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Abstract 8 

Different InSAR algorithms and methods produce velocities and times series that are not 9 

identical, even using the same data for the same area. This inconsistency can cause confusion 10 

and be a barrier to uptake and widespread use of the data in the commercial sector. With the 11 

widespread availability of Sentinel-1 SAR data and a suite of new algorithms in the commercial 12 

and academic sectors, it is timely to develop a method for comparison of different results. In 13 

this study, we focus on developing and testing an independent and robust methodology for 14 

assessment of different InSAR processing results. Our proposed method is adapted from the 15 

Terrafirma Process Validation project; we compare geocoded line-of-sight velocities and time 16 

series, density and coverage, as well as some qualitative metrics. We use Sentinel-1 data from 17 

an area in Glasgow (UK) processed using 4 different approaches modified RapidSAR, 18 

SqueeSAR, GAMMA-IPTA and conventional StaMPS. The main areas of ground motion are 19 

detected using all approaches, with the average standard deviation of velocity differences for 20 

all inter-comparison pairs in all polygons equal to 1.1 mm/yr. Sentinel-1 InSAR therefore 21 

provides comparable results that are independent of processing approaches. However, there are 22 

considerable differences in some aspects of the results, in particular in their density and 23 

coverage. We discuss the reasons for these differences and suggest a framework for validation 24 

that could be used in future national or pan-national ground motion services.   25 
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Abbreviation: 26 

Asc  Ascending 27 

APS   Atmospheric Phase Screen 28 

Des  Descending 29 

DePSI   Delft PS-InSAR processing package 30 

DP  Deforming Polygon 31 

DS                   Distributed Scatterers  32 

ESA  European Space Agency  33 

EU-GMS  European Ground Motion Service 34 

FRInGE Full-Resolution InSAR time series using Generalised Eigenvectors 35 

ISBAS            Intermittent Small Baseline Subsets 36 

NERC   Natural Environment Research Council  37 

PS  Persistent Scatterer  38 

PSI  Persistent Scatterer InSAR 39 

SB   Small Baseline  40 

SHP  Statistically Homogeneous Pixels  41 

StaMPS  Stanford Method for Persistent Scatterers 42 

RapidSAR  Rapid Time Series InSAR 43 

RP  Rural Polygon 44 

TOPS   Terrain Observation by Progressive Scan  45 

UP  Urban Polygon 46 

WAP   Wide Area Processing 47 

1 Introduction 48 

Interferometric Synthetic Aperture Radar (InSAR) is an Earth Observation technique based on 49 

radar satellite imagery that can measure surface deformation with millimetre level precision 50 

(Bamler and Hartl 1998; Gabriel et al. 1989; Hanssen 2001). In order to improve the 51 

performance in extracting deformation signals from noisy InSAR data, many different InSAR 52 

time-series approaches have been developed (Osmanoğlu et al. 2016; Pepe and Calo 2017).  53 

Persistent Scatterer InSAR (PSI) exploits strong, stable scatterers that display coherent 54 

scattering behaviour over time to overcome temporal decorrelation, which restricts the use of 55 

conventional InSAR (Ferretti et al. 2000, 2001). By a combination of spatial and temporal 56 

filtering, the contribution of atmospheric errors can also be reduced significantly. The original 57 

PSI algorithms work where there are large number of strong scatterers (often man-made 58 

structures) with a deformation behaviour close to the assumed linear velocity model, although 59 

more sophisticated versions of the algorithm, capable of dealing with PS affected by non-linear 60 
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motion, have also been developed. The Stanford Method for Persistent Scatterers (StaMPS) 61 

focusses on improving the number of measurement points in rural areas, and on providing an 62 

open source algorithm (Hooper et al. 2007). The major difference between StaMPS and the 63 

traditional PS approach is that StaMPS uses the spatial correlation of phase for identifying PS 64 

pixels and does not use phase triangulation which forms a spatial network connecting all PS 65 

pixels (Hooper et al. 2007). All PSI algorithms use a single-master stack of differential 66 

interferograms to process PS pixels (Hooper et al. 2012). For satellites such as ERS-1/2 and 67 

Envisat, with a relatively large orbital tube and hence a large range of perpendicular baselines 68 

in individual interferograms, only point scatterers remain coherent in a single master stack.  69 

Distributed Scatterers (DSs) can also be used for extracting velocities and times series from 70 

InSAR. These contain coherent information when temporal and orbital baselines are relatively 71 

short/small but can be incoherent in interferograms with relatively long time intervals and large 72 

perpendicular baselines (different viewing geometries). Small baseline (SB) approaches build 73 

time series by connecting interferograms with small temporal and perpendicular baselines 74 

(Berardino et al. 2002; Schmidt and Bürgmann 2003). By combining PSI and SB approaches, 75 

hybrid approaches can increase the measurement density (Hooper 2008; Lanari et al. 2004). 76 

However, there may still be useful interferometric measurements within the stack of SAR data 77 

that are excluded from a hybrid PS/SB analysis, particularly in rural areas where pixels may 78 

have intermittent coherence. The multi-interferogram method (Biggs et al. 2007) implemented 79 

in PiRate (Wang et al. 2009) and ISBAS (Intermittent Small Baseline Subsets) method (Sowter 80 

et al. 2013) are based on a modification of the SBAS method (Berardino et al. 2002) and exploit 81 

intermittent coherence in order to obtain average velocities for a greater number of DS. 82 
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However, time series approaches that only use short-timespan, multi-looked interferograms 83 

suffer from potential biases (Ansari et al. 2020).  84 

SqueeSAR forms all possible interferograms, selects neighbouring pixels with similar 85 

scattering mechanisms, known as statistically homogeneous pixels (SHP), and provides a 86 

synergistic analysis of PS and DS without the need for significant changes to the traditional 87 

PSI processing chain (Ferretti et al. 2011; Fornaro et al. 2015; Monti-Guarnieri and Tebaldini 88 

2008). It improves the density, coverage and quality of measurement points with respect to 89 

conventional PSI, over non-urban areas at the cost of a large increase in processing time. In 90 

contrast, RapidSAR (Rapid Time Series InSAR) was designed to allow fast ingestion of new 91 

images and limited computational load (Spaans and Hooper 2016). This method identifies SHP 92 

pixels (named siblings) with a more computationally efficient algorithm than SqueeSAR and 93 

does not use phase triangulation. RapidSAR enables coherence in newly formed interferograms 94 

to be calculated quickly – the results can be used in a modified SBAS approach to produce time 95 

series and velocities (Spaans and Hooper 2016). 96 

Using all possible interferograms at full SAR resolution for Sentinel-1 or other wide-swath 97 

SAR missions is challenging due to the large data volume. The Sequential Estimator approach 98 

has therefore been proposed to form interferograms efficiently for long InSAR time series by 99 

processing the data in small batches and forming compressed artificial interferograms from 100 

each (Ansari et al. 2017). Alternatively, FRInGE (Full-Resolution InSAR time series using 101 

Generalised Eigenvectors) generates a full coherence matrix efficiently and selects both PS and 102 

DS pixels at full resolution.  103 

Different InSAR time series methods use different strategies to extract information from SAR 104 

images. They are also different in terms of dealing with the contributions of various phenomena 105 

impacting the interferometric phase including long wavelength trends, atmospheric phase 106 
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screens (APS) and nonlinear deformation. Moreover, different strategies can be applied to 107 

remove these terms, e.g. spatial and temporal filter size for removing APS, size of spatial scale 108 

to de-trend and/or type of nonlinear deformation model (i.e. periodic, exponential). Therefore, 109 

products of different InSAR algorithms are not identical and can be dissimilar in terms of 110 

quantitative and qualitative metrics. In order to assess the quality of InSAR data for a specific 111 

case study, there is a requirement to evaluate the consistency of available InSAR data produced 112 

by different time series approaches. Up to now, several different methods to compare InSAR 113 

products have been presented, all of which have limitations and none of which have used 114 

Sentinel-1 images, (see Section 2). Therefore, there is a need to present an inter-comparison 115 

method which addresses the limitations of previous studies including the application to 116 

Sentinel-1 InSAR data. 117 

Sentinel-1 is a two-satellite imaging radar constellation, providing global C-band imagery 118 

designed to supply the data needs of Europe's Copernicus programme. Sentinel-1A & -1B offer 119 

a six-day revisit cycle and unprecedented coverage of Europe, with 12-day imagery acquired 120 

globally. Sentinel-1 uses the Terrain Observation by Progressive Scan (TOPS) mode, sweeping 121 

the beam in the fight direction, and is designed primarily for InSAR applications (De Zan and 122 

Monti Guarnieri 2006). Raw data acquired by Sentinel-1 are freely available, addressing the 123 

limitation of cost and/or lack of data and providing research and commercial opportunities 124 

increasingly, Sentinel-1 data are being used to form nationwide/international ground motion 125 

maps. All Sentinel-1 imagery is acquired within a narrow orbital tube, maximizing 126 

interferometric coherence. To exploit Sentinel-1 data, a European Ground Motion Service (EU-127 

GMS) is under development, by the European Environment Agency 128 

(https://land.copernicus.eu/user-corner/technical-library/european-ground-motion-service), to 129 

provide consistent, regular, standardised, harmonised and reliable information on ground 130 

motion over Europe and across national borders, with millimetre accuracy (Crosetto et al. 131 

https://land.copernicus.eu/user-corner/technical-library/european-ground-motion-service
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2020). The ground motion results will be derived from time series analyses of Sentinel-1 data, 132 

most likely using different PS and DS InSAR approaches. Several Copernicus Participating 133 

States including Germany, Italy, Norway, Spain, Denmark, and France have already or are in 134 

the process of implementing national ground motion services. These services will benefit from 135 

EU-GMS by standardising national service components and encouraging the use of 136 

deformation data by both public and commercial users. To make the outputs useful for 137 

operational applications, quality assessment of ground motion maps is a fundamental priority, 138 

and an important aspect of quality assessment is data consistency, particularly at borders or 139 

boundaries, where different methods may have been used. The nationwide/international ground 140 

motion map will be likely processed by multiple suppliers, therefore there is a need to assess 141 

and ensure consistency of InSAR results.   142 

Our main goal in this research is to develop and test a fair and robust methodology to assess 143 

the similarities and differences between results from different InSAR processing chains, and to 144 

recommend a validation strategy for any nationwide/international (e.g. UK/EU) ground motion 145 

map. We review the history of InSAR comparison approaches with their characteristics and 146 

limitations in Section 2. In Section 3, we describe an approach we have developed. In section 147 

4, we use the method to compare 4 processing algorithms for a test area in Glasgow. We present 148 

results in Section 5 and discuss the major differences and similarities between the InSAR 149 

results in Section 6, providing recommendations for future nationwide/international products 150 

and validation activities.  Finally, we summarise the main conclusions in Section 7.  151 

2) Review of previous InSAR comparison and validation approaches 152 

Several previous projects have compared and validated InSAR velocities and time series. 153 

Following the 2003 Fringe meeting, the European Space Agency (ESA) initiated a blind InSAR 154 

validation project,PSIC4 (Persistent Scatterer Interferometry Codes Cross Comparison and 155 

Certification for long term differential interferometry), to assess the performance of PSI for 156 
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land deformation monitoring using Envisat and ERS images (Crosetto et al. 2007b; Raucoules 157 

et al. 2009). The project analysed results for the same area provided by Altamira Information 158 

(Crosetto et al. 2008a), DLR (German Space Agency) (Adam et al. 2005), Gamma Remote 159 

Sensing (Werner et al. 2003), IREA-CNR (Institute for Electromagnetic Sensing of the 160 

Environment National Research Council of Italy) (Berardino et al. 2002), TRE (Tele-161 

Rilevamento Europa) (Ferretti et al. 2007), TUDelft (Delft University of Technology) (Kampes 162 

2005), UPC (Catalonia Polytechnics University) (Mora et al. 2003) and Vexcel (Van der Kooij 163 

et al. 2005). Pre-processing of the data prior to inter-comparison comprised applying 164 

geolocation shifts and spatially referencing each data set to the same reference area. The most 165 

relevant indicators used to compare the results were the average deformation rate and the 166 

density and distribution of the selected PS points. The PSIC4 test area was a coal mining area 167 

in the South of France, which was undergoing rapid subsidence and did not include stable 168 

features. The reference area was a stable local area outside the mining work. The results showed 169 

that for the case under consideration, the main area of subsidence could not, or could only 170 

partly, be assessed by most of the InSAR teams due to the low density of PS in the area of 171 

interest. Moreover, the standard deviation of velocity differences between the data sets ranged 172 

between 0.6 and 1.9 mm/year which can be considered as an estimate of local uncertainties. 173 

One of the most important conclusions of PSIC4 concerned the characteristics of the coal 174 

mining test site in which none of the conditions to measure deformation with millimetric 175 

accuracy by PSI was fully realised. The severe characteristics of the PSIC4 test site were non-176 

optimal for PSI due to i) abrupt nonlinear motion and ii) rapid velocities which were prone to 177 

aliasing with the 35-day revisit time of Envisat/ERS. The project recommended future SAR 178 

missions with more frequent acquisitions in order to improve the ability of PSI to detect rapid 179 

velocities (Raucoules et al. 2009). PSIC4 used “blind conditions” with no a priori information 180 

about the deformation or the goal of the PSI analysis. The teams used a standard PSI approach 181 
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instead of tailoring the processing to a specific objective, which could partly explain the lack 182 

of PS in the mining area. PSIC4 demonstrated that, at that time, PSI performance was highly 183 

dependent on the application, and the limitations were real. A wider area inter-comparison, 184 

“Provence Inter-Comparison”, was later presented using the same data as PSIC4 but covering 185 

a larger area, including both deforming and stable areas (Crosetto et al. 2007a). One difference 186 

between the Provence Inter-Comparison study and PSIC4, was that it compared the data set in 187 

the radar coordinate system, to avoid validation issues associated with geocoding errors. The 188 

Provence Inter-Comparison showed a greater degree of consistency between  the velocity maps 189 

and the time series from different providers (Crosetto et al. 2007a). It was largely based on data 190 

outside the mining area, where the results of the two projects were similar.  191 

The Terrafirma project (Capes et al. 2009), part of the EU/ESA Global Monitoring for 192 

Environment and Security (GMES) programme, the precursor to Copernicus, also established 193 

a PSI process validation approach, known as the Terrafirma Validation Project, which built on 194 

the earlier studies. The Terrafirma validation project had two aims: result validation via 195 

comparison with ground truth levelling and inter-comparison of the results of different InSAR 196 

providers. The inter-comparison methodology initially compared four InSAR data sets from 197 

different providers (TRE, Altamira Information, Gamma Remote Sensing, and Fugro NPA) in 198 

radar coordinate systems to a reference processing result (GENESIS, DLR PSI processing), 199 

which was defined as the “truth” (Adam et al. 2009). Pre-processing steps included checking 200 

the global consistency of the data sets and the coregistration in radar space, referencing the data 201 

to the same reference in the time and space dimensions and removing potential tilts by de-202 

trending. Velocities, time series, topographic corrections, detection capabilities and data 203 

densities were compared. The project produced a set of global statistics, which concerned large 204 

sets of PS pixels and provided information on the global inter-comparison behaviour of 205 

different metrics. The average standard deviation of the velocity differences and the mean 206 
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standard deviation of the time series differences were 0.5-0.7 mm/yr and 1.5-5.6 mm, 207 

respectively. These values were used to derive error bars to indicate the quality of the estimate 208 

derived by PSI, which was key information for Terrafirma end users. Since deformation rates 209 

in the case studies in the Terrafirma Validation Project were moderately low, one should be 210 

careful in extending these statistics to areas involving higher deformation rates. Moreover, the 211 

results showed remarkable differences in PS density between the providers, which resulted 212 

from the use of different criteria during PS selection (Crosetto et al. 2008b).    213 

As the Terrafirma PSI certification process was intended for local (20km×20km) PSI analysis 214 

of deformation, the Wide Area Processing (WAP) Terrafirma project later expanded this 215 

methodology to validate PSI processing over a significantly greater area (one or more scenes 216 

of 100km×100km ) than that considered in the initial Terrafirma PSI certification ( Adam et al. 217 

2013 ; Brcic et al. 2014). The major differences between the processing chains in the wide area 218 

relate to atmospheric compensation and trend removal. Both steps were applied for TRE 219 

products, none of them implemented for DLR products and Altamira only removed the long 220 

wavelength trend. The results showed that the standard deviations of the deformation velocity 221 

differences for coherent pixels were below 1 mm/yr in most of the inter-comparison cases. This 222 

was one requirement of Terrafirma PSI certification. It also concluded that the most significant 223 

factors affecting compliance with this requirement were: (a) possible long wavelength trends 224 

affecting the interferograms (resulting from spurious atmospheric components and orbital 225 

fringes); (b) systematic phase components associated with the master scene used for the PS 226 

analysis, and (c) possible phase unwrapping errors, which were strongly dependent on the 227 

deformation signal and the presence of any data gaps in the interferograms. 228 

Previous validation approaches have several limitations. Firstly, to be useful in real-world 229 

applications, InSAR data must be geocoded. By only comparing results from different 230 

methods/providers in the radar coordinate system, an important step of InSAR processing is 231 
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excluded. Secondly, specifying a reference InSAR product as the “truth”, as was done in the 232 

Terrafirma Validation Project, can also lead to an unfair comparison, as it excludes the 233 

possibility that the reference data set also has errors. Thirdly, validation projects to date have 234 

used data from Envisat and ERS; the improved spatial and temporal coverage of Sentinel-1 235 

data, and its narrow orbital tube, opens up several new opportunities for InSAR processing, 236 

which were not feasible previously. Finally, previous approaches were only applied to 237 

validating PSI methods; a comparison method that can consider both PS and DS is now 238 

required.  239 

Several recent studies have compared individual data sets or methods. A comparative study 240 

based on the results from DePSI (Delft PS-InSAR processing package) and StaMPS (Stanford 241 

Method for Persistent Scatterers), was applied using two data sets from ERS and Envisat and 242 

concluded that these methods are complementary (Sousa et al. 2011). The time-series InSAR 243 

results generated using ERS data with both a PS method and a SBAS algorithm were compared 244 

quantitatively and the calculated discrepancy was found to be consistent with those estimated 245 

by the PSIC4 study (Shanker et al. 2011).  246 

In another study, the capability of three InSAR time-series techniques, PSI, SBAS and 247 

SqueeSAR, for evaluating landslide deformation, was investigated using TerraSAR-X images 248 

(Mirzaee et al. 2017). The estimated average velocity maps and coherence maps produced by 249 

the methods were compared and it was concluded that SqueeSAR was more efficient for 250 

evaluating landslide kinematics in the rural case study.  251 

Finally, the performance of ISBAS and RapidSAR were compared using Sentinel-1 images to 252 

monitor shale-gas operations in Lancashire, outlined as part of the Environmental Baseline 253 

Monitoring programme conducted by the British Geological Survey (BGS). The results showed 254 

agreement between the approaches to estimate average annual velocity in the study area (Jordan 255 

et al. 2019). 256 
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With the Copernicus European Ground Motion Service now being commissioned, it is timely 257 

to formalise requirements for comparison of InSAR results. In this research, we present a 258 

methodology for inter-comparison of geocoded InSAR products using Sentinel-1 images. We 259 

test this methodology with the InSAR products resulted from different InSAR time series 260 

algorithms over a case study where multiple InSAR data sets are available. 261 

3 Methods  262 

In this section, we introduce our new inter-comparison method. The outline of the proposed 263 

approach is shown in Figure 1. We base the approach on the Terrafirma Validation Project, but 264 

tackle its limitations as follows: 1) As end-users require geocoded InSAR data, we compare all 265 

the data sets in geographic rather than radar coordinates. This allows us to consider any 266 

potential geocoding errors that can impact on the final product, especially in areas with very 267 

local deformation. 2) Because no InSAR processing chain produces perfect, noise-free results, 268 

we avoid assuming that any reference InSAR processing is the “truth”. 3) We define several 269 

polygons with different land cover types and stability. This allows us to assess how the 270 

agreement differs between InSAR data with different signals and/or different ground 271 

conditions.  4) We do not limit the time series processing to PSI algorithms and are open to any 272 

other methodologies e.g. both PS and DS InSAR processing. 5) We work with Sentinel-1 273 

imagery. Our approach can be split into pre-processing and inter-comparison stages. These are 274 

described in more detail below.  275 

 3.1 Pre-processing 276 

Before comparing data sets, some pre-processing steps are required: 277 

(i) We assess the consistency of geocoded data sets from different InSAR methods. As 278 

the coordinate system of the points selected by different InSAR methods might be 279 

different, we convert all the InSAR data to an identical geographic coordinate system. 280 
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Any geocoding errors are critical when the deforming area is very small and should 281 

be noted. Adjustments can be made if necessary to ensure the data are comparable. 282 

This pre-processing step was applied in the PSIC4 project. We assume that any 283 

translation of coordinates is constant for the whole data set; and assesse them by 284 

overlaying the data on an accurate base map and considering some control points.  285 

(ii) We select pairs of InSAR data sets for comparison, with each data set processed using 286 

a different method. For the comparison to be valid, both data sets in a pair must use 287 

data from the same ascending or descending Sentinel-1 pass. Therefore, the inputs of 288 

this step are individual InSAR data sets from different methods and the outputs are 289 

different pairs of data sets. 290 

(iii) The time range of InSAR data for each comparison pair may be different. To ensure 291 

consistency as much as possible, we re-estimate the velocity using a common time 292 

range for each comparison pair, by fitting linear velocities to the time series for each 293 

pixel using only data from the common time range. The re-estimated velocities for 294 

the InSAR data sets forming each InSAR pair are the outputs of this step. 295 

(iv) We identify the common dates in the time series for each comparison pair and set the 296 

first common date as a reference time as follows: 297 

𝑑(𝑡)𝑇𝑒𝑚−𝑛𝑒𝑤 = 𝑑(𝑡)𝑇𝑒𝑚−𝑜𝑙𝑑 − 𝑑(𝑡0)𝑇𝑒𝑚−𝑜𝑙𝑑             (1)           298 

            where for each selected point in an inter-comparison pair, 𝑑(𝑡)𝑇𝑒𝑚−𝑛𝑒𝑤 is the re-299 

referenced deformation time series in temporal space (output), 𝑑(𝑡)𝑇𝑒𝑚−𝑜𝑙𝑑 is the 300 

original deformation time series (input) and 𝑑(𝑡0)𝑇𝑒𝑚−𝑜𝑙𝑑 is the deformation of the 301 

first common date for the corresponding pair. 302 

(v) We can optionally apply an identical low pass filter to each time series data set 303 

(input), in this case using a triangular filter covering 5 epochs. This helps to remove 304 
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the effect of random noise in a similar manner from both time series. The output of 305 

this step is filtered time series of InSAR data for each pair. Ideally, we work with 306 

unfiltered time series before applying this filter, but this may not always be possible. 307 

In this study, only one of our data sets was filtered, and we used the same temporal 308 

filter for the other unfiltered data sets.  309 

(vi) We re-reference the deformation rate and deformation time series of all comparison 310 

pairs to an identical local reference area, which is outside the deforming areas and 311 

contains coherent pixels: 312 

𝑑(𝑡)𝑛𝑒𝑤 = 𝑑(𝑡)𝑇𝑒𝑚−𝑛𝑒𝑤 − 𝑑_𝑟𝑒𝑓(𝑡)𝑇𝑒𝑚−𝑛𝑒𝑤           (2) 313 

𝑉𝑛𝑒𝑤 = 𝑉𝑜𝑙𝑑 − 𝑉_𝑟𝑒𝑓𝑜𝑙𝑑  314 

            where for each selected point in an inter-comparison pair, 𝑑(𝑡)𝑛𝑒𝑤 is the re-315 

referenced deformation time series in spatial and temporal spaces (output), 316 𝑑_𝑟𝑒𝑓(𝑡)𝑇𝑒𝑚−𝑛𝑒𝑤 is temporally re-referenced deformation time series for the 317 

reference area, 𝑉𝑛𝑒𝑤 is the re-referenced deformation velocity in spatial space 318 

(output), 𝑉𝑜𝑙𝑑 is the original deformation velocity and  𝑉_𝑟𝑒𝑓𝑜𝑙𝑑 is the deformation 319 

velocity of the reference area. Unlike the Terrafirma Validation Project, we do not 320 

have access to the coherence of selected points for all data sets. Therefore, we apply 321 

a noise analysis algorithm to identify high-quality pixels in the reference area 322 

(Hooper et al. 2007; Sadeghi et al. 2018). First, selected pixels are connected to 323 

form a network using Delaunay triangulation. Then, for each arc connecting two 324 

pixels, a weighted average phase is calculated from the entire time series, and 325 

removed from the original phase of the arc, which is then low pass filtered in time. 326 

The resulting phase, with the weighted average phase added back in, provides an 327 

estimate for the smooth underlying signal. Phase noise is estimated by subtracting 328 
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the smooth phase from the original phase of the arc. Finally, the phase noise of each 329 

measurement pixel is obtained from the phase noise of its corresponding arcs. The 330 

pixels with a noise level less than a threshold for all data sets are selected in the 331 

reference area.  332 

(vii) We define an identical geographic grid with 40 meters spacing in both easting and 333 

northing and for each of the InSAR data sets calculate the mean value of any 334 

measurement points located inside each grid cell.  The outputs of this step are the 335 

time series and velocities for each defined grid cell. We specify no-data for grid cells 336 

which contain no measurement points.  337 

(viii) We define polygons covering areas with different scattering and deformation 338 

characteristics so that the algorithms can be tested in different conditions. In the case 339 

of our test site in Glasgow, we define urban, rural and deforming polygons (see 340 

section 4 and Figure 2). Selected grid cells inside each defined polygon for all InSAR 341 

data are the outputs of this step. 342 

 

 

 

 

 

 

 

 

 

Figure.1) a flowchart showing our proposed inter-comparison methodology. 
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3.2 Inter-comparison of data sets 344 

After pre-processing, we compare InSAR results in terms of several metrics, including the 345 

estimated velocities, time series, density and coverage as follows: 346 

(i) We calculate the differences between the deformation velocities for the common grid 347 

pixels of each pair and estimate their mean (𝜇𝑑𝑉) and standard deviation (𝜎𝑑𝑉). We 348 

also calculate the correlation coefficient for estimated velocities (𝜌𝑉) of all common 349 

grid pixels. 350 

(ii) In order to extract statistics from the differences between time-series, (a) in the first 351 

step, we compute the differences between the time series for each common grid pixel 352 

of each pair and then extract their mean and standard deviation; (b) we calculate the 353 

mean of the parameters computed in the previous step for all common grid pixels of 354 

a given pair , mean of mean of time-series differences 𝜇𝜇𝑑𝐷 and mean of standard 355 

deviation of time-series differences 𝜇𝜎𝑑𝐷. The mean values show any potential bias 356 

between the estimated deformation velocities/time series of each pair. Standard 357 

deviation values provide information on how the deformation velocity/time series 358 

differences are distributed. We also calculate the correlation coefficient for the 359 

estimated deformation time series ( 𝜌𝐷) of each common grid pixel. This is a useful 360 

tool for measuring the degree of similarity of the deformation histories of the 361 

analysed time series.  362 

(iii)  In order to compare the density and coverage of measurement pixels, we resample 363 

the InSAR data onto an identical 100 m × 100 m grid. The number of selected pixels 364 

in each cell gives the selected pixel density (D); we calculate the average density for 365 

each of the polygons with different scattering/deformation characteristics. We also 366 

calculate the coverage (C) of measurement pixels, which we define as the percentage 367 

of 100 m × 100 m grid pixels containing at least 1 InSAR measurement. We note that 368 
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in order to make a fair comparison in terms of density and coverage, the noise 369 

analysis described in section 3.1-vi should be applied before comparison and noisy 370 

pixels should be removed from each data set using the same threshold for the phase 371 

noise standard deviation, in this case 1 rad in our case.  372 

4 Data and Case Study 373 

We use results from the Clyde Gateway of the Glasgow City Region to test our methods (Figure 374 

2). This is an area of particular interest to the Natural Environment Research Council (NERC) 375 

as it is the BGS geothermal energy research field test site of the UKGEOS project 376 

(https://www.ukgeos.ac.uk/about/project-details). The Glasgow site will help characterise 377 

whether water from abandoned mine workings can be used to generate a sustainable and 378 

efficient source of energy.  Changes in underground water levels, pressure and temperature 379 

caused by mine water for geothermal energy production activities can lead to surface 380 

subsidence/uplift (Heimlich et al. 2015). Therefore, monitoring is required to assess surface-381 

level impacts of geothermal abstraction and re-injection research activities (Bateson and 382 

Novellino 2019). Although the area is largely urban, it also includes more rural areas, such as 383 

the Woodland park within the Cuningar loop. 384 

We have access to several Sentinel-1 InSAR data products for this area, processed using four 385 

different approaches. Results for two of these approaches were provided by commercial 386 

companies: SatSense, using a modified RapidSAR algorithm (https://www.satsense.com) 387 

(Spaans and Hooper 2016) and TRE-ALTAMIRA, using the SqueeSAR algorithm 388 

(https://site.tre-altamira.com) (Ferretti et al. 2011). The results for the other two approaches 389 

come from our own processing using GAMMA-IPTA, processed using conventional PSI at 390 

BGS (https://www.gamma-rs.ch) and the PS-only option of StaMPS (Hooper et al. 2007). 391 

Analysis and interpretation of some of the GAMMA-IPTA results can be found in Bateson and 392 

https://www.ukgeos.ac.uk/about/project-details
https://www.gamma-rs.ch/


17 

 

Novellino (2019). We used the results of the four different approaches to test our InSAR inter-393 

comparison activity. In all we have 5 data sets, 3 in an ascending geometry and 2 in descending. 394 

Hereafter, we anonymise the algorithms and label them A-D, in no particular order. We have 395 

ascending and descending InSAR results for algorithm A, which we used for inter-comparison 396 

independently. For algorithm B, we have data for descending geometry only and for algorithm 397 

C and algorithm D we have data for ascending geometry only. Therefore, we formed 4 inter-398 

comparison pairs: A-B (descending), A-C (ascending), A-D (ascending) and C-D (ascending). 399 

Table 1 compares the key characteristics of the data sets: the longest time span and the largest 400 

number of available images are related to A (descending) and B (descending) which used 401 

similar Sentinel-1 data sets, while C includes the shortest time range and smallest number of 402 

Sentinel-1 scenes. B and C used PSI algorithms which select only PS pixels and form single-403 

master interferograms, but A and D took advantage of identifying both PS and DS pixels and 404 

made a multiple-master interferometric network. Apart from C, spatial de-trending was applied 405 

during processing to all of the InSAR data to remove any potential long wavelength trends.  406 

The different strategies applied by the InSAR algorithms for removing the effects of unwanted 407 

elements such as long wavelength trend and APS might have an impact on the level of 408 

agreement between the algorithms for example by introducing a bias in the average of 409 

deformation velocity differences.  410 

In algorithm A, the level of noise for a point is assessed by calculating the difference between 411 

the smoothed time series and the APS filtered time series. After referencing to the average of 412 

its neighbours, this helps to give an idea of which points are inherently noisier since 413 

atmospheric effects have been reduced. The phase noise is estimated for algorithm B using 414 

method described in section 3.1-vi. For algorithm C, the point quality is measured by 415 

calculating the standard deviation of the misfit to a regression through the time series. The 416 

standard deviation of the phase misfit depends on the quality of the reference point, the target 417 



18 

 

point and the pre-defined model (usually linear). For algorithm D, a linear model is fitted to 418 

the time series for each measurement point before compensating for possible atmospheric 419 

components and the standard deviation of the residual phases is calculated to estimate the 420 

uncertainty of the average velocity. 421 

Table.1) Key characteristics of the InSAR products: A-descending (Fig 3a), A-ascending (Fig 3b), B-descending (Fig 3c), 

C-ascending (Fig 3d), D-ascending (Fig 3e). 

 
Geometry Time range 

Number of 

Scenes 

 

Measurement 

Points 

Interferogram 

Network 

Trend 

removal 

A Ascending (Fig 3c) 
2015-05-23 

2018-12-27 

168 

 PS and DS 
Multiple-

Master Yes 

Descending (Fig 3b) 
2015-05-01 

2019-02-27 
175 

B 
Descending (Fig 3d) 2015-05-01 

2019-02-27 
175 

 
PS 

Single-Master 

 
Yes 

C 
Ascending (Fig 3e) 2015-08-15 

 2017-06-11 
35 

 
PS 

Single-Master 

 
No 

D 
Ascending (Fig 3f) 2015-03-12 

2017-11-26 
107 

 
PS and DS 

Multiple-

Master Yes 

We define three polygons for the test region that broadly cover “deforming” (0.2 km2), 422 

“urban” (0.9 km2 ) and “rural” areas (1.2  km2 ) (Figure 2). The area west of Cuningar Loop 423 

(deforming polygon) was a site developed for the Commonwealth Games Athletes Village 424 

and suffers from small 6 mm/yr rates of linear subsidence due to loading of the superficial 425 

deposits (Bateson and Novellino 2019). 426 

 

 

Figure.2) Location of our case study in Glasgow, the yellow outlined polygons are defined as areas including urban, rural 

and deforming features. 

 427 
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b) 

 

 

 

 

 

 

c) 

 

 

 

 

 

 

d) 

 

 

 

 

 

 

e) 
Figure.3) Estimated LOS deformation velocity in the case study by a) algorithm A using descending Sentinel-1 images, b) 

algorithm A using ascending Sentinel-1 images, c) algorithm  B using descending Sentinel-1 images, d) algorithm C using 

ascending Sentinel-1 images and e) algorithm D using ascending Sentinel-1 images. The yellow outlined polygons are 

defined in a) as areas including urban, rural and deforming features. The black outlined ovals show localised subsidence 

signals.    

 428 

 429 

A (Asc) 

C (Asc) 

D (Asc) 

B (Des) 

A (Des) 
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5 Results 430 

In this section, we present the results of our inter-comparison methodology using the available 431 

data sets. Four InSAR comparison pairs can be made: A-B (descending), A-C (ascending), A-432 

D (ascending) and C-D (ascending). Before showing the inter-comparison results, we show the 433 

averaged velocities on the defined grid and the common dates for each inter-comparison pair 434 

in Figure 4 and Figure 5, respectively. As can be seen in Figure 4, the reference area is local, 435 

and therefore the estimated inter-comparison statistics represent the local uncertainty.  436 
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B (Des) C (Asc) 
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e) 

Figure.4) Average LOS deformation velocity in the inter-comparison grid for the case study by a) algorithm A using 

descending Sentinel-1 images, b) algorithm A using ascending Sentinel-1 images, c) algorithm B using descending 

Sentinel-1 images, d) algorithm C using ascending Sentinel-1 images and e) algorithm D using ascending Sentinel-1 

images. The yellow outlined polygons are defined as areas including urban, rural and deforming features. The magenta 

outlined rectangular shows location of reference area. The Purple outlined square in a) shows an area to estimate 

variograms in figure 8. 

a) b) 

c) d) 

Figure 5) Dates of available S1 time series and common dates used in inter-comparison for the algorithms forming a) A -

B (descending) pair, b) A- C (ascending) pair, c) A-D (ascending) pair and d) C- D (ascending) pair. 

5.1 Inter-comparison of velocity: 437 

The velocity differences are calculated for the common grid pixels of each pair in the urban, 438 

rural and deforming polygons. The mean and standard deviation of deformation velocity 439 

D (Asc) 
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differences and correlation coefficients of the estimated velocities are extracted and reported 440 

in Figure 6. 441 

 

 

 

 

 

 

 

a) 
 

 

 

 

 

 

 

 

b)  
Figure 6) a) An error bar plot showing the mean of velocity differences at the centre of the error bars and the standard 

deviation of velocity differences as length of the error bars (±1sigma) b) a bar chart showing correlation coefficients of 

velocities for all common grid pixels between InSAR products in urban, rural and deforming polygons. 

The mean differences are 1.0 mm/yr at most (C-D, urban polygon), and most are less than 0.1 442 

mm/yr, confirming that there are not any significant biases in estimated velocities. The mean 443 

velocity differences associated with comparison pairs A-B and A-D are closer to zero than 444 

those for A-C and C-D. The standard deviation of the velocity differences can be used to assess 445 

the level of agreement between the InSAR algorithms, but does not mathematically represent 446 

the uncertainty. The standard deviation related to A-B is well under 1 mm/yr and indicates a 447 

good overall agreement. The standard deviations of the other InSAR algorithm pairs are all 448 

better than 2 mm/yr and the average of the standard deviations is highest in the rural polygon 449 

and lowest in deforming polygon for all pairs. The average of the standard deviations of 450 
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velocity differences for all polygons and all pairs is 1.1 mm/yr; we use this value to show 451 

confidence bounds for measurements in the scatterplots in Figure 7.  452 

All InSAR comparison pairs show low correlation where there is little deformation (in the 453 

urban and rural polygons), but have higher correlation in the deforming polygon. Correlation 454 

coefficients (𝜌𝑉) are in the range 0.5 to 0.7 showing a good agreement between the different 455 

methods, where there is significant deformation. We illustrate the agreement by creating 456 

scatterplots of the estimated velocities in the deforming polygon (Figure 7). The correlation is 457 

clearest in the comparison between A and B, where both data sets have relatively high density, 458 

but a good correlation is also seen in the deforming area for the other data sets, confirming that 459 

all algorithms are detecting similar deformation signature in this region.  460 
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d) 
Figure.7) Scatterplot of the estimated LOS velocities by a) A-B, b) A-C, c) A-D, d) C-D for deforming polygon. The 

color associated with each grid cell in the scatterplot shows the number of measurements points. The blue line shows the 

y=x axis which is an ideal location for points in a scatterplot and the dashed black lines are showing edge of the 

confidence bounds ( 1 sigma) assuming the standard deviation of velocity differences equals 1.1 mm/yr. 

In Figure 8, we also show variograms of the estimated velocity differences for all common grid 461 

cells of each inter-comparison pair inside the purple outlined square in Figure 4-a. This helps 462 

assess the spatial variability in the difference between the estimated velocities by the different 463 

methods. The variograms show that the noise level does not increase significantly with the 464 

spatial separation of the points on the 1-2 km length scales that we have analysed in this study. 465 

However, we would expect the noise level to increase with distance for longer length scales 466 

(Emardson et al. 2003).  467 

1.1 mm/yr 1.1 mm/yr 1.1 mm/yr 1.1 mm/yr 
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a) b) 

c) d) 

Figure.8) Experimental variogram (γ) of velocity differences at different separation distances for common grid cells in the 

purple outlined square in Figure 4-a) between a) A and B (descending), b) A and C(ascending), c) A and D(ascending), d) 

C  and D (ascending). 

5.2 Inter-comparison of time-series: 468 

As described in the Section 3, we calculate the differences between deformation time series in 469 

each comparison pair at each common grid pixels, and then extract mean and standard deviation 470 

of these differences at each pixel. Finally, we estimate the mean of the means and the mean of 471 

the standard deviations using all of the common grid pixels in each of the polygons (Figure 9). 472 

The mean of mean values (𝜇𝜇𝑑𝐷) is under ±2 mm for all pairs, indicating that there are 473 

noticeable systematic effects between the time series pairs. The mean of standard deviations 474 

(𝜇𝜎𝑑𝐷) ranges between 1 mm for the A-B pair and 2 mm for the A-D pair. Time series statistics 475 

associated with the A-D pair shows the poorest agreement with respect to the others for all 476 

polygons, except the urban polygon where mean of the mean is slightly lower than A-B pair. 477 
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Figure.9) An error bar plot showing the mean of mean of time series differences at the centre of the error bars and the 

mean of standard deviation of time series differences as length of the error bars (±1sigma) for all common grid pixels 

between InSAR products. The unit for the vertical axis is mm. 

We also calculated the correlation coefficient for the estimated deformation time series of each 478 

common grid pixel and plotted the percentage of common grid pixels with a correlation 479 

coefficient above 0.7 in Figure 10. This figure confirms that the percentage above 0.7 is over 480 

50% for all comparison pairs in the deforming polygon, which means more than half the 481 

common grid pixels in this polygon show a high level of similarity between the patterns of 482 

estimated deformation. The most similar pattern of deformation time series for all polygons is 483 

related to the A-B inter-comparison pair. 484 

 

Figure.10) A bar chart showing the percentage of common grid pixels where the correlation coefficient between 

deformation time series is above 0.7 for urban, rural and deforming polygons.  

 485 
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Comparison pair in descending geometry for point “1”: 
 

 

 

 

 

 

 

 

 
Comparison pairs in ascending geometry for point “1”: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure.11) a) Estimated LOS velocity by A(ascending) inside the deforming polygon on our grid used for comparison; data 

from measurement grid pixel “1” is shown in b-j; b) deformation time series plot of A(descending) and B (descending) 

using the first common date as a reference in time; c) scatterplot of A(descending) and B(descending; d) deformation time 

series plot of  A(ascending), C(ascending) and D(ascending), the temporal reference of time series is the original reference 

selected by the InSAR algorithms; e) deformation time series plot of A(ascending) and C(ascending) in the common 

temporal interval using the first common date as a reference in time; f) scatterplot of A(ascending) and C(ascending); g) 

deformation time series plot of A (ascending) and D (ascending) in the common temporal interval using the first common 

date as a reference in time; f) scatterplot of A (ascending) and D (ascending); i) deformation time series plot of C (ascending) 

and D(ascending) in the common temporal interval using the first common date as a reference in time; j) scatterplot of C 

(ascending) and D (ascending). 

a) 

1 

b) c) 

d) 

e) 

g) 

i) 

h) 

f) 

j) 

A and C 

A and D 

C and D 
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For illustration purposes, we also compare the time series for one typical subsiding grid cell in 486 

the deforming polygon (Figure 11-a)) for all pairs. We plot all the time series on the same time 487 

axis, although the common temporal interval between the algorithms differs for each InSAR 488 

pair. The time histories from the different algorithms and viewing geometries compare well 489 

when they are observing the same time periods. Figure 11-b) and 11-c) show the deformation 490 

time series plot and deformation time series scatterplot for A and B which used the same 491 

descending Sentinel-1 data sets. There is an excellent correlation coefficient between the 492 

deformation patterns estimated by the two algorithms and no significant bias between the 493 

estimated deformation time series can be seen. The reference of the deformation time series is 494 

the first common date. The deformation time series with the original reference in time selected 495 

by the InSAR algorithms are plotted in Figure 11-d) for A, C and D using descending Sentinel-496 

1 images. Then the deformation time series for A-C, A-D and C-D (each comparison pair in 497 

ascending geometry) are plotted in the common temporal interval using the deformation of the 498 

first common date as a reference in time in Figure 11-e), 11-g) and 11-i), respectively. The 499 

corresponding scatterplots of the estimated deformation time series for A-C, A-D and C-D pair 500 

are shown in the Figure 11-f), 11-h) and 11-j), respectively and good agreement between the 501 

InSAR algorithms in detecting the deforming signal can be seen.  502 

5.3 Inter-comparison of density and coverage: 503 

One major difference between the InSAR products is the density of pixels.  We compare these 504 

for all InSAR algorithms in Figure.12. All InSAR algorithms provide the highest and lowest 505 

density in urban and rural areas, respectively. We plot density maps for the different InSAR 506 

algorithms in Figure.13. The results confirm that A is the most successful InSAR algorithm in 507 
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terms of density of pixels for both ascending and descending geometries, and D identifies the 508 

lowest density. 509 

 

                                                     

 

 

 

 

 

 

 

                                                                                                

 
Figure.12) A bar chart showing the average density of measurement points by the InSAR algorithms for urban, rural 

polygon and deforming polygons.  

 

 

 

 

           

 

 

 

 

             

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

Figure.13) Density of InSAR measurements (Number of measurement points in 1 km2) by a) A (descending), b) A 

(ascending), c) B, d) C and e) D. 

We also compare the coverage for each InSAR comparison pair in Figure 14, defined as the 510 

percentage of 100 × 100 m grid pixels containing at least one measurement. The coverage of 511 

different InSAR algorithms in the deforming polygons is very similar. Although D provided 512 

the lowest density for all polygons, it offers the highest coverage in rural and deforming 513 

polygons. Indeed, it was able to select pixels in some locations other InSAR algorithms were 514 

not, including inside the Cuningar loop (Figure 3).  515 

a) b) 

c) d) e) 
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Figure.14) A bar chart showing the coverage of measurement points (the percentage of 100 × 100 m grid pixels 

containing at least one measurement) by the InSAR algorithms for urban, rural polygon and deforming polygons. 

6 Discussion and Recommendations 516 

In this section, we discuss the major similarities and differences between InSAR results. We 517 

then recommend some requirements for a national/international ground motion map. The 518 

results are quite similar despite the very different algorithms used. The major similarity 519 

between all the InSAR data sets is that they all detect similar deformation signals in the 520 

deforming polygon. Moreover, all of the methods provide a good density of observations in the 521 

urban polygon, as bright scatterers are selected appropriately by all the methods. In addition to 522 

the motion in the deforming polygon, a number of other features of deformation are seen in all 523 

data sets. For example, all data methods show localised subsidence (up to 10 mm/yr) on the 524 

M74 motorway gantry highlighted with black outlined ovals in Figure 3, which is likely related 525 

to instability in the embankment supporting the motorway at this location (Bateson and 526 

Novellino 2019). There is particularly good agreement between the velocity and time series 527 

products, and density/coverage of measurement points, for algorithm A and algorithm B, even 528 

though the methods are dissimilar. The better agreement of the A-B pair with respect to the 529 

other pairs is not due to the geometry of the Sentinel-1 data (descending). 530 

However, the results are not completely identical. One of the most striking differences between 531 

different InSAR methods is density and coverage of selected pixels. The ability to recover 532 

measurements at a high pixel density and with wide coverage is one of the most important 533 
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requirements for monitoring many different sources of deformation in different conditions. 534 

This can be critical where the deforming signal is very local and occurs in non-urban areas that 535 

lack man-made structures. The main reason for the difference in point density is the different 536 

methodologies used for processing and the criteria that are used for selecting the pixels (Table 537 

1 and Figure 12). In general, those methods that take advantage of both PS and DS, and benefit 538 

from making all possible interferograms (e.g. A and D) are more successful at extracting the 539 

maximum information (density and/or coverage) from the SAR stack. Note, however, that due 540 

to the short baseline of the Sentinel-1 interferograms, some DS pixels can remain coherent in 541 

a single-master interferogram network and would be identified as PS pixels in PSI processing 542 

methods such as StaMPS, where phase correlation rather than amplitude is used to identify PS 543 

(Hooper et al. 2007). Fully connected networks including interferograms with long temporal 544 

baselines may suffer from fewer selected pixels compared to the networks with only short 545 

baselines. Moreover, the temporal range of processed SAR images has an impact on the density 546 

of measurement points. Because scattering behaviour might vary over time, the probability of 547 

finding PS pixels with consistent scattering behaviour over longer periods of time reduces. 548 

However, in this case, the algorithms with the longest time series have the highest density so 549 

the time period cannot explain the differences we see. In addition, other factors that can have 550 

a major impact on the density of measurements, include the temporal sampling of signal, the 551 

temporal range of processed data, the configuration of the interferometric network, whether 552 

oversampling of the original images is applied, the approach for side-lobe cancelation, and the 553 

specific thresholds chosen for an acceptable signal-to-noise ratio (SNR). 554 

The sampling rate for Sentinel-1 is such that the single-look pixel spacing is finer than the 555 

resolution, and some scatterers can result in more than one PS pixel. In such cases the InSAR 556 

algorithm should ensure that any extraneous PSs from a single scatterer are pruned. It should 557 

also be noted that time series methods selecting DS pixels can introduce data redundancy when 558 
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spatial filtering is used to select SHPs. Therefore, given a homogeneous area, the selected 559 

points may show identical scattering behaviours. In this case, InSAR algorithms should provide 560 

end-users the resolution of the DS pixels and inform them that those measurements do not 561 

correspond to that specific point. Techniques that use pixels with intermittent coherence (Biggs 562 

et al. 2007; Cigna and Sowter 2017; Sowter et al. 2013) can be more successful in terms of 563 

spatial coverage and density, particularly in non-urban areas; however, these methods tend to 564 

use a high multi-looking factor to improve coherence, and hence the density of observations is 565 

often lower. 566 

Although a high density of measurement points is a desired outcome for an InSAR product, 567 

striking a balance between the quality and density of selected pixels is challenging. A higher 568 

density can be obtained by not rejecting pixels with higher noise values. The interferometric 569 

processing strategy (e.g. the use of a single master or multiple master images) and the 570 

methodology of time series filtering/smoothing also have an impact on the level of noise in the 571 

final results. Decisions may need to be made on a case-by-case basis, depending on the 572 

application and the expected magnitude of the deformation signals.  Using methodologies that 573 

provide both high density and high quality observations of deformation is a key priority for any 574 

national/international ground motion map.   575 

There might be some systematic effects in difference maps, which are mainly due to different 576 

approaches to dealing with long wavelength trends and atmospheric phase screens (APS). In 577 

order to evaluate impact of de-trending the products before inter-comparison, we also carried 578 

out a comparison with de-trended products from algorithm C. We repeated the calculation of 579 

statistics for the velocity and time series inter-comparison described in the section 5-1 and 5-2 580 

for pairs A-C and C-D. The results show that, in this case, de-trending has a negligible impact 581 

on the consistency of products from C with those A/D (compare supplementary Figures 1-4 582 
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with Figures 6,7,9 and 10). This is likely due to the small size of our polygons (maximum 1.2 583 

km2 ) which are not significantly affected by the long wavelength trend. It would be appropriate 584 

to de-trend data in inter-comparison activities for large case studies. 585 

Different geocoded coordinates for the common selected pixels is another discrepancy between 586 

the InSAR products. Overlaying InSAR data on an accurate base map or ortho-rectified aerial 587 

photograph and/or using corner reflectors can be solutions for correcting the geocoding shifts. 588 

Although a linearly varying shift would probably provide more accurate geocoding corrections, 589 

in general, a constant shift is assumed for inter-comparison purposes (Raucoules et al. 2009). 590 

Geocoding error correction improves the agreement between different data sets significantly.   591 

InSAR products are different in terms of some qualitative indicators. Spatial resolution is one 592 

of the most relevant metrics and ranges from the original high resolution sampling of Sentinel-593 

1 (14.1 m and 2.3 m in azimuth and slant range direction, respectively) to lower resolutions 594 

that depend on the associated multi-look factors selected during processing. Some methods can 595 

provide both high and low resolutions to be used for different applications (e.g. rural and urban 596 

environments); this may be useful for national/international ground motion services.  597 

We also note that ground motion maps are dynamic products, with velocities changing over 598 

time. Consequently, the frequency of update and latency period (time delay between 599 

acquisition and the update) should be defined by the InSAR algorithms that deliver the product. 600 

An appropriate update and latency period should be defined as part of any commissioning 601 

process. Some applications, such as hazard monitoring, benefit from rapid updates.  602 

Any future national or international ground motion service using Sentinel-1 InSAR will need 603 

to instigate a validation process to ensure data meet minimum standards and are consistent 604 

across borders. We propose that this is done in an open and transparent fashion. A single test 605 

region, or network of test sites for various applications, should be identified that includes a 606 
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range of deformation and land cover types, and bidders should submit their analyses for this 607 

region as part of any commissioning process. The results should be open and accessible via an 608 

online repository so that InSAR algorithms benefit from understanding how their analyses 609 

differ from others and so that all can improve their offerings. One of our major challenges in 610 

this research, was that different Sentinel-1 images (ascending vs descending; different dates) 611 

were processed by the InSAR algorithms, limiting our ability to conduct a fair comparison 612 

between all approaches. We suggest that in the future a comparison exercise should be repeated 613 

periodically and that in each case the time period, acquisition dates and acquisition geometry 614 

should be explicitly specified. 615 

In our analysis, the InSAR algorithms produced results over Glasgow to establish a baseline 616 

prior to the geothermal exploitation. The deforming areas in Glasgow were very local, and the 617 

scattering conditions in the deforming areas were not ideal. In addition, the “truth”, estimated 618 

through an independent measurement method, was unknown and therefore validation of the 619 

InSAR products using external measurements was impossible. Test sites should be carefully 620 

selected and should cover a range of different deformation types. Independent data should be 621 

collected, for example, from dense permanent networks of GNSS and levelling measurements. 622 

Corner reflectors may be useful for testing geolocation and for providing measurement points 623 

with high SNR, and it may be appropriate to process data from a very-high-resolution satellite 624 

system such as TerraSAR-X for additional validation of Sentinel-1 results. 625 

7 Conclusions 626 

In this research, we present an InSAR inter-comparison method, which 1) builds on the 627 

Terrafirma Validation Project and 2) addresses the limitations of previously proposed 628 

approaches up to now. We tested our method using 5 InSAR time series products including 629 

conventional PSI and advanced joint PS and DS InSAR, applied to Sentinel-1 images. We 630 
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selected an inter-comparison site in Glasgow, for which we had access to multiple InSAR data, 631 

and defined three polygons covering urban, rural, and deforming features. It is clear from our 632 

results that different InSAR methods detect the same general deformation features, but they are 633 

not identical in terms of different metrics. We propose different indicators, which are divided 634 

into quantitative metrics e.g. density and coverage of measurement points and qualitative 635 

metrics e.g. spatial resolution. Based on our comparison results, we suggest some 636 

recommendations, which might be useful for any future nationwide/international InSAR 637 

product and validation activities. 638 
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