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Two-dimensional angular parameter estimation for

noncircular incoherently distributed sources based

on an L-shaped array
Hua Chen, Member, IEEE, Yonghong Liu, Qing Wang, Member, IEEE, Wei Liu, Senior Member, IEEE,

and Gang Wang, Senior Member, IEEE

Abstract—In this paper, a two-stage reduced-rank estimator
is proposed for two-dimensional (2D) direction estimation of
incoherently distributed (ID) noncircular sources, including their
center directions of arrival (DOAs) and angular spreads, based
on an L-shaped array. Firstly, based on the first-order Taylor se-
ries approximation, a noncircularity-based extended generalized
array manifold (GAM) model is established. Then, the 2D center
DOAs of incident ID signals are obtained separately with the
noncircularity-based generalized shift-invariance property of the
array manifold and the reduced-rank principle. The pairing of
the two center DOAs is completed by searching for the minimum
value of a cost function. Secondly, the 2D angular spreads can
be obtained in closed-form solution from the central moments of
the angular distribution. The proposed estimator achieves higher
accuracy in angle estimation that manages more sources and
shows promising results in the general scenario, where different
sources possess different angular distributions. Furthermore, the
approximate noncircular stochastic Cramer-Rao bound (CRB) of
the concerned problem is derived as a benchmark. Numerical
analysis proves that the proposed algorithm achieves better
estimation performance in both 2D center DOAs and 2D angular
spreads than an existing estimator.

Index Terms—Incoherently distributed sources, noncircular
sources, 2D center DOA estimation, 2D angular spread estima-
tion, generalized shift invariance, rank reduction.

I. INTRODUCTION

As one of the classic localization methods, direction of

arrival (DOA) estimation has been widely studied in appli-

cations such as robotics, wireless communications, radar and
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underwater acoustics1 [1]–[5]. Traditional DOA estimation

techniques usually assume a point source model and two

representative approaches are the subspace-based [6] and

sparse representation-based [7]. However, in many practical

scenarios, such as cellular wireless systems, the incoming

signals will collide with antenna arrays from different paths

of different angles, which corresponds to the multipath trans-

mission and leads to the angular spread phenomenon [8].

Therefore, a distributed source model is more appropriate

for such a scenario [8], which is further categorized into

coherently distributed (CD) sources and incoherently distribut-

ed (ID) sources based on the correlation of the propagation

channel to the signal components from different directions, in

correspondence to slowly time-varying channels and rapidly

time-varying channels, respectively. By extending the classical

point source model methods [9]–[14] to CD source model,

both center DOA and angle spreads estimations of CD sources

have been well studied in the past few decades. However, for

the ID source, the rank of its noiseless covariance matrix will

increase with the angular spread, and its components occupy

the entire observation space, leaving the noise subspace empty.

The focus of this paper is to deal with this rather challenging

problem.

Currently, many ID source estimators have been developed,

such as the estimation of signal parameters via rotational

invariance techniques (ESPRIT)-ID algorithm [9], the dis-

persed signal parameter estimation (DISPARE) algorithm [15],

the maximum likelihood (ML) algorithm [16], the covariance

matching (COMET) algorithm [17] and some other improve-

ments [18]–[20]. However, the above-mentioned estimators are

only limited to the one-dimensional (1D) scenario. In practice,

the two-dimensional (2D) angle parameters are more suitable

to characterize the actual three-dimensional (3D) space [21].

Since the model of 2D ID sources can be represented by

four angular parameters: two center DOAs and two angular

spreads, high computational complexity associated with multi-

dimensional spectrum search becomes the main problem [15]–

[17]. To solve this problem, some 2D ID source parame-

ter estimation algorithms have been developed [21]–[24].

1In response to one reviewer’s comment about its potential to deal with
the current global situation of COVID-19 pandemic, one possible application
scenario of the DOA estimation technique is to localize and track the
movement of infected patients and high-risk and vulnerable individuals by
using array receivers to process the signals transmitted by their carried mobile
devices.
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Based on the bi-parallel uniform linear arrays (ULAs) and

the improved total least squares (TLS)-ESPRIT method, the

2D center DOAs of multiple ID sources can be effectively

estimated through 1D search without involving the solutions

of the 2D angular spreads [21]. Then, a low-complexity 2D

ESPRIT-based approach was proposed to estimate the 2D

center DOAs and 2D angular spreads of the ID sources [22],

which shows superior performance in massive multiple-input

multiple-output (MIMO) systems, evaluated by the derived ap-

proximate Cramer-Rao bound (CRB). Subsequently, in [23], a

generalized beamspace method, based on a uniform cylindrical

array (UCYA) was proposed for 2D localization of ID sources

in massive MIMO systems, by reducing the total dimensions of

the received signal vectors through beamspace transformation.

In order to avoid the spectrum search process in [23], a 2D

center DOA estimation algorithm for ID sources in massive

MIMO systems was presented in [24] based on a uniform

rectangular array (URA), which adopted the beamspace shift

invariance structure of total least squares method, and the 2D

angular spreads were then obtained in a closed-form solution.

However, none of the above studies takes into account the

non-circularity property of the signals.

Noncircularity and circularity are important properties of the

signal, and their concepts come directly from the geometric

interpretation of complex random variables. If the statistical

characteristics of the signal has the rotational invariance char-

acteristic, it is called a circular signal; otherwise, it is called a

noncircular signal. In wireless communication systems, many

widely used modulated signals such as BPSK and AM are

noncircular signals, while some other modulated signals such

as QAM and QPSK are circular. Owing to the fact that

both the conjugated and unconjugated covariance matrices of

noncircular signals are non-zero, additional information can be

used for estimating the angular parameters by expanding the

virtual aperture of the array to improve the performance [25]–

[28]. In recent years, some algorithms have been proposed for

ID sources by taking advantage of the noncircularity of the

signals [29]–[33]. In [29]–[31], the concerned problem mainly

focused on estimating the 1D center DOAs of noncircular

ID sources, which achieved a superior performance than its

circular counterparts. Aiming at 2D noncircular ID sources,

a low-complexity 2D center DOA estimation algorithm with

automatic pairing was proposed in [32], based on three parallel

ULAs, which does not require spectrum search and eigenvalue

decomposition, but the solution to the 2D angular spreads was

not provided. In the case of coexistence of ID circular and

noncircular sources, a conjugate generalized shift invariance

algorithm was proposed in [33] based on URAs. A match-

pairing method based on a generalized array manifold (GAM)

model was designed for such mixed scenarios, and the CRB

was also analyzed. However, algorithms for 2D noncircular

ID sources are still scarce and further work is needed in this

direction.

In this paper, a novel method for joint 2D center DOA and

2D angle spread estimation of noncircular ID sources is pro-

posed based on the extended GAM model using the first-order

Taylor series approximation, which focuses on the reduced-

rank principle with the noncircularity-based generalized shift
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Fig. 1: An L-shaped array structure.

invariance property. The contributions of the paper are given

as follows.

(1) Compared with Cao’s algorithm [18], the proposed

algorithm exploits the signal’s noncircularity information to

handle more ID sources with improved estimation accuracy.

(2) Compared with the multi-dimensional spectrum search

method, the proposed method only requires two 1-D spectrum

searches to obtain the 2D center DOAs of noncircular ID

sources, and the 2D angle spreads are obtained in closed-form

solutions.

(3) The proposed algorithm does not require prior knowl-

edge of the angular distribution; as a result, it can be applied

to situations where multiple sources have different angular

distributions.

(4) The approximate stochastic noncircular CRB for joint

2D center DOA and 2D angle spread estimation of noncircular

ID sources is derived as a benchmark.

The rest of this paper is organized as follows. Section 2

introduces the general signal model. The proposed algorithm

is presented in detail in Section 3. The approximate stochastic

CRB of the concerned problem is derived in Section 4.

Simulation results are provided in Section 5, followed by

conclusions in Section 6. A explanation of notations used is

shown in Table I.

II. ARRAY SIGNAL MODEL

Consider an L-shaped array consisting of two crossed ULAs

with in total F = M + N − 1 elements, where the antenna

array on the x axis and the z axis has M and N elements,

respectively, as illustrated in Fig. 1. The distance between

adjacent antennas d is equal to half-wavelength of incident

signals. There are K uncorrelated narrowband far-field ID

noncircular signals sk(t)(k = 1, 2, · · · ,K) impinging on the

array. The center angles θk ∈ [0, π] and βk ∈ [0, π] are from



3

TABLE I: Explanation of notations.

(·)∗: conjugate det{·}: the determinant of a matrix

(·)T : transpose tr{·}: the trace of a matrix

(·)−1: inverse diag{·}: diagonal matrix formed by its elements

(·)H : conjugate transpose blkdiag{·}: the generation of a block diagonal matrix

⊗: Kronecker product E{·}: the expectation operation

⊙: Hadamard product [·]l,k: the (l, k)th elements of a matrix

Ik×k: the k × k identity matrix vec{·}: an operator stacking the columns of a matrix on top of one another

0k×l: the k × l zero matrix ⌊·⌋: the floor function, giving the largest integer less than or equal to its input

the x axis and the z axis to the central line, respectively. Thus,

the observed signal vectors of the L-shaped array at time t can

be expressed as

x(t) =
K
∑

k=1

sk(t)

Lk
∑

l=1

γk,l(t)a(θ̄k,l, β̄k,l) + n(t) (1)

where t = 1, 2, · · · , T is the sampling time, and T is the

number of snapshots; Lk is the total number of rays from

the kth signal; θ̄k,l and β̄k,l are the 2D DOAs of the lth ray

related to the kth signal with the F × 1 array manifold vector

a(θ̄k,l, β̄k,l) = [ej2π(N−1)d cos β̄k,l/λ, · · · , ej2πd cos β̄k,l/λ, 1,
ej2πd cos θ̄k,l/λ, · · · , ej2π(M−1)d cos θ̄k,l/λ]T ; γk,l(t) is the

complex-valued gain for the lth ray of the kth signal;

n(t) = [n1(t), · · · , nF (t)]T is the F × 1 additive white

Gaussian noise vector with zero mean and covariance σ2
n. For

ID sources, the ray gains γk,l(t) are assumed to be temporally

white and is independent from ray to ray with zero-mean and

covariance [18]

E{γk,l(t)γ∗k′,l′(t′)} =
σ2
γk

Lk
δ(k − k′)δ(l − l′)δ(t− t′) (2)

θ̄k,l and β̄k,l can be represented as

θ̄k,l = θk + θ̃k,l(t) (3)

β̄k,l = βk + β̃k,l(t) (4)

where θk and βk are the center DOAs of the kth noncircular

signal; θ̃k,l(t) and β̃k,l(t) are the random angular deviation

from the center DOAs θk and βk, which are both assumed to

be real-valued zero-mean random variables with variance σ2
θk

and variance σ2
βk

, respectively. Here, we assume that the value

of θ̃k,l(t) and β̃k,l(t) is small, i.e., the DOAs from different

rays radiated by one noncircular signal are relatively close to

each other.

It is also assumed that ζ1
∆
= θ̃k,l(t) and ζ2

∆
=

β̃k,l(t) are a real-valued zero-mean random variables with

probability density function pk(ζ1, ζ2;σθk , σβk
). Moreover,

pk(ζ1, ζ2;σθk , σβk
) is generally supposed to be a symmetric

function about ζ1 and ζ2, with two typical distributions [32]:

the Gaussian distribution

pk(ζ1, ζ2;σθk , σβk
) =

1

2πσθkσβk

exp{− 1
2 (ζ

2
1/σ

2
θk
+ζ22/σ

2
βk
)}

(5)

and the uniform distribution

pk(ζ1, ζ2;σθk , σβk
) =











1
2
√
3σθk

, |ζ1| <
√
3σθk

1
2
√
3σβk

, |ζ2| <
√
3σβk

0, otherwise.

(6)

III. THE PROPOSED ALGORITHM

A. Extended GAM model

With the small angle spread assumption in (3) and (4), the

manifold vector a(θ̄k,l, β̄k,l) can be approximated as (7) with

the first-order Taylor series expansion [24] around the 2-D

nominal DOAs, i.e.,

a(θ̄k,l, β̄k,l) ≈ a(θk, βk)+a′θ(θk, βk)θ̃k,l(t)+a′β(θk, βk)β̃k,l(t)
(7)

where a′θ(θk, βk) =
∂a(θk,βk)
∂θk

and a′β(θk, βk) =
∂a(θk,βk)
∂βk

are

the partial derivative of a(θk, βk) with respect to θk and βk,

respectively. Substituting (7) into (1), we have

x(t) ≈
K
∑

k=1

(a(θk, βk)υk,0(t) + a′θ(θk, βk)υk,1(t)+

a′β(θk, βk)υk,2(t)
)

+ n(t)

(8)

where

υk,0(t) = sk(t)
Lk
∑

l=1

γk,l

υk,1(t) = sk(t)
Lk
∑

l=1

γk,lθ̃k,l(t)

υk,2(t) = sk(t)
Lk
∑

l=1

γk,lβ̃k,l(t).

(9)

Then, we can reformulate (8) into the GAM model as

x(t) ≈ B(θ, β)g(t) + n(t) (10)

and the GAM matrix B(θ, β) depends only on the center

DOAs, where

B(θ, β) = [A(θ1, β1),A(θ2, β2), · · ·,A(θK , βK)] ∈ CF×3K

(11)

A(θk, βk) = [a(θk, βk), a
′
θ(θk, βk), a

′
β(θk, βk)] ∈ CF×3

(12)

g(t) = [gT1 , g
T
2 , · · ·, gTK ]T ∈ C3K×1 (13)

gk = [υk,0(t), υk,1(t), υk,2(t)] ∈ C3×1. (14)

Due to the common assumption that the transmitted sig-

nals, the path gains, and the angular deviations are mutually

uncorrelated with each other [18], the variance of υk,1(t) and
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υk,2(t) can be expressed as

E
{

υk,1(t)υ
∗
k,1(t)

}

= ρkσ
2
θk

E
{

υk,2(t)υ
∗
k,2(t)

}

= ρkσ
2
βk

(15)

where ρk = E
{

|sk(t)|2
}

σ2
γk

is the power of the kth noncir-

cular signal. Additionally, the variance of υk,0(t) is

E
{

υk,0(t)υ
∗
k,0(t)

}

= ρk (16)

and also we have

E
{

υk,n(t)υ
∗
k′,n′(t)

}

= 0, ∀k ̸= k′ or n ̸= n′. (17)

From (15), (16), and (17), the covariance matrix of g(t) can

be expressed as

Λ = E
{

g(t)gH(t)
}

= blkdiag {Λ1,Λ2, · · · ,ΛK} (18)

where Λk = ρkdiag{1, σ2
θk
, σ2
βk
}(k = 1, 2, · · · ,K).

Using the noncircularity characteristics of the signal can

increase the a priori information, so it can also greatly improve

the estimation performance of DOA to some extent. Here,

we only consider the rotation invariance characteristics of the

first and second order statistical properties of the signal. For a

complex random signals sk, we define E{sk}, E{sks∗k} and

E{s2k} as the mean, covariance and ellipse covariance of the

signal sk, respectively. If the first and second order statistical

characteristics of the signal are not rotational invariant for an

arbitrary phase ϕk as follows [28]

E{skejϕk} ̸= E{sk}
E{skejϕk(ske

jϕk)∗} = E{sks∗k}
E{skejϕk · skejϕk} ̸= E{s2k}

(19)

the signal sk will be called a noncircular signal. For simplicity,

the emitted signals are supposed to be strictly noncircular with

the maximal noncircularity rate. Thus, g(t) can be re-expressed

as [32]

g(t) = Φg0(t) (20)

where g0(t) ∈ C3K×1 is the real-valued signal vector;

Φ = diag{ejω1 , ejω
′

θ,1 , ejω
′

β,1 , · · · , ejωK , ejω
′

θ,K , ejω
′

β,K} is

a 3K × 3K diagonal matrix, which contains the noncircu-

lar phase information in each element of the vector ω =
[ω1, ω

′
θ,1, ω

′
β,1, · · · , ωK , ω′

θ,K , · · · , ω′
β,K ]T .

In order to exploit the noncircularity information of the

strictly noncircular signals, a new data vector can be written

by concatenating the original data vector x(t) and its conjugate

counterpart as

y(t) =

[

x(t)
x∗(t)

]

=

[

B(θ, β)g(t)
B∗(θ, β)g∗(t)

]

+

[

n(t)
n∗(t)

]

=

[

B(θ, β)
B∗(θ, β)Φ−2

]

g(t) +

[

n(t)
n∗(t)

]

= B̄(θ, β)g(t) + n̄(t)
(21)

where

B̄(θ, β) =

[

B(θ, β)
B∗(θ, β)Φ−2

]

∈ C2F×3K (22)

is the extended GAM matrix; n̄(t) =

[

n(t)
n∗(t)

]

∈ C2F×1 is

the extended noise matrix.

The covariance matrix of the extended data vector y(t) is

given by

R = E{y(t)yH(t)} = B̄(θ, β)ΛB̄
H
(θ, β) + σ2

nI2F (23)

where Λ is the covariance matrix of g(t).
By performing eigenvalue decomposition (EVD) on R, we

have

R = UsΣsU
H
s + UnΣnUHn (24)

where the 2F × 3K matrix Us is the signal subspace cor-

responding to diagonal matrix Σs composed of 3K large

eigenvalues, and the 2F × (2F − 3K) matrix Un is the noise

subspace corresponding to diagonal matrix Σn composed of

(2F − 3K) small eigenvalues.

B. Estimation of Center DOAs

To obtain the 2D center DOA estimates, the sensor array

on the x axis and the z axis is divided into two subarrays

with equivalent number of sensors. To ensure estimation

accuracy, we set M1 = M − 1 and N1 = N − 1 to be the

number of sensors of each subarray on the x axis and the

z axis, respectively. Then we have four subarrays with the

sensor elements indexed as {x1, · · · , xM−1}, {x2, · · · , xM},

{z1, · · · , zN−1} and {z2, · · · , zN}, respectively. For simplic-

ity, {x1,m}M1

m=1 and {x2,m}M1

m=1 denote the locations of the

sensors in each subarray along the x axis, respectively;

{z1,n}N1

n=1 and {z2,n}N1

n=1 denote the locations of the sen-

sors in each subarray along the z axis, respectively, where

x1,m < x2,m(m = 1, · · · ,M1), z1,n < z2,n(n = 1, · · · , N1).
Define the following four selection matrices

J1 = [ 0M1×N1
IM1

0M1×1 ] ∈ CM1×F (25)

J2 = [ 0M1×N1
0M1×1 IM1

] ∈ CM1×F (26)

J3 = [ 0N1×1 IN1
0N1×M1

] ∈ CN1×F (27)

J4 = [ IN1
0N1×1 0N1×M1

] ∈ CN1×F . (28)

With (11), (12) and (22), we have

K2ā(θk, βk) = ΩkK1ā(θk, βk) (29)

K2ā′
θ(θk, βk) = Ω′

θ,kK1ā′θ(θk, βk) (30)

K2ā′
β(θk, βk) = Ω′

β,kK1ā′β(θk, βk) (31)

where

ā(θk, βk) =

[

a(θk, βk)
e−j2ωka∗(θk, βk)

]

∈ C2F×1 (32)

ā′θ(θk, βk) =

[

a′
θ(θk, βk)

e−j2ω
′

θ,ka′∗θ (θk, βk)

]

∈ C2F×1 (33)

ā′β(θk, βk) =

[

a′
β(θk, βk)

e−j2ω
′

β,ka′∗β (θk, βk)

]

∈ C2F×1 (34)

Ωk = blkdiag{ejφkIM1
, e−jφkIM1

}, φk = 2πd cos θk/λ
(35)

Ω′
θ,k = diag{ε1ejφk , · · · , εM1

ejφk , ε1e
−jφk ,

· · · , εM1
e−jφk}, εm =

x2,m

x1,m

(36)
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Ω′
β,k = 02M1×2M1

(37)

a(θk, βk) = [ej2πN1d cos βk,l/λ, · · · , ej2πd cos βk,l/λ, 1,
ej2πd cos θk,l/λ, · · · , ej2πM1d cos θk,l/λ]T is an F × 1 vector;

a∗(θk, βk), a′∗θ (θk, βk) and a′∗β (θk, βk) are the conjugate of

a(θk, βk), a′θ(θk, βk) and a′β(θk, βk), respectively; K1 =
blkdiag{J1, J1}, K2 = blkdiag{J2, J2}. From (29), (30) and

(31), it can be obtained that

B̄(θk, βk) = [ā(θk, βk), ā
′
θ(θk, βk), ā

′
β(θk, βk)] (38)

K2B̄(θ, β) = [Ω1K1ā(θ1, β1),Ω
′
θ,1K1ā′θ(θ1, β1),

Ω′
β,1K1ā′β(θ1, β1), · · · ,ΩKK1ā(θK , βK),

Ω′
θ,KK1ā′θ(θK , βK),Ω′

β,KK1ā′β(θK , βK)]
(39)

It is noted that Us has the same column space as the GAM

matrix B̄(θ, β), which has the form of

Us = B̄(θ, β)T (40)

where T is an invertible 3K × 3K matrix.

Similarly, two submatrices U1 ∈ C2M1×3K and U2 ∈
C2M1×3K can be extracted from Us, corresponding to the

partition of the two subarrays on the axis, namely,

U1 = K1Us = K1B̄(θ, β)T (41)

U2 = K2Us = K2B̄(θ, β)T. (42)

To proceed, we define a new matrix Ψ(θ) as

Ψ(θ) = blkdiag{ejψIM1
, e−jψIM1

} (43)

where ψ = 2πd sin θ/λ. Then, we formulate a matrix D(θ) as

D(θ) = U2−Ψ(θ)U1 = (K2B̄−Ψ(θ)K1B̄)T = Q(θ)T (44)

where Q(θ) = (K2B̄ − Ψ(θ)K1B̄). Resorting to (39), Q(θ)
can be rewritten as

Q(θ)

= [(Ω1 −Ψ(θ))K1ā(θ1, β1),
(

Ω′
θ,1 −Ψ(θ)

)

K1ā
′
θ(θ1, β1),

(

Ω′
β,1 −Ψ(θ)

)

K1ā
′
β(θ1, β1), · · · , (ΩK −Ψ(θ))K1

×ā(θK , βK),
(

Ω′
θ,K −Ψ(θ)

)

K1ā
′
θ(θK , βK),

(

Ω′
β,K −Ψ(θ)

)

K1ā
′
β(θK , βK)]

(45)

It can be seen in (45) that when θ = θk, all the elements of

(Ωk −Ψ(θ)) become zero. Therefore, if K ≤M1, then D(θ)
is rank deficient and the determinant of DH(θ)D(θ) is zero.

The center angles {θ̂k}Kk=1 can be obtained by searching for

peaks of the following function

f(θ) =
1

det{DH(θ)D(θ)}
. (46)

To estimate the center angle β, similarly we extract two

submatrices U3 ∈ C2N1×3K and U4 ∈ C2N1×3K from Us,

which correspond to the partition of the two subarrays on the

Z axis,

U3 = K3Us = K3B̄(θ, β)T (47)

U4 = K4Us = K4B̄(θ, β)T (48)

where K3 = blkdiag{J3, J3},and K4 = blkdiag{J4, J4}.

Define a matrix Ψ(β) as

Ψ(β) = blkdiag{ejψIN1
, e−jψIN1

} (49)

where ψ = 2πd cosβ/λ. Then, we formulate D(β) as

D(β) = U4−Ψ(θ)U3 = (K4B̄−Ψ(θ)K3B̄)T = Q(θ)T (50)

where Q(θ) = (K4B̄ − Ψ(θ)K3B̄). Similarly, Q(β) can be

rewritten as

Q(β)

= [(Θ1 −Ψ(β))K1ā(θ1, β1),
(

Θ′
θ,1 −Ψ(β)

)

K1ā
′
θ(θ1, β1),

(

Θ′
β,1 −Ψ(β)

)

K1ā
′
β(θ1, β1), · · · , (ΘK −Ψ(β))K1

×ā(θK , βK),
(

Θ′
θ,K −Ψ(β)

)

K1ā
′
θ(θK , βK),

(

Θ′
β,K −Ψ(β)

)

K1ā
′
β(θK , βK)]

(51)

where

Θk = blkdiag{ejφkIN1
, e−jφkIN1

}, φk = 2πd cosβk/λ
(52)

Θ′
θ,k = 02N1×2N1

(53)

Θ′
β,k = diag{ε1ejφk , · · · , εN1

ejφk , ε1e
−jφk ,

· · · , εN1
e−jφk}, εn =

z2,n
z1,n

.
(54)

It can be seen in (51) that when β = βk, all the elements of

(Θk −Ψ(β)) become zero. Therefore, if K ≤ N1, then D(β)
is rank deficient and the determinant of DH(β)D(β) is zero.

The values of {β̂k}Kk=1 can be obtained by searching for the

peaks of the following function

f(β) =
1

det{DH(β)D(β)}
. (55)

C. Angular Spread Estimation

Once obtaining the 2D nominal DOA estimates in (46) and

(55), Λ can be estimated from (23) as

Λ̂ = B̄(θ̂, β̂)+(R̂−σ̂2
nI2F )(B̄

H
(θ̂, β̂))+ (56)

where B̄(θ̂, β̂) is the estimate of B̄(θ, β) by substituting the

estimates of θ and β into (22). In addition, the variance σ̂2
n

of the noise can be estimated by the average of the (2F −
3K) smallest eigenvalues of R̂. With the expression of Λ in

(18), the 2D angular spreads σ̂θk and σ̂βk
can be calculated

respectively as

σ̂θk =

√

√

√

√

1

2

(

[Λ̂]3k−1,3k−1

[Λ̂]3k−2,3k−2

+
[Λ̂]3K+3k−1,3K+3k−1

[Λ̂]3K+3k−2,3K+3k−2

)

(57)

σ̂βk
=

√

√

√

√

1

2

(

[Λ̂]3k,3k

[Λ̂]3k−2,3k−2

+
[Λ̂]3K+3k,3K+3k

[Λ̂]3K+3k−2,3K+3k−2

)

(58)

where k = 1, 2, · · · ,K.

D. Pair-Matching Procedure

In the case of a single source, the estimated θ̂k and β̂k
can be obtained by the above methods, respectively. However,

since the estimation of the center angles θ and β is performed
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TABLE II: Summary of the proposed algorithm.

Algorithm: Estimation of center DOAs and angular spreads of ID noncircular sources

Step 1 Form the extended data vector y(t) according to (20);

Step 2 Compute the covariance matrix R̂ via (22), and perform EVD on R̂ to obtain Ûs;

Step 3 Extract four submatrices U1, U2, U3 and U4 from Us, and formulate matrix D(θ) and D(β);

Step 4 Estimate the center DOAs θ̂ and β̂ through peak searching of (45) and (54);

Step 5 Match θ̂ and β̂ according to (58);

Step 6 Calculate Λ̂ via (55) and estimate the angular spreads with (56) and (57).

independently, with multiple incident sources, θ̂k and β̂k
may not be in a one-to-one correspondence, so they need

to be paired. Thus, we substitute θ̂k and β̂k into the 2-D

MUSIC spatial spectrum to complete the pairing by finding the

minimum value of the denominator which can be represented

as

(θ̂k, β̂k) = arg
θ,β

min
∥

∥

∥
EHn a(θ̂, β̂)

∥

∥

∥

2

(59)

where Ek is the noise subspace of the covariance matrix of

the data vector x(t), ∥·∥2 denotes the l2-norm. It is worth

noting that the angular spreads σ̂θk and σ̂βk
are automatically

paired without any extra processing. The proposed algorithm

for estimating the 2D angular parameters of ID noncircular

sources is summarized in Table II.

IV. THE APPROXIMATE CRAMER-RAO BOUND

It is well known that the CRB for angular parameter

estimation provides a benchmark to evaluate the performance

of an unbiased estimator [32]–[34]. In this section, the ap-

proximate stochastic noncirlular CRB for the unknown angular

parameters of ID sources is derived. We start by defining a

vector η containing all the parameters of interest as

η = [µT ,υT ]T ∈ C(6K+1)×1 (60)

where µ = [θT ,σTθ ,β
T ,σTβ ]

T ∈ C4K×1 with

θ = [θ1, θ2, · · · , θK ]T , β = [β1, β2, · · · , βK ]T ,

σθ = [σθ1, σθ2, · · · , σθK ]T and σβ = [σβ1, σβ2, · · · , σβK ]T ,

and υ = [ψT ,ρT , σ2
n]
T ∈ C(2K+1)×1 with the

noncircular phase vector ψ = [ϕ1, ϕ2, · · · , ϕK ]T and

ρ = [ρ1, ρ2, · · · , ρK ]T .

Then, with the assumption of small angular spreads, the

array manifold a(θ̄k,l, β̄k,l) in (1) can be approximated with

the aid of Taylor series expansion as

a(θ̄k,l, β̄k,l)

≈ [ej2π(N−1)d(cos βk−β̃k,l sin βk)/λ, · · · , ej2πd(cos βk−β̃k,l sin βk)/λ,

1, ej2πd(cos θk−θ̃k,l sin θk)/λ, · · · , ej2π(M−1)d(cos θk−θ̃k,l sin θk)/λ]T .
(61)

The approximated formulas for the conjugated and uncon-

jugated covariance matrix R1 and R′
1 of the observation are

given by [22]

R1 ≈
K
∑

k=1

ρkRs(θk, σθk, βk, σβk) + σ2
nIM (62)

R′
1 ≈

K
∑

k=1

ρke
jϕkR′

s(θk, σθk, βk, σβk) (63)

where Rs(θk, σθk, βk, σβk) = a(θk, βk)a
H(θk, βk) ⊙

G(θk, σθk, βk, σβk) and R′
s(θk, σθk, βk, σβk) =

a(θk, βk)a
T (θk, βk) ⊙ G′(θk, σθk, βk, σβk). Here we make

the assumption that the angular distributed functions follow a

Gaussian function. The (p, q)th element of G(θk, σθk, βk, σβk)
is given by [22], [32]

[G(θk, σθk, βk, σβk)]p,q

= exp
[

−0.5
(

( 2πλ (xp − xq)σθk cos θk)
2

+ ( 2πλ (zp − zq)σβk cosβk)
2
)]

(64)

and the (p, q)th element of G′(θk, σθk, βk, σβk) is given by

[G′(θk, σθk, βk, σβk)]p,q

= exp
[

−0.5
(

( 2πλ (xp + xq − 2)σθk cos θk)
2

+ ( 2πλ (zp + zq − 2)σβk cosβk)
2
)]

.

(65)

Taking into account the noncircularity of the incoming

signals, the extended covariance matrix R can be further

rewritten as

R =

[

R1 R′
1

R′
1
∗ R∗

1

]

. (66)

The CRB of η can be calculated as [22], [32]–[34]

CRB(η) = F−1 (67)

where F is the Fisher information matrix (FIM) with the

(p, q)th entry defined as

[F]p,q =
T

2
tr

{

R−1 ∂R

∂ηp
R−1 ∂R

∂ηq

}

. (68)

Furthermore, (68) can be rewritten as

2

T
F =

(

∂h

∂ηT

)H
(

R−T ⊗ R−1
)

(

∂h

∂η

)

(69)

where h = vec{R}.

With the partition

(

R−T/2 ⊗ R−1/2
)

[

∂h

∂µT

∣

∣

∣

∣

∂h

∂υT

]

∆
= [U |V ] (70)

where

U

=
(

R−T/2 ⊗ R−1/2
) [

∂h
∂θT

∣

∣

∣

∂h
∂βT

∣

∣

∣

∂h
∂σT

θ

∣

∣

∣

∂h
∂σT

β

]

=
[

Uθ
∣

∣Uβ |Uσθ

∣

∣Uσβ

]

(71)
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TABLE III: Comparison of the performance by the two algorithms.

Algorithm Complexity
Maximum number of

signals distinguished

Noncircularity

used

Proposed

O((2F )2T + (2F )3+8FK2 + 2(2F )2K
+∆θ(8M1K

2 + 16M1
2K)

+∆β(8N1K
2 + 16N1

2K))
min{M1, N1} yes

Cao [18]

O(F 2T + F 3+4FK2 + 2F 2K
+∆θ(4M1K

2 + 8M1
2K)

+∆β(4N1K
2 + 8N1

2K))
⌊min{M1, N1}/2⌋ no

V

=
(

R−T/2 ⊗ R−1/2
) [

∂h
∂ϕT

∣

∣

∣

∂h
∂ρT

∣

∣

∣

∂h
∂σ2

n

]

= [Uψ |Vs |Vn ] .
(72)

The kth column of Uθ, Uσθ
, Uψ , Vs and Vn is given by

Uθ(:, k) = vec

{

R−1/2 ∂R

∂θk
R−1/2

}

(73)

Uβ(:, k) = vec

{

R−1/2 ∂R

∂βk
R−1/2

}

(74)

Uσθ
(:, k) = vec

{

R−1/2 ∂R

∂σθk
R−1/2

}

(75)

Uσβ
(:, k) = vec

{

R−1/2 ∂R

∂σβk
R−1/2

}

(76)

Uψ(:, k) = vec

{

R−1/2 ∂R

∂ϕ
R−1/2

}

(77)

Vs(:, k) = vec

{

R−1/2 ∂R

∂ρk
R−1/2

}

(78)

Vn(:, k) = vec

{

R−1/2 ∂R

∂σ2
n

R−1/2

}

. (79)

Then we can rewrite (69) as

2

T
F =

[

UH

VH

]

[ U V ]. (80)

By taking the upper-left corner of F−1 and resorting to

the block matrix inversion lemma [32], we can derive the

interested angle parameters CRB(η) from (67).

Remark 1: The major computational effort of the pro-

posed algorithm includes the construction of R̂, perform-

ing EVD on R̂, spectral searching and Step 6. Denote

the number of searches for estimating the centere DOAs

θ̂ and β̂ by ∆θ and ∆β , respectively. To calculate R̂

and perform EVD on R̂, a computational complexity of

O((2F )2T ) and O((2F )3) is needed, respectively. The com-

plexity for two 1D spectral searches in Step 4 is about

O(∆θ(8M1K
2 +16M1

2K) +∆β(8N1K
2 +16N1

2K)). The

complexity of Step 6 is O(8FK2 + 2(2F )2K). The total

computational complexity of the proposed algorithm is about

O((2F )2T+(2F )3+∆θ(8M1K
2+16M1

2K)+∆β(8N1K
2+

16N1
2K)+8FK2+2(2F )2K). Because Cao’s algorithm does

not make use of noncircularity characteristics of the signal, the

dimension of the covariance matrix is F ×F , and its required

computational complexity is about half of the proposed algo-

rithm, as shown in Table III.

Remark 2: Here, the maximum number of distinguishable

signals of the proposed algorithm is analyzed as compared

to Cao’s algorithm [18]. With the additional information

provided by noncircular signals, the maximum number of

signals distinguished by the proposed algorithm is based on

the new extended data vector in (21) as well as the matrix D(θ)
in (44) and the matrix D(β) in (50), which is shown in Table

III as compared to Cao’s algorithm. Obviously, the proposed

algorithm can distinguish twice the number of signals than

that of Cao’s algorithm.

V. SIMULATION RESULTS

In this part, simulations are provided to demonstrate the

effectiveness of the proposed estimator for ID noncircular

sources in comparison with Cao’s algorithm [18]. The CRB for

2D angular parameter estimation of ID noncircular sources is

also plotted as a benchmark. In all simulations, an L-shaped ar-

ray with F =M+N−1 = 13(M = N = 7) sensors is consid-

ered, with multiple BPSK signals impinging. The variance of

ray-gains is set as {σ2
γk
}Kk=1 = 1, and the number of scattering

paths is set as {Lk}Kk=1 = 100. We use the root mean square

error (RMSE) RMSE(θ) =

√

1
KMc

K
∑

k=1

Mc
∑

m=1

(

θ̂k,m − θk

)2

and RMSE(β) =

√

1
KMc

K
∑

k=1

Mc
∑

m=1

(

β̂k,m − βk

)2

as the

performance index, where Mc is the total number of Monte-

Carlo trials, θ̂k,m and β̂k,m are the estimate of the 2D center

DOAs θk and βk of the kth signal in the mth Monte-Carlo

trial, respectively. The number of sensors in each subarrray is

M1 = N1 = 6 for the proposed algorithm.

In the first simulation, shown in Fig. 2, we

examine the scatter plot of 2D center DOAs θ and

β estimated by the proposed algorithm. Here, we

consider four ID noncircular signals with angular

parameters (θ1, σθ1 , β1, σβ1
) = (50◦, 0.5◦, 85◦, 0.5◦),

(θ2, σθ2 , β2, σβ2
) = (75◦, 0.5◦, 60◦, 0.5◦), (θ3, σθ3 , β3, σβ3

) =
(90◦, 0.5◦, 70◦, 0.5◦), and (θ4, σθ4 , β4, σβ4

) =
(65◦, 0.5◦, 95◦, 0.5◦). All signals’ angular distributions

are Gaussian with the same angular spread. The SNR is set

as 20dB, and the number of the snapshots is T = 1000.

According to Remark 2, the maximum number of 2D ID

noncircular signals that can be handled by Cao’s algorithm

is 3, while for the proposed one it is 6. Fig. 2 displays
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Fig. 2: 2D center DOA scatter plot for ID noncircular sources.
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Fig. 3: RMSE of 2D center DOAs for ID noncircular sources versus SNR.
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Fig. 4: RMSE of 2D angular spreads for ID noncircular sources versus SNR.

the 2D DOA scattergram of the ID noncircular signals by

the proposed algorithm. It can be seen that the proposed

algorithm has provided an effective estimation result.

In the second simulation, the performance of the proposed

algorithm is studied with SNR varying from -5dB to 20d-

B. There are two uncorrelated ID noncircular signals with

angular parameters (θ1, σθ1 , β1, σβ1
) = (40◦, 0.5◦, 30◦, 0.5◦),

and (θ2, σθ2 , β2, σβ2
) = (60◦, 0.5◦, 50◦, 0.5◦). Their angular

distribution is Gaussian with the same angular spread. The

number of snapshots is 300 and Mc = 200. When the number

of array sensors on the x-axis is 7, the proposed algorithm

divides the array on the x-axis into two 6-sensor subarrays

and two 6-sensor extended subarrays. The processing at z-

axis is the same as the array on the x-axis. However, Cao’s

algorithm only divides the array on the x-axis or the z-axis into

two subarrays with 6 sensors. Fig. 3 and Fig. 4 illustrate the

RMSEs of the 2D center DOA estimation and the 2D angular

spread estimation for different algorithms, respectively. The

CRBs are also shown as benchmarks. It can be observed that,

with the additional noncircularity information exploited, the

performance of the proposed algorithm is better than Cao’s

algorithm.

In the third simulation, the performance with respect to

a varying number of snapshots ranging from 50 to 950 is

investigated. The SNR is set at 15dB and the other parameters

are the same as in the second simulation. As shown in Fig. 5

and Fig. 6, a similar conclusion can be drawn as in Fig. 3 and

Fig. 4, i.e., as the number of snapshots increases, the proposed

algorithm again outperformed Cao’s algorithm [18], and both

performances improve gradually.

In the fourth simulation, the performance of the proposed

algorithm is studied versus the angular spread varying from

0.2◦ to 3.4◦. The SNR is set at 10dB, the angular spread of

two uncorrelated ID noncircular signals is set as the same, and

the other parameters are the same as in the second simulation.

From Fig. 7, it can be seen that as the angular spread increases,

the estimation performance of the 2D center DOA of both

algorithms becomes worse overall. It can also be observed

from Fig. 8 that the RMSE of the proposed method reaches

a minimum when the angular spread is at an intermediate

value. When the angular spreads are small, noise is the main

influencing factor and it is expected that the performance will

become better. When the angular spreads are large, the rest

of Taylor series in (7) cannot be omitted. As a result, their

RMSE will increase. However, with the increase of the angular

spread, the proposed algorithm still shows better performance

than Cao’s algorithm [18] in both 2D center DOA estimation

and 2D angular spread estimation.

In the last simulation, we consider the case where multiple

ID noncircular signals have different angular distributions.

Two ID noncircular signals are considered, one with 2D center

DOAs (θ1, β1) = (40◦, 30◦) and exhibiting Gaussian distribu-

tion with (σθ1 , σβ1
) = (0.5◦, 0.5◦), another with center DOAs

(θ2, β2) = (60◦, 50◦) and exhibiting uniform distribution with

(σθ2 , σβ2
) = (0.5◦, 0.5◦). The RMSE results for different

algorithms are shown in Figs. 9 and 10. It is indicated that the

proposed algorithm can also work effectively when multiple

ID noncircular signals have different angular distributions. In
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Fig. 5: RMSE of 2D center DOAs for ID noncircular sources versus number of snapshots.
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Fig. 6: RMSE of 2D angular spreads for ID noncircular sources versus number of

snapshots.

addition, for each type of angular distribution, the proposed

algorithm has achieved a more accurate result than Cao’s

algorithm [18].

VI. CONCLUSION

In this paper, a novel angular parameter estimation algorith-

m for multiple 2D incoherently distributed noncircular sources

has been developed based on the reduced-rank principle. By

utilizing the noncircularity property of signals, an extended

GAM model for the L-shaped array structure is derived with

Taylor series expansion, and the two center DOA angles

associated with each source are estimated separately through

spectral peak search exploiting the noncircularity-based gen-

eralized rotational invariance relationship. The pairing of the

two center DOAs is completed by searching for the minimum

value of the cost function. Finally, closed-form solutions for

2D angle spreads are calculated by the central moments of

the angular distribution. Moreover, the CRB for the concerned

0.5 1 1.5 2 2.5 3

 Angular spread (degree) 

10-1

100

101

 R
M

S
E

(d
eg

re
e 

)

Center DOA estimator 

,Cao

,Cao

,Proposed

,Proposed

Fig. 7: RMSE of 2D center DOAs for ID noncircular sources versus the angular spread.
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Fig. 8: RMSE of 2D angular spreads for ID noncircular sources versus the angular spread.
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Fig. 9: RMSE of 2D center DOAs with different distributed angular distributions.
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Fig. 10: RMSE of 2D angular spreads with different distributed angular distributions.

problem is derived as a benchmark. The superiority of the pro-

posed algorithm has been demonstrated by various simulation

results.
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