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ABSTRACT Directional modulation (DM) can transmit information to the desired direction or directions

with known constellation mappings, but with scrambled ones in other directions. However, one problem of

the design is that when desired receivers and eavesdroppers are in the same transmission direction, their

beam responses cannot be distinguished, as steering vectors for these locations are the same. To solve the

problem, positional modulation (PM) is introduced where a given modulation pattern can only be received

at certain desired positions. In this work, the multi-path effect is exploited for positional modulation with the

aid of metasurface acting as a low-cost flexible reflecting surface. Design examples are provided to show

the effectiveness of the proposed design.

INDEX TERMS Positional modulation, directional modulation, metasurface.

I. INTRODUCTION

The Fifth Generation (5G) wireless communication technol-

ogy has been studied extensively [1], [2], and one crucial part

is beamforming. Directional modulation (DM) as a beam-

forming based technology can keep a known modulation

scheme to the desired direction or directions, while scram-

bling the pattern in other directions, and since it was proposed

in [3], DM has been studied by many researchers [4]–[9].

In [10], a reconfigurable array was designed by switching

elements for each symbol to make their constellation points

not scrambled in desired directions, but distorted in other

directions. A method named dual beam DM was introduced

in [11], where the I and Q signals are transmitted by different

antennas. In [12], [13], phased arrays were employed to show

that DM can be implemented by phase shifting the trans-

mitted antenna signals properly. Multi-carrier based phased

antenna array design for directional modulation was studied

in [14], followed by a combination of DM and polarisation

design in [15]. The bit error rate (BER) performance of a

system based on a two-antenna array was studied using the

DM technique for eight phase shift keyingmodulation in [16].

The associate editor coordinating the review of this manuscript and

approving it for publication was Qilian Liang .

A more systematic pattern synthesis approach was presented

in [17], followed by a time modulation technique for DM

to form a four-dimensional (4-D) antenna array in [18]. The

introduction of artificial noise (AN) has further advanced the

directional modulation technology [19]–[21].

However, eavesdroppers aligned with or very close to the

desired direction/directions will be a problem for secure sig-

nal transmission, as their received modulation patterns are

similar to the one received by the desired user. To make

sure that a given modulation pattern can only be received at

certain desired positions, positional modulation (PM) based

technique was introduced. For frequency diverse antenna

arrays, a random frequency diverse array-based directional

modulation with artificial noise (RFDA-DM-AN) [22] was

proposed to achieve positional modulation. RFDA-DM-AN

was design by randomly allocating frequencies to transmit

antennas. In [23], a non-linear frequency diverse array was

proposed as the transmitter to provide range-dependent beam-

pattern. An OFDM (orthogonal frequency division multi-

plexing) signal transmitter with frequency diverse array [24]

was designed to achieve security and stability of information

transmission. For phased antenna arrays, two methods to

achieve it were proposed. One is using a fixed reflecting

surface [25], which is difficult to control and not flexible
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enough to deal with the ever changing user conditions, while

the other one is applying multiple antenna arrays at different

locations [26] and a clear drawback is the very high cost asso-

ciated with implementing multiple antenna arrays at different

locations.

In this work, we focus on the positional modulation prob-

lem and propose a new design by employing the metasur-

face as a low-cost flexible reflecting material to control the

modulation pattern at different spatial locations. Metasur-

face is the surface version of a metamaterial [27], and its

use in wireless communications has been widely studied in

recent years [28]–[32]. For implementation of metasurface

on hardware, each electromagnetic micro unit on the meta-

surface consists of two copper plates on both sides and a

varactor diode in the middle as a bridge. The electrode aper-

tures on the copper plates on both sides are used to apply

voltage to the varactor diode. Its electromagnetic controllable

characteristics are reflected in the varactor diode. Through

the digital control voltage sequence output by the control

circuit, each electromagnetic micro unit is controlled in real

time to show different electromagnetic characteristics, which

represents different values of weight coefficients applied to

the metasurface. The proposed method can also be extended

to use in harsh environments. When one path weakens or

disconnected, we can choose other paths to transmit signals

to achieve multi-path transmission effect for positional mod-

ulation design.

The remaining part of this paper is structured as follows.

A review of DM design based on linear antenna arrays is

given in Sec. II. Positional modulation design using metasur-

face is presented in Sec. III. Design examples are provided in

Sec. IV, followed by conclusions in Sec. V.

II. REVIEW OF DM DESIGN BASED ON LINEAR ANTENNA

ARRAYS

A narrowband N -element linear antenna array for transmit

beamforming is shown in Fig. 1, where the spacing between

the zeroth antenna and the n-th antenna is represented by dn
(n = 0, 1, . . . ,N − 1). Each antenna has its corresponding

weight coefficient wn, n = 0, 1, . . . ,N −1. The transmission

angle of the antenna array is represented by θ with a range

[−90◦, 90◦]. Desired locations are represented by L, and

eavesdroppers denoted byE are around desired locations. The

steering vector of the array as a function of angular frequency

ω and transmission angle θ is given by

s(ω, θ) = [1, ejωd1 sin θ/c, . . . , ejωdN−1 sin θ/c]T , (1)

where {·}T is the transpose operation, and c is the speed of

propagation. Then, the beam response of the array can be

given by

p(ω, θ) = wH s(ω, θ), (2)

where {·}H represents the Hermitian transpose, and w is the

weight vector

w = [w0,w1, . . . ,wN−1]
T . (3)

FIGURE 1. A narrowband transmit beamforming structure.

For M -ary signaling, such as quadrature amplitude mod-

ulation (QAM), M sets of desired array responses pm(θ )

(m = 0, 1, . . . ,M−1) exist withM sets of weight coefficients

wm= [wm,0,wm,1, . . . ,wm,N−1]
T , m=0, 1,. . .,M−1.

(4)

We assume R transmission directions are considered in the

design, including r directions in the mainlobe and R − r

directions in the sidelobe, i.e.,

θML = [θ0, θ1, . . . , θr−1],

θSL = [θr , θr+1, . . . , θR−1]. (5)

Then, the desired responses in the mainlobe and sidelobe

regions for the m-th symbol can be represented by

pm,ML = [pm(ω, θ0), pm(ω, θ1), . . . , pm(ω, θr−1)],

pm,SL = [pm(ω, θr ), pm(ω, θr+1), . . . , pm(ω, θR−1)]. (6)

Similarly, the steering matrix in the mainlobe and sidelobe

ranges can be expressed as

SML = [s(ω, θ0), s(ω, θ1), . . . , s(ω, θr−1)],

SSL = [s(ω, θr ), s(ω, θr+1), . . . , s(ω, θR−1)]. (7)

Note that all symbols for a fixed θ share the same steering

vector.

Then, for them-th symbol, its corresponding weight coeffi-

cients for DMdesign can be obtained by solving the following

problem

min ||pm,SL − wH
mSSL ||2

subject to wH
mSML = pm,ML , (8)

where || · ||2 denotes the l2 norm.

III. PROPOSED DESIGN FOR POSITIONAL MODULATION

USING METASURFACE

PM keeps a given modulation pattern at certain desired posi-

tions by exploiting the characteristics of multi-path trans-

mission. As shown in Fig. 2, a metasurface is introduced

in the design as a controllable reflecting surface for effec-

tive beamforming. It has Q elements and is H distance
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FIGURE 2. Multi-path signal transmission to the desired receiver L and
eavesdroppers E .

above the transmission antenna array. The corresponding

weight coefficients for each element is represented by w̃q for

q = 0, . . . ,Q − 1. The distance between the zeroth element

and the q-th element is represented by xq (q = 0, 1, . . . ,

Q − 1). The angle for the reflected path from metasurface

to receivers is represented by φ ∈ [−90◦, 90◦]. Similar

to the DM design structure in Sec. II, the transmitter is an

N -element omni-directional linear antenna array, with a spac-

ing dn (n = 1, . . . ,N − 1). The transmission angle for line of

sight (LOS) path from transmitter to receivers is represented

by θ ∈ [−90◦, 90◦], and the angle for reflected path from

transmitter to metasurface is denoted by ζ ∈ (0◦, 90◦].

Desired positions are represented by L and eavesdroppers E

are on the circumference of the circle η ∈ [0◦, 360◦), with

radius r̄ . D1 denotes the distance from the desired receiver

to the transmission array, and h represents the vertical dis-

tance to the broadside direction where h is positive for L

above the broadside direction and negative for the opposite.

The projection of D1 onto the broadside direction is repre-

sented by D2. D3 is the horizontal distance from the element

(q = 0) on metasurface to transmitter. For eavesdroppers in

the direction η, we have the corresponding ĥ and l̂, represent-

ing the vertical height and horizontal length relative to the

centre point L, with r̄ =
√

ĥ2 + l̂2.

For signals transmitted to the desired location L, as shown

in Fig. 2, we have

D2 =

√

D2
1 − h2,

θ = tan−1(h/D2), (9)

For signals transmitted to the eavesdroppers,

ĥ(η) = r̄ sin η,

l̂(η) = r̄ cos η,

θ (η) = tan−1((h+ ĥ)/(D2 + l̂)). (10)

For the reflected path from metasurface to the desired

location and eavesdroppers, we have the following equation

respectively

φ = tan−1((D2 − D3)/(H − h)),

φ(η) = tan−1((D2 + l̂ − D3)/(H − ĥ− h)). (11)

For the reflected path from transmitter to metasurface,

we have the corresponding angle

ζ = tan−1(H/(D3 + xq)). (12)

The steering vectors for the LOS path and the reflected path

in the two-ray model can be given by

s(ω, θ) = [1, ejωd1 sin θ/c, . . . , ejωdN−1 sin θ/c]T ,

ŝ(ω, ζ ) = [1, ejωd1 sin ζ/c, . . . , ejωdN−1 sin ζ/c]T ,

s̃(ω, φ) = [1, e−jωx1 sinφ/c, . . . , e−jωxQ−1 sinφ/c]T . (13)

Then, in this two-raymodel, the beam response of the array

as a combination of signals through the LOS path and the

reflected path can be represented by p(θ, ζ, φ)

p(θ, ζ, φ) = wH s(ω, θ) + (wH ŝ(ω, ζ ) · w̃)s̃(ω, φ), (14)

where · represents the dot product, with the weight vector

w = [w0,w1, . . . ,wN−1]
T ,

w̃ = [w̃0, w̃1, . . . , w̃Q−1]. (15)

Here, w̃ is the weight vector for all elements on metasurface

to control the phase and magnitude of reflected signals.

For PM design, we need to find M sets of weight coeffi-

cientswm and one set of w̃, as it is difficult to get the meta sur-

face synchronised with the transmit antenna array. Note that

w̃ is the single weight vector employed on the metasurface to

achieve all transceiver pair communication simultaneously.

Similar to parameter definition in DM design, forM -ary sig-

naling, we haveM sets of desired array responses pm(θ, ζ, φ)

(m = 0, 1, . . . ,M − 1), with a corresponding weight vector

wm = [wm,0, . . . ,wm,N−1]
T , m = 0, . . . ,M − 1. (16)

Here, we assume in total R locations in the design (r

desired locations and R − r eavesdropper locations), then

we have the corresponding transmission angles θk for LOS,

ζk and φk for the reflected path to the k-th position,

k = 0, . . . ,R − 1. Then, an N × r matrix SL is constructed

as the set of steering vectors for the LOS path to desired

receivers

SL = [s(ω, θ0), s(ω, θ1), . . . , s(ω, θr−1)], (17)

and an N × (R− r) matrix

SE = [s(ω, θr ), s(ω, θr+1), . . . , s(ω, θR−1)] (18)

for the LOS path to eavesdroppers. The steering matrix for

the reflected path from transmitter to metasurface is given

by Ŝ

Ŝ = [ŝ(ω, ζ0), ŝ(ω, ζ1), . . . , ŝ(ω, ζQ−1)]. (19)

VOLUME 8, 2020 113809
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The steering matrices for the reflected path from metasur-

face to desired receivers and eavesdroppers are denoted by

S̃L and S̃E

S̃L = [s̃(ω, φ0), s̃(ω, φ1), . . . , s̃(ω, φr−1)],

S̃E = [s̃(ω, φr ), s̃(ω, φr+1), . . . , s̃(ω, φR−1)]. (20)

The beam responses for desired locations and eavesdroppers

for them-th constellation point are represented by pm,L (1×r

vector) and pm,E (1 × (R− r) vector),

pm,L = [pm(ω, θ0, ζ0, φ0), . . . , pm(ω, θr−1, ζr−1, φr−1)],

pm,E = [pm(ω, θr , ζr , φr ), . . . , pm(ω, θR−r , ζR−r , φR−r )].

(21)

Then, for the m-th constellation point, as a start, the coeffi-

cients can be formulated as

min
wm,w̃

||pm,E − (wH
mSE + (wH

m Ŝ · w̃)S̃E )||2

subject to wH
mSL + (wH

m Ŝ · w̃)S̃L = pm,L . (22)

However, if we consider the weight coefficients for the

transmission antenna array and coefficients for the metasur-

face for each symbol individually as in (22), then for each

symbolm, we will end up with a different w̃. To guarantee the

same w̃ for different symbols, we first construct the following

matrices

PE = [p0,E ;p1,E ; . . . ;pM−1,E ], (23)

PL = [p0,L;p1,L; . . . ;pM−1,L], (24)

W = [w0,w1, . . . ,wM−1], (25)

W̃ = diag(w̃), (26)

where diag is to convert the vector w̃ to be a diagonal matrix

W̃ with the size Q×Q. Then, we can construct the matrix Y

(M × (R− r))

Y = PE − (WHSE + WH ŜEW̃SE ). (27)

As a result, we can change (22) to the following formulation

min
W,w̃

||[Y(1, :),Y(2, :), . . . ,Y(M , :)]||2

subject toWHSL + WH ŜLW̃SL = PL . (28)

As metasurface is regarded as a reflecting surface and no

amplifying function, we have to add the following constraint

||w̃||∞ ≤ 1. (29)

Then, the PM design with the magnitude constraint for meta-

surface can be finally formulated as

min
W,w̃

||[Y(1, :),Y(2, :), . . . ,Y(M , :)]||2

subject to WHSL + WH ŜLW̃SL = PL

||w̃||∞ ≤ 1. (30)

For the two sets of variables in the design, we use the follow-

ing alternating optimization method to solve the problem:

FIGURE 3. Resultant beam and phase patterns for eavesdroppers by the
DM design (8).

Step 1 We first randomly generate the vector w̃ with the

maximum magnitude value lower than 1.

Step 2 Based on the given w̃, the optimisedW can be calcu-

lated by (30).

Step 3 With the new W, we re-calculate w̃ in (30), and

then go back to step 2. The iteration stops when the

cost function ||[Y(1, :),Y(2, :), . . . ,Y(M , :)]||2 con-

verges.

The above problem (30) can be solved by the CVX toolbox

in MATLAB [33], [34].

IV. DESIGN EXAMPLES

The metasurface is composed of 64 elements with adjacent

element distance x = λ/2. There is one desired location at

the circle centre with θ = 0◦, H = 1000λ, D1 = 900λ and

D3 = 700λ. Eavesdroppers are located at the circumference

of the circle with r̄ = λ and η ∈ [0◦, 360◦), sampled every

10◦. The desired response is a value of one in magnitude

(the gain is 0dB) with 90◦ phase shift at the desired loca-

tion (QPSK), i.e. symbols ‘00’, ‘01’, ‘11’, ‘10’ correspond

to 45◦, 135◦, −135◦ and −45◦, respectively, and a value

of 0.2 (magnitude) with randomly generated phase shifts at

locations of eavesdroppers. The number of antennas for the

ULA transmitter is N = 50 with d = λ/2. Moreover, the bit

error rate (BER) result is also presented. Here the signal to

noise ratio (SNR) is set at 12 dB at the desired location, and
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FIGURE 4. BERs patterns for the eavesdroppers and desired receiver by
the DM design (8).

FIGURE 5. Resultant beam and phase patterns for eavesdroppers by the
PM design (30).

we assume the additive white Gaussian noise (AWGN) is at

the same level for all eavesdroppers.

The resultant beam and phase patterns for the eaves-

droppers based on the DM design in (8) are shown

in Figs. 3(a) and 3(b), where the beam response level for

eavesdroppers around η = 0◦ and 180◦ are equal to 0dB

which is the beam response level for the desired receiver. The

phase of signal at these locations are the same as the required

QPSK modulation for the desired location. Moreover, their

corresponding BER is also down to 10−5, as shown in Fig. 4,

demonstrating that the DM design cannot distinguish desired

locations and eavesdroppers when they are in the same trans-

mission direction.

FIGURE 6. BERs patterns for the eavesdroppers and desired receiver by
the PM design (30).

By comparison, the beam and phase patterns for

the PM design with metasurface in (30) are shown

in Figs. 5(a) and 5(b), where the beam response level at all

locations of the eavesdroppers η ∈ [0◦, 360◦) is lower than

0dB which is the beam response for the desired locations,

and the phase of signal at these eavesdroppers are random.

The BER performance is shown in Fig. 6. It can be seen

that at the desired location the value is down to 10−5, while

at other locations it fluctuates around 0.5, illustrating the

effectiveness of the proposed design.

V. CONCLUSIONS

In this paper, positional modulation design with the aid of

metasurface as a low-cost flexible reflecting surface has been

introduced for the first time, where signals via LOS and

reflected paths are combined at the receiver side. Compared

with fixed reflection surface the advantage of using meta-

surface is the flexible control of reflection direction, phase

and intensity of incident signal, while compared with the

high cost of using multiple antenna arrays to achieve posi-

tional modulation, metasurface provides a convenient low-

cost solution for system construction. With the proposed

design, signals with a given modulation pattern can only

be received at desired locations, but scrambled for positions

around them. The effectiveness of the proposed design has

been demonstrated by design examples in comparison with

the traditional DM technique. Note that, in our current work,

the focus is on how to find the optimal coefficients for the

antennas andmetasurface elements, given an existing antenna

array and metasurface with known antenna/element number

and geometry/layout. On the other hand, given a performance

criterion, how to find the optimal number of antennas and

metasurface elements and their associated geometrical lay-

outs will need a different approach and further research is

needed, which will form part of our future research plan in

this area.
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