� r provided

� min = � min ( � L VL ; � R VR ) > � r ; (3.27)

where we have used (3.4), (3.5) and (3.26c). We note that this constraint issatis�ed
for all t > 0 only if it is satis�ed initially, so that the contact line remains pi nned only
if it is pinned initially. We further note that in accordance with p hysical intuition it is
easier to satisfy the constraint (3.27) the larger the volumes of the dropsor the smaller
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Figure 7: Comparison ofComsol solution with the composite solution described inx3.7
on y = 0. The calculations were performed using� L = � R = 1 and Bo = 4 with
the initial volumes VL (0) = 0 :1 and VL (0) = 0 :05. The solid lines show the numerical
solutions and the dashed lines the corresponding asymptotic approximation. We compare
the solutions on the drainage time scale,i.e. t � � � 4. From top to bottom we have
t � 2:4 � 108; 3:9 � 109; 1:5 � 1011. The solutions for the left- and right-hand drop
regions are shown on the left- and right-hand sides respectively, the conduit region is
shown in the middle panels; note that the height scales with� 2 in the conduit.

the radii of their contact sets, but a complete characterization is complicated due to the
non-monotonic dependence of� L and � R on the Bond number Bo, though (3.27) is of
course readily checked for speci�c parameter values. Henceforth we shall assume that � r

may be engineered to be su�ciently small that the constraint (3.27) pertains.

3.9. A survey of 
uxes and shear stresses

We have already identi�ed one way in which the footprint of the device can signi�cantly
alter the time scales involved: inx3 we showed that the time scale of drop drainage scales
with � � 7, where we recall� = a=L � 1 is the conduit width-to-length ratio. Two further
parameters that a�ect the behaviour on this time scale are � L and � R , the pressure-
to-volume ratios in the left- and right-hand drops respectively de�ned in (3.5), as well
as their ratio � = � L =� R , which appeared �rst in (3.21). In �gure 8a we plot � L as a
function of the dimensionless radius� L of the left-hand drop | a plot of � R as a function
of � R would be identical | in which a log scale has been used to highlight that � L varies
over several orders of magnitude. Varying the Bond number does not have much in
uence
on � L suggesting that gravity is not having a large impact on the pressure in adrop at
leading order. In contrast, shrinking the size of the base radius of the drop � L massively
increases the pressure for a given volume. The ratio of� L and � R is de�ned as � , which
inter-alia determines how much 
uid we would expect in each drop atequilibrium (see
(3.22)).

One of our main interests is in determining the conditions for an approximately
constant 
ux in the conduit on the time scale of drainage. We approximate the initial 
ux
Q0 using the right-hand side of (3.20). Figure 8b shows the time takenT0:5 for the initial

ux to reduce by 50% for a given value of � . This shows that large 
uxes decay faster
than small 
uxes (the lower solid lines are the largest 
uxes). In the examples in �gure
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Figure 8: (a) A plot of � L for Bo = � 20; � 8; 0; 2; 4; 10; 20, where� L is the ratio of the
dimensionless drop pressure to volume for the left-hand drop given by (3.5). The dashed
line shows the boundary on whichBo = BoC (de�ned in x3.2 as the Bond number below
which either the drop height or pressure are no longer positive). (b)The time taken
for an initial 
ux Q0 to reduce by 50% as a function of� . The initial 
ow rates are
Q0 = 0 :01; 1; 4; 10. The dashed line shows the minimum value of� for which there is a
solution with a particular initial 
ux.

8b increasing the initial 
ux by 3 orders of magnitude (from 0:01 to 10) can similarly
decreaseT0:5 by as much as 3 orders of magnitude. We can further see that decreasing�
allows the 
uxes to be maintained for longer. This corresponds to increasing the relative
size of the base of the left-hand drop, as the base radius is increased a larger initial
volume is needed to achieve the same initial 
ux, which consequently leads to a slower
decay in 
ow rate. This shows that slowly varying 
uxes can be achieved with either
small initial 
ow rates or disparate base sizes.

A selection of solutions to the model for drainage of the droplets (3.20) are shown in
figure 9, where the 
ux and shear stress are given by (3.18) and (3.24). The geometries
and volumes represent typical values that are within the limits of the thin-�lm model
with a time scale of minutes to hours as shown in table 1. Starting with two drops each
of base radius 3:2 mm connected by a conduit of length 10 mm and width 1:2 mm, and
initial volumes of 18µl in the left drop and 12 µl in the right, we show how the 
ow
rate and maximum shear stress in the conduit change with the base radii ofthe right-
hand drop, the conduit width and length and the initial volumes of the ri ght-hand drop.
As we alluded to earlier, the pressure in a drop is very sensitive to the radius of the
base. Figure 9a shows that changing the base radius of the right-hand drop by 0:4 mm
completely changes the direction of 
ow. In �gures 9b and c on decreasingthe value of
� we observe the 
ow remains approximately uniform over a much longer time scale.

The numerical solution of (2.8){(2.10) has shown that the maximum shear stress occurs
where the conduit has the smallest cross-section, the dip near the outlet of the conduit.
As � ! 0 this dip moves closer to the drop as can be seen in the middle panelsof �gure
7. In general the shear stress quickly decreases as we move away from the maximum due
to the 1=

p
x dependence in (3.24). Since the shear stress scales with� 2, a narrow or long

conduit will have lower shear stress. Walshet al. (2017) show that human embryonic
kidney (HEK) cells can grow normally in their devices, though they did not directly
measure shear stress in those experiments. Stathopoulos & Hellums (1985)state that a
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shear stress greater than 2:6 N=m2 has a signi�cant e�ect on the viability of HEK cells.
As shown in �gure 9, a large shear stress is associated with a large 
ux, which means
higher shear stresses if they do occur would be short lived.

4. Networks
In the introduction we stated that one of the advantages of the new kind of micro
uidic

devices described here is that complex patterns of drops and conduits can be easily
printed. For example, several network designs are demonstrated by Walsh et al. (2017),
some of which are shown in �gure 1. We now show how the drainage-time-scale model
derived in x3.6 can also be extended to model networks of drops connected by long, thin
conduits.

4.1. Network geometry

The contact set of a network is de�ned to be the union of circles (the drop footprints)
and rectangles (the conduit footprints) as indicated in �gure 10a. We have already de�ned
a junction region (in the neighbourhood of the intersection of a conduit and a drop as
illustrated in �gures 2 and 3). We de�ne analogously a node to be the regionin the
neighbourhood of the intersection of two or more conduits as illustrated in �gure 10a.
We number the nodes 1; : : : ; n and the drops n + 1 ; : : : ; n + m and label the conduit
connecting i to j with ( i; j ), where i and j are labels denoting either a node or a drop.
We do not consider the case in which multiple conduits connect the same two objects,
since this would be equivalent to a single conduit with the 
ux given by the sum of
the 
uxes in the multiple conduits. As in the dumbbell case, we de�ne the length of a
conduit to be the maximum distance along its straight outer edge. As before, we require
ai;j � L i;j , where 2ai;j and L i;j are, respectively, the width and length of conduit (i; j ).
We also require that the width of a conduit footprint be much less than the base radius
Ri of any drop it is connected to, soai;j � min (Ri ; Rj ). Without loss of generality we
assume that conduit (1; 2) has the largest aspect ratio and de�ne� = a1;2=L1;2.

Although the construction is quite simple we must apply several restrictions to ensure
that the footprint is within the framework of our model. The analysis of the junction
region and the node analysis presented below is only valid when thereare no other nodes
or junctions nearby, i.e. the distance between multiple junctions or nodes must be much
greater than � . We also assume that the conduits enter the drops with their centreline
making an angle of order unity with the circular outer perimeter of the drop, i.e. the
conduit need not be perpendicular to the drop.

4.2. Node asymptotics

As with the junction region in x3.4 we will need to determine the local behaviour in
the node regions. We consider the illustrative node region shown in�gure 10b, which
is made up of three intersecting conduits; for simplicity we labelthe conduits (1; i ) for
i = 1 ; 2; 3. The height scale in the node region is set by the conduit height scaleso we
rescale with

x = x0 + � ex; y = y0 + � ey; h = � 2eh;

where (x0; y0) is some origin chosen within
 N . As in x3.1 we can then use these scales
to �nd that the relaxation time scale for the node region is given by tN � 1=�2. We
expand eh � eh0(ex; ey) + �eh1(ex; ey) and p � p0(ex; ey) + �p1(ex; ey) as � ! 0. At leading
order for t � tN � 1=�2 the node region is quasi-steady with spatially-uniform pressure
p0(ex; ey) = pN (t), so that the equation governing the interface height is given byr 2eh0 =
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Figure 9: In these �gures we show the e�ect of changing a single model parameter on the

ux and maximum shear stress in the conduit as functions of time. The geometries are
shown on the left-hand side, in each case starting with the same dumbbell, labelled 1,
with 2{4 showing how the geometry is altered. The corresponding 
uxes and maximum
shear stresses are shown on the right-hand side. The parameters we modify are (a) the
base radius of the right drop RR = 3 :2; 3; 2:8; 2:6 mm; (b) the length of the conduit
L = 10; 15; 20; 25 mm; (c) the width of the conduit a = 0 :6; 0:5; 0:4; 0:3 mm; and (d) the
initial volume of the right-hand drop vR = 12; 10; 8; 6µl. The initial volume and base
radius of the left-hand drop are �xed at 18µl and 3:2 mm respectively.
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Figure 10: (a) The contact set of a network is de�ned as a union of rectangles and circles
whose boundaries are shown as dashed lines with the boundary of their union shown by
the solid line. The nodes are the regions where the rectangles intersect. (b) The leading-
order problem in the node region. There is zero height on the contact line, soeh0 = 0 on
@
N and matching with conduit i requires eh0 � (ea2

1;i � ey2
i )pC 1;i (0; t)=2 as ex i ! 1 for

i = 1 ; 2; 3, where (ex i ; eyi ) are as illustrated and we have de�nedea1;i = a1;i =a1;1.

� pN (t) for ( ex; ey) 2 
 N as illustrated in �gure 10b. This problem could again be solved
via conformal mapping, though in general we will be unable to write the mapexplicitly.
Numerical methods for determining conformal maps and solving the Laplaceequation on
these geometries have been extensively developed (Driscoll (1996);Driscoll & Trefethen
(2002)). We do not need to know the interface height in the node region to�nd the
leading-order behaviour on the drainage timescale, but we do need to proceed to higher
order to close the problem. We note that the slope will be in�nite at th e corners, so they
will be smoothed out on the length scale of the conduit width, as we described for a
junction region in x3.4.

At second order, conservation of mass and (2.8a) show that
ZZ


 N

r �
�

eh3
0 r p1

�
dex dey =

Z

@
 N

eh3
0 r p1 � n ds = 0 ; (4.1)

where the second term comes from an application of Green's theorem. There is no 
ux
through the contact line and the 
ux through the conduit tends to Q1;i asex i ! 1 , where
Q1;i is the 
ux through the i th conduit (given by a similar expression to (2.13b)). Thus,
the sum of 
uxes in the conduits connected to a node must be zero at leading order.
This is true of any network satisfying the restrictions set out above. We thus are able
to derive a generalisation of Kirchho�-type laws which govern the current and voltage
in an electrical circuit, which has similarly been applied to 
ow i n networks of pipes; for
instance see Maru�si�c-Paloka (2001).

4.3. Kirchho�-type laws for networks

On the time scale of drainagetDD � � � 7, we can derive an ODE model for the drop
volumes by generalising the derivation of the ODE model for a dumbbell presented in
x3.6. We let Q�

i;j denote the dimensional 
ux through a conduit connecting drop/node i
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to drop/node j . Using (3.18) we �nd that

Q�
i;j = �

a7
i;j

105
 3� 1L i;j

�
p�

i
4 � p�

j
4
�

; (4.2)

where the pressure is an unknown ifi or j is a node and is given by

p�
i =

B 
 J 0

� p
B Ri

�

� Ri
2J2

� p
B Ri

� vi ; B =
�� g



; (4.3)

otherwise. The unknown node pressures are found using the Kirchho�-type laws derived
in the previous section. For dropi we de�ne � i to be the set of all conduits connected to
this drop and similarly we de�ne K j to be the set of conduits connected to nodej . Thus,
(3.20) can easily be generalised to account for a more complicated network as follows:

@vi
@t�

=
X

(k;l )2 � i

Qk;l ;
X

(k;l )2 K j

Qk;l = 0 ; (4.4)

for i = n + 1 ; : : : ; n + m and j = 1 ; : : : ; n. The problem is closed by prescribing the initial
volume in each of the drops. In general we cannot �nd an analytic solution to (4.4), but
solving such a system of ODEs can easily be implemented numerically.

4.4. Numerical validation

In this section we compare the numerical solution of (4.4) to the numerical solution
of the full problem given by (2.8){(2.10) for the network geometries shown in �gure 11.
For the simple three drop network shown in �gure 11a the drop volumes arein good
agreement with the full numerics as� is decreased as shown in �gures 11c and e. We
anticipate that the error in the volume of a drop (for a �xed value of � ) will increase
linearly with the number of conduits connected to the drop. Thus, for the larger network
shown in �gure 11b, we still �nd good agreement for small values of� , but they need to be
smaller than in the simple network in �gure 11a. In particular, the numerical solutions
summarised in �gure 11c{f indicate that increasing the width or number of conduits
connected to a drop increases the free surface elevation above the drop footprint and
hence the equilibrium volume compared to our leading-order asymptotic predictions (in
which each drop behaves as if it were isolated with zero free surfaceelevation on the
edge of the droplet footprint). While the error between the numerical and leading-order
predictions decreases with� , the rate of decrease appears to be su�ciently slow for
more complicated networks that a higher-order asymptotic analysis may be a worthwhile
direction for future work.

5. Discussion
In this paper we set out to develop a model for the 
ow through a new class of

micro
uidic device driven by surface tension. There are several disparate length scales
in a typical device geometry which allowed us to construct asymptotic solutions which
are valid in di�erent regions and over di�erent time scales. The 
ow is governed by the
standard thin �lm equations and the shape of the 
uid interface is governed by the
linearised Young-Laplace equation. Inx3.1 we described each of the regions in a circuit
with a dumbbell shaped footprint: the drop, conduit and junction regions. We focused
on the distinguished limit in which the aspect ratio of the conduit, � , is small, so that
the conduits were long and thin. We also showed that each region is associated with a
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Figure 11: Comparison of the drop volumes for solutions to the asymptotic problem (4.4)
(dashed lines) to the full numerical problem (4.4) (solid lines). (a) and (b) show the two
di�erent geometries used,and only the conduit widths are altered to decrease� . (c) and
(e) show the comparison of volumes for the three drop network which have initial volumes
of 21µl in the upper drop and 11µl in the lower two. (d) and (f) show the comparison of
three drop volumes labelled i� iii within the eight drop network. The left- and rightmost
drops in (b) have an initial volume of 10µl and the remaining drops an initial volume of
1µl. Drop i corresponds to the lower curve in (d) and (f). The physical parameters are
taken from table 1.

di�erent relaxation time scale, which vary over several orders of magnitude, and we found
quasi-steady solutions in each region. In the junction region we showedthat the contact
angle near the corners will exceed the advancing angle; physically we would expect the
sharp corners to be smoothed out over the small length scales involved, although we did
not include this in our model as this would not change the leading-order behaviour.
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In x3.6 we showed how the leading-order quasi-steady solutions in the dropand conduit
regions can be combined to give a single ODE for the time-dependent drop volumes. The
ODE is separable and an implicit solution can be easily found; this thenallowed us to
predict the 
ux through the device given the initial drop volumes. W hen designing an
experiment with a dumbbell con�guration there are six dimensional parameters that can
be modi�ed for a given combination of 
uids: the width and length of the c onduit, the
base radii of the two drops as well as the initial volume of 
uid contained in each. Given
a required 
ow rate, drainage time, shear stress (or other property), there is clearly
a large solution space in which to search to �nd a circuit with the desired properties.
Such an inverse problem is beyond the scope of the current paper, butthe e�ect of
modifying each of these parameters in turn on the leading-order drainagetime solutions
is easily determined. Inx3.7 we found a composite solution for the interface height over the
whole dumbbell shape. This allowed us to determine where the cross-sectional area of the
conduit is smallest and hence where the 
uid 
ow is fastest. Our asymptotic predictions
for the drop volumes, conduit 
ux and interface height all show good agreement with
our numerical simulations when the conduit aspect ratio is small.

In x3.8 we showed that maintaining an approximately constant 
ux in our dist inguished
limit is easier when the 
uxes are small O(nl s� 1) or the time scales are relatively short
O(hr). The time scale of drainage was shown to be very sensitive to the aspect ratio of
the conduit and thus it is the geometry that is the most important factor i n achieving
a given, approximately constant 
ux over time. However, the height of the conduit is
not constant over its length, so the velocity in di�erent regions of the conduit will be
di�erent, with greater variation in longer conduits. Thus if slowly v arying velocities are
desired both temporally and spatially there is ultimately a trade-o� b etween the two,
though spatial variation is much less sensitive. The di�erence in velocity will also lead
to di�erences in shear stress along the conduit. In the context of experiments using live
cells, shear stress impacts a wide range of signalling pathways and this model suggests
measuring the response to di�erent shear stresses can be accomplished using a single
device.

In x4 we proceeded to consider networks of drops and long, narrow conduits.On the
time scale of drainage, a set of ordinary di�erential equations modelling the network 
ow
was derived from �rst principles for asymptotically thin conduits, characterised by small
aspect ratios, � � 1. These derived models can be understood in terms of Kircho�'s
laws, with the conservation of conduit 
ux at network nodes, with conduit 
uxes driven
by the di�erence in the fourth power of the pressure at either endof the conduit. This
nonlinear dependence on the pressure arises from the free surface physics and di�ers
signi�cantly from classical network 
ow models, such as those considered by Lighthill
(1975) and Van Lengerich et al. (2010). Good agreement between our asymptotically
valid network model and direct numerical simulation of the full free surface problem was
found for su�ciently small � � 1, though larger errors are observed for �xed� as the
number of conduits connected to a drop increases. Regardless, the simplicity and broad
validity of the network model means that it can be used for rapidly prototyping many
potential device designs in silico.

For experiments that are longer in duration, there are several choices available to
extend the time over which the 
ux is approximately constant. The �rst and most obvious
is to use larger volumes of 
uid. In future work we will extend the simple dumbbell
model by considering what happens when the vertical length scale iscomparable to
the horizontal ones; in this case the pressure in a drop no longer depends linearly on
its volume and multiple equilibria may exist. Further studies can also consider higher
order asymptotic corrections for large networks or the more complex interfacial dynamics
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that occur when free surface devices are constructed of cell culture media. Additional
studies may also consider how the peculiar patterns of 
ow within these devices a�ect
chemical transport (Walsh et al. 2017), building on previous studies of transport within
rivulets (e.g. Darhuber et al. (2004); Al Mukahal et al. (2017)). Throughout we have
only considered straight conduits with a constant width. Our theory still works when the
centreline of a conduit is curved, provided the curvature is on the order of the length of
the conduit, see e.g. Patersonet al. (2013). But we can generalise our model further by
allowing for conduits whose widths vary along their length. This would enable greater
control over the 
ow; for instance we could compute how the conduit width should vary
to obtain a device in which the shear stress is uniform along its length.

In summary, we have found an asymptotic model describing the 
ow between two 
uid
drops connected by a long, thin rivulet. The model compares favourably with numerical
simulations as the small parameter� is decreased. The results for this simple geometry
were then extended to simulate 
ows through a network of interconnected conduits which
allows potential micro
uidic designs to be rapidly prototyped. We ant icipate that this
theoretical work will help increase the uptake of this new class of micro
uidic devices
across a wide range of di�erent disciplines.

The authors declare that they have no known competing �nancial interests or personal
relationships that could have appeared to in
uence the work reportedin this paper.

Appendix A. Next order solution in the junction region

In this section we give the details of the calculation of the next order interface height
in the junction region 
 J shown in �gure 3b. As was mentioned in the main text we
transform the problem to Laplace's equation by letting

eh1 = eH1 +
� L

2� L

�
ex2 � ey2�

�
pL

2
ex2; (A 1)

so that

r 2 eH1 = 0 in 
 J , (A 2)

eH1 �
1

2� L
(� L pL � � L ) ex2 as ex ! 1 , for jeyj < 1 (A 3)

eH1 =
1

2� L

�
(� L pL � � L ) ex2 + � L

�
on jeyj = 1 for ex > 0, (A 4)

eH1 =
1

2� L

" 

� L +
@eh0

@ex

!

ey2 �
@eh0

@ex

#

on ex = 0 for jeyj > 1, (A 5)

eH1 ! 0 as ex2 + ey2 ! 1 for ex < 0, (A 6)

whereeh0 is given by (3.11). We use can then use the conformal mappingez = f (� ), where
f (� ) is given by (3.12), to transform this problem to the lower-half plane. The contact
line in the junction region 
 J is transformed to the real line � = 0 in the � -plane. The
derivative on the boundary is then found to be

@eh0

@ex
(0; ey; t) = �

� L j� j
p

� 2 � 1
for j� j > 1; (A 7)
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where ey = f (� ). Using in addition the expression Re
�
ez2

�
= Re

�
f (� )2

�
, the problem

(A 2){(A 6) may be mapped to the following problem in the lower-half � -plane:

r 2 eH1 = 0 for � < 0, (A 8)

eH1 = U(� ) on � = 0 for � 6= 0, (A 9)

eH1 � Re(W(� )) as � 2 + � 2 ! 0, (A 10)

eH1 ! 0 as � 2 + � 2 ! 1 , (A 11)

where U is given by

U(� ) =
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>>>>>>>>>><

>>>>>>>>>>:
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(A 12)

and W is given by

W(� ) =
2 (� L � � L pL )

� 2� L

 �
log(� ) �

i�
2

� 2

� 2 log(� )

!

: (A 13)

Using a Fourier transform the solution for � < 0 can be written as

eH1 =
�
�

Z 1

�1

U(s)
� 2 + ( s � � )2 ds: (A 14)

The integral (A 14) must be evaluated carefully using quadrature. We use integral in
Matlab having dealt analytically with the logarithmic singularities in W(� ) at the origin
and having exploited the symmetry of the integrand and the far-�eld Laurent expansion
for U(� ).
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