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ABSTRACT For most conventional bionic signal design methods, they cannot construct high-similarity
bionic signals to match those complex cetacean sounds because they are only based on relatively simple
bionic signal models. Besides, although very few methods based on the weighted signal superposition
technology can construct high-similarity bionic signals, it’s very difficult to adjust relevant parameters to
match different cetacean sounds or synthesize other desired bionic signals. To solve these problems, firstly,
two bionic signal models are proposed individually to mimic cetacean sounds with a simple time-frequency
(TF) structure, and then they are combined to mimic cetacean sounds with complex TF structures based on
a designed piecewise construction strategy. Based on the two models, the parameters of the synthesized
bionic signals can be adjusted to improve detection and communication performance of the bionic signal s.
The experimental results show that the Pearson correlation coefficient (PCC) results between 13 true
cetacean sounds and their corresponding bionic signals are higher than 0.97, and 11 results of them are no
less than 0.99. Four key performance indicators of a bionic signal are improved by more than 40% when
bandwidth increases by 1kHz. Experimental results demonstrate that the proposed method cannot only
efficiently imitate all kinds of simple and complex cetacean tonal sounds with high similarity, but also
construct a variety of the same type of bionic signals by simply adjusting model parameters. In addition, the
proposed method can also be applied to other areas, such as constructing a new cetacean sound database
and so on.

INDEX TERMS Covert, active sonar, underwater acoustic communication, cetacean sound, bionic signal.

I. INTRODUCTION
Owing to sending out signals actively, active sonar detection
(ASD) and underwater acoustic communication (UAC)
systems can easily be detected by the adversaries. In the last
few decades, many methods have been proposed to improve
the covertness of sonar signals and underwater
communication signals [1]-[6].

Underwater bionic covert detection and communication is
a novel approach to realize covert ASD and UAC. Its main
idea is to disguise sonar or communication signals into
cetacean sounds. During the identification of underwater
monitoring systems, these bionic sonar and communication
signals could be classified as ocean noise and filtered out [7]-

[10], thereby achieving the purpose of covert ASD and UAC.
As an approach with great potential, underwater bionic
covert detection and communication has been attracting more
and more attentions in recent years [11]-[22].

The design of bionic signals is the key to underwater
bionic covert detection and communication. More
specifically, bionic signals should meet the covertness and
the validity requirements (e.g. communication rate, detection
accuracy etc.) for covert ASD and UAC systems. However,
the covertness of ASD and UAC systems depends on the
camouflage ability of bionic signals.

The design of bionic signals includes signal synthesis and
modification. To ensure the camouflage ability, in the
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synthesis of bionic signals, it is necessary to match the
acoustic characteristics of bionic signals, such as waveform
shape, frequency distribution and time-frequency (TF)
distribution, to that of cetacean sounds as closely as possible.
However, the bionic signals with high camouflage ability do
not necessarily meet the validity requirements of ASD and
UAC. Therefore, efficient signal models and corresponding
signal construction methods are very important for efficiently
and effectively imitating all kinds of simple and complex
cetacean tonal sounds.

In addition, synthesis and modification of bionic signals
also play an important role in other areas. For example,
efficient synthesis and modification models and methods of
bionic signals can be used to construct a new cetacean
sounds database based on existing ones [23], and construct
all kinds of bionic signals to simulate cetaceans and then
evaluate the behaviour impact of different acoustic
characteristics on cetaceans [24].

There has been some progress over the years in the design
of bionic signals based on cetacean sounds. Some researchers
use original cetacean sounds to construct bionic signals [11].
However, the original cetacean sound database is usually
limited, and it is difficult to find original cetacean sounds that
can meet the validity requirements of covert ASD and UAC.
Due to this limitation, some researchers try to build suitable
bionic signal models to mimic the original cetacean sounds
[12]-[16], [24], [25].

Tonal sounds are a large and important subset of cetacean
sounds, and they are produced by both toothed whales [26]-
[28] and baleen whales [29], which are sister clades
containing all extant whales. Although within cetaceans the
acoustic characteristics of tonal sounds vary enormously,
such sounds are broadly defined as frequency modulation
(FM) signals [30], [31]. Furthermore, cetacean tonal sounds
are usually characterized in terms of their time-frequency
spectrograms (TFSs), which is usually referred to as the
“contour” of a tonal sound [32].

Due to the wide distribution of tonal sounds as well as
their diverse acoustic characteristics in terms of duration,
frequency distribution and TF distribution, etc., the bionic
signal models based on tonal sounds can meet different
camouflage ability and validity requirements of covert ASD
and UAC.

In order to meet the validity requirements, the bionic
signal models should parameterize the tonal sounds, so that
the parameters of the bionic signals can be conveniently
adjusted according to the validity requirements of ASD and
UAC. For the camouflage ability requirements, the bionic
signal models should achieve high-similarity mimicry of
various tonal sounds.

Conventional bionic signal models about tonal sounds can
be mainly divided into two categories [12-16], [24], [25].

The first category [12], [24] is to use weighted signal
superposition technology to synthesize bionic signals. The
tonal sound is modeled as weighted superposition of
harmonically related sinusoids, and single sinusoidal
frequencies are estimated over the windowed data. Since the

bionic signal is expressed as a signal consisting of a large
amount of short data blocks, the ASD and UAC performance
of the bionic signal can only be changed by modifying each
data block, which is not practical.

The second category [13]-[16], [25] is to construct the
bionic signal based on basic FM signal models. Chris Capus
et al. proposed a bionic sonar signal model with a double
down-chirp structure for bottlenose dolphin clicks [25], and
obtained a high-similarity performance for bottlenose
dolphin clicks with the double down-chirp structure. Ahmad
E. et al. modeled dolphin whistles based on the basic FM
signal model, such as linear frequency modulation (LFM)
signal and hyperbolic frequency modulation (HFM) signal,
and designed bionic signals carrying information bits for
UAC [13], [14]. Liu et al. proposed to use a series of
segmented LFM signals carrying digital information to
mimic nonlinear frequency modulation (NFM) whistles to
achieve bionic covert UAC [15]. In 2018, a bionic sonar
signal model was proposed based on the HFM signal model,
which realized the high similarity mimicry of false killer
whale whistles and high-precision ASD [16]. Since the TF
structures of these models are simple, it’s difficult to achieve
high-similarity imitation of cetacean sounds with complex
NFM characteristics using these models.

In this paper, we propose two bionic signal models and
one piecewise construction strategy for complex cetacean
tonal sounds for covert ASD and UAC. By analyzing the
contours of cetacean tonal sounds, it is found that the
contours of cetacean sounds are similar to those of the power
frequency modulation (PFM) signal and the sinusoidal
frequency modulation (SFM) signal. Therefore, based on
PFM and SFM signal models, two bionic signal models are
presented, which can parameterize the characteristics, such as
curvature, slope, frequency range and duration, of the tonal
sound contours. Then, combined with the waveform
envelope extraction method for time-domain signal and the
piecewise construction strategy, high-similarity mimicry of
various cetacean sounds is realized.

The main contributions of this paper can be summarized as
follows:

(1) Two bionic signal models and their piecewise
construction strategy are proposed, which realize the high-
similarity mimicry of most cetacean tonal sounds and some
cetacean sounds with simple or complex TF structures.

(2) The proposed method parameterizes the acoustic
characteristics of cetacean sounds, so that the parameters of
the synthesized bionic signals can be felicitously modified to
obtain high camouflage ability and good detection and
communication performance.

(3) The proposed method can construct bionic signals,
whose characteristics are similar to those of existing cetacean
sounds. As a result, these constructed bionic signals can be
applied to expand the existing cetacean sound database, and
evaluate the behaviour impact of different acoustic
characteristics on cetaceans.
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II. PREPROCESSING AND ANALYSIS OF CETACEAN
TONAL SOUNDS
In this paper, the tonal sounds of three common cetacean
species, bottlenose dolphin, long-finned pilot whale and false
killer whale, are taken as examples to illustrate the proposed
models and method. The original high-quality cetacean tonal
sounds were recorded with a 44.1ksps sampling rate.
Considering that the tonal sounds were polluted by the
Gaussian ocean ambient noise [33], a Wiener filter is utilized
to remove the background noise of the recorded sounds, and
the first 0.25 seconds of each original cetacean sound
recording is utilized for a priori SNR estimation. By using
the short-time Fourier transform (STFT) with a 1024-point
(25ms) Hamming window with 60% overlap, the TFSs of the
denoised tonal sounds are generated.

Tonal sounds are usually classified according to their
contours [26]-[29], and due to the complexity and diversity
of tonal species and sounds, a definition of the categories of
tonal sound contours is usually specific for a certain cetacean
species.

By studying various classification methods for tonal
sounds, it is found that the classification method proposed by
Bazúa-Durán and Au [26] has strong versatility, and could be
applied to most tonal sounds. By using this classification
method as a reference, most tonal sounds can be ascribed to
one of the six categories according to their contours, as
described in Table 1 and illustrated in Fig. 1, including
constant frequency, upsweep, downsweep, concave, convex
and sine.

As shown in Fig. 1, the constant frequency tonal sound
essentially has no change in frequency, which is similar to
continuous wave (CW) signal. In contrast, the five categories
of upsweep, downsweep, concave, convex and sine tonal
sounds are different from each other, and they all have
complex NFM characteristics. Therefore, in order to ensure
camouflage of the bionic signals, the bionic signal models
should match the NFM characteristics of different tonal
sounds.

Furthermore, as can be seen from Fig. 1, the NFM
characteristics of different parts of a tonal sound may be
different, and these characteristics can be divided into two
categories: the first category is that the absolute value of the
contour slope changes monotonically, such as monotonically
increasing, which is similar to the PFM signal; the second
category is that the absolute value of the contour slope firstly
increases and then decreases, which is similar to the SFM
signal. Therefore, in the next section, based on the PFM
signal model and the SFM signal model, we propose two
bionic signal models，and use multiple bionic signals with
different NFM characteristics to construct different parts of a
tonal sound.

III. BIONIC SIGNAL MODELS
As the idea in this paper is to mimic cetacean tonal sounds
from the perspective of contour characteristics, the first step
is to construct the TF expression of bionic signal based on
the tonal sound contour, and the last step is to transform the

TF expression into the time-domain waveform. If the TF
expression of a FM signal  s t is defined as  f t , the

corresponding phase function  t can be defied as

   
0

2 .
t

t f d     (1)

Then, the FM signal  s t can be expressed as

     cos , 0 ,s t A t t t T     (2)

where T is the duration and  A t denotes the signal
envelope function.

TABLE 1.  Description of six categories of tonal sounds.

Category Description

Constant
frequency

Frequency essentially remains constant throughout
the entire duration of the tonal sound.

Upsweep Frequency mainly ascends throughout all or most of
the tonal sound.

Downsweep Frequency mainly descends throughout all or most of
the tonal sound.

Concave Frequency mainly descends and then mainly ascends.
Convex Frequency mainly ascends and then mainly descends.

Sine Frequency mainly ascends, then mainly descends, and
so forth, or vice versa.

FIGURE 1. TFSs and waveforms of six categories of tonal sounds.

A. POWER FREQUENCY MODULATION BIONIC (PFMB)
SIGNAL MODEL
The first method of constructing the bionic signal model is
based on the PFM signal model. A PFM signal [34] with
duration T is defined as

     
1

sin 2 , 0 ,
1P C

Bts t A t f t t T
T






            
(3)

where B is the bandwidth, Cf plays the part of the carrier
frequency, and  0   is a curvature adjustment factor.
The instantaneous frequency of the PFM signal is expressed
as

   
1

.
1P C C

Bt tf t f t B f
t TT





              
(4)

Furthermore, the contour slope of the PFM signal is
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1

.P C
t B tf t B f

t T T T

                    
(5)

Obviously,  Pf t is a power function of time t . The

start frequency  0Pf and the end frequency  Pf T are Cf
and Cf B , respectively. Clearly, the contour curvature
and contour slope of the SFM signal depends on its
frequency range, duration and parameter  .

However, when trying to fit the contour of an upsweep
tonal sound using a PFM signal with 1  , we find that
there is a significant mismatch between them, as shown in
Fig. 2. This mismatch is caused by the different contour
slope between the upsweep tonal sound and the PFM signal
at time 0t  . As can be seen form (5), when 1  , the
contour slope of the PFM signal at time 0t  is always

 0 0Pf   , no matter how its frequency range, duration and
parameter  change.

For a close match between the bionic signals and the
tonal sounds, based on (4), the instantaneous frequency of a
novel PFMB signal model is proposed as follows

    , 0 ,P C
tf t B kT kt f t T
T


       
 

(6)

where the curvature adjustment factor  0   is used to

adjust the curvature of  Pf t , and the slope adjustment

factor  0 /k k B T  is used to adjust the slope of  Pf t

at time 0t  and t T . Clearly,  Pf t continuously and

monotonically goes from the start frequency  0P Cf f to

the end frequency  P Cf T f B  within a signal duration
in the way of PFM.

By substituting (6) into (1) and (2), we can obtain the
corresponding PFMB signal model as follows

     
 

1
21cos 2 ,

21P C

B kT t
s t A t kt f t

T






       
    

(7)

As can be seen from (6) and (7), the PFMB signal model
is more general than the PFM model. More specifically,
when 0k  ,  Ps t is equivalent to the PFM signal model;

when /k B T ,   /P Cf t Bt T f  and  Ps t is
equivalent to a LFM signal model. Specially, when 0B  ,

 P Cf t f and  Ps t is equivalent to a CW signal model.

The contour slope of  Ps t is defined as

   

  1

.

P C
tf t B kT kt f

t T

B kT t
k

T







 

             


 

(8)

FIGURE 2. Contours of the upsweep tonal sound and the PFM signal.

As can be seen form (6) and (8), due to the introduction
of the slope adjustment factor k , the contour slope of

 Ps t now depends on its frequency range, duration,
curvature adjustment factor  and slope adjustment factor
k . When the frequency range and duration of  Ps t are
fixed, the contour curvature can be adjusted by changing
the parameter  , and the contour slope at time 0t  and
t T can be adjusted by changing the parameter k , which
is very important to mimic the contours of true tonal sounds
as closely as possible.

For example, when carrier frequency 6kHzCf  ,
bandwidth 4kHzB  , duration 0.4sT  , and half of the
frequency range is 1/2 / 2 8kHzCf f B   , the contours of

 Ps t with different curvature adjustment factors  and
slope adjustment factors k are shown in Fig. 3(a) and Fig.
3(b), respectively. When the parameter k is constant
( 0k  ), the contours of  Ps t with three different
parameters  are shown in Fig. 3(a). Besides, when the
parameter  is constant ( 2  ), the contours of  Ps t
with three different parameters k are shown in Fig. 3(b).

FIGURE 3. (a) The contours of PFMB signals sP(t) with three different
curvature adjustment factors α. (b) The contours of PFMB signals sP(t)
with three different slope adjustment factors k.

As shown in Fig. 3(a), with the change of  , the contour
curvature of  Ps t changes, and the value of  also affects

the monotonicity of the contour slope  Pf t and the

varying speed of  Pf t . When 0 1  , the contour slope

 Pf t decreases monotonically with time t , and therefore,
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 Pf t changes faster in the frequency range below 1/2f and

  1/2/ 2Pf T f ; for 1  ,  Pf t is always /B T , which

means  Ps t is equivalent to a LFM signal and  / 2Pf T

is exactly 1/2f ; when 1  ,  Pf t increases

monotonically with t , and therefore,  Pf t changes faster

in the frequency range above 1/2f and   1/2/ 2Pf T f .
It can be seen from Fig. 3(b) that as k increases from 0

to / 10B T  , the contour slope of  Ps t at time 0t  and
t T also changes continuously and gradually approaches

/B T .
Therefore, one can mimic the contours of the true tonal

sounds as closely as possible by adjusting  and k on the
condition that the frequency range and the duration are
fixed.

B. SINUSOIDAL FREQUENCY MODULATION BIONIC
(SFMB) SIGNAL MODEL
The second method of constructing the bionic signal model
is based on the SFM signal model. A SFM signal [35] with
a duration T is defined as

 

 cos 2 sin , 0 .
2 2

S

C

s t

TB t BA t f t t T
T



              

(9)

The instantaneous frequency of the SFM signal is

  cos + .
2 2S C
B t Bf t f

T


   (10)

Furthermore, the contour slope of the SFM signal is

  cos +
2 2

sin .
2 2

S C
B t Bf t f

t T
B t
T T

 

 

           
    
 

(11)

Obviously,  Sf t is a sinusoidal function of time t . The

start frequency  0Sf and the end frequency  Sf T are

Cf and Cf B , respectively. Clearly, the contour curvature
and contour slope of the SFM signal only depends on its
frequency range and duration.

However, when trying to fit a part of the contour of a
sine tonal sound using the SFM signal, we find that there is
a significant mismatch between them. Fig. 4(a) shows the
complete contour of a sine tonal sound, the contours of a
SFM signal and part of the sine tonal sound are shown in
Fig. 4(b). This mismatch is caused by the different contour
curvatures between the tonal sound and the SFM signal. As
can be seen from (10), once the frequency range and the
duration of a SFM signal are fixed, neither its contour
curvature nor its slope can be changed.

FIGURE 4. Contours of sine tonal sound and the SFM signal.

To have a close match to the true tonal sounds, based on
(10), and referring to the method of changing the contour
curvature and contour slope in the PFMB signal model, the
instantaneous frequency of a novel SFMB signal model is
proposed as follows

   sin ,
2S C
tf t B hT ht f
T

      
 

(12)

where the curvature adjustment factor  0   is used to

adjust the curvature of  Sf t , the slope adjustment factor

 0 /k k B T  is used to adjust the slope of  Pf t at

time 0t  and t T . Clearly,  Pf t continuously and
monotonically changes from the start frequency

 0P Cf f to the end frequency  P Cf T f B  within a
signal duration as in SFM.

By substituting (12) into (1) and (2), we can obtain the
corresponding SFMB signal model as follows

 

   

   

0

0

cos 2

cos 2 sin .
2

S

t

S

t

C

s t

A t f d

A t B hT h f d
T



  

  

    
            





(13)

As can be observed from (12) and (13), the proposed
SFMB signal model is more general compared to the SFM
signal model. More specifically, when 0h  and =2 ,

 Ss t is equivalent to the SFM signal model; for /h B T ,

  /S Cf t Bt T f  and  Ss t is equivalent to an LFM

signal model. Specially, when 0B  ,  P Cf t f and

 Ss t is equivalent to a CW signal.

Most importantly, the contour slope of  Ss t is

   

  1

sin
2

sin cos .
2 2 2

S C
tf t B hT ht f

t T
t tB hT h

T T T







  

            
        
   

(14)
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As can be seen from (12) and (14), due to the addition of
the curvature adjustment factor  and the slope adjustment
factor h , the contour curvature and contour slope of  Ss t
now depend on its frequency range, duration, parameter h
and parameter  . When the frequency range and duration
of  Ss t are fixed, the contour curvature can be adjusted by
changing  , and the contour slope at time 0t  and
t T can be adjusted by changing k , which is very
important for us to mimic the contours of the true tonal
sounds as closely as possible.

For example, when bandwidth 4kHzB  , carrier
frequency 6kHzCf  , and duration 0.4sT  , the contours
of  Ss t with different curvature adjustment factors  and
slope adjustment factors h are shown in Fig. 5. When the
parameter h is constant ( 0h  ), the contours of  Ss t
with four different values of  are shown in Fig. 5(a).
Besides, when  is constant ( 2  ), the contours of

 Ps t with three different values of h are shown in Fig.
5(b).

FIGURE 5. (a) The contours of SFMB signals sS(t) with four different
curvature adjustment values of β. (b) The contours of SFMB signals sS(t)
with three different slope adjustment values of h.

It can be seen from Fig. 5(a) that with the change of  ,
the contour curvature of  Ps t also changes. Besides, the

monotonicity of  Sf t and the varying speed of  Pf t are
also affected by the value range of  ; when 0 1  ,

 Sf t decreases monotonically as time t increases; when

1  ,  Sf t increases first and then decreases as time t
increases. Furthermore, the value range of  also affects
the varying speed of  Pf t , when 0 2  ,  Sf t varies
faster in the frequency range below 1/2f and therefore

  1/2/ 2Sf T f ; for 2  ,  Sf t is symmetric about the

center point  1/2/ 2,T f and thus   1/2/ 2Sf T f ; when

2  ,  Pf t varies slower in the frequency range below

1/2f , so that   1/2/ 2Pf T f .

As shown in Fig. 5(b), the contour slope of  Ss t at time
0t  and t T changes continuously and gradually

approaches /B T as h increases from 0 to / 10B T  .

FIGURE 6. (a) The contours of PFMB signals sP(t) with four different
curvature adjustment values of α. (b) The contours of SFMB signals sS(t)
with four different curvature adjustment values of β.

Therefore, one can mimic the contours of the true tonal
sounds as closely as possible by adjusting  and h on the
condition that the frequency range and the duration are
fixed.

Moreover, by comparing Fig. 3(a) and Fig. 5(a), it can be
observed that when 1  and 1  , both contour slopes
of the PFMB signal (  Pf t ) and the SFMB signal (  Sf t )

change monotonically. When 0k  and 0h  ,  Pf t with
four different values of  are shown in Fig. 6(a), and

 Sf t with four different values of  are shown in Fig.

6(b). It can be observed that  Pf T is always greater than

zero, whereas  Sf T is always zero when t T .
From (8), it can be demonstrated that
   /Pf T B T k k    , since 0  and 0 /k B T  ,

no matter how  and k change,   0Pf T  always holds,

which means the contour slope of the PFMB signal  Ps t
is always greater than 0 at time t T . However, from (14),
it can be demonstrated that  Sf T h  , which means that

the contour slope of the SFMB signal  Ss t is determined

only by h , and   0Sf T  always holds when 0h  .

C. SUB BIONIC SIGNAL MODELS
As analyzed above, PFMB and SFMB signal models can
only be utilized to match tonal sounds with monotonically
increasing frequency.

In order to increase the diversity of bionic signals based
on the PFMB signal model and the SFMB signal model, we
propose four corresponding sub-signal models.

Based on the TF expression of the PFMB signal model
defined by (6), four sub-PFMB TF expressions  POf t ,

 PXf t ,  PYf t and  PZf t are defined as follows

   

  ,

PO P

C

f t f t

tB kT kt f
T





     
 

(15)
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2

1 .

PZ P C

C

f t f t T B f

tkT B k t T B f
T



       

        
 

(18)

Through (1) and (2), we can obtain four sub-PFMB signal
models  POs t ,  PXs t ,  PYs t and  PZs t .

Obviously,  POf t ,  PXf t ,  PYf t and  PZf t are
power functions of time t . When the frequency range is 6
to 10 kHz and the duration 0.4sT  , the curves of these TF
expressions with three different  parameters are shown in
Fig. 7(a)-(d). It can be seen that  POf t is identical to the

TF expression of the original PFMB signal model  Pf t ,

and  POf t is symmetric with  PXf t ,  PYf t and  PZf t

about the axis   / 2PO Cf t B f  , axis / 2t T and center

point  / 2, / 2 CT B f , respectively. Besides,  POf t and

 PZf t changes from the start frequency Cf to the end
frequency CB f within a signal duration T , whereas

 PXf t and  PYf t goes from the start frequency CB f to
the end frequency Cf within the same duration T .

FIGURE 7. (a)-(d) The curves with three different curvature adjustment
values of α for fPO(t), fPY(t), fPX(t)and fPZ(t), respectively.

In a similar way, based on the TF expression of the
SFMB signal model defined by (12), four sub-SFMB TF

expressions  SOf t ,  SXf t ,  SYf t and  SZf t are
defined as follows
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Through (1) and (2), we can obtain four sub-SFMB signal
models  SOs t ,  SXs t ,  SYs t ,  SZs t .

FIGURE 8. (a)-(d) The curves with four different curvature adjustment
values of β for fSO(t), fSY(t), fSX(t)and fSZ(t), respectively.

Obviously,  SOf t ,  SXf t ,  SYf t and  SZf t are

sinusoidal functions of time t , and  SOf t is identical to
the TF expression of the original SFMB signal model

 Sf t . When the frequency range is 6 to 10 kHz and the

duration 0.4sT  , the curves of  SOf t ,  SYf t ,  SXf t

and  SZf t with four different  parameters are shown in
Fig. 8(a)-(d), respectively. It can be seen that SOf is
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symmetric with  SXf t ,  SYf t and  SZf t about the axis

  / 2SO Cf t B f  , axis / 2t T and center

point  / 2, / 2 CT B f , respectively. Besides, for  SOf t

and  SZf t , the start frequency and end frequency are Cf

and CB f , respectively, whereas those of  SXf t and

 SYf t are CB f and Cf , respectively.

D. PIECEWISE CONSTRUCTION STRATEGY FOR
COMPLEX TONAL SOUNDS
For a tonal sound with a simple contour, a sub-PFMB
signal or a sub-SFMB signal is sufficient for accurate
mimicry. However, in reality, the contours of most tonal
sounds are complex, and as can be observed from Fig. 4, a
bionic signal can only match a part of a tonal sound. In this
case, a piecewise construction strategy for complex tonal
sounds is proposed.

Suppose that the bionic signal corresponding to a tonal
sound is expressed as  Bs t . To construct  Bs t , the tonal
sound is first divided into M segments. In order to reduce
the complexity of constructing bionic signals, under the
condition of ensuring similarity between the bionic signal
contour and the tonal sound contour, M should be as small
as possible. Then, M bionic signal segments are constructed
to mimic M segments of the tonal sound. Finally, by putting
these M bionic signal segments together in the time domain,
we can obtain  Bs t . Fig. 9 shows the piecewise
construction strategy for the complex tonal sounds.

As shown in Fig. 9, the bionic signal  Bs t consisting of
M bionic signal segments is expressed as

     B B Ns t A t s t  (23)

where  BA t is the envelope of  Bs t ,  Ns t is the

normalized bionic signal, which is  Bs t before amplitude
modulation and expressed as

     
 

,1 ,1 , ,

, , ,
N B D B m D m

B M D M

s t s t T s t T

s t T

    

 




(24)

where  ,B ms t is the mth bionic signal segment of  Bs t ,

1,2, ,m M  . The duration of  ,B ms t is ,B mT , and the
time delay ,D mT denotes the total duration of all bionic

signal segments in the signal set     ,1 , 1, ,B B ms t s t with

, , 1 ,1 .D m B m BT T T   (25)

In general, the time delay for the first bionic signal segment
 ,1Bs t is ,1 0DT  , which means    ,1 ,1 ,1B D Bs t T s t  .

More specifically, the piecewise construction strategy
can be divided into the following four steps:

FIGURE 9. Piecewise construction strategy for complex tonal sounds.

Step 1: Design the TF expression of each bionic signal
segment  ,B ms t .

For each bionic signal segment, choosing sub-PFMB
signal models or sub-SFMB models is based on the contour
slope of each tonal sound segment. If the absolute value of
the contour slope changes monotonically, both sub-PFMB
signal models and sub-SFMB models are suitable. However,
when the absolute value of the contour slope firstly
increases and then decreases, only sub-SFMB signal
models are appropriate.

Furthermore, the TF expression of each bionic signal
segment is designed by changing the parameters of the
bionic signal model, including curvature adjustment factor
 (or  ), slope adjustment factor k (or h ), duration T ,
carrier frequency Cf and bandwidth B .

In order to ensure a high similarity between the bionic
signal and the original tonal sound, the smoothness of the
contour of the bionic signal should be consistent with that
the tonal sound; if the contour of the original tonal changes
continuously, the frequency and contour slope should
change continuously where two adjacent bionic signal
segments are connected. For example, if a bionic signal
consists of two bionic signal segments  ,1Bs t ( ,10 Bt T  )

and  ,2Bs t ( ,20 Bt T  ), and their TF expressions are

 ,1Bf t and  ,2Bf t , respectively, to ensure a smooth

transition between  ,1Bf t and  ,1Bf t , the following two
conditions should be satisfied:

   ,1 ,1 ,1 0 ,B B Bf T f (26)

   ,1 ,2

,1 0
.B B

Bt T t

f t f t
t t 

 


 
(27)

For example, as shown in Fig. 10, the contour of the sine
tonal sound in Fig. 4 can be mimicked by three bionic
signal segments  ,1Bs t ,  ,2Bs t and  ,3Bs t . The contours
of these three bionic signal segments are expressed as
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 ,1Bf t ,  ,2Bf t , and  ,3Bf t , respectively, and they are

constructed based on  SOf t ,  SYf t , and  SOf t ,
respectively.

FIGURE 10. Contours of the sine tonal sound and three bionic signal
segments.

Step2: Construct the normalized bionic signal  Ns t .

The mth bionic signal segment of the bionic signal  Bs t
is defined as
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, ,

, ,0

cos

cos 2 ,0 ,B m

B m B m

T

B m B m

s t t

f t dt t T





   
     

(28)

where  ,B m t is the phase function, and  ,B mf t is the TF
expression of a sub-PFMB signal or a sub-SFMB signal.

Then, each bionic signal segment is shifted along the
time axis, and the mth bionic signal segment  ,B ms t is
shifted for ,D mT and is expressed as
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B m D m
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s t T
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(29)

Substituting M shifted bionic signal segments
 , ,B m D ms t T into (24), we can obtain the waveform of

 Ns t .
It is noteworthy that ,B m is the phase compensation

component, which is added to avoid the abrupt phase
change between two adjacent bionic signal segments, and

,B m is defined as

   , , 1 , 1 ,1 ,1 .B m B m B m B BT T      (30)

Obviously, the phase compensation for the first bionic
signal segment  ,1Bs t is ,1 0B  .

Therefore, by transforming the TF expressions  ,1Bf t ,

 ,2Bf t , and  ,3Bf t in Fig. (8) into waveforms in the time

domain, we can obtain the normalized bionic signal  Ns t .

The waveform and TFS of  Ns t are shown in Fig. 11 (a)
and (b), respectively.

FIGURE 11. (a) The waveform of the normalized bionic signal sN(t). (b)
TFS of the normalized bionic signal sN(t).

Step 3: Construct the envelope  BA t of the bionic

signal  Bs t .

So far the signal envelope  BA t has not been
considered yet. It can be seen from Fig. 1 that different
from the conventional ASD and UAC signal waveforms
(such as CW, LFM, and HFM), the envelopes of the tonal
sounds are not rectangular, and varies with different
irregularity for different tonal sounds. Therefore, the
envelope of each bionic signal  Bs t should be fit to that of
the corresponding tonal sound. The envelope extraction
method used here is based on the one proposed in [16].

Firstly, the STFT with a N-point Hamming window of
the denoised tonal sounds is calculated. The denoised tonal
sound is a discrete-time signal, expressed as

      cos ,x n a n n (31)

where  a n and  n are the envelope and phase of  x n ,

respectively. The discrete STFT for  x n can be expressed

as  ,X k l , where k is the block number and l is the

frequency bin index.  kX l is the discrete Fourier
transform (DFT) for the kth block.

Secondly, obtain the envelope  a n from  kX l . If k is
the starting point of the kth block, then the amplitude of
 x n at k is  k ka A  . The peak value of  kX l is

expressed as  maxk kP X l . Since kP is modulated by
the Hamming window and DFT, a amplitude recovery
factor is obtain by

1 .
0.27

K
N

 (32)

Finally, let  k ka KP  and the amplitude of  ka  is
restored to the same level as the tonal sound envelope. By
using the piecewise cubic Hermit interpolation to add the
remaining points of  a n , the extracted envelope of  x n
is obtained.
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FIGURE 12. Waveform of the sine tonal sound and the corresponding
extracted envelope.

The extracted envelope  a n and the waveform of the
sine tonal sound are shown in Fig. 12, where it can be seen
that  a n matches the envelope of the tonal sound well.

Step 4: Substituting the envelope  BA t and the

normalized bionic signal  Ns t into (23), we can obtain the

bionic signal  Bs t . The sine tonal sound and its TFS and

the bionic signal  Bs t and its TFS are shown in Fig. 13. It
can be seen that the bionic sonar signal can match the true
whale whistles very well in terms of not only envelopes but
also contours.

Besides, if a tonal sound has R harmonics, its
corresponding bionic signal can be expressed as

   
1

,
R

B r
r

s t s t


 (33)

where  rs t is the rth harmonic of  Bs t , constructed
according to the four steps above. Furthermore, the
frequency of the rth harmonic ( )rf t is designed to be
integer multiples of the fundamental frequency 1( )f t , i.e.

   1    , 2 .rf t r f t r R    (34)

FIGURE 13. (a) The sine tonal sound. (b) The TFS of the sine tonal
sound. (c) The bionic signal. (d) The TFS of the bionic signal.

IV. EXPERIMENTS AND RESULTS

A. SYNTHESIS OF SIX CATEGORIES OF TONAL
SOUNDS
In this section, we examine the synthetic performance of
the proposed method. Bionic signals corresponding to six
categories of tonal sounds (constant frequency, upsweep,
downsweep, concave, convex and sine) described in Table
1 are synthesized. Furthermore, one high-quality and
representative of each category of tonal sounds are chosen
to be matched and mimicked. The true tonal sounds and
their TFSs and the constructed bionic signal waveforms and
their TFSs are shown in Figs. 14-19. It can be seen that the
constructed bionic signals have a close match to the true
tonal sounds in terms of both envelopes and TFSs.

The waveforms and TFSs of the constant frequency tonal
sounds T_cf1 and the corresponding bionic signals B_cf1
are shown in Fig. 14(a)-(d). Besides, the waveforms and
TFSs of the constant frequency tonal sounds T_cf2 and the
corresponding bionic signals B_cf2 are shown in Fig. 14(e)-
(h).

FIGURE 14. (a) The constant frequency tonal sounds T_cf1. (b) The TFS
of T_cf1. (c) The bionic signal B_cf1. (d) The TFS of B_cf1. (e) The
constant frequency tonal sounds T_cf2. (f) The TFS of T_cf2. (g) The
bionic signal B_cf2. (h) The TFS of B_cf2.
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The waveforms and TFSs of the upsweep tonal sounds
T_up1 and the corresponding bionic signals B_up1 are
shown in Fig. 15(a)-(d), and those of the upsweep tonal
sounds T_up2 and the corresponding bionic signals B_up2
are shown in Fig. 15(e)-(h).

FIGURE 15. (a) The upsweep tonal sounds T_up1. (b) The TFS of T_up1.
(c) The bionic signal B_up1. (d) The TFS of B_up1. (e) The upsweep
tonal sounds T_up2. (f) The TFS of T_up2. (g) The bionic signal B_up2.
(h) The TFS of B_up2.

The waveforms and TFSs of the downsweep tonal sounds
T_down1 and the corresponding bionic signals B_down1
are shown in Fig. 16(a)-(d), and those of the downsweep
tonal sounds T_down2 and the corresponding bionic signals
B_down2 are shown in Fig. 16(e)-(h).

FIGURE 16. (a) The downsweep tonal sounds T_down1. (b) The TFS of
T_down1. (c) The bionic signal B_down1. (d) The TFS of B_down1. (e)
The downsweep tonal sounds T_down2. (f) The TFS of T_down2. (g) The
bionic signal B_down2. (h) The TFS of B_down2.

The waveforms and TFSs of the concave tonal sounds
T_concave1 and the corresponding bionic signals
B_concave1 are shown in Fig. 17(a)-(d), and for the
concave tonal sounds T_concave2 and the corresponding
bionic signals B_concave2, they are shown in Fig. 17(e)-(h).
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FIGURE 17. (a) The concave tonal sounds T_concave1. (b) The TFS of
T_concave1. (c) The bionic signal B_concave1. (d) The TFS of
B_concave1. (e) The concave tonal sounds T_concave2. (f) The TFS of
T_concave2. (g) The bionic signal B_concave2. (h) The TFS of
B_concave2.

For the convex tonal sounds T_convex1 and T_convex2,
and their corresponding bionic signals B_convex1 and
B_convex2, the results are shown in Fig. 18(a)-(h), while
for T_sine1 and T_sine2, and the corresponding bionic
signals B_sine1 and B_sine2, they are shown in Fig. 19(a)-
(h).

FIGURE 18. (a) The convex tonal sounds T_convex1. (b) The TFS of
T_convex1. (c) The bionic signal B_convex1. (d) The TFS of B_convex1.
(e) The convex tonal sounds T_convex2. (f) The TFS of T_convex2. (g)
The bionic signal B_convex2. (h) The TFS of B_convex2.

FIGURE 19. (a) The sine tonal sounds T_sine1. (b) The TFS of T_sine1.
(c) The bionic signal B_sine1. (d) The TFS of B_sine1. (e) The sine tonal
sounds T_sine2. (f) The TFS of T_sine2. (g) The bionic signal B_sine2.
(h) The TFS of B_sine2.

B. SYNTHESIS OF COMPLEX CETACEAN SOUNDS
In the second experiment, we examine the performance of
the proposed method for synthesizing complex cetacean
sounds.

In addition to tonal sounds, cetaceans can also produce
some FM sounds with relatively long duration and complex
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TF structures, such as signature whistles [36]. Since these
complex cetacean sounds can be divided into multiple
simple FM signals, the proposed bionic signal models and
the piecewise construction strategy can also be utilized to
synthesize complex cetacean sounds.

An example is shown in Fig. 20, where 21 bionic signal
segments are constructed to achieve high-similarity
mimicry. The waveforms and TFSs of the complex
cetacean sounds C_complex and B_complex are shown in
Fig. 20(a)-(d). It can be seen that the constructed bionic
signals can match the complex cetacean sounds very well.

FIGURE 20. (a) The complex cetacean sound C_complex. (b) The TFS of
C_complex. (c) The bionic signal B_complex. (d) The TFS of B_complex.

C. CAMOUFLAGE ABILITY EVALUATION
In the third experiment, the camouflage ability of the
constructed bionic signals is examined.

Since the contours of tonal sounds have obvious FM
characteristics, and present acoustic classifiers usually
classify a tonal sound based on its contour [26]-[29], the
camouflage ability of a synthesized bionic signal depends
on the similarity between its contour and that of the true
tonal sound. The Pearson correlation coefficient (PCC),
which is widely used in the measurement of the similarity
between two data sets [37], is used to measure the similarity
between the contours of the true tonal sounds and the
synthesized bionic signals.

The extracted contour of a true tonal sound is
   _1 _ 2 _, , ,T T T T nf n f f f  , and the contour of the

corresponding bionic signal is    _1 _ 2 _, , ,B B B B nf n f f f  ,

where n is the data number of  Tf n and  Bf n . Then, the

PCC [37] between  Tf n and  Bf n is defined as
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(35)

where Tf and Bf are the mean values of  Tf n and  Bf n ,
respectively. The closer the TBr is to 1, the higher the
correlation between  Tf n and  Bf n , that is, the better
the camouflage ability of the bionic signal.

Table 2 shows the PCC between 13 true cetacean sounds
and their corresponding bionic signals (shown in Figs. 14-
20). It can be seen that all 13 PCC results are higher than
0.97, and 11 results of them are no less than 0.99, which
means that the contours of the 13 true cetacean sounds and
their corresponding bionic signals are highly similar.
Therefore, the camouflage ability of the synthesized bionic
signals is very high.

TABLE 2. PCC results between 13 true cetacean sounds and their
corresponding bionic signals.

Number True cetacean
sound Bionic signal PCC result

1 T_cf1 B_cf1 0.9827
2 T_cf2 B_cf2 0.9754
3 T_up1 B_up1 0.9984
4 T_up2 B_up2 0.9993
5 T_down1 B_down1 0.9973
6 T_down2 B_down2 0.9968
7 T_concave1 B_concave1 0.9998
8 T_concave2 B_concave2 0.9994
9 T_convex1 B_convex1 0.9900

10 T_convex2 B_convex2 0.9997
11 T_sine1 B_sine1 0.9996
12 T_sine2 B_sine2 0.9990
13 C_complex B_complex 0.9997

D. MODULATION OF CETACEAN TONAL SOUNDS
In the fourth experiment, we examine the modification
performance of the proposed method.

Here we take the upsweep tonal sound T_up1 (shown in
Fig. 15(a)-(b)) as an example and construct its
corresponding bionic signal B_up3. Under the condition of
ensuring a good camouflage ability for B_up3, the
parameters of the B_up3 are modified to improve its ASD
and UAC performance. Furthermore, for radar, sonar and
acoustic communication signal design, range resolution
(RR), range sidelobe level (RSL), velocity resolution (VR),
and Doppler tolerance (DT) are four key performance
indicators, and they are obtained by the ambiguity function
(AF) [38].

For ASD and UAC applications, when / 0.01oB f  , the
signal considered to be narrowband [39], where B is the
bandwidth and of is the center frequency of the signal.
Based on this criterion, it can be seen that the tonal sound
T_up1 is wideband. Therefore, the wideband ambiguity
function (WAF) [40]-[42] is used to examine the four key
indicators above. The WAF can be defined as follows

      *, ,SWAF s t s t dt      (36)

where    / 1 2 /c v c v v c      is the Doppler scale
factor, 2 /R c  is the propagation time delay, R is the
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target range, ‘*’ is the complex conjugate operator, and c
is the sound speed in water. Besides, for ASD applications,
v is the relative speed between the sonar system and the
target, and for UAC applications, v is the relative speed
between the acoustic signal transmitter and the receiver.

The TF expression  POf t shown in (15) is chosen to
construct B_up3. Therefore, the contour of B_up3 can be
adjusted by modifying five parameters, which are carrier
frequency Cf , bandwidth B , duration T , curvature
adjustment factor  and slope adjustment factor k . By
modifying these parameters, we found that increasing the
value of B can improve the RR, RSL and VR of B_up3,
while parameters  and k are related to the DT of B_up3.
The parameter value of the tonal sound T_up1 and the
bionic signal B_up3 are given in Table 3, where it can be
seen that the frequency range of B_up3 (6.8 kHz to 10.3
kHz) is slightly expanded by 1 kHz based on that of T_up1
(6.8 kHz to 9.3 kHz). Moreover, the duration of B_up3 is
slightly increased by 3ms based on that of T_up1.

The waveform and TFS of B_up3 are shown in Fig.
21(a)-(b). By comparing Fig. 21(a)-(b) and Fig. 15(a)-(b), it
can be seen that B_up3 can match T_up1 very well. Based
on (35), we can obtain the PCC between B_up3 and T_up1

0.9985TBr  , which means that the contours of T_up1 and
B_up3 are highly similar. Therefore, the camouflage ability
of the synthesized bionic signal B_up3 is very high.

The RR, RSL, VR, and DT of T_up1 and B_up3 are
shown in Table 4, where the change of RR is
(0.2716 0.5100) / 0.5100 100% 46.75%    . Similarly,
the changes of RSL, VR and DT are -40.31%, -61.18% and
1800%, respectively. It can be seen that these four
performance indicators of the bionic signal B_up3 are
significantly improved compared to those of the tonal
sound T_up1. For visualization, the WAF diagrams of the
two signals are shown in Fig. 22.

It is well-known that, for ASD applications, a higher RR
and a lower RSL lead to high-accuracy range measurement,
a higher VR indicates a high-accuracy speed measurement,
and a larger DT allows range measurement for high-
velocity targets. On the other hand, for UAC applications,
RR and RSL correspond to time resolution (TR) and time
sidelobe level (TSL), and a higher TR and a lower TSL
results indicate a high-accuracy time measurement, while a
higher DT allows effective UAC when the acoustic
transmitter (or receiver) moves at a high speed. Based on
the above analysis and results, it can be seen that by slightly
modifying the parameters of the synthesized bionic signals,
we can obtain bionic signals with both high camouflage
ability and good detection and communication performance.

TABLE 3. Parameters of tonal sound T_up1 and bionic signal B_up3.

Signal
Carrier

frequency
fC (kHz)

Bandwidth
B (kHz)

Duration
T (ms)

Factor
α

Factor
k (kHz/s)

T_up1 6.8 2.5 579.6
B_up3 6.8 3.5 582.6 1.6 1.8

TABLE 4. Four key indicators of tonal sound T_up1 and bionic signal
B_up3.

RR(m) RSL(dB) VR(m/s) DT(m/s)

T_up1 0.5100 -16.92 0.0850 0.7500
B_up3 0.2716 -23.74 0.0330 14.25
Change -46.75% 40.31% -61.18% 1800%

FIGURE 21. (a) The bionic signal B_up3. (b) The TFS of B_up3.

FIGURE 22. (a) WAF diagram of the true tonal sound T_up1. (b) WAF
diagram of the bionic signal B_up3.

V. CONCLUSION
In this paper, based on the analysis of the acoustic
characteristics of tonal sounds, two bionic signal models
and their corresponding sub-models have been developed to
match various TF structures of cetacean tonal sounds.
Associated with the proposed bionic signal models, a
piecewise construction strategy was developed to realize
high-similarity mimicry of most tonal sounds and some
complex cetacean sounds, such as signature whistle. The
bionic signal models and their corresponding sub-models
have exact and closed-form mathematical expressions, and
together with the effective piecewise construction strategy,
they provide the following benefits, as demonstrated by
extensive design examples:
(1) The synthesized bionic signal waveforms are very

close to the true cetacean tonal sounds, which can be
used for the construction of high camouflage bionic
signal waveforms.

(2) Most cetacean tonal sounds and some cetacean sounds
(even though it has a complex TF structure) can be
imitated with high similarity.

(3) The parameters (time domain envelope, frequency
distribution and TF shape) of the synthesized bionic
signals can be conveniently adjusted, which is very
beneficial for the following two aspects: 1) generate
other similar bionic signals, 2) change the detection
and communication performance of bionic signals by
felicitously adjusting the parameters of signal models.
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Compared with the conventional methods [12]-[16], [24],
[25], the proposed one cannot only achieve high
camouflage ability, but also obtain high detection and
communication performance for covert ASD and UAC
through proper parameter adjustments. Moreover, the
proposed method can also be employed for the construction
of cetacean sound database and behaviour research of
cetaceans.

REFERENCES
[1] S. J. Lourey, “Frequency hopping waveforms for continuous active

sonar,” in 2015 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2015, pp. 1832-1835.

[2] Y. Chen, J. Liu, and X. Xu, “Optimization of Energy Consumption
and Covert Communication for Multi-hop Underwater Acoustic
Cooperative Networks,” J. Xiamen Univ., 2018.

[3] M. I. Stanciu, S. Azou, and A. Serbanescu, “On the blind estimation
of chip time of time-hopping signals through minimization of a
multimodal cost function,” IEEE Trans. signal Process., vol. 59, no.
2, pp. 842–847, 2010.

[4] J. Marszal and R. Salamon, “Detection range of intercept sonar for
CWFM signals,” Arch. Acoust., vol. 39, no. 2, pp. 215–230, 2014.

[5] J. Marszal, R. Salamon, and L. Kilian, “Application of maximum
length sequence in silent sonar,” Hydroacoustics, vol. 15, pp. 143–
152, 2012.

[6] R. S. Lynch, P. K. Willett, and J. M. Reinert, “Some analysis of the
LPI concept for active sonar,” IEEE J. Ocean. Eng., vol. 37, no. 3, pp.
446–455, 2012.

[7] S. P. Van IJsselmuide and S. P. Beerens, “Detection and
classification of marine mammals using an LFAS system,” Can.
Acoust., vol. 32, no. 2, pp. 93–106, 2004.

[8] A. Papandreou-Suppappola and S. B. Suppappola, “Analysis and
classification of time-varying signals with multiple time-frequency
structures,” IEEE Signal Process. Lett., vol. 9, no. 3, pp. 92–95, 2002.

[9] J. Jiang et al., “Whistle detection and classification for whales based
on convolutional neural networks,” Appl. Acoust., vol. 150, pp. 169–
178, 2019.

[10] J. Jiang et al., “Clicks classification of sperm whale and long-finned
pilot whale based on continuous wavelet transform and artificial
neural network,” Appl. Acoust., vol. 141, pp. 26–34, 2018.

[11] H. S. Dol, B. A. J. Quesson, and F. P. A. Benders, “Covert
underwater communication with marine mammal sounds,” Undersea
Def. Technol. Eur. 2008, 10-12 June 2008, Glas. UK, 2008.

[12] J. Severson, “Modeling and frequency tracking of marine mammal
whistle calls,” MASSACHUSETTS INST OF TECH CAMBRIDGE,
2009.

[13] A. ElMoslimany, M. Zhou, T. M. Duman, and A. Papandreou-
Suppappola, “A new signaling scheme for Underwater Acoustic
communications,” in 2013 OCEANS-San Diego, 2013, pp. 1–5.

[14] A. ElMoslimany, M. Zhou, T. M. Duman, and A. Papandreou ‐
Suppappola, “An underwater acoustic communication scheme
exploiting biological sounds,” Wirel. Commun. Mob. Comput., vol.
16, no. 15, pp. 2194–2211, 2016.

[15] S. Liu, T. Ma, G. Qiao, L. Ma, and Y. Yin, “Biologically inspired
covert underwater acoustic communication by mimicking dolphin
whistles,” Appl. Acoust., vol. 120, pp. 120–128, 2017.

[16] J. Jiang et al., “Disguised Bionic Sonar Signal Waveform Design
With its Possible Camouflage Application Strategy for Underwater
Sensor Platforms,” IEEE Sens. J., vol. 18, no. 20, pp. 8436–8449,
2018.

[17] S. Liu, G. Qiao, Y. Yu, L. Zhang, and T. Chen, “Biologically
inspired covert underwater acoustic communication using high
frequency dolphin clicks,” in 2013 OCEANS-San Diego, 2013, pp.
1–5.

[18] S. Liu, G. Qiao, A. Ismail, B. Liu, and L. Zhang, “Covert underwater
acoustic communication using whale noise masking on DSSS
signal,” in 2013 MTS/IEEE OCEANS-Bergen, 2013, pp. 1–6.

[19] S. Liu, G. Qiao, and A. Ismail, “Covert underwater acoustic
communication using dolphin sounds,” J. Acoust. Soc. Am., vol. 133,
no. 4, pp. EL300–EL306, 2013.

[20] J. Jiang, X. Wang, F. Duan, X. Fu, H. Yan, and B. Hua, “Bio-
inspired steganography for secure underwater acoustic
communications,” IEEE Commun. Mag., vol. 56, no. 10, pp. 156–
162, 2018.

[21] J. Jiang et al., “Bio-Inspired Covert Active Sonar Strategy,” Sensors,
vol. 18, no. 8, p. 2436, 2018.

[22] J. Jiang et al., “A sonar-embedded disguised communication strategy
by combining sonar waveforms and whale call pulses for underwater
sensor platforms,” Appl. Acoust., vol. 145, pp. 255–266, 2019.

[23] W. W. L. Au, “The Sonar Signal Transmission System,” in The
Sonar of Dolphins, Springer, 1993, pp. 77–97.

[24] J. R. Buck, H. B. Morgenbesser, and P. L. Tyack, “Synthesis and
modification of the whistles of the bottlenose dolphin, Tursiops
truncatus,” J. Acoust. Soc. Am., vol. 108, no. 1, pp. 407–416, 2000.

[25] C. Capus, Y. Pailhas, K. Brown, D. M. Lane, P. W. Moore, and D.
Houser, “Bio-inspired wideband sonar signals based on observations
of the bottlenose dolphin (Tursiops truncatus),” J. Acoust. Soc. Am.,
vol. 121, no. 1, pp. 594–604, 2007.

[26] C. Bazúa-Durán and W. W. L. Au, “The whistles of Hawaiian
spinner dolphins,” J. Acoust. Soc. Am., vol. 112, no. 6, pp. 3064–
3072, 2002.

[27] V. M. Janik, D. Todt, and G. Dehnhardt, “Signature whistle
variations in a bottlenosed dolphin, Tursiops truncatus,” Behav. Ecol.
Sociobiol., vol. 35, no. 4, pp. 243–248, 1994.

[28] A. G. Taruski, “The whistle repertoire of the North Atlantic pilot
whale (Globicephala melaena) and its relationship to behavior and
environment,” in Behavior of marine animals, Springer, 1979, pp.
345–368.

[29] A. N. Gavrilov, R. D. McCauley, C. Salgado-Kent, J. Tripovich, and
C. Burton, “Vocal characteristics of pygmy blue whales and their
change over time,” J. Acoust. Soc. Am., vol. 130, no. 6, pp. 3651–
3660, 2011.

[30] L. J. May-Collado, I. Agnarsson, and D. Wartzok, “Phylogenetic
review of tonal sound production in whales in relation to sociality,”
BMC Evol. Biol., vol. 7, no. 1, p. 136, 2007.

[31] J. N. Matthews, L. E. Rendell, J. C. D. Gordon, and D. W.
Macdonald, “A review of frequency and time parameters of cetacean
tonal calls,” Bioacoustics, vol. 10, no. 1, pp. 47–71, 1999.

[32] J. J. Dreher, “Linguistic considerations of porpoise sounds,” J.
Acoust. Soc. Am., vol. 33, no. 12, pp. 1799–1800, 1961.

[33] M. A. Calderon, “Probability density analysis of ocean ambient and
ship noise,” Navy Electronics Lab San Diego Calif, 1964.

[34] A. Papandreou-Suppappola, “Time�frequency processing: Tutorial on
principles and practice,” in Applications in Time-Frequency Signal
Processing, CRC, 2002.

[35] Y. Wang, Z. Wang, B. Zhao, and L. Xu, “Parameters estimation of
sinusoidal frequency modulation signal with application in synthetic
aperture radar imaging,” J. Appl. Remote Sens., vol. 10, no. 2, p.
20502, 2016.

[36] V. M. Janik and P. J. B. Slater, “Context-specific use suggests that
bottlenose dolphin signature whistles are cohesion calls,” Anim.
Behav., vol. 56, no. 4, pp. 829–838, 1998.

[37] Khayyam and Hamid, “Stochastic Models of Road Geometry and
Wind Condition for Vehicle Energy Management and Control,”
IEEE Trans. Veh. Technol., vol. 62, no. 1, pp. 61–68, 2013.

[38] M. Vespe, G. Jones, and C. J. Baker, “Lessons for radar,” IEEE
Signal Process. Mag., vol. 26, no. 1, pp. 65–75, 2009.

[39] M. C. Wicks, E. Mokole, S. D. Blunt, R. S. Schneible, and V. J.
Amuso, Principles of waveform diversity and design. SciTech, 2010.

[40] L. G. Weiss, “Wavelets and wideband correlation processing,” IEEE
Signal Process. Mag., vol. 11, no. 1, pp. 13–32, 1994.

[41] J. Jiang et al., “An efficient algorithm for WBAF estimation based on
linear interpolation and its estimation error,” Appl. Acoust., vol. 142,
pp. 44–52, 2018.

[42] J. Jiang et al., “Study of the relationship between pilot whale
(Globicephala melas) behaviour and the ambiguity function of its
sounds,” Appl. Acoust., vol. 146, pp. 31–37, 2019.



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2020.3004282, IEEE Access

VOLUME XX, 2017 9

Jiajia Jiang was born in HuBei, China, in 1986.
He received the B.S. degrees from HeBei Normal
University and the M.S. degree and Ph.D. degree
from TianJin University (State Key Lab of
Precision Measuring Technology＆ Instruments),
TianJin, China, in 2011 and 2014, respectively.
He is currently an associate professor in TianJin
University (State Key Lab of Precision
Measuring Technology＆Instruments).
His research interest focuses on underwater
acoustic detection, underwater acoustic

communication, array signal processing.

Zhongbo Sun was born in HuBei, China, in 1993.
He received the B.S. degree from Liaoning
University, Shenyang, China in 2016. He is
currently working toward a Ph.D. degree in State
Key Lab of Precision Measuring Technology and
Instruments at TianJin University.
His research interest focuses on the underwater
acoustic detection and communication.

Fajie Duan was born in HuNan, China, in 1968.
He received the M.S. degrees from TianJin
University and the Ph.D. degree from TianJin
University (State Key Lab of Precision
Measuring Technology＆Instruments), TianJin,
China, in 1991 and 1994, respectively.He
worked as a professor at TianJin University
(State Key Lab of Precision Measuring
Technology＆Instruments) since 2004.
His research interest focuses on the design of
the array system, array signal processing,
acoustic detection of marine. He was named the

National New Century Excellent Talents of Ministry of Education in 2005.
He is the author or coauthor of over 120 papers and holds seven patents.

Xiao Fu was born in ShanDong, China, in 1990.
He received the B.Eng degrees from TianJin
University, TianJin, China, in 2013. He is now a
Ph.D. student at TianJin University (State Key
Lab of Precision Measuring Technology ＆
Instruments) since 2013.
His research interest focuses on the underwater
communication and detection.

Xianquan Wang received his B.S. degrees from
TianJin University (State Key Lab of Precision
Measuring Technology and Instruments) in 2015.
He is currently working toward a Ph.D. degree in
State Key Lab of Precision Measuring
Technology and Instruments at TianJin
University.
His research interest focuses on the underwater
communication and detection.

Chunyue Li was born in HeBei, China, in 1993.
She received the B.S. degree from Northeastern
University, Shenyang, China in 2016. She is
currently working toward the Ph.D. degree in
TianJin University (State Key Lab of Precision
Measuring Technology ＆ Instruments), TianJin,
China.
Her research interest focuses on the underwater
acoustic detection and communication.

Wei Liu received the B.Sc. and L.L.B. degrees
from Peking University, China, in 1996 and 1997,
respectively, the M.Phil. degree from The
University of Hong Kong in 2001, and the Ph.D.
degree from the School of Electronics and
Computer Science, University of Southampton,
U.K., in 2003. He held a post-doctoral position at
the Imperial College London. Since 2005, he has
been with the Department of Electronic and
Electrical Engineering, University of Sheffield,
U.K., as a Lecturer and then as a Senior Lecturer.

He has authored over 230 journal and conference papers, three book
chapters, and a research monograph about wideband beamforming
(Wideband Beamforming: Concepts and Techniques, Wiley, 2010).
His research interests are in sensor array signal processing, blind signal
processing, multivariate signal processing and their various applications in
wireless communications, radar, sonar, satellite navigation, human
computer interface, and renewable energy exploitation.

Lin Gan received her B.S. degrees from Tianjin
University in 2015. She is currently working
toward a Ph.D. degree in Instrument technology
and science from Tianjin University, Tianjin,
China.Her research interest focuses on acoustic
signal processing.


