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Characterizing Adiabaticity in Quantum Many-Body
Systems at Finite Temperature

Amy H. Skelt and Irene D’Amico*

The quantum adiabatic theorem is fundamental to time-dependent quantum

systems, but being able to characterize quantitatively an adiabatic evolution in

many-body systems can be a challenge. This work demonstrates that the use

of appropriate state and particle-density metrics is a viable method to

quantitatively determine the degree of adiabaticity in the dynamic of a

quantum many-body system. The method applies also to systems at finite

temperature, which is important for quantum technologies and quantum

thermodynamics related protocols. The importance of accounting for memory

effects is discussed via comparison to results obtained by extending the

quantum adiabatic criterion to finite temperatures: it is shown that this may

produce false readings being quasi-Markovian by construction. As the

proposed method makes it possible to characterize the degree of adiabatic

evolution by tracking only the system local particle densities, it is potentially

applicable to both theoretical calculations of very large many-body systems

and to experiments.

1. Introduction

Adiabatic evolutions are important in many areas of quantum
physics, such as quantum computation, quantum thermodynam-
ics, and quantum field theory.[1–9] One particularly important
application of adiabatic evolutions is achieving specific (target)
states (e.g., in adiabatic quantum computation, where the target
state is known to be the ground state of the final Hamiltonian).
Other important applications of adiabatic evolutions are for quan-
tum thermodynamic cycles, where, for example, they may yield
the highest extractable quantumwork.[10,11] Indeed, the relevance
of adiabaticity has even given rise to new subfields, such as short-
cuts to adiabaticity.[12,13]
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The quantum adiabatic theorem[14] de-
fines an adiabatic evolution as one in which
no transitions between energy levels occur,
and is a fundamental concept for any time-
dependent quantum system. It was first
proposed in 1928 by Born and Fock, and
demonstrates that for a quantum system to
be considered adiabatic, it must be evolved
slowly enough that it remains in an instan-
taneous eigenstate, with a gap between its
eigenenergy and the rest of the Hamilto-
nian’s spectrum.[14] Later, Avron and Elgart
relaxed this gap condition through a refor-
mulation of the theorem[15]. At zero temper-
ature, this is often interpreted mathemati-
cally with the quantum adiabatic criterion
(QAC)[16–18]:

||⟨m(t)| Ḣ(t) |n(t)⟩||
(||En(t) − Em(t)

||
)2 ≪ 1 (1)

where Ḣ is the time derivative of the Hamiltonian, |m⟩ and
|n⟩ are the instantaneous eigenstates of Ĥ with instantaneous
eigenenergies Em and En respectively, and are usually taken as
the ground and first excited states.
When it comes to accurately characterizing an adiabatic evolu-

tion, there are thoughmany challenges, such as the complexity of
calculations involving many-body systems and defining the crite-
rion at finite temperature. Recently, the validity and sufficiency
of this QAC for certain systems have been questioned,[16–18] and
new approaches to characterizing adiabaticity have also come to
light[19,20] where they look at comparing the time evolved state
of the system with the adiabatic state, that is, the instantaneous
ground state. It was demonstrated in ref. [19] that metrics can be
used to characterize adiabaticity through a variety of approaches
to best suit the quantities one has at hand. The issue of track-
ing adiabaticity both at finite temperature and formany-body sys-
tems remains outstanding.
In this work the adiabatic theorem is written in terms of two

distance measures (metrics), namely the Bures and the trace
distances. The Bures distance is connected to the fidelity (which
is though not a proper measure), and, at zero temperature, one
can use the “adiabatic fidelity” as a figure of merit for adiabaticity
in time-dependent systems.[20] Importantly, the Bures distance
can be derived from conservation laws[21,22] so that it can provide
relevant information on the physics of the many-body system
[21–24]. Within quantum information processing, the trace dis-
tance is considered the best measure to operationally distinguish
two quantum states,[25] so we also look at using the trace distance
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in place of the Bures, and find that both the trace and Bures
can be used to determine the degree of adiabaticity. To provide a
comparison with a somewhat more familiar quantity, we propose
an extension of the QAC to finite temperatures, and discuss its
limitations. All of the above broadens the choice of measures of
adiabaticity to best suit one’s needs.
At zero temperature, the Bures distance for pure states has

already been demonstrated to characterize adiabaticity in single
electron systems,[19] and was seen to have potential for character-
izing adiabaticity in two-electron systems.[26] Here we consider
many-body systems, formally of any size, continuous and de-
scribed over a lattice, at zero and finite temperatures. Compu-
tationally, as system size increases exponentially, we apply the
method to many-body systems up to six electrons on a discrete
lattice. We take inspiration from density-functional theory to ask:
“can metrics based on the particle density alone give quantitative
guidance to the level of adiabaticity of a system?” Particle density
is in principle experimentally observable and much easier to es-
timate than the corresponding many-body state, for example, by
density functional methods; by demonstrating that this question
has a positive answer, we provide a manageable way to measure
and track adiabaticity of many-body systems, even if the temper-
ature is finite.
This work aims to help guide those wanting an adiabatic evo-

lution (either experimentally or computationally) in many-body
systems toward achieving an understanding of the degree of adi-
abaticity of their system. A guideline threshold for considering
an evolution adiabatic is then presented with discussion of the
factors which impact this threshold and the important quantities
to consider when deciding a threshold for one’s system.

2. Theory and Proposed Methods

2.1. Temperature-Dependent Quantum Adiabatic Criterion

As mentioned previously, the QAC based on the quantum adia-
batic theorem[14] has been under scrutiny recently, and new ap-
proaches have come to light. However, all of these approaches
only consider quantum adiabaticity for pure states at zero tem-
perature. A new expression is introduced here for characterizing
adiabaticity in systems at finite temperature and so described by
mixed states. First, however, one needs to define what ismeant by
being adiabatic at finite temperature. The requirement for quan-
tum adiabaticity at finite temperature[27] is that there are no tran-
sitions between eigenstates of the system as it evolves.[28] Practi-
cally, this implies that the population of the various eigenstates
should not change with time.
As a comparison between the metrics and a more familiar

quantity, we propose the following extension of the QAC (1), valid
at any temperature T (T-QAC) and which will include degenera-
cies

𝜖(t) = max
n,m

{||⟨m(t)| Ḣ(t) |n(t)⟩||
(||En(t) − Em(t)

||
)2

}
(2)

with

En(t) − E0(t) < skBT (3)

Em(t) − E0(t) < s′kBT (4)

s′ > s ≥ 1 (5)

Here E0 ≤ E1 ≤ … ≤ En andm ≠ n. In the calculations presented
here, we use s = 1 and do not cap s′.
For adiabaticity to hold, we still required that 𝜖(t) ≪ 1. In T-

QAC, the criterion is adapted for degenerate states following
Rigolin and Ortiz,[29] so that the maximum distance between the
degenerate subspaces and other levels is considered when calcu-
lating 𝜖(t).

2.2. Metrics for Density, n, and Quantum State, 𝝆

Metrics provide a quantitative measure—the distance—to differ-
entiate between two elements of a set,[30] and must obey three
axioms: positivity, D(x, y) ≥ 0 and

D(x, y) = 0 iff y = x (6)

symmetry, D(x, y) = D(y, x); and the triangle inequality,

D(x, z) ≤ D(x, y) + D(y, z) (7)

The use of metrics for investigating the relationship between
wavefunctions and corresponding particle densities was devel-
oped in refs. [21–23, 31] where the chosen metrics were derived
from conservation laws (“natural” metrics[22]) to ensure that they
could provide physical insights. Ref. [19] introduced a method of
using these metrics for characterizing adiabaticity in single elec-
tron systems at zero temperature; other works[21,22,26,31] support
the possibility of developing this metric-based method to charac-
terize adiabaticity in many-body systems. All these works consid-
ered pure states; since here the focus is also on finite tempera-
ture, the “natural” metrics must be extended to mixed states.
The metric for the wavefunction developed in ref. [21] is in

fact the limit for zero temperature of the Bures metric, which for
mixed states reads

DB
𝜌
(𝜎, 𝜌) =

[
2

(
1 − Tr

√√
𝜌𝜎

√
𝜌

)]1∕2
(8)

where 𝜎 and 𝜌 are quantum system states (density matrices).[32]

Ametric for quantum states which is widely used by the quan-
tum technology community as measure of distinguishability be-
tween quantum states is the trace distance,[25,33] which is defined
as

DT
𝜌
(𝜌, 𝜎) =

1

2
Tr[|𝜌 − 𝜎|] = 1

2
Tr
√
(𝜌 − 𝜎)†(𝜌 − 𝜎) (9)

This metric will also be considered in this work. Bures’ and trace
distances are related by bounds[25] and, at least for the systems
and dynamics discussed in this work, they provide very similar
diagnostic; it is suggested then that the decision of which to use
be made on which quantities are more readily accessible, for ex-
ample, if the fidelity is easy to obtain, the Bures distance should
be chosen.
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The “natural” density metric is unaffected by the type of state,
and remains

Dn

(
n1, n2

)
=

1

N ∫ ||n1(r) − n2(r)
||d3r (10)

with nj(r) the particle density of system j at position r. In Equation
(10), we use that for the present purposes systems 1 and 2 will
have the same number of particles N and consequently rescale
the metric with respect to ref. [21].
All themetrics considered have amaximum value. For the par-

ticle density metric the maximum distance is 2; with the system

states normalized to 1, the Bures distance maximum is
√
2 and

the trace distance maximum is 1.

2.3. Method for Measuring and Dynamically Tracking Adiabaticity

The key questions we face are: could suitable metrics be used to
characterize adiabaticity at finite temperature and even for com-
plex interacting many-body systems? Could an easy-to-calculate
method to measure adiabaticity and its time evolution be pro-
vided even for complex many-body systems, which are notori-
ously difficult to treat? Here we propose an operative definition
of adiabaticity based on the “adiabaticity threshold” and suggest
to answer the above questions by tracking the instantaneous dis-
tance between the time-dependent system state and its adiabatic
counterpart using the Bures (8) and tracemetrics (9).We also pro-
pose, and justify below, that the much-simpler-to-calculate dis-
tance (10) between the corresponding particle densities (contin-
uum) or site occupations (discrete systems) can be used as an
alternative.
The motivation to use the density distance relies on the the-

orem by Runge and Gross[34,35] for continuous systems, and on
its extension to lattice Hamiltonians.[36,37] These, at least at zero
temperature, provide a one-to-one correspondence between the
driven system many-body state and the corresponding particle
density. This allows to shift the attention from the system’s quan-
tum states to the corresponding particle densities (continuum)
and site occupations (lattice Hamiltonians), objects much sim-
pler to calculate, for example, by density functionalmethods.[35,37]

2.4. The Adiabatic Threshold

2.4.1. System Quantum States

In practice, when can a system be considered adiabatic? A rea-
sonable answer is “when, during the dynamics, the system re-
mains close enough to its adiabatic limit”; in this section we will
quantify the concept of “close enough” using the tool of “adia-
batic threshold.”[19] We exploit the fact that the chosen metrics
for quantum states have well-definedmaximum valuesDmax

𝜌
, and

so it is possible to quantify an adiabatic threshold as a percentage
of these maxima: we consider a state 𝜌(t) to behave adiabatically
for all practical purposes (f.a.p.p.) when

DB
𝜌
(𝜌GS∕Th(t), 𝜌(t)) ≤ Δ𝜌 (11)

where GS indicates the ground state, and Th the reference state
at finite temperature, which is specified in the present case in
section 3, and which reduces to GS for T → 0. In this paper we
chooseΔ𝜌 = DB,max

𝜌
∕10. This threshold can of course be adjusted,

depending on the accuracy/constraints of the experiment or cal-
culation being performed. We note that, as the temperature in-
creases, kBT becomes the dominating energy scale so that the
same external driving will affect the system less. This implies
that, for the same drive but increased temperature, dynamical
states will remain closer to adiabaticity, suggesting that tighter
adiabatic thresholds could be chosen in this case.

2.4.2. System Particle Densities and the Adiabatic Line

In refs. [19, 21–23, 26] it was shown that there is a monotonic
relationship between ground state distances and their corre-
sponding particle densities’ distances, and that this relationship
is quasi-linear up to relatively large distances ≈ (2∕3)DB,max

𝜌
,[38]

with ref. [23] indicating this relationship to hold also for higher
order eigenstates and corresponding particle densities. Results
from this study show the same behaviour at finite temperatures
(see Figure 1). We refer to this quasi-linear relationship as the
“adiabatic line”[19]: this would be the region, in metric space,
populated by adiabatic systems and hence by a system evolving
adiabatically. The adiabatic line for a certain time-dependent
process can then be written as

Dn(nGS∕Th(0), nGS∕Th(t)) ≈ mDB
𝜌
(𝜌GS∕Th(0), 𝜌GS∕Th(t)) (12)

For adiabatic-enough systems, we can always assume that
Dn(n(t), nGS∕Th(t)) ≤ Dn(nGS∕Th(0), nGS∕Th(t)), see Section S2, Sup-
porting Information, so that using Equation (12), we can write an
upper bound for the adiabatic threshold for the density distance,
Δn, in terms of the corresponding threshold for the state as

Δn = mΔ𝜌 (13)

The gradient m, will depends on N, U, and T , as well as on the
type of driving potential.
In principle a more accurate (and more computation-

ally expensive) estimate of Δn could be achieved by us-
ing a polynomial fitting to the curve Dn(nGS∕Th(0), nGS∕Th(t)) =
f (DB

𝜌
(𝜌GS∕Th(0), 𝜌GS∕Th(t))), but we find that the linear approxima-

tion (12) and the simple method described above is sufficient for
achieving good results (see Figures 2 and 3).

2.4.3. Estimate for the Gradient of the Adiabatic Line

In practice, the gradient m can be estimated by calculating
Dn(nGS∕Th(0), nGS∕Th(t)) and DB

𝜌
(𝜌GS∕Th(0), 𝜌GS∕Th(t)) for 2-3 values

of t. For these chosen values, DB
𝜌
should be less than (2∕3)DB,max

𝜌
,

and the origin should be included in the fit in virtue of Equa-
tion (6). Estimating m requires then exact or approximate diago-
nalization of the system Hamiltonian at 2–3 instants in time. Of
course at zero temperature only the estimate of the GS is neces-
sary.
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Figure 1. CurvesDn(nGS∕Th(0), nGS∕Th(t)) versusD
B
𝜌
(𝜌GS∕Th(0), 𝜌GS∕Th(t)) for 3 interaction strengths:U = 0J in red,U = 5J in green, andU = 10J in blue;

and 3 temperatures, T = 0J∕kB (GS, left) T = 0.2J∕kB (Th, middle), T = 2.5J∕kB (Th, right). Note that n(0) = nGS∕Th(0) and 𝜌(0) = 𝜌GS∕Th(0)
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Figure 2. Zero temperature results. Red lines: 𝜏 = 0.5∕J dynamics, green lines: 𝜏 = 5∕J dynamics, blue lines: 𝜏 = 50∕J dynamics. Panels show: 𝜖(t) [(a)–
(c)], DB

𝜌
(𝜌GS(t), 𝜌(t)) [(d)–(f)], and Dn(nGS(t), n(t)) [(g)-(i)] versus t∕𝜏. Three interaction strengths are considered: U = 0J (left), U = 5J (middle), and

U = 10J (right). In all panels the horizontal dashed lines indicate the corresponding adiabatic threshold. Insets of panel (b) and (c): low energy spectrum
of the instantaneous Hamiltonian versus t∕𝜏 for U = 5 J [panel (b)] and U = 10 J [panel (c)].

3. Numerical Results

While the methods proposed can be applied to both continuous
and lattice systems, here we will illustrate them using the
epitome for strongly correlated many-body quantum systems,
the Hubbard model, first at zero and then at finite temperatures.
We have analyzed the dynamics of short non-homogeneous
Hubbard chains (N = 2, 4, 6), driven at different rates. In
the following, we will discuss explicitly the results for N = 6,
corresponding to a Hamiltonian of size 400 × 400 at half-filling.
The complexity of its spectrum may be appreciated by looking at
Figure S3, Supporting Information.

3.1. Hubbard Model and System Drive

To demonstrate the properties of the methods for characterizing
adiabaticity proposed in this work, the out-of-equilibriumdynam-

ics of the inhomogeneous one-dimensional Hubbard model at
half-filling and zero average magnetization is considered.
The inhomogeneous Hubbard model is often used as a test-

bed for developing techniques for strongly correlated many-body
systems[10,39] as it displays non-trivial properties even for the
small chains[10,11,40–42] for which it can be solved (numerically) ex-
actly. The correspondingHamiltonian for a system ofN fermions
and N sites, with nearest-neighbour hopping is

Ĥ = −J

N∑

i,𝜎

(
ĉ†
i,𝜎
ĉi+1,𝜎 + ĉ†

i+1,𝜎
ĉi,𝜎

)
+U

N∑

i

n̂i,↑n̂i,↓ +

N∑

i

vin̂i (14)

where J is the hopping parameter for an electronwith spin 𝜎, with
𝜎 =↑ or ↓, U is the on-site electron-electron repulsion strength,
and vi is the external potential at site i. Also, ĉ

†

i,𝜎
and ĉi,𝜎 are the

usual creation and annihilation operators for a spin-𝜎 fermion
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on site i, and n̂i = n̂i,↑ + n̂i,↓ is the number operator, with n̂i,𝜎 =

ĉ†
i,𝜎
ĉi,𝜎 .
The non-equilibrium dynamics is driven through the applica-

tion for a time 𝜏 of a uniform electric field linearly increasingwith
time from a potential difference along the chain of 1J to a poten-
tial difference of 10J. The on-site potential at site i is then written
as vi(t) = 𝜇0

i
+ 𝜇𝜏

i
t∕𝜏 where 𝜇0

i
= 2𝜇0∕N × i − 𝜇0 where 𝜇0 = 0.5J,

and 𝜇𝜏

i
= 2𝜇𝜏∕N × i − 𝜇𝜏 with 𝜇𝜏 = 4.5J.

The Hubbard model is used to simulate various physical sys-
tems of interest to quantum technologies,[40,43–47] and the pro-
posed dynamics could represent transient electronic currents
along a chain of, for example, nanostructures (for example cou-
pled quantum dots) or of atoms due to the application of a time-
dependent electric field across the chain.
It is noted that the final Hamiltonian does not depend on the

evolution time 𝜏, and therefore 𝜏measures also the inverse speed
of the evolution. Hence for considering adiabatic evolutions, the
larger 𝜏 is, the closer to adiabaticity the system is expected to be.

3.2. Estimate for The Density Adiabatic Threshold

Curves for Dn(nGS∕Th(0), nGS∕Th(t)) against D
B
𝜌
(𝜌GS∕Th(0), 𝜌GS∕Th(t))

are shown in Figure 1 for three temperatures (kBT = 0, GS, left;
kBT = 0.2J, Th, middle; kBT = 2.5J, Th, right). In Figure 1 it can
be seen how increasing U (from red to green to blue) or increas-
ing temperature decreases the curves’ gradient. In calculating the
adiabatic threshold, we have used the linear approximation (12)
withm estimated as described in section 2.4.3. The approximated
values for m can be found in Table S1, Supporting Information
for all combinations of three values each of N, U, and T .

In calculating Δn we have used the method described in Sec-
tion 2.4.3.

3.3. Zero Temperature

3.3.1. Predictions from 𝜖(t)

At zero temperature, the system initial state is the ground state:
𝜖(t), as implemented, compares GS to all excited states and in-
cludes treatment of degeneracies according to ref. [29]. In Fig-
ure 2, panels (a)–(c) show 𝜖(t) from Equation (2) with respect to
time in units of 𝜏.
We consider different rates of dynamics (𝜏 = 0.5∕J, red, “fast”

dynamics; 𝜏 = 5∕J, green, ‘intermediate’ dynamics; 𝜏 = 50∕J,
blue, “slow” dynamics, closer to adiabaticity), and three inter-
action strengths (U = 0J, left, no interaction; U = 5J, middle,
medium interaction; U = 10J, right, strong interaction). One
would expect that the red curves will demonstrate non-adiabatic
behavior, whereas the blue curves should exhibit behavior closer
to adiabaticity, and the green curves be somewhere between the
two. For U = 0J, Figure 2a, the initial dynamics as described
by 𝜖(t) indeed follows these expectations, though 𝜖(t) predicts
that the dynamics becomes more adiabatic as time progresses,
with in particular the 𝜏 = 5∕J dynamics becoming adiabatic for
t ≳ 0.5𝜏.
ForU = 5J, Figure 2b, many-body interactions become impor-

tant and the static system would be in the process of transition-
ing between a metal and a quasi-Mott insulator (see for exam-
ple, ref. [11, 21, 41]): states with double occupation are “pushed
up” in energy and the dynamics is stiffen for low-enough applied
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potentials. Then, initially, all dynamics satisfy the QAC expressed
by (2). However at t ≈ 0.4𝜏 the applied time-dependent potential
has increased enough to produce an avoided level-crossing in the
low-energy spectrum of the instantaneous Hamiltonian (see in-
set in Figure 2b) so that 𝜖(t) predicts non-adiabatic behavior for
both fast (𝜏 = 0.5∕J) and intermediate (𝜏 = 5∕J) dynamics. How-
ever, as time increases further, according to 𝜖(t), the dynamics
quickly returns adiabatic for all dynamic rates. We note here that
a tool directly derived from the QAC (1), such as 𝜖(t) Equation (2),
is Markovian by construction, that is, does not include memory
as it is based on instantaneous quantities.
A similar pattern occurs forU = 10J, Figure 2c, where though

the avoided crossings happen only for t ≈ 95%𝜏 (inset), when
the applied potential becomes of the order of U. Once more, its
Markovianity induces 𝜖(t) to drop quickly afterward.

3.3.2. Adiabatic and Non-Adiabatic Behavior According to
DB

𝜌
(𝜌GS(t), 𝜌(t)) and Dn(nGS(t), n(t))

Figure 2 displays DB
𝜌
(𝜌GS(t), 𝜌(t)), panels (d)–(f), and

Dn(nGS(t), n(t)), panels (g)–(i) versus time for the same pa-
rameters as 𝜖(t) (panels (a)–(c)).[48] The horizontal dashed lines
indicates the threshold Δ𝜌 for the states’ distances (panels (d)–
(f)) and the corresponding threshold Δn for the particle density
distances (panels (g)–(i)).
ForU = 0J and intermediate to fast dynamics, the predictions

from DB
𝜌
(𝜌GS(t), 𝜌(t)) and Dn(nGS(t), n(t)) are in striking contrast

with the predictions by 𝜖(t). At very short times both metrics cor-
rectly predict a behaviour close to adiabatic: the initial state is
the GS and it will take a finite time to the system state to sig-
nificantly combine with higher energy states. At intermediate to
long times, while 𝜖(t) would erroneously predict a fast return to-
wards adiabaticity for the red and green dynamics, the metrics
clearly show that the system remains far from adiabatic: the sys-
tem dynamics far from equilibrium is highly affected by the tra-
jectory in phase space at previous times (memory) and so con-
sidering a measure of adiabaticity which is non-Markovian—
such as the proposed metrics—becomes crucial to avoid false
reading.
For slow dynamics (𝜏 = 50), the behavior remains always at

or below the adiabatic threshold. The oscillations shown by
DB

𝜌
(𝜌GS(t), 𝜌(t)) and Dn(nGS(t), n(t)) for 𝜏 = 50 were also observed

in the single-electron systems studied in ref. [19]. These are ex-
plained by the system inertia in adjusting to gradually applied
electric field.
For finite many-body interaction strengths, both

DB
𝜌
(𝜌GS(t), 𝜌(t)) and Dn(nGS(t), n(t)) strongly respond to the

(avoided) level crossings at t ≈ 0.4𝜏 (U = 5J) and t ≈ 9.5𝜏
(U = 10J), but, crucially also signal that afterwards the system
dynamics remain strongly non-adiabatic, with then important
contributions from memory effects. Note that this is the case
even for the slow dynamics (𝜏 = 50): compare blue lines in
panels (a), (c), (h) for t > 0.5𝜏.
DB

𝜌
(𝜌GS(t), 𝜌(t)), as distance between the system quantum state

and its adiabatic counterpart, can be readily associated to the def-
inition of adiabaticity; this is less so for Dn(nGS(t), n(t)): particle
densities, being just a function of position and time, could be ex-
pected to be much less sensitive to details than the system state,

for example, it might be less sensitive to details of the instanta-
neous Hamiltonian spectrum, or less susceptible to dynamical
changes of the system and corresponding memory effects. How-
ever, because of the theorems in refs. [34, 36], we know that the
considered dynamical system state and its corresponding parti-
cle density contain the same amount of information: we can then
conjecture that both the related “natural”[21] metrics can be used
successfully as measures of adiabaticity. This was confirmed in
ref. [19] for single-particle systems, and here for many-body sys-
tems. This leads to the possibility of characterizing adiabaticity
using the sole particle density, a quantity much more accessible
than the corresponding system quantum state.

3.4. Finite Temperature

A thermal bath at temperature T is now connected to the Hub-
bard chain, to thermalize the system. Once thermalized, at t =
0−, the bath is disconnected, and then the closed system is
evolved from t = 0+ to 𝜏. Therefore, the initial state is now a ther-
mal state, with a corresponding thermal particle density. Because
of the closed dynamics, we will then consider the distance be-
tween the dynamical system state 𝜌(t) and its finite-temperature
adiabatic counterpart

𝜌Th(t) =
∑

j

exp
(
−

Ej,0

kbT

)

∑
k exp

(
−

Ek,0

kBT

) |𝜓j,t⟩ ⟨𝜓j,t| (15)

where Ej,0 is the j-th eigenenergy of the Hamiltonian at t = 0, and
|𝜓j,t⟩ is the j-th eigenstate of the instantaneous Hamiltonian at
time t. The corresponding particle density nTh(t) is used in the
density distance Dn(nTh(t), n(t)).
Two temperatures are considered in this work; a lower temper-

ature of kBT = 0.2J, and a higher temperature of kBT = 2.5J.

3.4.1. Low Temperature

For kBT = 0.2J, 𝜖(t) and both metrics show the systems to behave
mostly very similarly to the zero-temperature case. A notable dif-
ference occurs for U = 10 and 0.9 < t∕𝜏 < 1, where the inset of
Figure 2c shows the occurrence of four low-energy avoided cross-
ings. Due to the finite-temperature state mixing, both metrics
signal the four crossings with corresponding steps in the dis-
tances, while, 𝜖(t) remains sensitive only to the crossing occur-
ring at t∕𝜏 ≈ 0.96 between ground and first excited state. These
results suggest that for low temperatures, kBT ≪ J, the density
could be used as a good indicator to characterize adiabaticity. For
completeness, we report all results for kBT = 0.2J in Figure S1,
Supporting Information.

3.4.2. High Temperature

For kBT = 2.5J and thermal equilibrium, tens of eigenstates of
the initial Hamiltonian spectrum are significantly populated (ini-
tial state). For U = 0, the behaviour of 𝜖(t) and of both metrics is
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qualitatively similar to the lower temperatures examined: no anti-
crossing are observed within ∼ kBT of the instantaneous ground
state, while energy gaps in this part of the spectrum tend to in-
crease with time. We report part of the instantaneous spectrum
versus time in Figure S3a, Supporting Information.
At U = 10, many-body interactions creates distinct bands in

the instantaneous Hamiltonian spectrum, shown for complete-
ness in Figure S3c, Supporting Information. The eigenstates in
the lowest energy band are linear combinations of the 20 possible
permutation of single-site occupations at half-filling. Even at
t = 0, the system is slightly inhomogeneous, so these eigenstates
are not degenerate. The next band contains six eigenstates, com-
binations of states which may allow double occupation in one of
the sites, and the bandgap due to this on-site Coulomb repulsion
is about 6J at t = 0, substantially larger than kBT , so that initially
only the lower band is significantly occupied. For all dynamical
rates considered, this gap is also much larger than 1∕𝜏, and
indeed all measures considered remain below or close to their
adiabatic thresholds until the two bands start (anti) crossing at
tac∕𝜏 ≈ 0.8, see Figure 3c,f,i. We note six-steps in bothmetrics for
tac ≲ t ≲ 0.9𝜏, see Figures 3f,i. Each step signals one of the upper-
band eigenstates starting to anti-cross the lower band. The Bures
distance between two orthogonal pure states is maximal, so the
Bures distance between the system state and its adiabatic refer-
ence is in principle set up to signal non-adiabatic behaviour at
any avoided crossing.[49] However, the strength of the signal will
depend on how different the occupation probability of the two
relevant eigenstates is before the crossing. For t < tac, we can es-
timate each of the 20 lower-band eigenstates to have roughly 1/20
occupation probability, and the upper band having no occupation.
The change in the Bures distance across each crossing would
then be about DB,max

𝜌
∕20 = 0.07, giving an overall height for the

six steps of DB
𝜌
of 0.42, which is reasonably close to what we ob-

serve in Figure 3f. A similar structure is faithfully signaled byDn.
The other anti-crossings, which occur deeper in the lower band,
are between eigenstates with very similar occupation probabili-
ties, so that the overall state should be expected to change very lit-
tle at crossings: this is faithfully captured by the chosen metrics,
much less affected by those anti-crossings. The T-QAC measure
𝜖(t) presents a series of peaks in the region where the bands
cross, but without distinguishing between the anti-crossing
being at the top, or deeper within, the lower energy band. Im-
portantly, we find that the anti-crossings affecting 𝜖(t) are often
not the ones expected to substantially change the system state.
The problem of 𝜖(t) in signaling inappropriately the anti-

crossings is even more evident (and problematic) forU = 5: here
the crossing between lowest and immediately upper bands starts
already at t∕𝜏 ≈ 0.05 [we report the relevant part of the instanta-
neous spectrum versus time in Figure S3b, Supporting Informa-
tion]. As there is no substantial gap between them at t = 0, the
top levels of the lowest and the lower levels of this upper band
are fairly similarly populated. This means that the correspond-
ing mixed system state does not change significantly at each of
these crossings, as correctly displayed by both metrics. However
𝜖(t) dramatically signals the initial anti-crossings, thus proving a
false reading of non-adiabaticity already at t∕𝜏 ≈ 0.05 [see inset
of Figure 3b]. These spikes in 𝜖(t) may be related to the problem
of small denominators for this type of measures, see ref. [50].

Although in this work the degenerate form of QAC was
adapted for finite temperature, the results show that it is still not
well suited for high T . On the other side, the metrics, which nat-
urally include degeneracy and non-Markovianity, can be seen to
cope well with the temperature increase.

3.5. Results for the Trace Distance

With respect to its own adiabatic threshold,[51] the trace dis-
tance results are quantitatively close to the Bures distance, in-
cluding signaling with steps relevant anticrossings. This means
that it can be used as an alternative quantitative measure of
adiabaticity.[52] For completeness, we report the related results in
Figure S2, Supporting Information.

4. Conclusion

We have introduced methods based on appropriate metrics to
measure adiabaticity for the dynamics of many-body quantum
systems at finite temperature, and to track it with time evolution.
As system state metrics, Bures and trace distances give consis-
tently similar predictions, for all dynamics and temperatures an-
alyzed. Additionally, our results support the conjecture—based
on the fundamental theorems of time-dependent density func-
tional theory—that the “natural” metric tracking the evolution of
the local particle density alone would be sufficient to estimate the
level of adiabaticity of the systems’ dynamics. This is a great sim-
plification as, in general, the system local particle density may
be estimated more accurately and much more simply than the
corresponding many-body system state. It is also an experimen-
tallymeasurable quantity, which opens additional possibilities for
the method.
Because these metrics have a finite maximum, they are suit-

able for the design of practical “adiabatic thresholds,” so that
a distance below (above) the corresponding threshold signals
adiabatic (non-adiabatic) behavior. Using the results in this paper
and previous results, we have been able to consistently relate
the adiabatic threshold for the system state metric to an upper
bound for the threshold for the local particle density metric.
This upper bound is tight enough along most parts of the time-
evolutions analyzed, and it is relatively easy to estimate, even for
large systems. We aim to refine it as future work. We discuss
an extension to finite temperature of the quantum adiabatic
criterion which include treatment of degeneracies. Comparing
the results from this and the metrics has highlighted the im-
portance of properly including memory effects when wishing to
evaluate and track the adiabatic level of a many-body dynamics:
by construction, a measure based on the quantum adiabatic
criterion is basically Markovian, as, at most, the instantaneous
Hamiltonian derivative is included. Our results show that this
leads to false readings, as highly out-of-equilibrium dynamics
may be pictured as adiabatic. Our results have also shown that
while the metric-based methods correctly reflect the amount of
change in the system state at instantaneous eigenenergy anti-
crossings, the extension to finite temperatures of the quantum
adiabatic criterion is often sensitive—and sometimes extremely
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sensitive—to the anticrossing where the actual many-body
state does not change significantly. Once more this may lead to
false readings, this time predicting the system to be far from
adiabaticity while it is actually still behaving adiabatically.

Supporting Information

Supporting Information is available from the Wiley Online Library or from
the author.
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