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ABSTRACT1

There has been an increasing effort to improve the behavioural realism of mathematical models of2

choice, resulting in efforts to move away from random utility maximisation (RUM) models. Some3

new insights have been generated with, for example, models based on random regret minimisation4

(RRM, µ-RRM). Notwithstanding work using for example Decision Field Theory (DFT), many of5

the alternatives to RUM tested on real-world data have however only looked at only modest de-6

partures from RUM, and differences in results have consequently been small. In the present study,7

we address this research gap again by investigating the applicability of models based on quantum8

theory. These models, which are substantially different from the state-of-the-art choice modelling9

techniques, emphasise the importance of contextual effects, state dependence, interferences and10

the impact of choice or question order. As a result, quantum probability models have had some11

success in better explaining several phenomena in cognitive psychology. In this paper, we con-12

sider how best to operationalise quantum probability into a choice model. Additionally, we test13

the quantum model frameworks on a best/worst route choice dataset and demonstrate that they find14

useful transformations to capture differences between the attributes important in a most favoured15

alternative compared to that of the least favoured alternative. Similar transformations can also be16

used to efficiently capture contextual effects in a dataset where the order of the attributes and al-17

ternatives are manipulated. Overall, it appears that models incorporating quantum concepts hold18

significant promise in improving the state-of-the-art travel choice modelling paradigm through19

their adaptability and efficient modelling of contextual changes.20
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1. INTRODUCTION1

The random utility maximisation (RUM) framework has dominated the travel choice modelling2

field for many decades. More recently, RUM has been criticised as being inadequate in explain-3

ing the full range of behavioural complexity (Chorus et al., 2008; Guevara and Fukushi, 2016).4

This has resulted in many attempts to better incorporate behavioural concepts into travel behaviour5

models, including regret (Chorus et al., 2008; Chorus, 2010), contextual relative advantages (Leong6

and Hensher, 2014) and prospect theory (Avineri and Bovy, 2008). However, none of these de-7

velopments have yet rivalled RUM as the preferred model in real-world applications. This is due8

to difficulties that quickly arise once a modeller departs from the firm economic foundations of9

RUM (Hess et al., 2018). Consequently, caution is required if we are to step away from random10

utility models. Departures to models with similar underlying structures, i.e. those with the same11

error structure such as random regret minimisation (Chorus et al., 2008; Chorus, 2010), result in12

only small differences whilst facing the same key disadvantage of all departures from (linear in13

attribute) RUM, the loss of the ability to calculate welfare measures (for a further discussion on14

welfare analysis with non-linear effects, see e.g. Batley and Dekker (2019) and for regret models,15

see Dekker 2014). Departures to more different models, such as decision field theory (Busemeyer16

and Townsend, 1992), whilst sometimes finding improvements in model fit, additionally result17

in models that become computationally infeasible for large-scale datasets (Hancock et al., 2018).18

Thus, if we are to move away from RUM, we need to investigate alternative approaches that are19

computationally simpler yet better reflect behavioural realism. This leads us to explore and com-20

pare dynamical modelling ideas from other disciplines which are further away from the tried and21

tested. Given the success of using concepts from quantum physics in cognitive psychology, one22

possible alternative is to see if quantum physics can make a similar step into travel behaviour23

modelling. A fundamental aspect of quantum-like models is that they are intrinsically probabilis-24

tic. While in, for example, RUM and RRM, a stochastic sampling of the utility function is added25

to the model to produce probabilistic output, a quantum-like choice model instead implements the26

stochasticity at the foundation of the decision process in the mind of the individual decision-maker.27

Quantum physics, first considered in the early 20th century, was originally developed to ac-28

count for phenomena and results that could not be explained by classical theories of probability29

and physics. In particular, physicists noticed that the measurement of one variable could impact the30

measurement of another. One of the archetypal experiments of quantum mechanics is the double-31

slit scattering experiment (Feynman et al., 1965). In this experiment, either a beam of light or32

particles is projected on a screen with two fine parallel slits. Further behind the slit-screen, the33

intensity of the scattered beam is measured across the receptor screen, in the same direction as the34

slits are separated (Figure 1). When light waves are applied in this experiment, an intensity pattern35

emerges on the receptor screen which shows both diffraction, caused by light scattering within36

each slit, and interference, caused by compounding the light waves coming from the two differ-37

ent slits. The major surprise comes from the fact that these same patterns also occur for beams38

of material particles - e.g. neutrons or heavy molecules. Even when the source is so scarce that39

one can legitimately assume that only a single particle at once crosses the two slits, a diffraction40

and interference pattern will still over time build up on the detection screen. Not only does the41

double-slit experiment prove that matter behaves as waves, but it also shows that a single particle42

can have non-compatible properties - like being at different locations A and B at the same time.43

This potential for ‘non-locality’ of a particle ensues the particle must be at position A and B at the44

same time in order to produce wave-like interference pattern over the positions C on the detector45
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screen (Figure 1). It has been shown that as soon as the presence of the particle at either of the slits1

is positively confirmed for sure, the interference pattern on the detection screen disappears.12

B

A

C

FIGURE 1 : The double-slit experiment (top view). Plain waves are scattered through the double-

slit screen (A and B) and produce a diffraction and interference pattern of intensity on the detection

screen (C, located at a zero point of the intensity). The dashed line indicates the intensity resulting

from single-slit diffraction.

In the double-slit experiment, we can measure for the outcome of the (statistical) propositions3

{a,b,c}.4

a : ‘the particle is present at A’5

b : ‘the particle is present at B’6

c : ‘the particle is never present at C’ ( C is at a zero-point of the interference pattern)7

Let us suppose single particles repeatedly and individually enter the double-slit device (proposition8

a or b is true) and we do not observe a particle at C (proposition c is true). Then the outcomes9

for (a∨ b) and c are both true. Then, by the distributivity law of classical logic, this means that10

((c∧ a)∨ (c∧ b)) is also true. However, if we evaluate these two expressions according to the11

procedures of quantum probability, they both are false. First, the proposition (c∧a) is false because12

the procedure shows a particle is never observed at C if we have an affirmative observation of the13

particle at A, while a non-observation of the particle at location A must set the particle affirmatively14

at location B and again excludes proposition c. By the same token the (c∧b) is false, since never15

observing a particle at C means the particle cannot have been observed at either of the slits. Thus,16

for this experiment, (c∧a)∨ (c∧b) is false, an explicit contradiction of the outcome of c∧ (a∨b).17

This particular example clearly exposes that the classical distributivity rule of ‘and’ and ‘or’ does18

not apply for non-compatible features in quantum theory.19

These findings resulted in the creation of a new theory of probability, known as quantum logic20

(Birkhoff and Von Neumann, 1936). Under quantum logic (which is also known as quantum prob-21

ability), a new set of probability rules were defined, which crucially did not include the axiom of22

1See also Englert (1996) and Greenberger and Yasin (1988) for the expression of the gradual relation between

interference visibility and position predictability.
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distributivity. This new theory of probability has subsequently made the transition into cognitive1

psychology (Bruza et al., 2015) and has also been introduced into transport behaviour modelling.2

For example, Vitetta (2016) introduced a quantum model based on random utility models with3

the addition of an interference term for route choice problems. Additionally, Yu and Jayakrish-4

nan (2018) demonstrated that quantum cognition models can be used effectively to capture the5

difference in state of mind between choices made under stated preference and revealed preference6

settings. However, as far as the authors are aware, there has not been an actual choice model devel-7

oped with quantum concepts that incorporates attribute values for individual alternatives and can8

work for general choices as well as ‘changes in perspective’. Thus, the focus of this paper is to9

explore ways to develop a choice modelling framework based on quantum probability theory that10

can be used for choices in general, as well as efficiently capturing effects caused by ordering and11

context, by engendering interference and rotation effects which adequately reflect the changes in12

the ‘state of mind’ of the respondents.13

In our present study, we will present two quantum models using distinct approaches. The first14

model, named the ‘amplitude model’, is an innovative approach related to geometrically based15

quantum-like models. In (all) quantum-like models the belief-action state of a respondent is de-16

scribed by a vector in a Hilbert space. The amplitude components of the vector represent the latent17

motivation to choose each of the alternatives. In essence, the ‘amplitude model’ implements the18

expressions of utility (or regret) immediately in the amplitudes of the belief-action state of a re-19

spondent. As such, the amplitude model puts the support for each of the alternatives in a trial20

directly at the level of a measurable quantity, the probability (amplitude).21

The second model, designated as the ‘Hamiltonian model’, is based on a dynamic principle22

in which the change of the belief state results from attribute comparisons of the alternatives. In23

this model, therefore, the ‘deliberation process’ itself is implemented. The dynamic approach to24

quantum-like modelling uses the ‘energy operator’, or Hamiltonian, of quantum mechanics to im-25

plement the change of the belief state over time. The changes are caused by the information in26

(and effects from) the input, such as descriptions, questions and choice alternatives or other pre-27

sented sensory resources (Pothos and Busemeyer, 2009; Atmanspacher and Filk, 2010; Martínez-28

Martínez, 2014; White et al., 2014). In our present study the expressions of utility or regret are29

implemented in the phenomenological Hamiltonian. This Hamiltonian then causes the evolution30

of the initial belief-action state of the respondent towards the informed state in which the decision31

is made.32

The remainder of this paper is organised as follows. First, we introduce quantum probability33

theory and discuss the relative benefits of using such a system. We then mathematically describe34

quantum probability theory, discussing how it can be incorporated into a choice model and de-35

tailing two different formulations for new models. We next test the performance of our proposed36

models against typical choice models such as multinomial logit, random regret minimisation and37

also decision field theory, in the context of travel decisions. Finally, we test the use of ‘quantum38

rotations’ on best-worst and contextual choice data, before drawing some conclusions.39

2. QUANTUM PROBABILITY THEORY40

In this section, we first give a general overview of quantum probability theory. We then give41

the mathematical definitions for how quantum probability theory works for basic choices. We42

conclude by describing how it works for a series of related choices. It is in the transformation from43

one choice task to another that a modelling framework based on quantum probability theory looks44



Hancock, Broekaert, Hess and Choudhury 5

very different from traditional choice models.1

2.1. Overview of quantum probability theory2

A simple example of how quantum probability theory works is given in Figure 2. Initially, a3

decision-maker might be making a single choice between two alternatives, travelling by car or by4

train. Each of these alternatives is represented by vectors, |T 〉 and |C〉 respectively (the axes in5

Figure 2). Under quantum probability theory, the decision-maker has some belief state, denoted6

|z〉, regarding whether they will choose car or train.7

FIGURE 2 : Schematic representation of the belief state in the geometric quantum-like model for

a binary choice ‘Train’ or ‘Car’. The belief state |Z〉 is a superposition of |T 〉 and |C〉, expressing

support for both the choice of Train and Car. The (modulus of the) complex-valued amplitudes of

the projections on the respective axes provides the probabilities of each alternative by squaring the

projection lengths |ψT | and |ψC|. In this schematic representation, the units on the axes are reals

and the normalised belief state is a point on the unit circle.2The cosine-similarity of the overall

belief state and the ‘Train’ choice outcome is given by |ψT |= |〈T |Z〉|.

The action of making a choice (or equivalently coming to some result or making a judgement)8

results in a reduction of the state. This can be represented graphically by projecting the belief state9

vector onto the vector corresponding to the chosen alternative. In this example, ψT , represents the10

scalar projection of |z〉 onto the unambiguous state |T 〉 for choosing the train. The ‘length’ of this11

projection is then denoted |ψT |. In Figure 2, these projections are directly over the corresponding12

vectors, and on the axes we denoted the norm of the respective amplitudes.13

For example, when the belief state vector is at 45 degrees (with respect to the Car and Train14

axes), the two projections are of equal length and the choice probabilities are thus 50% each. In the15

example in Figure 2, the car alternative has a higher probability since it shows a larger amplitude16

than the train component. The full mathematical description for this is given in the following17

section on a basic choice under quantum probability theory, which also gives a 3-dimensional18

example. The ‘longer’ the projection onto the vector for an alternative, the more likely it is for19

that alternative to be chosen. The crucial difference in using such a system is how an additional20

question or nudge can impact the decision-maker’s choice for the first question (car or train). If,21

2This schematic representation should not be confused with the Bloch sphere representation for the spin-1/2 particle

in quantum mechanics.
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for example, the decision-maker was asked ‘are you environmentally friendly?’ before they had1

made up their mind between the choice of car or train, they would then be initially answering a2

different question and making a different choice. As a result of the decision-maker deciding ‘I am3

environmentally friendly’, the decision-maker’s state moves from the initial starting state and is4

projected onto the vector representing ‘environmentally friendly’ and vice versa if they decide ‘I5

am not environmentally friendly’ (see Figure 3). This results in making the choice between car6

and train from a different state. Consequently, the length of the projections (|ψC| and |ψT |) onto7

the vectors for car and train have changed. This is graphically represented in Figure 3, with the8

projection length |ψT | being longer if the initial state is first projected onto the environmentally9

friendly vector before being projected onto the train vector, relative to the projection length if train10

is chosen directly from the initial state. Consequently, the probabilities for choosing car and train11

are altered.12

Belief

State

Car
1 C|

T|

Z|

ψ| |
C

ψ| |
T

Train

1
Environmentally

Friendly

Environmentally

Unfriendly

ψ| |
T

ψ| |
C

F|

U|

FIGURE 3 : Schematic representation of making two consecutive binary choices under quan-

tum probability theory in the geometric quantum-like model; first ‘Environmentally friendly’ or

‘Environmentally unfriendly’, followed by ‘Train’ or ‘Car’. The preparatory ecological question

recasts the belief state on the basis {|F〉, |U〉} and will increase the belief support for the choice

‘Train’ on a positive outcome for ‘Environmentally Friendly’ since the amplitude norm |ψT |, in

pink, is then larger than amplitude norm |ψT |, in black, and the reverse is true for ‘Car’. Notice that

while the initial belief state |Z〉 only had some latent tendency for responding ‘Environmentally

Friendly’, after the positive outcome the updated belief state coincides with the environmentally

friendly belief state |F〉 (pink arrow).

Cognitive psychologists have discussed many key reasons for using quantum probability theory13

within cognitive modelling (Busemeyer et al., 2011), with many of these reasons also being trans-14

ferable and relevant within travel behaviour modelling. Firstly, a belief state is most often initially15

‘indefinite’; it may either have some underlying preference in favour of an alternative or it may16

express uniform indifference with respect to the alternatives. This may come about due to dis-17

torted processing or lack of proper informative input. Furthermore, the final belief state is also18

in many instances created rather than just recorded by an effort to measure it. For example, a19

decision-maker might only start considering how environmentally friendly they are after they have20

been asked (or reminded) about how environmentally friendly they are (White et al., 2014). For21

this reason, it is often seen as essential that surveys including both choice tasks and attitudinal22
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questions require the respondent to complete the choice tasks first if the researcher wishes to avoid1

bias in the choice task (Ben-Akiva et al., 2019). However, conversely, a decision-maker may try2

to ‘justify’ their choices with their responses to the attitudinal questions (Cunha-e Sá et al., 2012).3

Consequently, it is difficult to measure a decision-maker’s ‘true’ attitudes, opinions and preference4

without some form of bias. It is easy to see how this relates to issues for choice modellers with, for5

example, analysts often having concerns about the biases or truthfulness within stated preference6

data (Mahieu et al., 2016).7

Secondly, psychologists have put forward the argument that cognition behaves like a rip-8

pling wave pattern rather than a classical particle trajectory (Trueblood and Busemeyer, 2012). A9

decision-maker might consider the advantages of getting the train but then also consider the advan-10

tages of driving. Indeed, many models developed in mathematical psychology assume preferences11

for alternatives that update stochastically (Busemeyer and Townsend, 1993; Krajbich et al., 2012).12

Under quantum probability theory, preference over time ‘behaves like a wave’ and consequently13

exhibits interference patterns and fluctuates over time. It is only when a decision-maker makes14

up their mind and makes a decision that their preference exists as some measurable definite state.15

Before an action or choice is made, an observer does not know for sure what the decision-maker16

will do. There are many preference states within travel behaviour that could similarly be described17

as ‘wave-like’, such as anticipating merging onto a new lane when driving, changing travel mode18

when the weather worsens, or choosing which route to take depending on traffic conditions.19

One of the most crucial quantum concepts, however, is the idea of interferences, as e.g. change20

caused by nudges (such as the previous example of being asked about the environment whilst in the21

process of making a mode choice). After the development of quantum physics to explain ordering22

effects of observed variables (Birkhoff and Von Neumann, 1936), a wide range of quantum mod-23

els, often based on the idea of quantum interference, have been put forward in cognitive psychol-24

ogy (Bruza et al., 2015). These include a quantum model to explain ordering effects (Trueblood25

and Busemeyer, 2011), a quantum similarity model (Pothos et al., 2013), a quantum judgement26

model (Busemeyer et al., 2011) and the disjunction effect in the Prisoner’s Dilemma (Moreira and27

Wichert, 2016) and in the two-stage gamble paradigm (Broekaert et al., 2020). These models per-28

form a similar function to choice models that include state dependence, where a number of different29

models (Seetharaman, 2003) have been applied to capture the temporal correlation of choices over30

time. Furthermore, should measurement data for both attitude and choice be provided, a higher31

dimensional representation could be built. Such models have been presented in the literature and32

have been applied in various contexts; e.g. for choice and confidence level (Kvam et al., 2015),33

for choice and categorisation (Busemeyer et al., 2009) and choice, confidence and response time34

(Busemeyer et al., 2006; Kempe, 2003). Given the success of quantum models at explaining or-35

dering effects within cognitive psychology, there is ample scope for quantum logic and quantum36

ideas within travel behaviour modelling and choice modelling in general.37

2.2. Choice making under quantum probability theory38

More formally, under quantum probability theory, a measurement (or choice scenario), X, can39

be related geometrically to a subspace Lx in a multidimensional complex-valued Hilbert3 space40

3A Hilbert space is a vector space over the set of real or complex numbers C, (see e.g. Aerts and Gabora 2005).

It is the more general form of a Euclidean space, extended to allow for complex numbers and defined over multiple

(possibly infinite) dimensions and it is complete; i.e. a space for which convergent sums of vectors are again elements

of the vector space. For the work in this paper, our Hilbert space is n-dimensional, where n is the number of choice
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(Trueblood et al., 2014b). For each measurement, a number of discrete projection ‘events’ are1

possible. These projection events, if mutually exclusive, are related to orthonormal vectors4 in2

subspace Lx, which are denoted |x1〉, |x2〉, ... |xJ〉 (with J the number of alternatives). For these3

vectors, we use ‘bra-ket’ notation in keeping with the standard notation used in quantum mechanics4

and quantum cognition (c.f. Trueblood and Busemeyer 2011). Under bra-ket notation, a column5

vector in a Hilbert space is represented by a ‘ket’ vector, |·〉, with the corresponding row vector6

(with each element being complex conjugated) a ‘bra’ vector, 〈·| (see e.g. Yu and Jayakrishnan7

2018). This bra-ket convention simplifies the expression of the inproduct of two states, in particular8

the squared norm of a complex-valued vector |Z〉 is then given by the real 〈Z|Z〉.9

These orthonormal vectors, |xi〉, then form a basis for the subspace Lx. Consequently, the10

Hilbert space for a choice task with J alternatives can be represented by a J-dimensional space. This11

means that for a choice set where there are three alternatives, the Hilbert space is a 3-dimensional12

space (illustrated in Figure 4).13

Alt1

3

Belief

State

Alt
2

Altψ| |
2

ψ| |
3

ψ| |
1 Z|

FIGURE 4 : Schematic representation of the belief state in the geometric quantum-like model for

a three-choice paradigm {‘Alt1’, ‘Alt2’, ‘Alt3’} on the unit sphere (see Equation 2). The squared

modulus of the amplitude obtained by projection on the axes for each alternative produces the

respective probability for that choice p(Alt j) = |ψ j|2.

A basic choice. Under quantum probability theory, a decision-maker has some ‘belief state’ re-14

garding their preferences over alternatives, which itself is probabilistic (in that a decision-maker15

inherently has some level of certainty over their preferences and opinions) and is denoted |z〉,16

which can be represented by a vector of unit length (see Figure 4). When a decision-maker makes17

a choice, their state goes from ‘indefinite’ to ‘definite’, by projecting onto the vector represent-18

ing the chosen alternative. This means that for each alternative Alt j, with subspace Lx j
there is19

a corresponding projection operator Px j
- formally Px j

= |x j

〉

〈x j

∣

∣ - to project |z〉 onto the vector20

|x j

〉

.21

alternatives in a given choice task.
4More generally these can have more than one dimension, hence orthogonal subspaces should then be used.
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The choice probability, Pr[ j], for a specific alternative Alt j is given by the modulus square of1

the amplitude for that alternative appearing in the decision-maker’s belief state;52

Pr[ j] = |Px j
|z〉 |2 = |

〈

z|x j

〉

|2 = |ψ j|2. (1)

Since we assume the presented alternatives exhaust all possible choices and each alternative is3

represented by an orthonormal vector (or set of such vectors), the belief state vector must be of4

unit length:5
J

∑
j=1

|ψ j|2 = 1, (2)

A visual check of this fact appears in Figure 4. The lengths of the three projections can be visu-6

alised as the three sides of the cuboid in 3-dimensional space in which Pythagoras’ theorem can be7

applied sequentially.8

A sequence of choices. If a decision-maker makes a second choice across a different set of9

alternatives, this choice may be influenced by the first. Quantum probability theory captures this10

influence by representing the two measurement events by two separate subspaces within the Hilbert11

space, Lx and Ly. Each subspace is separately defined by a set of orthonormal vectors representing12

the alternatives in each measurement event. This means that Lx is spanned by |x1〉, |x2〉, ... |xJ〉13

and Ly is spanned by |y1〉, |y2〉, ... |yK〉, where there are J alternatives for choice scenario X and14

K alternatives for scenario Y (while it must be assured that both scenarios span the same Hilbert15

space).16

Revisiting the example presented in Figure 3, a decision-maker might initially be making a17

choice between commuting by car or train. Under quantum probability theory, the decision-maker18

has some initial belief state, informed by past experience, regarding whether they will choose car19

or train. In this measurement event, all possible states are spanned by the basis vectors |xcar〉,20

|xtrain〉. The closer the vector representing the decision-maker’s state is to the vector representing21

an alternative, the more likely it is for that alternative to be chosen. However, the decision-maker22

could first be asked a different question (Y) about whether they consider themselves to be environ-23

mentally friendly or not. In the ‘change of perspective’ approach of quantum probability theory,24

the initial belief state does not change under the new perspective under question Y, but the refer-25

ence frame does. This means that the probabilities for alternatives being chosen in question Y are26

different from the probabilities for alternatives being chosen in question X because the choice in27

question Y is represented by a different set of basis vectors, |yenv− f riendly

〉

, |yenv−un f riendly

〉

. Con-28

sequently, if the decision-maker makes the choice ‘I am environmentally friendly’, their belief state29

moves through the Hilbert space, projected onto the environmentally friendly vector, |yenv− f riendly

〉

30

(see Figure 3). This means that their new belief state is the vector |yenv− f riendly

〉

itself. Hence, by31

making choice in question Y first, the original choice X between car and train is made from a32

different belief state.33

Crucially, by moving their belief state - through what we call a ‘quantum rotation’ - the size of34

5Using the bra-ket notation, one can easily see:

|Px j
|z〉 |2 = | |x j〉〈x j|z〉|2 = 〈z|x j〉〈x j|x j〉〈x j|z〉= 〈z|x j〉〈x j|z〉= |〈z|x j〉|2
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the projected amplitudes onto the vectors for train and for car have changed.6 As a result, in this1

example, the decision-maker is more likely to choose to commute by train if they first decide that2

they are environmentally friendly. This is graphically represented in Figure 3, where the size of the3

projected amplitude onto the basis vector representing train being chosen has increased, resulting4

in an increased probability of choosing train.5

3. BUILDING A CHOICE MODEL FROM QUANTUM PROBABILITY THEORY6

Whilst Lipovetsky (2018) has applied quantum models to consumer recall tasks with multiple7

alternatives defined on multiple attributes, quantum probability has not ever been applied to multi-8

alternative, multi-attribute choice scenarios (as far as the authors are aware). In this section, we9

look at how we can use ideas from quantum probability within a choice model. We do this by10

first considering what the requirements are for a quantum choice model. Next, we formally define11

our two alternative quantum-like models, one based on an amplitude approach and the other on a12

Hamiltonian approach. We then consider how similar or related choice tasks could be mathemati-13

cally explained by a ‘quantum rotation’. Finally, we discuss a number of different value functions14

that we implement within both standard choice models and our new quantum choice models.15

For our choice model to use quantum probability theory, we need to define a method for con-16

structing an indefinite state vector. If this state vector is of unit length and we take projections17

from it to a set of orthonormal basis vectors (with one vector for each discrete alternative), then18

the sum of the squared length -more precisely the amplitude- of these projections will equal one.19

Consequently, for each alternative, we need to find the amplitude of the projection, as the square of20

this ‘length’ equals the probability with which the alternative is chosen (see Figure 4). This means21

that we must first consider how best to represent the state vector, |z〉.22

If, for example, we imagine that we are making a route choice between three alternatives, the23

development of a state could be represented by Figure 5. When the decision-maker considers24

factors favouring alternative 1, the state vector extends in the direction of the vector representing25

alternative 1 (and hence increasing the amplitude of the projection onto alternative 1). Similarly,26

the decision-maker may consider factors that favour alternatives 2 and 3, resulting in the state vec-27

tor extending in the direction of the vector for alternative 2 or 3. At some point, the decision-maker28

reaches some eventual state and makes the actual (probabilistic) choice.7 To generate this state, we29

need to know the relative importance of the attributes. This means that one option is to calculate30

‘value functions’ for each alternative. However, if we write the value functions, Vj = β ′x j, where31

β is a vector of coefficients and x j is a vector of observed variables relating to alternative j, then32

Vj can be positive or negative. As the probability of an alternative is the squared ‘length’ of the33

projection from the state vector onto the vector for the alternative, positive and negative values34

would lead to the same result. This means that care is required when defining how the relative35

values of the attributes impact the probability amplitudes.36

A further requirement for quantum models is some method for capturing underlying prefer-37

ences towards an alternative. In the representation for the development of an informed state in38

Figure 5, this simply means having some initial state that is still uninformed by the attributes, but39

6Two choices that require a different set of basis vectors are known as ‘incompatible’. If the choices are in fact

compatible and can be represented by the same set of basis vectors, then the order in which the choices are made has

no impact on the probabilities of each alternative being chosen. Consequently, quantum probability collapses back

into classical probability (Hughes, 1992).
7Note that this choice remains probabilistic unless the decision-maker is 100% certain about their choice.
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FIGURE 5 : Schematic representation of the development of an informed belief state. The

quantum-like dynamical approach lets the ‘uninformed’ - or possibly biased - initial state evolve

to an informed state which leads to the final belief state underlying the probabilistic decision. In

the amplitude model this transformation is caused by the subjective utility comparisons immedi-

ately in the vector components, while in the Hamiltonian model these utility differences drive the

Hamiltonian operator of change over time.

is only based on underlying preferences towards an alternative. Thus, the initial state should be1

defined on some parameters that act equivalently to attribute specific constants. Then subsequently,2

from this initial state, the evolution happens when the decision-maker considers the attributes of3

the alternatives.4

3.1. The quantum-amplitude model5

Similar to geometric quantum models, the quantum-amplitude model is directed at implementing6

a specific functionality of the amplitude components of the belief-action state themselves. The7

innovative approach is to implement value functions for the attributes of the alternatives in the8

amplitudes. This approach will show an increased optimisation performance since the supporting9

factors for each of the alternatives are directly expressed in the choice probabilities - through the10

respective amplitudes.811

In geometric approaches, belief states are mostly real-valued vectors of the n-dimensional Eu-12

clidean space, e.g. Pothos et al. (2013); van Rijsbergen (2004), or points on the n-dimensional13

hypersphere.914

In the ‘quantum-amplitude’ approach, we consider the full potential of complex-valued belief15

8This is in contrast with the Hamiltonian model in which the value functions are implemented in the Hamiltonian

components which drive the decision process by progressing the belief state over time and which thus only indirectly

produce the choice probabilities.
9These belief-state vectors can then be expressed either using generalised spherical coordinates (e.g Lipovetsky

(2018); Blumenson (1960)):

ψ1 = cosφ1, ψ2 = sinφ1 cosφ2, ψ3 = sinφ1 sinφ2 cosφ3, . . .

ψn−1 = sinφ1 sinφ2 · · ·sinφn−1 cosφn, ψn = sinφ1 sinφ2 · · ·sinφn−1 sinφn
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amplitudes to directly estimate the choice probabilities. Thus, rather than evolving an initial state1

to a final belief-state vector, in this model we specifically optimise the proper complex amplitudes2

of the final belief state itself.3

For each individual, alternative i in a given choice task has an amplitude, ψi, which is estimated4

as the sum of subjective differences between it and other alternatives j:5

ψi =

(

δi +∑
i 6= j

∆i j

)

/
√

N , (3)

where ∆i j is the subjective difference between alternatives i and j (see Section 3.4 for details on the6

four different value functions that we test to represent this subjective difference) and δi is a constant7

for alternative i which implements the mean impact in the sample of any factors omitted from the8

specification of the value function for that alternative. This can cover both omitted attributes as well9

as underlying preferences for specific alternatives. These constants will only take a value of zero10

if, in the situation of all included explanatory variables taking the same value for the alternatives,11

the probabilities will be equal. Both ∆i j and δi depend on the individual respondent and the task at12

hand. The normalisation factor (which ensures Equation 2 holds),
√

N , is obtained from the sum13

of the squared moduli:14

N =
J

∑
i

∣

∣

∣

∣

∣

δi +
J

∑
i6= j

∆i j

∣

∣

∣

∣

∣

2

. (4)

Whereas adding the same constant to the utility of every alternative does not have an impact in15

random utility models, the multiplication of the amplitudes by the same constant does not impact16

the choice probabilities of alternatives under a quantum system (see Equation 2). Consequently,17

we can have J parameters to capture the underlying preference towards the J alternatives. The18

greater the magnitude of these constants, δi, relative to the magnitude of the differences, ∆i j,19

the less deterministic the choices become. Note that from a mathematical point of view we can20

equivalently estimate the corresponding probabilities, instead of the amplitudes Equation (3), in21

the model parameter optimisation process (Section 5). Finally, we note that the amplitude model is22

more general than the cosine similarity model in that it also allows for complex-valued functional23

expressions, ∆i j, of subjective attribute differences of the alternatives (see section 5.2).24

3.2. The quantum-Hamiltonian model25

In the search for an adequate dynamical approach to the decision process, quantum dynamical el-26

ements have proven effective in covering experimental choice paradigms involving ordering and27

contextuality (Aerts et al., 1999; Busemeyer et al., 2006; Atmanspacher and Filk, 2010; Fuss and28

Navarro, 2013; Martínez-Martínez, 2014; Asano et al., 2015; Kvam et al., 2015; Broekaert et al.,29

2017, 2020; Bagarello, 2019). An introductory treatment of this quantum dynamical approach in30

decision making can be found in Busemeyer and Bruza (2012)’s handbook. At the core of this31

or by using similarity angles (Pothos et al., 2013) as given by (see Figure 2);

ψ1 = cosθ1, . . . , ψi = cosθi, . . . , ψn = cosθn

in which the similarity cosines must satisfy state normalisation ∑
n
i=1 cos2 θi = 1.
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approach is the operator which drives the change of a state vector in quantum theory; the Hamilto-1

nian.10 In contrast to the quantum-amplitude model (see Section 3.1), the ‘quantum-Hamiltonian’2

model thus implements the behavioural decision process as an evolution of the belief state over3

time. In this dynamical choice model the stochastic process underlying the change of a partic-4

ipant’s belief state over time will now be driven through a Hamiltonian which implements the5

comparison of the attributes of the alternatives. More specifically, the Hamiltonian operator H6

controls the change of the state vector according to the dynamics of the Schrödinger equation:7

−i
d

dt
Ψ = HΨ, (5)

where we have assumed dimensionless expressions for time and ‘energy’.11 The only formal8

requirement on the Hamiltonian is Hermiticity, H† = H, i.e. the transpose conjugate of matrix H9

returns H itself. This property assures that the time evolution will conserve the normalisation of10

the belief state at all times and thus ensure that the choice probabilities across the alternatives add11

up to 1.12

The driving factors of the decision task are formally integrated in the Hamiltonian according13

to a parametrised Hadamard gate (Busemeyer and Bruza, 2012; Broekaert et al., 2017)14

H =

(

h11 δ12 +∆12

δ ⋆
12 +∆⋆

12 −1

)

, (6)

where ⋆ indicates the complex conjugate. It should be remarked however that factors in the off-15

diagonal elements of the Hamiltonian serve a different dynamical function than in the amplitude16

model (Equation 3). In the Hamiltonian model, the drivers embody pairwise symmetric compar-17

isons of attributes of two alternatives which dynamically compete with each other. For more than18

two alternatives, we can estimate additional diagonal elements, h j j and each pairwise comparison19

of alternatives is implemented in a separate parallel process by allocating the drivers to the proper20

matrix positions;1221

hi j = δi j +∆i j. (i 6= j) (7)

In the amplitude model, on the other hand, all pairwise attribute comparisons are immediately22

summed into the resulting probability amplitude. The driving factors, {δ ,∆}, therefore serve a23

very different modelling purpose in the two quantum approaches.24

The changed belief state at each moment of time is the solution of the Schrödinger equation25

(see equation 5). This solution can be easily expressed by calculating the propagator:26

U(t) = e−iHt , (8)

10A formally very similar dynamic model is provided by continuous-time Markov chain theory in which the operator

of change is the transition rate matrix or ‘intensity’ matrix (see e.g. Busemeyer and Bruza 2012).
11In quantum-like modelling in decision making, Planck’s constant is set equal to 1 as a standard. This essentially

introduces a scale factor to ‘time’ in the decision process. The Hamiltonian is the generator of change over time but is

further devoid of energy connotation.
12The Hamiltonian model can be extended to encompass non-symmetric comparison of attributes by doubling the

dimension of the Hilbert space. The belief state for each alternative then consists of a two-dimensional subspace.
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and applying it to the initial belief state:1

Ψ(t) =U(t)Ψ(0). (9)

In the Hamiltonian model, the unitary time-propagator thus evolves the uninformed - and in gen-2

eral, unbiased - initial belief state Ψ(0) into the evolving informed belief state Ψ(t)3

Ψ(0) =

(

1/
√

2

1/
√

2

)

−→ Ψ(t) =

(

ψ1(t)
ψ2(t)

)

. (10)

Like in the general quantum-like approach, to obtain the choice probability for a particular alter-4

native in the experimental paradigm, the corresponding subspace projector M j should be applied5

and its outcome norm-squared; ||M jΨ(t)||2. One more crucial formal element in the Hamiltonian6

formalism for a decision process is thus the time of measurement. Since the datasets we cover in7

our present study do not include reaction times, we can fix this time to π/2 in accordance with8

standard time-scaling procedures (Busemeyer and Bruza, 2012).139

3.3. Quantum rotations10

In Section 2.1 and Figure 3, we demonstrated how a ‘change of perspective’ could be accomplished11

by a projection onto a system with rotated axes representing the new context of the decision. In12

an equivalent active implementation, this change of perspective can be incurred by applying a13

rotation operation on the belief state itself (whereas a passive implementation would rotate the basis14

vectors). For the simplest example with two alternatives, this rotation occurs in a 2-dimensional15

Hilbert space. The quantum generators of such rotations are the Pauli matrices, e.g. (Feynman16

et al. 1965, Ch.11);17

σx =

(

0 1

1 0

)

, σy =

(

0 −i

i 0

)

, σz =

(

1 0

0 −1

)

. (11)

The rotation operator, R, itself - about axis n = (nx,ny,nz) and over angle ϑ - is then given by;1418

R = e−iϑn·σ , (12)

where n ·σ gives some combination of the Pauli factors, with the restriction that |n| = 1. These19

rotation operations will be applicable in two of the covered experimental paradigms in our present20

study (see Section 5).21

3.4. Value functions: linear difference, asymmetric decay, soft plus22

As well as the use of different ‘error structures’ provided by the different models, we can also23

improve our models through the use of non-linear value functions to translate objective differences24

13Note that a more elaborate quantum model, with intermediate and iterated response/no-response reductions, is

required to handle response times (Busemeyer et al., 2006; Kempe, 2003)
14Using the equivalence

e−iϑn·σ = 1 cosϑ − in ·σ sinϑ ,

it is easily verified that for ny = 1, one retrieves the classical expression for a rotation matrix in the real plane, e.g.

(Busemeyer and Bruza, 2012; Broekaert et al., 2017).
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into subjective ones. In this paper, we test four different value functions across our logit and1

quantum-like models.2

Linear Difference function (LD). The first value function we use simply calculates the relative3

importance of the linear differences in attributes. Thus, for respondent n in choice task t, we define4

the subjective difference between alternatives i and j as:5

∆i j =
K

∑
k=1

βk · (xik − x jk), (LD) (13)

where k = 1, ...,K is an index across attributes, βk a coefficient for the relative importance of6

attribute k and xik and x jk are the values for alternatives i and j for attribute k.7

Asymmetric Decaying Linear Difference function (ADLD). The second value function we8

test is based on the use of drift rate functions from the multi-attribute linear ballistic accumulator9

model (Trueblood et al., 2014a). The linear ballistic accumulator (LBA), was originally designed10

within mathematical psychology, and is a model designed to capture both choices and response11

times (Brown and Heathcote, 2008). In this approach, a decision-maker starts with a random12

amount of evidence for each alternative. The evidence for each alternative then grows linearly13

according to a set of drift rates (with one rate for each alternative). The first to reach some thresh-14

old is then the chosen alternative. This model was then adjusted for alternatives with multiple15

attributes (MLBA) and has been used successfully to explain choices between ratings for eyewit-16

ness testimony (Trueblood et al., 2014a), consumer and perceptual choices (Turner et al., 2018) and17

gambling and accommodation choices (Cohen et al., 2017). In the approach for multiple attributes,18

the drift rates are generated from a normal distribution where the mean drift rates are a function19

of the attributes of the alternatives. The non-linearity in the specification for the drift rates allows20

for the explanation of the similarity, attraction and compromise effects. Notably, work such as21

Guevara and Fukushi (2016) and Hancock et al. (2018) demonstrate that models that can account22

for these context effects can be effective for understanding travel behaviour. The corresponding23

non-linear expression for the drift rate is the second value function we test in this paper:24

∆i j =
K

∑
k=1

wxi jk
·βk · (xik − x jk), (ADLD) (14)

where wxi jk
is a similarity weighting and βk, xik and x jk are defined as before. Whilst similar in25

appearance to regret functions (see Equation 16), this function, rather than using a logarithm, uses26

similarity weightings. These are defined such that they are an exponentially decaying function of27

distance (dropping the indices for individual and task):28

wxi jk
= exp

(

−
(

λ1 ·
[

xik ≥ x jk

]

+λ2

[

xik < x jk

])

·βk · |xik − x jk|
)

, (15)

where the square brackets convert to 0 or 1 according to the conditional test whether attribute value29

k is larger in Alti than in Alt j, or vice versa. Under MLBA, two different values, λ1 and λ2, are30

used to capture Tversky (1977)’s findings that the subjective similarity between A and B and the31

subjective similarity between B and A may not be equal. Given that differences between losses and32

gains have regularly been shown to be important in a transport context (Hess et al., 2008; Masiero33

and Hensher, 2010; Stathopoulos and Hess, 2012), this is a useful feature for this quantum model34
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as well. Both λ values should be greater than zero to ensure that attributes that are more similar1

have a higher similarity value wxi jk
. This results in weights that are between 0 and 1.15 Whilst2

MLBA models typically use just a single pair of λ parameters, another option is to have pairs that3

are specific to each attribute (i.e. λ1k and λ2k), though this would of course lead to a large increase4

in the number of estimated parameters if there is a large number of attributes.5

Softplus function (S+). The third value function we test is derived from ‘softplus’ functions,6

which are used for the activation of a node depending on inputs in a neural network (Hahnloser7

et al., 2000) and are frequently implemented within machine learning (Dugas et al., 2001; Nair and8

Hinton, 2010; Zheng et al., 2015). This function is better known in choice modelling for their use9

within regret functions from random regret minimisation (RRM). The deterministic regret (Chorus,10

2010) for the difference between two alternatives i and j is:11

∆i j =
K

∑
k=1

ln(1+ eβk(x jk−xik)), (S+) (16)

with βk, xik and x jk defined as before.12

µ-RRM function (µ-RRM). The final value function we use is based on µ-RRM (van Cra-13

nenburgh et al., 2015), which is designed to estimate the ‘profundity of regret’. It is defined as:14

∆i j = µ ·
K

∑
k=1

ln(1+ e
βk
µ (x jk−xik)), (µ −RRM) (17)

where µ is a parameter that results in the function collapsing to the LD function (Equation 13) if it15

is arbitrarily large, and to the S+ function (Equation 16) if it is close to a value of 1.16

The use of the four different value functions for ∆i j together with Equations (A1, A2), in the17

Appendix, of the Logit approach, thus correspond to a multinomial logit (MNL), a contextual18

utility model and random regret minimisation models (RRM, µ-RRM), respectively. We compare19

these base models against all of these value functions combined with quantum choice models in20

Section 5.1.21

4. DATA FOR EMPIRICAL EXAMPLES22

In this paper, we test our different specifications of quantum models on a number of travel be-23

haviour datasets, which we now describe in turn.24

4.1. Swiss value of time dataset25

The first dataset we use comes from the Swiss value of time study (Axhausen et al., 2008), where26

389 participants each make 9 binary route choice tasks. The two alternatives are described by travel27

cost (CHF), travel time (minutes), headway (minutes) and the number of interchanges required28

to complete the trip. This is a basic route choice dataset, without the possibility of testing for29

interference effects, i.e. an absence of conditions that are specifically suitable for quantum models.30

We include this ‘basic’ dataset to test how our quantum models perform under basic settings (i.e.31

when there is no need for a ‘quantum rotation’). This allows us to test whether the underlying32

structure for the quantum models is effective for modelling travel behaviour.33

15Note that we adjust the drift rate specification and the weighting functions from the standard specification in

Trueblood et al. (2014a) to include weights (βk) for the relative importance of different attributes.
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4.2. UK value of time dataset1

The second dataset that we use in this paper comes from the most recent value of travel time study2

conducted in the UK (Batley et al., 2017). This dataset comprises of 15,045 choices between two3

balanced alternatives, one of which is cheaper and the other faster (SP1 in Batley et al. 2017). This4

second dataset allows us to consider quantum rotations to understand the impact of a change in the5

position of the alternatives or the attributes. In the lay-out of the UK value of time paradigm, two6

travel alternatives are juxtaposed and are ordered according to two variations;7

Time on top: 1) the shorter time but more expensive alternative on the left of the page and thus8

the longer time but cheaper alternative on the right ‘t/C-T/c’, and 2) the longer time alternative on9

the left of the page and thus the shorter time on the right ‘T/c-t/C’.10

Different respondents received the same alternatives and orders, but with inverted ordering of the11

textual formulation (‘phrasing’) of the time and cost of the alternative. With these adapted formu-12

lations of the options, the two alternatives were again presented in both relative positions.13

Cost on top: 1) the configuration with shorter time alternative on the left ‘C/t-c/T’, and 2) the14

configuration with longer time alternative on the left ‘c/T-C/t’.15

The aggregated respondent preferences given in Table 1, show the option order variation16 to have16

a significant influence on choice.1717

TABLE 1 : Observed choice share for alternative 1 in UK-Context paradigm

Option Order 1 Option Order 2

Textual Order 1 0.495 0.474

Textual Order 2 0.517 0.473

Initial tests suggest that the option order shows a bias effect on the choices made by the respon-18

dents, with χ2(1,N = 15045) = 15.884, p = 6.735e− 5. However, we see that the textual order19

does not, with χ2(1,N = 15045) = 1.628, p = 0.280. These effects cannot however be disentan-20

gled from the impacts of changes in attributes levels in choice tasks, as whilst a balanced design21

is used to create the choice tasks, the attribute levels are based on a reference trip, meaning that22

contextual effects can only be disentangled through the estimation of models jointly incorporating23

the impact of all attributes.24

4.3. UK best-worst dataset25

The third dataset uses the best-worst format, allowing us to test quantum rotations for their ability26

to capture both best and worst choices simultaneously. The best-worst dataset we use comes from27

a survey asking public transport commuters living in the UK to make a set of ten choices between28

three route alternatives in a stated preference survey. Each choice task involves an invariant refer-29

ence trip and two hypothetical alternatives. In each instance, the first alternative corresponded to30

the current respondent-specific conditions. The attributes of the two other alternatives are pivoted31

around the attributes of the status quo alternative, where the design process ensured that none of32

16Note that Prob(Alt2) = 1 - Prob(Alt1) in Table 1.
17Notice that order effects in quantum-like modelling have been covered previously for consecutive execution of

tasks over time and in varied order of execution. In the current paradigm, the order effect relates to variations of visual

presentation and phrasing ordering all in the same instance of time.
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the three alternatives dominates. Each alternative is described by six attributes: travel time (in1

minutes), fare (£), rate of crowded trips, rate of delays (both out of 10 trips), the average length2

of delays (across delayed trips) and the provision of delay information service (which could be3

unavailable, available at a cost, or available for free). A total of 391 participants completed 104

choice tasks. The participant’s task consists of choosing the best option out of the three presented5

alternatives, and the worst option out of the two remaining alternatives. As participants choose a6

best and a worst alternative in each choice task, we have a total of 7,820 choices. For full details7

of the dataset, readers should refer to Stathopoulos and Hess (2012). Crucially, in this best-worst8

choice data, a bias can be observed in the respondent choice shares, which are given in Table 2,9

with respondents tending to choose alternatives 2 or 3 as their least favoured alternative more often10

than their current trip (alternative 1), χ2(2,N = 7820) = 899.9, p < 2.2e−16.11

TABLE 2 : Joint Choice Probabilities and marginals in UK-Best/Worst paradigm

Alternative 1 worst Alternative 2 worst Alternative 3 worst Sum

Alternative 1 best • 0.198 0.149 0.347

Alternative 2 best 0.098 • 0.251 0.349

Alternative 3 best 0.058 0.246 • 0.303

Sum 0.156 0.444 0.400 1

5. EMPIRICAL APPLICATIONS12

In this section, we describe the various empirical exercises conducted on the data described in13

Section 4. We start with basic models, before increasing the complexity of the models. Finally,14

we consider out of sample validation for quantum rotations. For all models, we use R packages15

maxLik (Henningsen and Toomet, 2011) and Apollo (Hess and Palma, 2019) for estimation of the16

log-likelihood functions.17

5.1. Basic models: logit, DFT, q-Hamilton, q-amplitude.18

For the first test of our quantum models, we use all three datasets (Swiss, UK-Context and UK-19

Best/Worst). At this point, we do not yet consider quantum rotations, simply focussing on com-20

paring the different modelling approaches as well as testing the impact of using different value21

functions. Whilst these value functions can incorporate real and imaginary parts for the quantum22

choice models, we test real-only value functions in this section, with comparisons using imaginary23

parts in Section 5.2. For all three datasets, we compare the quantum models against multinomial24

logit (MNL), random regret minimisation (RRM), µ −RRM and a contextual utility model with25

ADLD value functions (from MLBA theory, as defined in Section 3.4). All of these models have26

the assumption of no error correlation across choices (thus all choices are treated as being inde-27

pendent from each other, with no correlation assumed between sequential choices), as at this point,28

we wish to test the impact of simply changing the value function or changing from a classical29

error structure (which assumes extreme value errors) to quantum choice models.18 We also test30

18We report robust standard errors throughout as the computation of the covariance matrix then also accounts for

the repeated choice nature of the data, which generally results in an upwards correction of standard errors (cf. Daly

and Hess (2010).
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our models against Decision Field Theory (DFT), which was demonstrated to outperform standard1

choice models in our previous research (Hancock et al., 2018). DFT is a dynamic stochastic choice2

model under which the preferences for different alternatives update over time within the context3

of a single choice. For a full description of the model, please refer to the Appendix. We first4

look at specific considerations for the best-worst data, before discussing model specification more5

generally, and then presenting the results.6

5.1.1. Best-worst data modelling methodology7

For the best-worst data, we at this point make the basic assumption that best is the opposite of8

worst. In a utility context, it is common practice to assume symmetry between best and worst,199

such that:10

U(Alti worst) =−U(Alti best). (18)

For quantum models, however, this translation is not as simple for amplitudes. This is a conse-11

quence of using the squared amplitudes to calculate the probability of choice of alternatives (see12

Equation 1), when negative amplitudes for each projection will result in the same probabilities for13

each alternative as the corresponding positive projections. In the case of only three alternatives (a14

regular setting for many surveys), there however exists a simple transformation. Given that there15

are two alternatives left after choosing the most preferred, the probability of picking one alterna-16

tive as the second best (or second most preferred) equals the probability of picking the other as the17

worst. Consequently, given alternatives i and j, we can simply define the amplitudes for alternative18

i being the worst as:19

|ψworst i
|= |ψbest j

|, (basic inversion) (19)

which we define as a ‘basic inversion’ as it corresponds to the utility model in Equation 18, in that20

the factors that determine best and worst choice are identical.21

For all models, the decision process of the best-worst choice task can be analysed as a progres-22

sion of a single encompassing process in which valuations of the first stage of choosing the best23

alternative are carried over into the subsequent process of choosing the worst alternative. On the24

other hand, these two stages of choice making can be considered to occur independently of each25

other without carry-over of previous outcomes. Mathematically, this means that in a ‘continued26

deliberation’ approach, utilities or amplitudes are generated using the appropriate value function27

to estimate the probability of each alternative being chosen as the best. Equations 18 and 19 are28

then used to generate the probability for the worst alternative directly, without a new evaluation29

of utilities or amplitudes. In an ‘independent’ evaluation approach, the utilities and amplitudes30

are re-evaluated for worst choice, where attribute differences between the alternative chosen as the31

best and the remaining alternatives are not included (thus, for example, under the amplitude model,32

Equation 3 would no longer have a summation, simply requiring ∆i j where i and j are the only two33

remaining alternatives).34

5.1.2. General points on model specification35

For the models tested in this section, we have the following parameters:36

19This is an oversimplification, with recent work demonstrating that an alternative is to use a scaling parameter,

α , for the difference in scale between best and worst Hawkins et al. (2019). Alternatively, one can use a completely

separate set of parameters for best choice compared to worst choice (Giergiczny et al., 2017), a point to which we

return in Sections 5.3 and 5.4.
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• All models: A relative importance parameter (βk) for each attribute (4, 2 and 8 parameters1

respectively for the Swiss, UK value of time and UK best-worst datasets.20)2

• Utility models: J − 1 alternative specific constants (1, 1 and 2 parameters respectively for3

the Swiss, UK value of time and UK best-worst datasets).4

• DFT models: J−1 alternative specific constants (1, 1 and 2 parameters respectively for the5

Swiss, UK value of time and UK best-worst datasets). All DFT models have 1 additional6

estimated parameter for the number of preference updating steps, with the UK best-worst7

model additionally having two feedback matrix parameters, φ1 and φ2. These two parameters8

were found to be insignificant for the Swiss and UK value of time datasets (in line with9

previous results for datasets comprised of choices tasks with 2 alternatives, Hancock et al.10

2020) and were therefore omitted. Note that as we use attribute scaling coefficients in our11

DFT models (see Appendix), we fix the error σε = 1 for normalisation purposes.12

• Hamiltonian models: 1 alternative pair constant for the Swiss and UK value of time datasets13

and 3 for the UK best-worst dataset. We also have J −1 Hamiltonian matrix diagonals (1, 114

and 2 parameters respectively for the Swiss, UK value of time and UK best-worst datasets).15

Finally, the Hamiltonian models for UK best-worst models incorporating ‘independent de-16

liberations’ has different Hamiltonian matrices for best and worst choice. For best choice, a17

3x3 matrix is required, thus 2 parameters are required, whilst for worst choice, we require a18

2x2 matrix, meaning that 1 additional parameter is required.19

• Amplitude models: J alternative specific constants (2, 2 and 3 parameters respectively for20

the Swiss, UK value of time and UK best-worst datasets).21

• ADLD value function: 2 additional parameters for the utility model, λ1 and λ2. For the22

Hamiltonian model, we only estimate a single λ as we set λ1 = λ2 such that ∆i j = ∆ ji and23

the Hamiltonian matrix remains Hermitian. DFT similarly requires ∆i j = ∆ ji, thus only has24

one λ estimated (See explanation of this in the Appendix). For the amplitude models, we25

fix one λ parameter to a value of 1, as dividing λ by some value x and multiplying the26

β parameters by x results in amplitudes that are also multiplied by x (hence normalisation27

results in exactly the same probabilities and an overspecification if we do not fix a λ ).28

• ADLDpA value function: Has a set of lambdas for each attribute (‘ADLD per Attr.’). This29

results in an insubstantial change in log-likelihood for the Swiss and UK best-worst datasets,30

thus we only show the results for the UK value of time dataset. As this dataset has two31

attributes, it has a total of 4 λ -parameters in the utility model, and 2 in the Hamiltonian and32

DFT models (with the same restrictions applied from above).33

• µ-RRM value function: 1 additional parameter, µ , which measures the profundity of regret.34

20Note that the UK best-worst dataset has choice alternatives with 6 attributes. The provision and cost of delay

information service are treated separately, and we also have a ‘reliability’ index, which is the expected delay, defined

as the interaction between the average time delay and the rate of delays, which was found to be significant in previous

research (Stathopoulos and Hess, 2012).
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5.1.3. Estimation results1

The results for all of the basic models21 are given in Table 3, with these results complemented by2

Figure 6.3

For the Swiss dataset, the best model fit is obtained by a quantum amplitude model with an4

ADLD value function. Notably, there is a high degree of non-linearity, with all ADLD functions5

resulting in a significant improvement over models with a linear difference value function. If only6

linear differences are considered, DFT results in the best model fit. Gains over the LD value7

function are also obtained through the use of S+ and µ-RRM value functions for the quantum8

amplitude model. Whilst the model results obtained from the quantum Hamiltonian models are9

similar to those of the utility models, DFT and quantum amplitude models both offer substantial10

improvements in model fit, for all value functions other than a quantum amplitude model with11

linear differences.12

Similar results are also obtained for the UK value of time data, with DFT again substantially13

outperforming all other models when linear differences are used. This suggests that a standard14

DFT model can account for non-linearity, as the difference disappears upon moving to ADLD15

value functions, for which very similar log-likelihoods are obtained across all four models. The16

quantum amplitude model again gives us the best model fit across the dataset, through the use17

of attribute-specific λ parameters in the ADLDpA value function.22 This addition results in the18

amplitude model substantially outperforming the other models. The µ-RRM model obtains an19

estimate for µ that is insignificantly different from 1 for the quantum amplitude model, resulting20

in an equivalent model fit to that of the S+ value function. We again observe no difference in model21

fit between RRM, µ-RRM and MNL as there are only two choice alternatives in all choice tasks.22

For the UK best-worst dataset, our quantum models do not perform as well. This is particularly23

the case for continued deliberation (when a single value is used to generate probabilities for best24

and worst choice), for which the best performing model is the ADLD utility model. Whilst DFT25

achieves similar model fit, neither Hamiltonian nor amplitude models perform as well as the utility26

models. Notably, very similar log-likelihoods are obtained for MNL, RRM and µ−RRM. We again27

observe that DFT models perform best for linear difference value functions, with a substantial28

difference observed for the UK best-worst independent deliberation models. This advantage is29

reduced through the use of ADLD value functions, though DFT models still give the best model30

fit.31

Crucially, across all three datasets, the best performing quantum amplitude model achieves a32

better model fit than the best utility model. In comparison to the quantum models, DFT performs33

similarly for the Swiss dataset, worse for the UK value of time dataset and better for the UK best-34

worst dataset. The only substantial difference in model fit in favour of the Hamiltonian model35

over the amplitude model occurs when linear differences are used for the independent deliberation36

models. This difference is reversed, however, through the use of ADLD value functions. In Table 4,37

we also give some parameter estimates for the ADLD models run on the Swiss data (model outputs38

for more complex specifications of these models are given in Tables 7 and 10 for the UK value of39

time and UK best worst datasets, respectively). Whilst the outputs from quantum and DFT models40

21Note that we do not report BIC values here, as for the Swiss dataset, the best-fitting version of each model has

the same number of parameters, and for the UK datasets, we provide more complex versions of the models in later

subsections.
22Note that ADLDpA value functions were tested on both the Swiss and UK best-worst datasets but did not result

in a significant improvement in model fit for any of the model types.
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TABLE 3 : Log-likelihoods for basic versions of logit, DFT, quantum Hamiltonian and quantum amplitude models across all three

datasets

Model Type

Utility
Decision Field Quantum Quantum

Theory Hamiltonian Amplitude

Dataset Value function pars. LL pars. LL pars. LL pars. LL

Swiss

LD 5 -1,667.97 6 -1,575.40 6 -1,666.92 6 -1,682.83

ADLD 7 -1,631.46 7 -1,570.56 7 -1,638.96 7 -1,569.05

S+ 5 -1,667.97 6 -1,587.00

µ-RRM 6 -1,667.97 7 -1,576.56

UK value of time

LD 3 -9,603.17 4 -9,390.42 4 -9,412.23 4 -9,524.21

ADLD 5 -9,306.86 5 -9,309.98 5 -9,310.32 5 -9,313.73

ADLDpA 7 -8,936.61 6 -8,982.05 6 -9,026.91 7 -8,790.80

S+ 3 -9,603.17 4 -9,369.61

µ-RRM 4 -9,603.17 5 -9,369.61

LD 10 -5,802.67 13 -5,788.36 13 -5,831.05 11 -5,850.54

UK best-worst ADLD 12 -5,777.57 14 -5,780.56 14 -5,818.60 12 -5,802.22

[continued deliberation] S+ 10 -5,803.97 11 -5,812.90

µ-RRM 11 -5,802.25 12 -5,812.90

LD 10 -5,780.34 13 -5,656.16 14 -5,818.74 11 -5,868.75

UK best-worst ADLD 12 -5,668.36 14 -5,648.68 15 -5,818.74 12 -5,660.84

[independent deliberation] S+ 10 -5,815.69 11 -5,683.49

µ-RRM 11 -5,724.44 12 -5,683.49
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FIGURE 6 : The log-likelihoods of the basic models across the three datasets
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cannot be translated into measures such as the value of travel time, we can obtain an indication for1

the relative importance (RI) of the different attributes by dividing the parameter estimates by the2

sum of the absolute value of all attribute coefficients. Thus, the relative importance for attribute l3

is defined:4

RIl =
|βl|

∑
K
k=1 |βk|

, (20)

where k = 1, ...,K is an index across attributes. All models find significant estimates with the5

expected sign for all four attributes, and no significant bias between alternatives 1 and 2. The6

quantum amplitude model gives similar relative importance weights to the utility model, whereas7

the DFT and Hamiltonian models give less importance to cost, instead giving a higher weight to8

the number of changes (βCH). The quantum amplitude model has a better fit than the Hamiltonian9

model, however, suggesting that differences in attribute importance across the models may not be10

the driving force behind the differences in model fit.11

Additionally, all models find significant estimates for λ1, which is unsurprising given that all12

models with ADLD value functions offer a significant improvement in model fit over the corre-13

sponding LD value function models. The non-linearity captured by the models utilising ADLD14

functions is demonstrated for differences in travel time between alternatives in Figure 7. In this15

figure, the y-axis shows the ‘relative contribution’ to ∆i j, which is defined as Equation 14 but with-16

out the multiplication by βk (thus it is equivalent to wxi jk
· (xik − x jk)), which allows us to compare17

the impact of the non-linearity across the models. These results suggest that the quantum models18

find a stronger damping effect, resulting in greater differences having less of an impact in these19

models relative to their impact in the DFT and logit models, which have nearly identical satiation20

rates.21

FIGURE 7 : The non-linearity for time differences in the Swiss models
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TABLE 4 : Parameter estimates from the models for the Swiss dataset with ADLD value functions,

with rel. weight giving the relative importance of the different attributes

Utility DFT q-Hamiltonian q-Amplitude

Parameters 7 7 7 7

Log-likelihood -1,631.46 -1,570.56 -1,638.96 -1,569.05

βT T

est. -0.1231 -3.8682 -0.0300 -0.4071

rob. t-rat. -5.00 -9.35 -9.55 -3.82

rel. weight 8.3% 5.8% 6.3% 6.8%

βCOST

est. -0.3575 -12.7524 -0.0883 -1.3585

rob. t-rat. -4.17 -6.55 -5.82 -3.23

rel. weight 24.1% 19.1% 18.5% 22.6%

βHW

est. -0.0257 -1.2633 -0.0100 -0.1051

rob. t-rat. -7.68 -5.77 -14.54 -4.23

rel. weight 1.7% 1.9% 2.1% 1.7%

βCH

est. -0.9773 -48.9351 -0.3496 -4.1473

rob. t-rat. -5.94 -6.49 -15.04 -4.42

rel. weight 65.9% 73.2% 73.2% 68.9%

λ1

est. 0.7560 0.0027 0.4300 0.0325

rob. t-rat. 2.29 3.07 7.81 4.35

λ2

est. 0.0859 1.0000

rob. t-rat. 0.79 fixed

δ1

est. -0.0150 -1.1200 0.6400

rob. t-rat. -0.37 -0.37 2.06

δ2

est. 0.0000 0.0000 0.6500

rob. t-rat. fixed fixed 2.12

δ12

est. -0.0025

rob. t-rat. -0.22

σε

est. 1.0000

rob. t-rat. fixed

t
est. 5.9293

rob. t-rat. (vs. 1) 5.96

h11

est. 0.9051

rob. t-rat. (vs. 1) 2.37
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5.2. Extension to complex value-functions1

Proper to a quantum-like approaches, the value functions (see Section 3.4), which build up the2

amplitudes, Equation (3) and drive the Hamiltonians, Equation (7), need not to be restricted to real-3

valued expressions. This increased flexibility allows for interactions between different components4

within an evaluation of an alternative.5

5.2.1. Specification6

Whilst there are many different possibilities for how to construct real and imaginary parts within a7

value function, in this section we consider only simple specifications where the alternative specific8

constants (δ ) and attribute comparisons (∆) are either real or imaginary. For imaginary parts,9

we simply multiply the corresponding component by i. Thus, for example, in the Hamiltonian10

model, Equation 7 becomes hi j = δi j + i ·∆i j, for a model with real alternative specific constants11

and imaginary valued attribute differences. This gives us four alternative specifications for the12

Hamiltonian models. For the amplitude model, the equivalent model with real alternative specific13

constants and imaginary valued attribute differences is (for the UK value of time dataset):14

ψ1 = (δ1 + i ·wtc12 · tc12 + i ·wtt12 · tt12)/
√

N (21)

ψ2 = (δ2 + i ·wtc21 · (−tc12)+ i ·wtt21 · (−tt12))/
√

N (22)

with tc12 the difference in travel cost between alternatives 1 and 2, tt12 the difference in travel15

times between alternatives 1 and 2, multiplied by their similarity weightings (which are defined in16

Equation 15). Finally, we have:17

N = |δ1 + i ·wtc12 · tc12 + i ·wtt12 · tt12|2 + |δ2 + i ·wtc21 · (−tc12)+ i ·wtt21 · (−tt12)|2 , (23)

which ensures that the sum over the probabilities of each alternative equals 1. We only have two18

different real-imaginary combinations for the amplitude models, as a result of the use of the norm19

in Equations (4) and (23), implying

∣

∣

∣i ·δi +∑
J
i 6= j ∆i j

∣

∣

∣

2

=
∣

∣

∣δi + i ·∑J
i 6= j ∆i j

∣

∣

∣

2

and also20
∣

∣

∣i ·δi + i ·∑J
i6= j ∆i j

∣

∣

∣

2

=
∣

∣

∣δi +∑
J
i6= j ∆i j

∣

∣

∣

2

. For the Hamiltonian models, each of the four real-imaginary21

combinations leads to a different dynamical evolution as a result of Equation (8).22

5.2.2. Results23

The results of each of these specifications is given in Table 5 for the ADLD value function model24

for each dataset.25

For the Hamiltonian models, the addition of imaginary differences (Im-∆) has a negative impact26

for the Swiss and UK value of time datasets, resulting in a far inferior model fit. The alternative27

specific constants (which are not significant for the Swiss dataset, see Table 4) have little effect on28

the model, with the consequence that there is little impact on model fit by changing from real to29

imaginary alternative specific constants. For the UK best-worst dataset, we observe far superior30

model fits through the use of imaginary attribute differences, with the improvement for the inde-31

pendent deliberation model resulting in the Hamiltonian model becoming more similar in model32

fit in comparison to the quantum amplitude, utility and DFT model results for the same data. For33

the amplitude models, we observe a better model fit in all cases for real-real/imaginary-imaginary34

combinations. Overall, these results suggest that there is ample scope for future exploration of35

alternative specifications of real and imaginary parts within quantum choice models.36
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TABLE 5 : Results from models incorporating real and imaginary parts for both q-Hamiltonian

and q-Amplitude models

Re-δ Re-∆ Re-δ Im-∆ Im-δ Re-∆ Im-δ Im-∆

q-Hamiltonian q-Hamiltonian q-Hamiltonian q-Hamiltonian

Swiss 7 -1,638.96 7 -1,785.75 7 -1,638.88 7 -1,785.89

UK value of time 6 -9,026.91 6 -9,395.86 6 -9,028.27 6 -9,394.86

UK best-worst [continued] 14 -5,818.60 14 -5,792.70 14 -5,814.29 14 -5,811.96

UK best-worst [independent] 15 -5,818.74 15 -5,684.40 15 -5,762.21 15 -5,810.28

q-Amplitude q-Amplitude q-Amplitude q-Amplitude

Swiss 7 -1,569.05 7 -1,569.56 7 -1,569.56 7 -1,569.05

UK value of time 7 -8,790.80 7 -8,967.92 7 -8,967.92 7 -8,790.80

UK best-worst [continued] 12 -5,802.22 12 -5,834.97 12 -5,834.97 12 -5,802.22

UK best-worst [independent] 12 -5,660.84 12 -5,673.93 12 -5,673.93 12 -5,660.84

5.3. Models with quantum rotation: contextual and ordering effects in the UK value of time1

dataset2

Thus far, we have only implemented quantum choice models without the use of quantum rotations.3

In Section 3.3, we demonstrate how ‘a change of perspective’ in a decision task can be represented4

within a quantum choice model by performing a quantum rotation on the belief state. In this5

section, we give the results of models incorporating rotations for contextual and ordering effects in6

the UK value of time dataset.7

This theoretically works well for the UK value of time dataset, which has some choice sets8

with the cheaper alternative shown first, and some with the faster alternative shown first, as well9

as having cost sometimes on top and sometimes at the bottom. Whilst we could again use a full10

set of different parameters for the four different scenarios, these ordering effects have previously11

been found to be significant (Hess et al., 2017), making this an appropriate dataset to test quantum12

rotations.13

5.3.1. Model specification14

Contextual effects such as described above can be captured in both our amplitude and Hamiltonian15

quantum models through a supplementary rotation for a switched option order and/or switched16

textual representation. The sizes of the two rotation angles give an immediate process-based as-17

sessment of the location order bias and the textual phrasing bias.18

In the Hamiltonian model, there is a Hamiltonian operator for the basic change in belief state19

due to the different values of the attributes of the two alternatives, and additionally an effect from20

a supplementary rotation for switched option order and for switched textual representation. The21

order effect is implemented by a rotation of the belief state Ψ= (ψ1,ψ2) in the Hilbert space where22

the first component ψ1 represents the belief amplitude for alternative 1 and the second amplitude23

ψ2 sustains the choice for alternative 2. Thus, for the reference configuration, ‘option order’ (Op-24

tOrd=1) and ‘time-cost order’ (TCOrd=1), we have a basic Hamiltonian (H11) set up as before,25

based on Equation 6. This is again a basic parametrised Hadamard gate, that is commonly used to26

implement the dynamics in a binary choice (Busemeyer et al., 2011). When the time-cost order re-27
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mains as in the reference configuration (TCOrd=1) while the option order is switched (OptOrd=2),1

the basic Hamiltonian is complemented with a small rotation over an angle ϑLR to implement the2

bias for option ordering. When on the other hand, only the time-cost order is changed with respect3

to the reference configuration and the option order remains unchanged (TCOrd=2, OptOrd=1),4

the basic Hamiltonian is again complemented with a rotation but with different angle size ϑPhr.5

When both time-cost order and the option order are changed with respect to the reference configu-6

ration, (OptOrd=2, TCOrd=2), the basic Hamiltonian is now complemented with the effect of both7

rotations with the combined angle ϑLR +ϑPhr. Thus, the respective Hamiltonians are given by:8

H11 =

(

h11 δ12 +∆12

δ ⋆
12 +∆⋆

12 −1

)

(24)

H12 = H11 +ϑLR σy (25)

H21 = H11 +ϑPhr σy (26)

H22 = H11 +(ϑLR +ϑPhr)σy. (27)

Note that this is equivalent to adjusting the off-diagonals of H11, with, for example, the upper and9

lower off-diagonals of H12 being δ12 +∆12 − i ϑLR and δ ⋆
12 +∆⋆

12 − i ϑLR, respectively. Conse-10

quently, for this implementation of the Hamiltonian model, the process of attribute comparison11

and ordering bias occurs simultaneously (addition on Hamiltonian level). The choice process12

could also be modelled sequentially by separating the Hamiltonian evolution operator, Equation13

(8), from the rotation operator, Equation (12), and applying them consecutively to the initial belief14

state. This method can also be used for the amplitude-approach, under which the attribute values of15

the two alternatives initially determine the basic reference probability amplitude, while dedicated16

rotations implement the bias process for switched option order and for switched textual represen-17

tation. Thus, in principle, we implement the same respective rotation operators (based on Equation18

12), for time-cost ordering and option ordering;19

RPhr = e−iϑPhr σy , (28)

RLR = e−iϑLR σy (29)

in both the amplitude model and Hamiltonian model.20

We compare different levels of complexity for each of the different model structures. We21

test three variations for contextual ‘changes in perspective’ for both the Hamiltonian and ampli-22

tude models as well as trying ‘separate’ parameter models where a set of attributes (based on the23

ADLDpA basic models) are estimated for each of the four contextual framings. Thus, we have the24

following five specifications:25

1. A basic model. These models correspond to those given by the ADLDpA models in Table 3.26

2. A model where a shift is made to ∆12, such that the constant δLR is added if (OptOrd=2) and27

the constant δPhr is added if (TCOrd=2). For the Hamiltonian model, this corresponds to28

Equations (24-27) with the use of σx in place of σy.29

3. A model where an imaginary valued shift is made to ∆12, such that i · δLR is added if (Op-30

tOrd=2) and i ·δPhr is added if (TCOrd=2). For the Hamiltonian model, this corresponds to31

Equations (24-27). The use of imaginary numbers here means that this version cannot be32

implemented in the utility and DFT models.33
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4. A model with the application of a quantum rotation of RPhr as defined by Equation 28 if1

(TCOrd=2), and a rotation of RLR (see Equation 29) if (OptOrd=2). This results in the2

estimation of two additional parameters, ϑPhr and ϑLR.3

5. A ‘separate’ model, in which the basic models are applied separately to subsets of the data4

corresponding to each contextual scenario. As we have four different scenarios, this results5

in a fourfold increase in the number of parameters for each model.6

5.3.2. Results7

The results of all possible specifications are given for each of the four model frameworks in Table8

6.9

TABLE 6 : Log-likelihood and BIC performance of Logit, DFT, Hamiltonian and Amplitude mod-

els for the UK-context paradigm, with models 2-5 also giving the improvement in log-likelihood

over model 1.

Logit DFT q-Hamiltonian q-Amplitude

[1] Basic model

pars. 7 6 6 7

LL -8,936.61 -8,982.05 -9,026.91 -8,790.80

BIC 17,941 18,022 18,112 17,649

[2] Context shifts added to ∆12

pars. 9 8 8 9

LL -8,927.59 -8,976.53 -9,018.09 -8,783.64

LL improvement 9.01 5.52 8.82 7.16

BIC 17,942 18,030 18,113 17,654

[3] (Im) Context shifts added to ∆12

pars. 8 9

LL -9,016.93 -8,789.96

LL improvement 9.97 0.84

BIC 18,111 17,666

[4] Rotation operators, RPhr and RLR

pars. 8 9

LL -9,017.76 -8,779.71

LL improvement 9.14 11.09

BIC 18,112 17,646

[5] Separate pars.

pars. 28 24 24 28

LL -8,909.48 -8,959.43 -8,990.00 -8,769.81

LL improvement 27.12 22.62 36.91 20.99

BIC 18,088 18,150 18,211 17,809

For all specifications, the amplitude model outperforms the utility model, which in turn has a10

better model fit than DFT and the Hamiltonian models. For all model frameworks, it appears that11

using separate sets of parameters instead of a basic model results in an improvement in model12

fit but a worse BIC. Whilst the quantum rotation models are not as successful as capturing the13

difference between the contextual situations as models with separate parameters, these models14

return favourable BICs as they only have two additional parameters. Notably, the best performing15

Hamiltonian model (in terms of BIC) implements an imaginary shift, as defined by Equations16

(24-27), and the model with the overall best BIC value is obtained with an amplitude model with17

rotation operators. The key parameter outputs for these models are given in Table 7.18
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TABLE 7 : Key model outputs from the context models with shifts or rotations for a change in

context

Model Version
Gain in Rel. importance of time δLR/ϑLR δPhr/ϑPhr

Log-likelihood (£/hour) Estimate Rob. t-rat. Estimate Rob. t-rat.

Utility 2 9.01 6.49 -0.1467 -3.81 0.0464 1.45

DFT 2 5.52 3.58 -0.3133 -2.99 0.0957 1.13

q-Hamiltonian

2 8.82 3.63 -0.0479 -3.88 0.0042 0.41

3 9.97 3.65 -0.0995 -3.61 0.1022 3.02

4 9.14 3.63 -0.0419 -3.85 0.0083 0.92

q-Amplitude

2 7.16 5.26 -10.3154 -3.52 2.3966 0.97

3 0.84 5.26 -38.6215 -0.69 59.7161 0.71

4 11.09 5.25 -0.0342 -4.29 0.0147 2.09

Crucially, all but one model show a negative estimate for δLR/ϑLR, which means that the probability1

of alternative 2 increases when we move from option order 1 to option order 2. This result is in line2

with the original test and confirms the presence of a shift in left-right bias as a result of changing3

whether the cheaper and slow alternative appears on the left or the right. For most of the models,4

we also confirm that there is no effect of changing the order of appearance for the attributes. Table5

6 also gives the ‘relative importance of travel time with respect to travel cost’, which is defined as6

the ratio of the time parameter estimate divided by the cost parameter estimate, multiplied by 607

(see further detail in Hancock et al. (2018) on how this measure can be interpreted). Whilst this8

does not correspond to welfare measures (as all models use asymmetric decay functions), these9

values give us an indication as to whether a decision-maker will more likely choose a fast or cheap10

alternative. In comparison to the utility model, both DFT and quantum models assign a lower11

importance to travel time.12

By considering the parameter outputs for version 4 (quantum rotation) models, we can also13

calculate the estimated rotation matrices RPhr and RLR. For the Hamiltonian (Ham) and amplitude14

(Amp) models, the rotation matrices for changing from having the cheaper alternative on the left15

(first) to on the right (second) are:16

RLRHam
=

[

0.999 −0.042

0.042 0.999

]

, RLRAmp
=

[

0.999 −0.034

0.034 0.999

]

, (30)

and the estimates for the quantum rotation matrices for changing from having the travel time first17

to having the travel cost first are:18

RPhrHam
=

[

0.999 0.008

−0.008 0.999

]

, RPhrAmp
=

[

0.999 0.015

−0.015 0.999

]

. (31)

This results in a shift towards alternative two through the use of RLR and a small shift towards19

alternative one through the use of RPhr.20

5.4. Contextual and ordering effects in the UK best-worst data21

The best-worst dataset also presents a suitable paradigm for the implementation of a quantum22

rotation, as it is possible that the influence of individual attributes may differ between the case23

of choosing the best alternative and the case of choosing the worst alternative (Giergiczny et al.,24

2017).25
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5.4.1. Model specification1

In the quantum-like approach, this changed perspective can be obtained by modifying the an-2

gle over which the basis vectors representing the choice of the worst alternative, |Alti worst〉,3

|Alt j worst

〉

, are rotated with respect to |Alti best〉, |Alt j best

〉

. This rotation changes the norm of4

the projected amplitudes (see Figure 3) and thus modifies the probability for choosing the worst5

alternative, see Equation (1). Formally, the belief state for choosing the worst alternative, Ψworst , is6

obtained by applying the rotation matrix R, Equation (12), to the residual belief state after having7

chosen the best alternative:8

Ψworst = RΨResid. best , (Best−Worst rotation) (32)

where ΨResid. best is a renormalised vector of the belief state Ψbest over the remaining choice alter-9

natives. One can easily verify that a rotation over an angle π/2 according to the axis of rotation10

ny = 1 results in the ‘basic inversion’ condition, Equation (19). Mathematically, this rotation si-11

multaneously causes a change in both underlying preferences towards alternatives and a change in12

how deterministic the choice is. In our empirical application, we test the basic inversion, Equation13

(19), and the more general quantum rotation, Equation (32). Naturally, if there is a mere classical14

inversion of amplitudes, the parameters will tend towards those that generate Equation (19).15

Under both the Hamiltonian and amplitude models, we assume a three dimensional complex16

Hilbert space for the belief states, Ψ = (ψ1,ψ2,ψ3), in which the respective components constitute17

the support for the respective alternatives. In the Hamiltonian approach, the decision process for18

the choice of the best alternative starts from an initial state Ψ0:19

Ψ0 =





α
β
γ



 , (33)

which can be configured as unbiased |α|= |β |= |γ|= 1/
√

3. A relative phase can be implemented20

on the amplitudes to differentiate their engagement with the unitary evolution operator, Equation21

(8), or a non-process bias with respect to specific alternatives by setting |α| 6= |β | 6= |γ|. The initial22

belief state is subject to change according to the Hamiltonian for choice of the best alternative:23

H =





h11 h12 h13

h⋆12 0 h23

h⋆13 h⋆23 h33



 . (34)

The expression of the Hamiltonian can be considered as the superposition of three parametrised24

Hadamard gates which respectively implement the pairwise comparison process of attributes of the25

alternatives, Equation (7).26

In the amplitude model, the summed attribute differences are implemented directly into the27

probability amplitudes for each alternative:28

ψ1 =
(

δ1 + eiφbw(∆12 +∆13)
)

/
√

N , (35)

ψ2 =
(

δ2 + eiφbw(∆21 +∆23)
)

/
√

N , (36)

ψ3 =
(

δ3 + eiφbw(∆31 +∆32)
)

/
√

N , (37)
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where N renders the belief state normalized to 1, similarly to Equation (23). The relative phase1

φbw between the bias component δ j and the attribute differences (∆ ji +∆ jk) implements a differ-2

ence in processing for both factors.3

In both of the quantum models that we implement, we also explore the inclusion of a ‘propor-4

tion’ parameter for the possibility that a respondent would reverse the processing order of choos-5

ing the best and worst alternatives. The UK-best/worst survey allows the respondent to either first6

choose the best alternative and then follow this by selecting the worst between the two remaining7

alternatives, or vice versa, starting with choosing the worst alternative before then choosing the8

best out of the remaining two alternatives. The proportion parameter expresses the proportion of9

choice processes that are taken in reverse order, by weighting the theoretical choice probabilities10

from models for both orders (‘best then worst’ and ‘worst then best’). Whilst there are many pos-11

sibilities for specifications for models that implement a ‘proportion’ parameter, we only test the12

most basic specification in our empirical application, under which there are no other additional pa-13

rameters. Thus if a decision-maker considers worst and then best, Ψworst is generated using −δi j14

and −∆i j in place of δi j and ∆i j in the Hamiltonian model. For the amplitude model, ∆i j 6= ∆ ji,15

thus we use −δi and ∆ ji in place of δi and ∆i j. Then, we generate a rotation matrix R that translates16

best to worst, and use R−1 for the translation from worst to best.17

In this application, we explore basic models for both ‘independent’ and ‘continued’ delibera-18

tion assumptions. Given the various extensions to these models discussed above, we consider four19

further possibilities. This gives us a total of six different specifications for the quantum choice20

models (and three for the utility and DFT models, which do not implement quantum rotations).21

These six possibilities are:22

1. A basic structure for each model based on independent deliberations, meaning that best and23

worst choice probabilities are calculated independently with worst choice using only the two24

unchosen alternatives within the value functions (thus not using the attribute values from the25

alternative chosen as best). In the first implementation of independent deliberations, we use26

the same set of estimated parameters for best and worst choice. To estimate the probability27

for worst choice, we simply calculate the probability of the other alternative being chosen28

as (second) best. The utility, DFT and amplitude models here correspond to the indepen-29

dent deliberation ADLD models given in Table 3. For the Hamiltonian model, we instead30

implement imaginary attribute differences,23 which corresponds to the best performing (in-31

dependent deliberation) Hamiltonian model from Table 5.32

2. The second method again uses the assumption of independent deliberations, but now allows33

for a completely ‘separate’ set of parameters for the best choices compared to the worst.34

This is equivalent to running two separate models where the dataset is split into two subsets:35

one with only the best alternative choice tasks and one with only the worst alternative choice36

tasks. Note that whilst this effectively doubles the number of estimated parameters, two37

DFT parameters are dropped as there is no significant impact of including feedback matrix38

parameters for the worst choice (as is often the case when choosing between two alternatives,39

see Appendix). Additionally, the Hamiltonian model estimates 2 diagonal elements for the40

Hamiltonian for best choice and 1 for the Hamiltonian for worst choice. Consequently, we41

do not need these 3 parameters twice for separate parameter models of best and worst choice.42

23Note that all Hamiltonian models in this section are implemented in this way.
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3. The third specification is based on the assumption of continued deliberation. This means1

that the probabilities for best and worst choice are generated simultaneously through the2

use of a single value function. We assume basic inversions for all models meaning that the3

same attributes are important for best and worst choice. These models correspond to the4

continued deliberation ADLD models given in Table 3, with the Hamiltonian model again5

using imaginary attribute differences, corresponding to the result in Table 5.6

4. The fourth model uses continued deliberations, but also allows for the application of a quan-7

tum rotation, R (see Equation 32, that is defined by Equation 12). To estimate R, we need to8

find the relative importance of the three Pauli matrices. In all cases, we find that the impact9

of including a third Pauli matrix is insignificant, and thus two additional parameters are esti-10

mated, ϑ and ω ,24 where R = e−iϑ(n1∗σ1+n2∗σ2), n1 = sin(ω), n2 = cos(ω) and n3 = 0. For11

the Hamiltonian models, nx = 0, and for the amplitude models, nz = 0. Note that just a sin-12

gle rotation matrix is used here, meaning that the model uses the same rotation to adjust the13

amplitudes for the two remaining alternatives, regardless of which pair is left. This results in14

the assumption that the same adjustment happens for (Alt1 → Alt2), (Alt1 → Alt3) and (Alt215

→ Alt3).16

5. The fifth model is equivalent to the fourth model, except that it also estimates a ‘proportion’17

parameter. This parameter estimates the percentage of decision-makers who ‘choose best18

then worst’ or ’worst then best’.19

6. The final model is equivalent to the fifth model, with the exception that two different rota-20

tion matrices are estimated through the use of two different axes specified by the parameter21

ω , one for the rotation from best to worst (ωbw), and the other for the rotation from worst22

to best (ωwb). Additionally, the Hamiltonian model no longer assumes an indifferent initial23

belief state. Instead, we set ψ0 = (1/
√

3,ei·s/
√

3,e−i·s/
√

3), where s is an estimated param-24

eter. This results in two additional parameters for the Hamiltonian model and one for the25

amplitude model. The ‘worst to best’ rotation matrices are then set as Rwb = eiϑ(nx∗σx+ny∗σy),26

where the weights nx and ny are estimated with ωwb. Consequently, Rwb = R−1
bw if ωwb =ωbw.27

5.4.2. Results28

The results of these models are given in Table 8. Given the complex likelihood structure, we29

use an initial parameter search algorithm based on the heuristic for non-linear global optimisation30

developed by Bierlaire et al. (2010) in an attempt to reduce the risk of convergence to poor local31

optima. For all of the quantum models, we try the four different specifications using real and32

imaginary numbers, as tested in Table 5. For brevity, we show just the best-fitting model in each33

case, which is a model with Re-δi j and Im-∆i j for all of the models that incorporate quantum34

rotations.35

Unsurprisingly, every model finds a significant improvement in model fit by having a separate36

set of parameters for the best alternatives compared to the worst alternatives (in line with the results37

of Giergiczny et al. 2017). This suggests that the relative sensitivities to the different attributes for38

a best alternative are not necessarily the same as the relative sensitivities to the different attributes39

for a worst alternative. The overall best-fitting model in terms of log-likelihood is the DFT model40

with separate parameters. However, the quantum rotation models are efficient in parameter use and41

24The use of ω here within a sine and cosine function ensures that |n|= 1.
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TABLE 8 : Results from models for the best-worst dataset

Standard choice models Deliberation

Utility DFT

pars. LL BIC pars. LL BIC

[1] single set pars.

Independent

12 -5,668.36 11,444 14 -5,651.62 11,429

[2] separate pars. 24 -5,607.63 11,430 26 -5,569.04 11,371

[3] basic model Continued 12 -5,777.57 11,663 14 -5,780.56 11,687

Quantum choice models Deliberation

q-Hamiltonian q-Amplitude

pars. LL BIC pars. LL BIC

[1] single set pars.

Independent

15 -5,684.40 11,503 12 -5,660.84 11,429

[2] separate pars. 27 -5,657.22 11,556 24 -5,598.20 11,412

[3] basic model

Continued

14 -5,792.70 11,711 12 -5,802.22 11,712

[4] quantum rotation 1 16 -5,656.82 11,457 14 -5,742.78 11,611

[5] quantum rotation 2 17 -5,651.74 11,456 15 -5,612.08 11,359

[6] quantum rotation 3 19 -5,624.54 11,419 16 -5,611.09 11,366

consequently find good BIC values, with the result that the best BIC is obtained by an amplitude1

model that uses a quantum rotation. By stepping away from ‘best = opposite of worst’, the rotation2

models bring the performance of the continued deliberation models in line with those of the sepa-3

rate parameter independent deliberation models. Consequently, we find that best-worst choices in4

this dataset are ‘incompatible’: a quantum rotation is required to move from a set of basis vectors5

for best choices to a different set of basis vectors for worst choices. Overall, the results from both6

classical and quantum models suggest that best is not the opposite of worst, which is in line with7

the biases present in the overall choice shares (in Table 2).8

Test of the quantum rotations. Of key importance for the quantum models is to test the9

impact of the quantum rotation matrices themselves, as the inclusion of these matrices substantially10

improves both the Hamiltonian and amplitude models. We consider the impact of these matrices11

by looking at the resulting probabilities generated from the application of the matrix to an initial12

belief state. As a contrast to the rotation matrices generated by models for the UK value of time13

dataset, it is not intuitively clear what the impact of these rotation matrices are on complex-valued14

residual belief states, with the respective rotation matrices for the Hamiltonian (rotation 3 model)15

and Amplitude models (rotation 2 model) being:16

RHamBW
=

[

0.20+0.13i 0.97+0.00i

−0.97+0.00i 0.20−0.13i

]

, RHamWB
=

[

−0.20−0.27i −0.94+0.00i

0.94+0.00i 0.20+0.27i

]

.

(38)

and17

RAmp =

[

−0.62+0.00i 0.24+0.75i

−0.24+0.75i −0.62+0.00i

]

. (39)

We thus test these matrices by calculating their impact on the choice probabilities of each respon-18

dent of choosing an alternative as worst, given a belief state, ψResid.best , which corresponds to the19
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renormalised probability amplitudes for the remaining two alternatives following the choice of the1

best alternative. Vice versa, we check the choice probabilities for best alternative resulting from2

the application of the inverse rotation on ψResid.worst , the renormalised state for the remaining two3

alternatives following the choice of the worst alternative.4

This results in Figure 8, in which the amplitudes of the two remaining alternatives - after5

having chosen best (left panel) and worst (right panel) alternative - are rotated to generate the6

choice probabilities of the alternative being chosen as worst (left panel) or best (right panel) for7

each individual respondent. In this figure, the black dots show how the probability changes under8

a basic inversion (as described by Equation 19). Under a basic inversion, best is the opposite of9

worst, and as a direct consequence, a belief state of, for example ψResid.best = (1,0) generates10

probabilities for worst choice equal to 0 for the upper positioned alternative, and equal to 1 for the11

lower positioned alternative (hence swapping the amplitude entries).12

In both quantum models, we observe convex and concave transformations of second best (or13

second worst) choice probabilities into worst (or best) choice probabilities due to the rotation14

transformation. The impact of this rotation transformation is more easily assessed by checking the15

image for the value of the initial probability at 0.5, which corresponds to expressing indifference16

between the two remaining alternatives. In the case of a concave relation, the initial indifference17

results in the chosen second best (worst) alternative becoming the chosen worst (best) alternative18

with a higher probability. In contrast, in a convex relation, the probability of chosen second best19

(worst) alternative will render a lower probability for the chosen worst (best) alternative in com-20

parison to the basic inversion.25 We can now assess the impact of the quantum rotation in the21

observed bias effects when choosing the status quo, i.e. Alt1, as the worst alternative (see Table 2).22

Choosing the status quo as worst alternative occurs when either Alt2 or Alt3 are chosen as best al-23

ternatives, hence we must compare p(Alt3)(vs 1) for worst (blue) with p(Alt1)(vs 3) for worst (red)24

and, separately compare p(Alt2)(vs 1) for worst (purple) with p(Alt1)(vs 2) for worst (orange).25

When Alt2 is chosen as the best alternative, the amplitude model shows a substantial bias effect26

against the status quo as worst choice in the ‘best then worst’ order (blue concave, red convex).27

When Alt3 is chosen as the best alternative, the rotation produces the bias effect in both processing28

orders (purple concave and orange convex). This suggests that it is the introduction of the quantum29

rotation that drives the accurate recovery of the underlying observed choice shares given in Table30

2.31

Under the Hamiltonian model, the bias effect is not reproduced in exactly the same manner, in32

particular in the ‘best then worst’ processing order. When Alt2 is chosen as the best alternative,33

the Hamiltonian model renders an increased probability against the status quo as worst by shifting34

density for p(Alt3)(vs 1) for worst (blue) towards lower residual probability for Alt3 being second35

best, whilst shifting density for p(Alt1)(vs 3) for worst (red) towards higher residual probability for36

Alt1 being second best. In the ‘worst then best’ processing order, both models appear to use the37

same relative rotation transformation to produce the bias effect.38

We also note that both models show choice order effects, although not necessarily for the same39

25We notice a different cause of the choice probability p(Alt1)(vs 3) for worst alternative (red dots) in the Hamil-

tonian and amplitude model. In the amplitude model, the lowered probability (w.r.t. basic inversion) results from

convexity while in the Hamiltonian model it results from density (concentration towards higher probabilities in the

residual vector). These density shifts are related to the bias parameter in the initial state in the Hamiltonian model.

The same effect is present in the transformation for the choice probability p(Alt3)(vs 1) for worst alternative (blue

dots).
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FIGURE 8 : Choice probabilities of individual decision-makers generated by the quantum rotation

in the Hamiltonian model rotation [3] (top) and the amplitude model - rotation [2] (bottom) and,

choice of best alternative then worst (left) and choice of worst alternative then best (right). The

rotation transforms the probability amplitude of the second best choice into the worst choice (left

panels), and of the second worst choice into the best choice (right panels). The combinations of

chosen alternatives have been consistently colour coded across choice order and models (i.e. red

corresponds to Alt1 as worst, and Alt2 as best in all four graphs). The ‘basic inversion’ relation,

Equation (19), which switches the residual probabilities for best (worst) alternative into worst

(best) alternative is marked with black dots and serves to gauge the effect of the optimal quantum

rotations.
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combinations of best and worst choice. For instance, the combination Alt2 worst and Alt3 best1

does not show significant order effects in the amplitude model, nor in the Hamiltonian model. On2

the other hand, Alt1 best and Alt2 worst is oppositely transformed in both choice orders in the3

Hamiltonian model, while on the other hand in the amplitude model Alt2 best and Alt1 worst is4

oppositely transformed.5

The optimised proportion parameter has shifted the weight moderately towards the ‘worst then6

best’ choice order in both models (order ratio 0.39/0.61 for the Hamiltonian model and 0.36/0.647

for amplitude model). This feature is likely a result of the strong bias in the choice for worst8

alternative which would formally be captured more easily by an immediate implementation in the9

belief state (for the Amplitude model) and by a dynamical process (in the Hamilton model), than10

by a rotation. In the ‘worst then best’ order, both models do not invoke the rotation to render11

the probabilities for the worst choice, while in the reverse order ‘best then worst’ the rotation is12

involved in the final stage of producing the worst choice probabilities.2613

To analyse the impact of these rotations in relation to the effects they have on model outputs,14

we consider the overall predicted choice shares across the different models (see Table 9).15

TABLE 9 : Observed and predicted choice shares from different best-worst models

Best choice 1 1 2 2 3 3 Average deviation

Worst choice 2 3 1 3 1 2 from observed

Utility [2] 20.4% 14.3% 9.1% 25.8% 6.0% 24.3% 0.5%

DFT [2] 20.0% 14.3% 9.4% 25.1% 6.3% 24.8% 0.3%

q-Hamiltonian [3] 20.6% 19.1% 9.9% 19.9% 9.6% 20.8% 3.0%

q-Hamiltonian [6] 20.1% 14.9% 9.7% 25.0% 6.1% 24.2% 0.2%

q-Amplitude [3] 20.6% 19.1% 9.8% 20.0% 9.6% 20.9% 2.9%

q-Amplitude [5] 18.8% 14.5% 11.0% 24.9% 6.1% 24.7% 0.5%

Observed share 19.8% 14.9% 9.8% 25.1% 5.8% 24.6%

The average deviation from the observed choice share of best and worst choice demonstrates the16

impact of the quantum rotation on the quantum models with a quantum rotation. Hamiltonian17

and amplitude models without a quantum rotation have deviations of 3.0% and 2.9% respectively.18

These deviations are substantially reduced by moving to versions of the models with quantum ro-19

tations, which brings the results in line with those of the utility and DFT models, with the Hamil-20

tonian model in particular almost perfectly capturing the observed choice shares.21

Finally, we consider the parameter outputs for the best version of each model in Table 10.22

All four models give the expected sign for all of the attributes. Whilst the relative importance23

of the different attributes is similar across the models, there are some exceptions. In particular,24

the estimates for travel fare (LF) for the worst choices in the utility and DFT models are very25

different, with DFT giving the lowest relative importance to travel fare in both best and worst26

choice. DFT gives a higher importance to the rate of delays (RA) and the provision of a free27

information service (IFR) than other models. The quantum models provide very similar relative28

26Further examination of this order effect could be done in a dataset with explicit choice order specifications in the

survey.
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TABLE 10 : Parameter estimates from the models for the UK best worst dataset, with rel. weight

giving the relative importance of the different attributes.

Model Utility DFT q-Hamiltonian q-Amplitude

Parameters 24 26 19 15

Log-likelihood -5,607.63 -5,569.04 -5,633.44 -5,612.08

BIC 11,430 11,371 11,437 11,365

choice best worst best worst all all

LL contribution -3561.75 -2045.88 -3536.743 -2032.30

βT T

est. -0.0259 -0.0221 -0.1942 -0.0414 -0.0096 -0.2716

rob. t-rat. -5.96 -3.77 -6.55 -3.56 -9.75 -5.85

rel. weight 0.5% 0.3% 0.7% 0.5% 0.5% 0.5%

βLF

est. -5.3428 -7.2843 -25.0410 -7.1054 -1.7815 -46.6046

rob. t-rat. -4.78 -6.14 -7.84 -4.31 -9.42 -5.69

rel. weight 93.0% 93.4% 89.5% 81.6% 91.0% 92.2%

βCR

est. -0.1235 -0.2333 -0.8419 -0.3671 -0.0506 -1.2673

rob. t-rat. -4.43 -4.29 -5.57 -3.77 -8.71 -5.58

rel. weight 2.2% 3.0% 3.0% 4.2% 2.6% 2.5%

βRA

est. -0.0778 -0.0019 -0.6702 -0.3897 -0.0506 -0.9285

rob. t-rat. -3.19 -2.88 -4.04 -3.22 -4.92 -3.69

rel. weight 1.4% 0.0% 2.4% 4.5% 2.6% 1.8%

βRE

est. -0.0042 -0.0077 -0.0290 -0.0098 -0.0016 -0.0435

rob. t-rat. -1.47 -1.3% -2.18 -1.47 -2.56 -2.75

rel. weight 0.1% 0.1% 0.1% 0.1% 0.1% 0.1%

βRB

est. -0.0101 -0.0025 -0.0760 -0.0239 -0.0037 -0.0792

rob. t-rat. -1.75 -0.18 -2.06 -1.24 -2.08 -2.42

rel. weight 0.2% 0.0% 0.3% 0.3% 0.2% 0.2%

βICH

est. -0.0333 -0.0006 -0.2345 -0.1779 -0.0073 -0.5012

rob. t-rat. -1.19 -0.90 -1.06 -0.77 -0.71 -1.98

rel. weight 0.6% 0.0% 0.8% 2.0% 0.4% 1.0%

βIFR

est. 0.1254 0.2494 0.8986 0.5957 0.0529 0.8245

rob. t-rat. 4.33 2.7% 4.49 3.49 5.2 3.07

rel. weight 2.2% 3.2% 3.2% 6.8% 2.7% 1.6%

λ1

est. 0.3272 5.1126 0.0438 0.4302 1.3547 0.0391

rob. t-rat. 4.38 3.16 3.31 2.74 11.06 4.56

λ2

est. 1.8508 0.3102 1.0000

rob. t-rat. 1.69 7.73 fixed

δ1

est. 0.0000 0.0000 1.9037 1.2919 2.8439

rob. t-rat. fixed fixed 6.55 5.94 5.79

δ2

est. -0.3029 -1.0826 1.1384 -0.9907 8.2458

rob. t-rat. -2.69 -14.72 4.09 -5.1 7.05

δ3

est. -0.5260 -0.7559 0.0000 0.0000 5.7360

rob. t-rat. -4.94 -9.63 fixed fixed 7.73

δ12

est. 0.0277

rob. t-rat. 0.66

δ13

est. 0.2025

rob. t-rat. 9.65

δ23

est. -0.1435

rob. t-rat. -5.59

σε

est. 1.0000 1.0000

rob. t-rat. fixed fixed

t
est. 7.1019 5.4830

rob. t-rat. (vs. 1) 8.52 4.53

φ1

est. 0.0040 0.0000

rob. t-rat. 2.67 fixed

φ2

est. 0.3469 0.0000

rob. t-rat. (vs. 1) 14.54 fixed

h11

est. 1.6685

rob. t-rat. 34.23

h33

est. 2.1300

rob. t-rat. 20.26

proportion
est. 0.3943 0.3568

rob. t-rat. 6.71 7.96

ϑ
est. 1.3718 2.2353

rob. t-rat. (vs. π/2) -5.25 13.82

ωBW

est. 0.1346 1.2641

rob. t-rat. 2.69 25.85

ωWB

est. 0.2788

rob. t-rat. 6.21

s
est. 1.1709

rob. t-rat. 18.43
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importances to the utility model. All models suggest that there are differences between best and1

worst choice, with both the utility model and DFT in particular finding different sensitivities to2

cost when comparing best to worst. Additionally, both find substantially lower estimates for δ2 in3

worst choice compared to best, which is in line with observed choice shares for the 2nd alternative4

(best-35%, worst-44%). For the quantum models, we observe angles ϑ , and ω estimates, that5

are significantly different from π/2 and 0 respectively, which would correspond to best being the6

opposite of worst for the Hamiltonian model (with ω also significantly different from π/2 for the7

amplitude model, equivalently demonstrating that it too suggests that best is not the opposite of8

worst).9

5.5. Validation results: Holdout method10

We also test for overfitting, by testing the best performing model (in terms of BIC) for each of the11

four different types of model in our best-worst data. This corresponds to a separate parameters12

model for the utility and DFT models, and to models with quantum rotations and a proportion13

parameter for the Hamiltonian and amplitude models (2 rotations for the Hamiltonian, but just one14

for the amplitude model). We fit the data to 5 estimation subsets and then estimate the out-of-15

sample log-likelihood for the remaining validation subset. In each case, 80% of the (participants16

in the) dataset are assigned to the subset that is used for model estimation, with the remaining 20%17

used for validation. The log-likelihoods of these models are given in Table 11.18

TABLE 11 : The log-likelihood results for the estimation and holdout samples for the different

models for the UK best-worst dataset

Utility DFT q-Hamiltonian q-Amplitude

pars. LL pars. LL pars. LL pars. LL

estimation 1 24 -4,508.98 26 -4,471.93 19 -4,522.45 15 -4,519.58

estimation 2 24 -4,420.34 26 -4,394.00 19 -4,439.09 15 -4,412.87

estimation 3 24 -4,526.41 26 -4,498.69 19 -4,540.49 15 -4,529.31

estimation 4 24 -4,486.07 26 -4,462.50 19 -4,500.03 15 -4,498.81

estimation 5 24 -4,468.13 26 -4,426.69 19 -4,480.68 15 -4,472.40

holdout 1 24 -1,106.20 26 -1,104.27 19 -1,106.51 15 -1,097.21

holdout 2 24 -1,193.77 26 -1,183.34 19 -1,190.84 15 -1,205.68

holdout 3 24 -1,084.95 26 -1,073.84 19 -1,086.96 15 -1,084.99

holdout 4 24 -1,125.21 26 -1,110.85 19 -1,127.82 15 -1,117.01

holdout 5 24 -1,143.46 26 -1,148.45 19 -1,146.99 15 -1,141.51

The results suggest that neither the quantum models nor DFT overfit the data, with DFT giving19

the best fit in all 5 estimation and 3 of the validation subsets, and the amplitude model having the20

best fit in the other two validation subsets. The BIC values for these models are given in Figure21

9, which penalises the utility and DFT models. This consequently results in the amplitude model22

obtaining the best BIC value across all 5 estimation and validation subsets.23
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FIGURE 9 : The BIC results for the estimation and holdout samples for the different models for

the UK best-worst dataset



Hancock, Broekaert, Hess and Choudhury 41

5.6. Elasticities from value of time datasets1

In this section, we look at elasticities from the best version of each model (in terms of BIC) for the2

Swiss value of time and UK value of time datasets. For all models, we estimate an arc elasticity3

(E) for alternative i with:4

Ei = log

(

Forecasted Trips i

Base Trips i

)

/ log(1.1), (40)

where ‘Base Trips i’ is calculated as the sum over the probabilities of choosing alternative i across5

all choice tasks in the dataset, with ‘Forecasted Trips i’ calculated equivalently but with adjusted6

attributes. The corresponding cross elasticities, CE j, estimate the impact on the probability of7

choosing alternative j given a change to an attribute of alternative i. We estimate elasticities by8

using a 10% increase of the controlling factor (see Equation 40), either travel time or travel cost9

for alternative 1, with the results given in Table 12. We estimate standard errors for the elasticities10

by taking 30 draws for the parameter values from the corresponding model estimates and robust11

covariance matrices.12

TABLE 12 : Arc elasticities for an increase in travel time or travel cost for the first alternative in

the value of time datasets

UK Value of Time dataset

arc elasticities for cost (alt1) arc elasticities for time (alt1)

est s.d. t-value (vs utility) est s.d. t-value (vs utility)

Utility -1.5600 0.0617 -2.0476 0.0393

DFT -1.7962 0.0488 -3.00 -2.2205 0.0467 -2.83

q-Hamiltonian -0.9335 0.0564 7.49 -1.6876 0.0766 4.18

q-Amplitude -1.8411 0.0473 -3.62 -2.4337 0.0647 -5.10

Swiss Value of Time dataset

arc elasticities for cost (alt1) arc elasticities for time (alt1)

est s.d. t-value (vs utility) est s.d. t-value (vs utility)

Utility -1.6641 0.2380 -1.4043 0.1241

DFT -1.6304 0.1406 0.12 -1.3705 0.0773 0.23

q-Hamiltonian -1.3034 0.1700 1.23 -1.1648 0.0890 1.57

q-Amplitude -1.7363 0.1454 -0.26 -1.4199 0.0948 -0.10

For the UK dataset, we observe significantly lower elasticities for the Hamiltonian model, and13

significantly higher elasticities for the amplitude model (relative to the utility model). There are14

equivalent results for both cost and time elasticities, with the amplitude and Hamiltonian models15

predicting greater and smaller shifts, respectively, away from choosing alternative 1 if the cost or16

time increases, relative to the utility model. For the Swiss dataset, we observe similar patterns to17

the UK dataset for the quantum models, but these differences are never significant. The elasticities18

from all models are higher than would be expected, though this is of course typical for SP datasets.19

Overall, the elasticities from the best performing quantum model (the amplitude model) appear20

reasonable in comparison to the elasticities given by the utility model.21
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6. CONCLUSIONS1

In this paper, we move away from the tried and tested alternatives to random utility maximisation2

by considering ideas first developed in quantum physics. With the probability framework devel-3

oped in quantum physics having made a successful transition to cognitive psychology, we look at4

whether it can be operationalised into a choice model framework for transportation studies. Under5

quantum probability theory, a decision-maker has some ‘belief state’ regarding their preferences6

over alternatives, from which the probabilities of each alternative can be inferred. Thus a key com-7

ponent of this paper is the development of specifications for the belief state and how these beliefs8

change through the process of decision making.9

We discuss two very different formulations for models generating belief states which incor-10

porate quantum probability theory within a choice model. The first uses a Hamiltonian operator11

that dynamically evolves the belief state over time. The second is based on directly estimating the12

probability amplitudes of the belief state for each of the alternatives. We find that our quantum13

models provide good model fit and outperform standard utility-based models across three route14

choice datasets as well as providing good out-of-sample fit for the most complex of these. In com-15

parison to Decision Field Theory (DFT), which has also been shown to outperform standard choice16

models (Hancock, 2019), our quantum models also perform favourably, with the amplitude models17

recording the best BIC values across all datasets. Additionally, we find good model performance18

from our quantum Hamiltonian model, although it appears that in the particular choice contexts we19

test it, the quantum amplitude model performs better. These positive results from our initial tests20

on quantum choice models suggest that there is ample scope for models with a quantum framework21

to be used within travel behaviour modelling.22

In order to perform fair tests of our quantum choice models against utility-based models and23

Decision Field Theory, we discuss four different value functions that are used to implement the24

attribute differences into the choice models. Overall, it often appears that the value functions25

themselves have a larger impact on model results than the model structure, with the ADLD models26

for the UK value of time data in particular giving very similar log-likelihoods across models with27

vastly different paradigms. However, with the exception of linear difference models, it appears28

that our quantum amplitude model tends to outperform the utility-based models. This exploration29

of different value functions also leads to the development of a first DFT model which specifically30

implements non-linear attribute differences. This results in a significant improvement in our DFT31

model across all datasets, with a substantial improvement recorded for the UK value of time dataset32

in particular.33

A key benefit of the quantum amplitude model over DFT is that it is simple to run and estimate,34

meaning that it could be applied to a wide range of choice scenarios. However, for these models to35

make a transition into large-scale modelling, an alternative specification would need to be defined36

to avoid the same pitfall of random regret minimisation for large numbers of alternatives: using37

a comparison between every pair of alternatives quickly becomes computationally infeasible and38

quantum amplitude models with linear attribute differences perform worse than standard multino-39

mial logit models. Another issue with the current specifications of the quantum models is that it40

could be argued that it is unclear how specifically the use of real and imaginary numbers improves41

the quantum models, with further work being required to understand the mechanisms at work here.42

Additionally, by restricting the belief state to be defined by the value functions tested in this paper,43

we deny the possibility of having a probabilistic belief state, as conceptualised by quantum theory.44

This limitation can easily be addressed through the incorporation of random parameters for the rel-45
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ative importance of the different attributes, which would naturally allow for a probabilistic belief1

state.2

That being noted, the results from our quantum rotation models in this paper suggest that3

there is potentially a wide range of benefits of bringing quantum probability theory into choice4

models. Crucially, our best performing models for the best-worst dataset and the contextual choice5

dataset, after allowing for model complexity to be taken into account, are the amplitude models6

including a quantum rotation. This suggests that there is some merit in the concept of quantum7

rotation, which indicates a different set of basis vectors for choices are required for different choice8

tasks. For example, the belief state rotation works well for capturing the difference between best9

and worst choice. Despite the fact that the best-worst choices are related, the quantum rotation10

suggests that these choices are in fact incompatible: the choices cannot be made at the same time11

and consequently they may not follow the classical probability law of distributivity. This means12

that different choices may be observed depending on whether the decision-maker chooses the best13

or worst alternative first. The use of such information may also provide a number of insights for14

better specifications of quantum models that incorporate ‘best then worst’ or ‘worst then best’15

deliberation processes. An enhanced implementation of our quantum approach demonstrated and16

improved model performance by integrating both orderings of the choice process, ‘best then worst’17

and ‘worst then best’.18

While the quantum rotation findings here are just illustrative examples, these results demon-19

strate that there is major scope for future work within travel behaviour modelling. For example,20

large-scale models frequently aim to understand a series of related, sequential choices. Given the21

ability of quantum rotations to capture the translation between best and worst choices, they the-22

oretically should also work for a larger sequence of related choices where continuously adding23

on separate sets of parameters may not be possible. Ordering effects and state dependence may24

thus be well captured by models within a quantum framework. Furthermore, it may be possible25

to mitigate the impacts of contextual effects by applying the appropriate quantum rotation derived26

from other quantum models that account for the same effect. Future efforts could also compare27

quantum frameworks against other models that are specifically designed to deal with contextual28

effects, such as prospect theory or MLBA. Additionally, quantum choice models could be applied29

to experimental paradigms in which a nudge is involved in some of the choice tasks (for example, a30

scenario such as the environmentalism example discussed in the introduction of this paper). These31

future possibilities combined with the positive results in our empirical work mean that this paper32

serves as a proof-of-concept that quantum ideas can be incorporated into choice models aiming to33

understand travel behaviour.34
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APPENDIX: COMPARATIVE MODELS1

The logit model. We test our quantum models against standard choice models (McFadden, 1974;2

Train, 2003; Ben-Akiva et al., 2019) using the same value functions. For these models, we define3

the utility for an alternative i (dropping the indices for individual (n) and choice task (t)) as:4

Vi = εi +∑
j 6=i

∆i j, (A1)

where ∆i j is defined using one of the four value functions and εi is the unobserved portion of the5

utility.27 The assumption of type I extreme value distributions results in typical probabilities:6

Pi =
eVi

∑
J
j=1 eV j

, (A2)

for each individual (n) and choice task (t). Using this function together with the regret-based value7

functions would of course result in the wrong signs for the β -coefficients, thus we use −Vi and8

−Vj instead of Vi and Vj for these models. As we do not have this transformation in the quantum9

models, they instead use ∆ ji in place of ∆i j to ensure the correct sign for the β -coefficients.10

Decision Field Theory. We also test DFT, which was originally developed within mathemati-11

cal psychology (Busemeyer and Townsend, 1992, 1993), thus is very different to models based on12

econometric theory. The key assumption under a DFT model is that each alternative has a prefer-13

ence value that updates over time within a single choice context. The decision-maker considers the14

alternatives until they reach some internal threshold (similar to the concept of satisficing, where15

one of the alternatives is deemed ‘good enough’) or an external threshold (i.e. some time con-16

straint, where a decision-maker stops deliberating on the alternatives as a result of running out of17

time to make the decision). An example of a decision process under DFT is given in Figure A1.18

FIGURE A1 : An example of a decision-maker stopping upon reaching either an internal or

external threshold

In the example given in this figure, the decision-maker chooses different alternatives if they make19

their choice after reaching an internal threshold (which is represented by the horizontal line) on20

the 4th preference updating step or if they conclude after 10 steps upon reaching a time threshold.21

27Note that this is equivalent to the specification of the probability amplitude, ψi in Equation 3.
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Mathematically, DFT was originally operationalised for internal thresholds, with a full account1

of this variation of DFT given by Busemeyer and Townsend (1993). However, the DFT models2

we use in this paper is based on DFT with external thresholds (c.f. Roe et al. (2001) for the3

first version of DFT with external thresholds for multiple alternatives). For DFT with an external4

threshold, the preference values update stochastically as a result of the assumption that a decision-5

maker compares the alternatives using just a single attribute at each preference updating step.6

Consequently, the preference values for the alternatives update iteratively:7

Pt = S ·Pt−1 +Vt , (A3)

where Pt is a column vector containing the preference values of each alternative i at time t. S is8

a feedback matrix with memory and sensitivity parameters (detailed in Equation A4) and Vt is a9

valence vector (Equation A5), which varies depending on which attribute is attended to at time t,10

and is equivalent to a ‘momentary utility’. The feedback matrix we use is based on the definition11

by Hotaling et al. (2010):12

S = I −φ2 × exp(−φ1 ×D2), (A4)

where I is an identity matrix of size n, where n is the number of alternatives. The feedback13

parameter has two free parameters. The first, φ1, is a ‘sensitivity’ parameter, which allows for14

competition between alternatives that are more similar (in terms of attribute values). This is the15

driving force that results in DFT being able to account for contextual effects (Roe et al., 2001). The16

second parameter, φ2 is a ‘memory’ parameter, which captures whether attributes considered at the17

start of the deliberation process or attributes considered at the end are more important. Crucially,18

a value of φ2 = 0 results in the feedback matrix collapsing to an identity matrix, meaning that ‘no19

memory loss’ results in it not being possible for φ1 to have an impact. This means that φ2 has20

an important mathematical role in the model and thus cannot be purely treated as a psychological21

parameter, which is especially the case when DFT is applied to choice-only data. Finally, D is22

some measure of distance between the alternatives. In this paper, we use the Euclidean distance23

for simplicity. Next, the valence vector can be described:24

Vt =C ·M ·Wt + εt , (A5)

where C is a contrast matrix used to rescale the attribute values such that they total zero, M is a25

matrix containing the attribute values for all of the alternatives, Wt = [0..1..0]′ is a column vector26

and εt is an error term. Wt defines which attribute is being attended to by the decision-maker27

at preference updating step t, with entry k = 1 if and only if attribute k is the attended attribute.28

Note that the DFT models in this paper follow the new attribute scaling method developed by29

Hancock et al. (2020). Instead of estimating attribute importance weights, wk, that corresponds30

to the likelihood of a decision-maker attending to that attribute k, we estimate ‘attribute scaling31

coefficients’. These have many benefits (see Hancock et al. (2020) for a detailed explanation of32

these), including, most importantly, avoiding the limitation of having to sum to one. By instead33

assuming that each attribute is attended to with the same likelihood (all weights, wk = 1/n), the34

relative importance can instead enter as a set of scaling coefficients, βk, which are applied to the35

attributes before they are entered (through M in Equation A5) into the calculation of the valence36

vector at each preference updating step.37

Finally, the error term is drawn from independent and identically distributed normal draws38

with mean 0 and a standard deviation, σε , which is an estimated parameter. Consequently, the39
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preference values Pt converge to a multivariate normal distribution (Roe et al., 2001). To calculate1

the probability with which each alternative is chosen under decision field theory, we simply require2

the expectation and covariance of Pt (ξt and Ωt , respectively, detailed in Hancock et al. 2018).3

Hence the probability of choosing alternative j from a set of J alternatives at time t is:4

Pr j

[

max
i∈J

Pt [i] = Pt [ j]

]

=
∫

X>0
exp
[

−(X −Γ)′Λ−1(X −Γ)/2
]

/(2π|Λ|0.5)dX , (A6)

with X the set of differences between the preference value for the chosen alternative and each5

other alternative, X = [Pt [ j]−Pt [1] , ...,Pt [ j]−Pt [J]]
′
. Additionally, we require transformations of6

the expectation and covariance, Γ = Lξt , Λ = LΩtL
′, with L a matrix comprised of a column vector7

of 1s and a negative identity matrix of size J−1 where J is the number of alternatives. The column8

vector of 1s is placed in the ith column where i is the chosen alternative.9

Prior to this paper (as far as the authors are aware), DFT has always been implemented using10

linear attribute differences, which are enforced by the contrast matrix, C. This results in element j11

of the matrix C ·M ·Wt taking the form:12

CMWt [ j] =
n

∑
1

βk(x jk − xik)

n
, (A7)

where n is the number of alternatives as before and k is the attribute being attended to at preference13

updating step t. Given that the value functions incorporating a softplus function do not result in14

∆i j = ∆ ji, they are not appropriate functions to be used within a DFT model. This is because15

DFT models use just a single difference ∆i j, thus it is unclear whether ∆i j or ∆ ji should be used.16

However, our ADLD value function can be configured such that ∆i j = ∆ ji, if λ1 = λ2. Thus our17

ADLD DFT models require just a single λ parameter. The element CMWt [ j] can thus have an18

updated numerator based on the ADLD value function:19

CMWt [ j] =
n

∑
1

exp
(

−λ ·βk · |x jk − xik|
)

·βk · (x jk − xik)

n
. (A8)

It is worth noting here that we do not sum across attributes for each preference updating step,20

though to calculate the expectation of the preference values after t steps, a summation is required.21
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