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 IŶ ϮϬϭϮ͕ Ă ĨĂŵŝůǇ ŽĨ ďĞŶǌĞŶŽŝĚƐ ǁĂƐ ŝŶƚƌŽĚƵĐĞĚ ďǇ CƌƵǌ͕ GƵƚŵĂŶ͕ ĂŶĚ RĂĚĂ͕ ǁŚŝĐŚ ƚŚĞǇ called convex benzenoids͘ IŶ ƚŚŝƐ ƉĂƉĞƌ ǁĞ 
introduce the convexity deficit͕ Ă ŶĞǁ ƚŽƉŽůŽŐŝĐĂů ŝŶĚĞǆ ŝŶƚĞŶĚĞĚ ĨŽƌ ďĞŶǌĞŶŽŝĚƐ ĂŶĚ͕ ŵŽƌĞ ŐĞŶĞƌĂůůǇ͕ ĨƵƐĞŶĞƐ͘ TŚŝƐ ŝŶĚĞǆ ŵĞĂƐƵƌĞƐ ďǇ ŚŽǁ 
ŵƵĐŚ Ă ŐŝǀĞŶ ĨƵƐĞŶĞ ĚĞƉĂƌƚƐ ĨƌŽŵ ĐŽŶǀĞǆŝƚǇ͘ Iƚ ŝƐ ĚĞĨŝŶĞĚ ŝŶ ƚĞƌŵƐ ŽĨ ƚŚĞ ďŽƵŶĚĂƌǇ-ĞĚŐĞƐ ĐŽĚĞ͘ IŶ ƉĂƌƚŝĐƵůĂƌ͕ ĐŽŶǀĞǆ ďĞŶǌĞŶŽŝĚƐ ĂƌĞ ĞǆĂĐƚůǇ 
ƚŚĞ ďĞŶǌĞŶŽŝĚƐ ŚĂǀŝŶŐ ĐŽŶǀĞǆŝƚǇ ĚĞĨŝĐŝƚ ĞƋƵĂů ƚŽ Ϭ͘ Quasi-convex ďĞŶǌĞŶŽŝĚƐ ĨŽƌŵ ƚŚĞ ĨĂŵŝůǇ ŽĨ ŶŽŶ-ĐŽŶǀĞǆ ďĞŶǌĞŶŽŝĚƐ ƚŚĂƚ ĂƌĞ ĐůŽƐĞƐƚ ƚŽ 
ĐŽŶǀĞǆ͕ ŝ͘Ğ͕͘ ƚŚĞǇ ŚĂǀĞ ĐŽŶǀĞǆŝƚǇ ĚĞĨŝĐŝƚ ĞƋƵĂů ƚŽ ϭ͘ FŝŶĂůůǇ͕ ǁĞ ŝŶǀĞƐƚŝŐĂƚĞ conǀĞǆŝƚǇ ĚĞĨŝĐŝƚ ŽĨ ƐĞǀĞƌĂů ŝŵƉŽƌƚĂŶƚ ĨĂŵŝůŝĞƐ ŽĨ ďĞŶǌĞŶŽŝĚƐ͘ 
 

 

: BĞŶǌĞŶŽŝĚ͕ ĨƵƐĞŶĞ͕ ĐŽŶǀĞǆŝƚǇ ĚĞĨŝĐŝƚ͕ ĐŽŶǀĞǆ ďĞŶǌĞŶŽŝĚ͕ ƋƵĂƐŝ-convex benǌĞŶŽŝĚ͕ ƉƐĞƵĚŽ-ĐŽŶǀĞǆ ďĞŶǌĞŶŽŝĚ͘ 
 
 

 

1. INTRODUCTION 

ENZENOIDS form an important family of graphs and 

molecules. Polycyclic (aromatic) hydrocarbons,[9,10,19,20] 

of which the benzenoids form a subset, are important 

molecular systems with a rich organic chemistry[23,39] 

characterised by specific reactivity,[34,38] spectra,[35] and 

photophysics. They occur naturally, geologically and as  

by-products of natural and anthropogenic combustion 

processes, with considerable implications for the 

environment[1] and human health[27] and have been 

postulated as significant contributors to the carbon 

inventory in the wider Universe.[2] There has also been a 

huge amount of interest over several decades in the graph 

theory of benzenoids and related structures and its 

application to prediction of physical and chemical 

properties (see, e.g., the textbooks[12,13,16,26,30,40]). Much of 

the mathematical chemistry literature is concerned with 

prediction or rationalisation of electronic structure, but 

there is also interest in classification of the shapes available 

to benzenoids. As pointed out before,[18] molecular shape 

is intimately associated with molecular electric and steric 

properties, such as quadrupole moment or van der Waals 

envelope, which are implicated in structure-activity 

B 
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relationships from odour perception[37] to carcino-

genicity.[3,27,32,33] Codes based on boundaries seem 

especially suitable for systematising our notions of shapes 

of benzenoids. The reader is referred to the books[15,30] for 

definitions and basic facts. 

 

2. PRELIMINARIES 

We begin by giving a mathematical definition of a 

fusene.[7,8] The class of fusenes contains as a proper 

subclass the class of benzenoids. 
 

Definition 2.1. A fusene is a simple subcubic 2-connected 

plane graph such that all bounded faces are hexagons and 

all vertices not on the outer face have degree 3. 

 Benzenoids can be now defined in terms of fusenes. 
 

Definition 2.2. A fusene that can be embedded in the 

infinite hexagonal lattice is called a benzenoid. 

 In other words, benzenoids are those fusenes which 

are also subgraphs of the infinite hexagonal lattice. 
 

Example 2.1. Figure 1 shows four subcubic plane graphs. 

Pentalene is not a fusene, because its bounded faces are 

pentagons. Biphenyl is not a fusene because it is not  

2-connected. Anthracene and [6]helicene are both fusenes. 

Anthracene is also a benzenoid, whilst [6]helicene is not. 

Let us denote the class of all benzenoids by ࣜ  and the 

class of all fusenses by ࣠. The inner dual of a plane graph is 

its dual graph with the vertex that corresponds to the outer 

face removed. A catacondensed fusene is a fusene whose 

inner dual is a tree. Fusenes that are not catacondensed are 

called pericondensed. We will denote the class of all 

catacondensed fusenes by ࣠*. Catacondensed fusenes can 

be further divided into branched and non-branched 

fusenes. A catacondensed fusene is called non-branched if 

its inner dual is a path; otherwise it is called branched. The 

class of non-branched fusenes will be denoted by ࣠'. Those 

definitions are naturally inherited by benzenoids. The class 

of catacondensed benzenoids and non-branched benzen-

oids will be denoted, respectively, by ࣜ* and ࣜ'. In this 

paper, we restrict to catacondensed benzenoids when 

using the terms branched and non-branched. 

2.1. Boundary-edges Code Revisited 

Each fusene can be assigned a boundary-edges code (BEC), 

a sequence of numbers counting the number of boundary 

edges between two vertices of degree 3, following the 

perimeter in an arbitrary, say counter-clockwise, direction. 

This useful tool to describe a benzenoid was introduced by 

P. Hansen and his co-workers.[31] The code depends on the 

starting vertex and the chosen direction. However, it can be 

made unique by choosing the lexicographically maximal 

code among all possible codes which is often called the 

canonical code. Each benzenoid can be uniquely described 

by such boundary-edges code, but this does not hold for 

fusenes.[29] Benzene is an exceptional benzenoid as it is the 

only benzenoid with no vertex of degree 3. If need be, we 

assign the code 6 to benzene. In the present paper the 

(lexicographically maximal) boundary-edges code of B will 

be denoted by code(B). 

 Here, we take a different approach and start from 

the definition of a code: 
 

Definition 2.3. A code is a string over the alphabet 

{1,2,3,4,5}. 

 Note that we permit codes that are not boundary-

edges codes of any benzenoid (or fusene). By c ْ d we 

denote concatenation of codes c and d, e.g. 

 422 ْ 5133 = 4225133. 

 Moreover, ʍ
i
(c) for i ш 0 denotes the right circular 

shift of code c by i positions, e.g. 

 ʍ
3
(4225133) = 1334225. 

 This operation can also be defined for the negative 

values of i, such that ʍоi
(c) for i ш 0 is the left circular shift of 

c by i positions, e.g. 

 ʍо2(1334225) = 3422513. 

 By ʌ(c) we denote the reverse of c, e.g. 

 ʌ(3422513) = 3152243. 

 Note that ʌ2(c) = c and ʍ
i
ʍ

�i
(c) = c for every code c. 

 We will use some properties of codes. 
 

Definition 2.4. Let c be a code. By len(c) we denote the 

length of the code, i.e. the number of symbols appearing in 

it and by sum(c) we denote the sum of all numbers of the 

code. By win(c) we denote the winding of the code, which 

is defined as 

 win(c) = sum(c) � 2 len(c). 

 

 EǆĂŵƉůĞƐ ŽĨ ƐƵďĐƵďŝĐ ƉůĂŶĞ ŐƌĂƉŚƐ͕ ƚǁŽ ŽĨ ǁŚŝĐŚ 
ĂƌĞ ĨƵƐĞŶĞƐ͘ 

(a) pentalene  (b) biphenyl  

(c) anthracene  (d) [6]helicene 
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Lemma 2.1. The winding of a concatenation of two codes c 

and d is additive, i.e. 

 win(c ْ d ) = win(c) + win(d ). 

Proof. The length of the code and the sum of the numbers 

of the code are clearly additive. Then 

 win(c ْ d ) = sum(c ْ d ) о 2 len(c ْ d ) 

  = sum(c) + sum(d ) о 2 len(c) о 2 len(d ) 

  = win(c) + win(d ).  

Definition 2.5. Two codes c and d are equivalent if one can 

be obtained from the other by a circular shift and possibly 

reversal, i.e. if there exists an integer k such that ʍk(c) = d 

or ʌʍk(c) = d. 
 

Definition 2.6. A code is canonical if it is lexicographically 

maximal among all equivalent codes. 

 No simple way is known to check whether a given 

code is the boundary-edges code of some benzenoid. 

However, there is an obvious necessary condition. 
 

Lemma 2.2. Let B be a benzenoid with at least 2 hexagons. 

Then win(code(B)) = 6. 
 

Proof. The proof proceeds by induction on the number of 

hexagons, h. 

 The only benzenoid with h = 2 hexagons is 

naphthalene, with code 55. Clearly, win(55) = 10 о 2 · 2 = 6. 

 It is known that any benzenoid B with h hexagons can 

be obtained from some benzenoid B with Ś о 1 hexagons by 

adding a new hexagon using either one-, two-, three-, four- 

or five- contact addition, where k-contact implies that k 

edges of the new hexagon are identified with k consecutive 

edges of B (see Ref. [30, pp. 12�13]). Let code(B) = c and 

code(B) = c . Assume that win(c) = 6. 

 If B is obtained by one-contact addition then c can be 

obtained from c by replacing the symbol s (the one that 

corresponds to the part of the boundary where the new 

hexagon was attached) with s15s2 where s1 + s2 = Ɛ о 1. Then 

 win(c) = (sum(c) + 5 о 1) о 2(len(c) + 2) = win(c) = 6. 

 Analogous arguments can be used for other types of 

addition.  

 

3. CONVEX BENZENOIDS AND  

CONVEXITY DEFICIT 

3.1. Graph Invariants 

A graph invariant is a function from a class of graphs to a 

class of values (e.g. integers, real numbers, polynomials) 

that takes the same value for any two isomorphic graphs. 

Graph invariants may be categorised by codomains of the 

functions that define them. When the codomain is the 

Boolean domain, they are called graph properties. (For 

example, a graph can either be bipartite or non-bipartite.) 

Numerous integer invariants exist for graphs: order, size, 

diameter, girth, genus, chromatic number, etc. Perhaps the 

most well-known integer invariant in chemical graph theory 

is the Wiener index.[36] An example of a real number 

invariant is the Estrada index.[17] In the literature one can 

find thousands of graph invariants. 

3.2. Convex Benzenoids 

In 2012, a special sub-family of benzenoids, called convex 

benzenoids, was introduced by Cruz, Gutman and Rada.[11] This 

family was further studied and enumerated in.[5] A convex 

benzenoid can be characterised via its boundary-edges code. 
 

Definition 3.1. Benzenoid B is convex if its boundary-edges 

code contains no 1. 

 The above statement is Proposition 3 in Ref. [5] Since 

this is one possible characterisation of convex benzenoids 

we may use it as a definition here. 

 We note in passing that for infinite benzenoids the 

situation is more complex. As shown in Ref. [4] infinite 

benzenoids may have more than one boundary component 

and may need several infinite codes for its description. 

Sometimes the code does not describe an infinite 

benzenoid up to isomorphism. An example of such an 

infinite convex benzenoid that is not determined by its 

boundary-edges code is called a strip in Ref. [4]. Strips of 

different width have the same boundary-edges code. 

Hence, in this paper we focus mainly on finite benzenoids. 

3.3. Convexity Deficit 

Both convex and non-convex benzenoids play important 

and sometimes distinct roles in organic chemistry. For 

example, in the simplest case of benzenoid isomers, convex 

anthracene comprising three linearly fused hexagons is less 

stable than non-convex phenanthrene (see Figure 2). In 

qualitative theories, this is variously attributed to the larger 

number of Kekulé structures in phenanthrene (5 vs. 4), its 

higher Fries number (3 vs. 2) or its higher Clar number (2 vs. 

1), all of which are inextricably linked to its angular, non-

convex shape. We think it will be useful to introduce a 

measure that will tell us by how much the shape of 

benzenoid departs from convexity. We call this measure 

the convexity deficit. 
 

Definition 3.2. A benzenoid B with boundary-edges code c 

is k-convex, k ш 0, if the average of k + 1 consecutive values 

in c is always at least 2. The minimum such value of k is 

called the convexity deficit of B and is denoted by cd(B). 

For an infinite benzenoid B, we may have cd(B) = ь. 

 We may write down a formal definition: 

{ }
{ }

sum( )

len( )
        avg( , ) min  and ( )

( ) ( ) min 0 and avg( , 1) 2

d

d
c k d c len d k

cd B cd c k k c k

= ⊆ =

= = ≥ + ≥
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Note that in the first formula d ك c denotes any subcode 

consisting of cyclically consecutive symbols of code c. Note 

that convexity deficit generalises the notion of convexity 

for benzenoids. Clearly, cd(B) = 0 is equivalent to saying 

that there is no 1 in the code. 
 

Proposition 3.1. A benzenoid B is convex if and only if  

cd(B) = 0. 
 

Proposition 3.2. If B is a finite benzenoid then 

 0 ч cd(B) ч len(code(B)) � 1. 

Proof. Let c = code(B). Recall the definition of winding. Since 

win(c) = sum(c) о 2 len(c) = 6, we have 

 =+ >
sum( ) 6

2 2
len( ) len( )

c

c c
 

 Hence any (finite) benzenoid is k-convex at least for 

k = len(c) о 1.   
 

 We note that for infinite benzenoids there exists no 

upper bound on the convexity deficit. 
 

Proposition 3.3. There exist infinite benzenoids B that are 

not k-convex for any finite ǀĂůƵĞ ŽĨ Ŭ ш 0. 
 

Proof. An example is the infinite benzenoid with boundary-

edges code ...2221222... shown in Figure 3. It is the 

complement of the anvil ऋघ.[4]  

3.4. Quasi-convex and Pseudo-convex 
Benzenoids 

Now we turn our attention to the non-convex benzenoids 

that are closest to convex, i.e. the benzenoids with the next 

smallest convexity deficit. 
 

Definition 3.3. A 1-convex benzenoid which is not 0-convex 

(i.e., cd(B) = 1) is called quasi- convex. 

 Note that quasi-convex benzenoids admit a simple 

characterisation via the boundary-edges code. 
 

Proposition 3.4. A benzenoid is quasi-convex if and only if 

its boundary-edges code contains at least one 1 but no sub-

sequence 11, 12, or 21. 
 

Proof. A quasi-convex benzenoid is not convex, hence its 

code contains a 1. Let a and b be two cyclically consecutive 

numbers in the code of this benzenoid. Since it is 1-convex, 

a + b ш 4, hence 11, 12, and 21 are forbidden. The converse 

also follows.   

 Convex benzenoids can be classified into families 

with a common fundamental shape, where zig-zag (2k) sub-

sequences define the edges of the shape. Similarly, all 

quasi-convex benzenoids have a fundamental shape where 

the edges are defined by either zig-zag or armchair (1(31)k) 

sub-sequences. The fundamental shape of a convex 

benzenoid has at most 6 edges; for a quasi-convex 

benzenoid it has at most 12. Zig-zag and armchair termin-

ation have consequences for stability of benzenoids[21] and 

conductivity of nanotubes.[22] A quasi-convex benzenoid 

that has no zig-zag sub-sequences in its boundary-edges 

code will be called pseudo-convex. 
 

Definition 3.4. A benzenoid whose boundary-edges code 

contains at least one 1 but no sub-sequence 11 and 2 is 

called pseudo-convex. 
 

Proposition 3.5. Every pseudo-convex benzenoid is quasi-

convex but the converse is not true.   
 

 Here are some small examples. Note that 

naphthalene 55 is convex, phenanthrene 5351 is pseudo-

convex and benzo[a]pyrene 513432 is quasi-convex (but 

not pseudo-convex). A smaller example of such a 

benzenoid is described by 52441. They are shown in Figures 

4 and 5. The BEC 52441 applies to the �pistol� polyhex,[25] 

named for its shape. BEC apply equally to benzenoids and 

polyhexes. 

 We have developed software that transforms the 

boundary edges code to the description of a benzenoid via 

position of its hexagons in the hexagonal tesselation of the 

plane, as well as a tool that can draw the corresponding 

benzenoid. We can also compute several parameters such 

as convexity deficit (of course, convexity deficit is obtained 

directly from the BEC). We present computational results in 

Tables 1 and 2. One is a table of small benzenoids, together 

 

͘ TŚĞ ŝŶĨŝŶŝƚĞ ďĞŶǌĞŶŽŝĚ ǁŝƚŚ ďŽƵŶĚĂƌǇ-ĞĚŐĞƐ ĐŽĚĞ 
...2221222...͘ 

 

͘ The two 3-ŚĞǆĂŐŽŶ KĞŬƵůĞĂŶ ďĞŶǌĞŶŽŝĚƐ͗ ;ĂͿ 
ĂŶƚŚƌĂĐĞŶĞ͕ ;ďͿ ƉŚĞŶĂŶƚŚƌĞŶĞ͘ 
 

(a) (b)
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with their names and basic properties. The other lists some 

of the infinite families of benzenoids. Some of the 

representatives of families presented in Table 2 are 

depicted in Figure 6. 

 

4. EXTREMAL CONVEXITY DEFICIT 

Clearly benzenoids with a small number of hexagons 

cannot have large convexity deficit. For instance, benzen-

oids with up to 5 hexagons have convexity deficit at most 3. 
 

Definition 4.1. Let B be a benzenoid. Let h(B) denote the 

number of hexagons of B. Let mcd(h) denote the maximum 

convexity deficit among all benzenoids on h hexagons, i.e. 

 mcd(h) = max {cd(B) | h(B) = h} . 

Call each benzenoid attaining cd(h) extremal, and ex(h) the 

number of extremal benzenoids with h hexagons. 

 We performed a computer search to find extremal 

benzenoids among all benzenoids with h hexagons for all  

h ч 18. The results are summarised in Table 3. In particular, 

we noticed that only one extremal benzenoid is 

pericondensed. It has h = 6 hexagons and can be described 

by the boundary-edges code 533244111 and is depicted in 

Figure 7(a). Moreover, all other extremal benzenoids with 

Ś ч 6 are unbranched. There is a unique smallest branched 

extremal benzenoid having h = 7. It has boundary-edges 

code 523315151112 and is depicted in Figure 7(b). Note 

that the spiral benzenoid S(h) attains the maximum value 

of convexity deficit among all unbranched catacondensed 

benzenoids. For h ш 14, it appears that all extremal 

benzenoids are branched. 

 We were able to find an interesting family of 

benzenoids, one member for each number of hexagons. 

We call them spiral benzenoids. 
 

Definition 4.2. Let S(h) denote the spiral benzenoid on  

h ш 2 hexagons determined by the following procedure.  

Let a and b denote the following infinite codes: 

 

3

0

3

0

a = 33323232322322322322232223 (2 3)

b = 11121212122122122122212221 (2 1) ,

k

k

k

k

∞

=

∞

=

= ⊗

= ⊗





 

using ْ for repeated concatenation using the ْ 

operation. Let a(l) denote the substring composed of the 

first l symbols of a and similarly define b(l). Let  

 w(l) = 5a(l)5ʌď(l),  

where ʌď(l) denotes the reversal of b(l). The spiral 

benzenoid, denoted S(h), has h hexagons and is defined by 

the boundary-edges code w(h о 2). 

 For an example of S(h), see Figure 8. 
 

Example 4.1. For small values of l we obtain: 

 S(2) = w(0) = 55; 

 S(3) = w(1) = 5352; 

 S(4) = w(2) = 533511; 

 S(5) = w(3) = 53335111; 

 S(6) = w(4) = 5333252111; etc. 

All S(2), ..., S(13) are extremal. 

 

4͘ TŚĞ ƐĞǀĞŶ ƉŽůǇŚĞǆĞƐ ĐŽŵƉŽƐĞĚ ŽĨ ĨŽƵƌ 
ŚĞǆĂŐŽŶƐ,[25] and their BEC͘ 
 

(a) pistol, 52441 (b) wave, 513513 (c) bee, 4343 (d) arch, 533511

(e) propeller, 533511 (f) worm, 512523 (g) bar, 522522

 

͘ SŵĂůů ĞǆĂŵƉůĞƐ ŽĨ ;ĂͿ ĐŽŶǀĞǆ͕ ;ďͿ ƉƐĞƵĚŽ-convex 

and (c), (dͿ ƋƵĂƐŝ-ĐŽŶǀĞǆ ďĞŶǌĞŶŽŝĚƐ͘ 
 

(a) naphthalene            (b) phenanthrene                     (c) benzo[a]pyrene                           (d) pistol

 

6͘ EǆĂŵƉůĞƐ ŽĨ ƚŚĞ ĨĂŵŝůŝĞƐ ĚĞĨŝŶĞĚ ŝŶ TĂďůĞ Ϯ͘ 

 

͘ TŚĞ ŽŶůǇ ŬŶŽǁŶ ƉĞƌŝĐŽŶĚĞŶƐĞĚ ĞǆƚƌĞŵĂů ďĞŶǌĞŶ-

ŽŝĚ ;ĂͿ ĂŶĚ ƚŚĞ ƐŵĂůůĞƐƚ ďƌĂŶĐŚĞĚ ĞǆƚƌĞŵĂů ďĞŶǌĞŶŽŝĚ ;ďͿ͘ 
 

(a) (b)
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1͘ LŝƐƚ ŽĨ ƐŵĂůů ďĞŶǌĞŶŽŝĚƐ ĂŶĚ ƚŚĞŝƌ ĨĞĂƚƵƌĞƐ͘ TŚĞ ůŝƐƚ ŝƐ ĐŽŵƉůĞƚĞ ƵƉ ƚŽ ϰ ŚĞǆĂŐŽŶƐ 

  h     

ďĞŶǌĞŶĞ 6 1 convex 0 C6H6 ϳϭ-43-2 

ŶĂƉŚƚŚĂůene 55 2 convex 0 C10H8 91-20-3 

ƉŚĞŶĂůĞŶĞͬƉŚĞŶĂůĞŶǇů 444 3 convex 0 C13H9 203-80-5 

anthracene 5252 3 convex 0 C14H10 120-12-ϳ 

ƉŚĞŶĂŶƚŚƌĞŶĞ 5351 3 ƉƐĞƵĚŽ-convex 1 C14H10 85-01-8 

ƚĞƚƌĂĐĞŶĞͬŶĂƉŚƚŚĂĐĞŶĞ 522522 4 convex 0 C18H12 92-24-0 

ƉǇƌĞŶĞ 4343 4 convex 0 C16H10 129-00-0 

ďĞŶǌŽƉŚĞŶĂůĞŶǇů 52441 4 ƋƵĂƐŝ-convex 1 CϭϳH11 ϭϭϮϳϳϮ-04-0 

chrysene 513513 4 ƉƐĞƵĚŽ-convex 1 C18H12 218-01-9 

ƚƌŝƉŚĞŶǇůĞŶĞ 515151 4 ƉƐĞƵĚŽ-convex 1 C18H12 Ϯϭϳ-59-4 

ďĞŶǌŽ;ĐͿƉŚĞŶĂŶƚŚƌĞŶĞ 533511 4  2 C18H12 195-19-ϳ 

ďĞŶǌ;ĂͿĂŶƚŚƌĂĐĞŶĞ 512523 4  2 C18H12 56-55-3 

ŽůǇŵƉŝĐĞŶĞͬŽůŝŵƉŝĐĞŶǇů 42433 5 convex 0 C19H11 191-33-3 

ƉĞŶƚĂĐĞŶĞ 52225222 5 convex 0 C22H14 135-48-8 

ƉŝĐĞŶĞ 51315313 5 ƉƐĞƵĚŽ-convex 1 C22H14 213-46-ϳ 

[5]helicene 53335111 5  3 C22H14 188-52-3 

ƉĞƌǇůĞŶĞ 441441 5 ƉƐĞƵĚŽ-convex 1 C20H12 198-55-0 

ďĞŶǌŽ;ĂͿƉǇƌĞŶĞ 513432 5 ƋƵĂƐŝ-convex 1 C20H12 50-32-8 

ďĞŶǌŽ;ĞͿƉǇƌĞŶĞ 514341 5 ƉƐĞƵĚŽ-convex 1 C20H12 192-ϵϳ-2 

ĚŝďĞŶǌ;Ă͕ŚͿĂŶƚŚƌĂĐĞŶĞ 53215321 5  2 C22H14 53-ϳϬ-3 

ƉĞŶƚĂƉŚĞŶĞ 52125232 5  3 C22H14 222-93-5 

ĚŝďĞŶǌ;Ă͕ũͿĂŶƚŚƌĂĐĞŶĞ 51215323 5  3 C22H14 224-41-9 

ƚƌŝĂŶŐƵůĞŶǇů 424242 6 convex 0 C22H12  

anthanthrene 324324 6 convex 0 C22H12 191-26-4 

hexacene 5222252222 6 convex 0 C26H16 258-31-1 

ďĞŶǌŽ;ŐŚŝͿƉĞƌǇůĞŶĞ 414333 6 ƉƐĞƵĚŽ-convex 1 C22H12 191-24-2 

ǌĞƚŚƌĞŶĞ 42144214 6  2 C24H14 214-63-1 

coronene 333333 ϳ convex 0 C24H12 191-Ϭϳ-1 

ŚĞƉƚĂĐĞŶĞ 522222522222 ϳ convex 0 C30H18 258-38-8 

ƉĞƌŽƉǇƌĞŶĞ 43134313 ϳ ƉƐĞƵĚŽ-convex 1 C26H14 188-96-5 

terrylene 4413144131 8 ƉƐĞƵĚŽ-convex 1 C30H16 188-ϳϮ-ϳ 

ƚƌŝďĞŶǌŽ΀ď͕Ŷ͕ƉƋƌ΁ƉĞƌǇůĞŶĞ 5141251331 8  2 C30H16 190-81-8 

ƚƌŝďĞŶǌŽ΀ď͕Ŭ͕ƉƋƌ΁ƉĞƌǇůĞŶĞ 5141415131 8 ƉƐĞƵĚŽ-convex 1 C30H16  

ƚƌŝďĞŶǌŽ΀ď͕ŐŚŝ͕Ŷ΁ƉĞƌǇůĞŶĞ 5141251331 8  2 C30H16  

ovalene 33323332 10 convex 0 C32H14 190-26-1 

ƚĞƌŽƉǇƌĞŶĞ 431313431313 10 ƉƐĞƵĚŽ-convex 1 C36H18  

ŚĞǆĂďĞŶǌŽ΀ďĐ͕ĞĨ͕Śŝ͕Ŭů͕ŶŽ͕Ƌƌ΁coronene 414141414141 13 ƉƐĞƵĚŽ-convex 1 C42H18 190-24-9 

ŚĞǆĂďĞŶǌŽ΀Ă͕Ě͕Ő͕ũ͕ŵ͕Ɖ΁ĐŽƌŽŶĞŶĞ 511511511511511511 13  2 C48H24 1065-80-1 

dicoronylene 23333212333321 15  3 C48H20 ϵϴϱϳϬ-53-ϳ 
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 It is easy to find the extremal fusenes in the subclass ࣠'. A small example is [6]helicene in Figure 1(d). 
 

Proposition 4.1. In the class of unbranched catacondensed 

fusenes ࣠', the helicene 51Śо253Śо2 obtains the maximal 

convexity deficit among all F א ࣠' with h ш 2 hexagons. The 

maximal convexity deficit is max{2h о 7, h о 2}. 
 

Proof. Each unbranched catacondensed fusene can be 

described with a boundary-edges code 5s1s2 ... sŚо25ƐȐ1ƐȐ2 ... 

ƐȐhо2, where si + sȐi = 4 for all 1 ч i ч h о 2. It is clear that by 

setting si = 1 for all i = 1, ..., h о 2 we will obtain one of the 

fusenes, let us denote it by F, with the longest possible 

subcode c such that 
sum( )

len( )
2

c

c
< . 

 If h is large enough, then the code will contain h о 2 

symbols 1, symbol 5 and a certain number, let us denote it 

by l, of symbols 3. We are looking for the largest possible l 

such that 

 
( 2) 5 3

2.
2 1

h l

h l

− + +
<

− + +
 (1) 

Equation (1) is equivalent to 

 l < h � 5 (2) 

when h + l > 3 (this holds for large enough h since l ш 0). 

From Equation (2) it follows that we can take l = h о 6. This 

is valid if h ш 6 and the convexity deficit equals (h о 2) + 1 + 

(h о 6) = 2h о 7. 

2͘ SŽŵĞ ĨĂŵŝůŝĞƐ ŽĨ ďĞŶǌĞŶŽŝĚƐ ĂŶĚ ƚŚĞŝƌ ĐŽŶǀĞǆŝƚǇ ĚĞĨĞĐƚ 

   

h(B ) cd(B)  

LŝŶĞĂƌ L(n), Ŷ ш 2 52Ŷо252Ŷо2 

n 0 (convex) RĞĨ͘ [15͕ Ɖ͘ ϲϮ΁ 

TǁŽ ƐĞŐŵĞŶƚƐ M2(m, n), m, n > 1 52ŵо212Ŷо252Ŷо232ŵо2 

m + Ŷ о 1 m + Ŷ о 3 RĞĨ͘ [15͕ Ɖ͘ ϲϮ΁ 

TŚƌĞĞ ƐĞŐŵĞŶƚƐ M3(m, n, k), m, n, k > 1 52Ŭо212ŵо212Ŷо252Ŷо232ŵо232Ŭо2 

m + n + Ŭ о 2 m + n + Ŭ о 4 RĞĨ͘ [15͕ Ɖ͘ ϲϮ΁ 

TŚƌĞĞ ƐĞŐŵĞŶƚƐ Z3(m, n, k), m, n, k > 1 52Ŷо212Ŭо232ŵо252ŵо212Ŭо232Ŷо2 

m + n + Ŭ о 2 max{m, n} + Ŭ о 3 RĞĨ͘ [15͕ Ɖ͘ ϲϮ΁ 

Chevron Ch(n, m, k), Ŷ͕ ŵ͕ Ŭ ш 2 42Ŷо232Ŭо232ŵо232Ŷо242ŵо212Ŭо2 

n(m + Ŭ о 1) m + Ŭ о 3 RĞĨƐ͘ [28, 14], [15͕ Ɖ͘ ϭϭϭ΁ 

PƌŽůĂƚĞ ƚƌŝĂŶŐůĞ P3(m), ŵ ш 2 51(31)ŵо252ŵо232ŵо2 

1

2
m(m + 1) ϭ ;ƋƵĂƐŝ-convex) RĞĨ͘ [15͕ Ɖ͘ ϭϴϮ΁ 

PƌŽůĂƚĞ ƉĞŶƚĂŐŽŶ P5(m, n), ŵ͕ Ŷ ш 2 32Ŷо241(31)ŵо242Ŷо232ŵо232ŵо2 

1

2
m(m + 1) + (Ŷ о 1)(2ŵ о 1) ϭ ;ƋƵĂƐŝ-convex) RĞĨ͘ [15͕ Ɖ͘ ϭϴϮ΁ 

OďůĂƚĞ ƚƌŝĂŶŐůĞ O3(m), ŵ ш 2 43(13)ŵо242ŵо232ŵо2 

1

2
m(m + 1) + (ŵ о 1) 





=
>

0 (convex)  2

ϭ ;ƋƵĂƐŝ
 

-con

 

vex

                

  )      2 

m

m
 RĞĨ͘ [15͕ Ɖ͘ ϭϵϳ΁ 

PƌŽďůĂƚĞ ƚƌŝĂŶŐůĞ B3(m), ŵ ш 2 4(31)ŵо152ŵо132ŵо2 

1

2
m(m + 3) ϭ ;ƋƵĂƐŝ-convex) RĞĨ͘ [15͕ Ɖ͘ ϭϵϳ΁ 

Prolate reĐƚĂŶŐůĞ P4(m, n), ŵ͕ Ŷ ш 2 42Ŷо24(13)ŵо2142Ŷо24(13)ŵо21 

nm + (Ŷ о 1)(ŵ о 1) ϭ ;ƋƵĂƐŝ-convex) RĞĨƐ͘ [41], [15͕ Ɖ͘ ϮϬϭ΁ 

Dihedral all-ďĞŶǌĞŶŽŝĚƐ S(m), ŵ ш 1 51215(13)ŵо1151215(13)ŵо11 

ϳm 3 RĞĨ͘ [24], [15͕ Ɖ͘ Ϯϭϱ΁ 

 T (2) 51415141 

6 ϭ ;ƉƐĞƵĚŽ-convex) RĞĨƐ͘ [24], [15͕ Ɖ͘ Ϯϭϱ΁ 

 T (m), ŵ ш 3 41414(13)ŵо3141414(13)ŵо31 

ϳŵ о 8 ϭ ;ƉƐĞƵĚŽ-convex) RĞĨƐ͘ [24], [15͕ Ɖ͘ Ϯϭϱ΁ 
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If h < 6, then there are only 4 fusenes to analyse. By manual 

inspection we can see that the convexity deficit in each case 

is h о 2.   
 

Proposition 4.2. Among all catacondensed unbranched 

benzenoids on h hexagons, S(h) has the maximal convexity 

deficit. The convexity deficit of S(h) is cd(S(h)) = max{h о 2, 

2h о 8}. 
 

Proof. First, observe that the code 533323 is a subcode of 

S(h) for all h ш 7. 

 We know that sum(S(h)) = 4h + 2 and len(S(h)) = 2h о 2. 

 Let c be the subcode of code(S(h)) that is obtained 

from code(S(h)) by erasing 533323 (i.e. c = 11121 ...). Then 

sum(c) = 4h + 2 о 19 = 4h о 17 and len(c) = 2h о 2 о 6 = 2h о 8. 

Therefore 

 
sum( ) 4 17

2.
len( ) 2 8

c h

c h

−
= <

−
 

It is easy to see that the above also holds for all prefixes of 

the code c. This implies that cd(S(h)) ш 2h о 8 for all h ш 7. 

Let us now show that there exists no unbranched 

benzenoid B such that cd(B) = 2h о 7. 

 For contradiction, suppose that there exists an 

unbranched benzenoid B such that cd(B) = 2h о 7. Let  

c be the code which remains when the maximal subcode d,  

for which 
sum( )

len( )
2

d

d
< , is erased from code(B). We have  

len(c) = 5 and 

 
4 2 sum( )

2
2 7

h c

h

+ −
<

−
 

If h is large enough, we obtain sum(c) > 16. The code c 

contains 5 symbols, each of which is an element of the set 

{1,2,3,5}. One of the symbols must be 5 (otherwise the sum 

can not be greater than 16). Also, the code cannot contain 

symbol 5 twice if the benzenoid is large enough (their 

corresponding hexagons are located at the opposite ends 

of the chain). From sum(c) > 16 it follows that all the other 

symbols have to be 3. The code 353 can not be a subcode 

of a benzenoid due to geometric restrictions. The only 

remaining option is c = 53333, which again can not be a 

subcode of a benzenoid, a contradiction. 

Therefore, S(h) attains the maximal convexity deficit among 

all unbranched benzenoids on h hexagons.   

 

5. CONCLUSION 

In this contribution we have briefly revisited several 

families of benzenoids that have been studied in the past. 

Most of them are taken from the book by Cyvin and 

Gutman (Ref. [15, p. 62]). Here they are defined rigorously 

by the boundary-edges code instead of relying on pictorial 

representations. We considered extremal benzenoids with 

respect to convexity deficit. Table 3 summarises all small 

cases up to 18 hexagons. BECs of these benzenoids are 

stored in Ref. [6]. We observed from these data that some 

clear patterns emerged. 

 In particular, let F(h,k) denote the number of benzen-

oids on h hexagons having convexity deficit equal to k. Note 

that F(h,mcd(h)) = ex(h) and F(h,k) = 0 for all k > mcd(h). 
 

Conjecture 4.3. LĞƚ Ś ш Ϭ͘ TŚĞ ƐĞƋƵĞŶĐĞ 

 F(h,0), F(h,1), F(h,2), ..., F(h,mcd(h)) 

is unimodal.  

MĂǆŝŵĂů ĐŽŶǀĞǆŝƚǇ ĚĞĨŝĐŝƚ ŵĐĚ;hͿ ĨŽƌ ĞĂĐŚ Ϯ ч h ч 
ϭϴ ĂŶĚ ƚŚĞ ŶƵŵďĞƌ ŽĨ ĞǆƚƌĞŵĂů ďĞŶǌĞŶŽŝĚƐ Ğǆ;hͿ͘ TŚĞ ůĂƐƚ 
column contains ĂŶ ĞǆĂŵƉůĞ ŽĨ ƐƵĐŚ Ă ďĞŶǌĞŶŽŝĚ͘ 

h d(h) ex(h) -  

2 0 1 55 

3 1 1 5351 

4 2 2 532521 

5 3 6 52325212 

6 4 16 5232252212 

ϳ 6 3 523315151112 

8 8 2 53323325211211 

9 10 3 5332332252211211 

10 12 6 533233222522211211 

11 14 16 52311121225223233312 

12 16 ϯϳ 5332332222252222211211 

13 18 102 533233222222522222211211 

14 21 2 53332322215133511122212111 

15 23 12 5332332132151335111213211211 

16 25 42 533323222321513351112122212111 

ϭϳ Ϯϳ 149 53323321323215133511121213211211 

18 29 489 5333232223232151335111212122212111 

 

 

8͘ SƉŝƌĂů ďĞŶǌĞŶŽŝĚ S(h) on h ŚĞǆĂŐŽŶƐ ŚĂƐ ĐĚ;S(h)) = 

max{h о 2, 2h о 8}͘ 
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 The motivation for the previous statement comes 

from computational investigation for small values of h. 

 Our empirical studies show an interesting picture of 

extremal benzenoids. It seems that: 

(1) there is only one extremal benzenoid that is 

pericondensed; 

(2) there are only finitely many extremal unbranched 

pericondensed benzenoids; 

(3) all extremal benzenoids for Ś ш 14 are branched; 

(4) there is no upper bound on the number of branched 

points of extremal benzenoids when h tends to 

infinity. 

These observations could be formulated as conjectures and 

are a subject of further research. 

 

 TŚŝƐ ǁŽƌŬ ǁĂƐ ƐƵƉƉŽƌƚĞĚ ŝŶ ƉĂƌƚ ďǇ ƚŚĞ 
SůŽǀĞŶŝĂŶ RĞƐĞĂƌĐŚ AŐĞŶĐǇ ;ŐƌĂŶƚƐ Pϭ-0294, N1-032, and  

J1-ϳϬϱϭͿ͕ ƚŚĞ GĞƌŵĂŶ RĞƐĞĂƌĐŚ FŽƵŶĚĂƚŝŽŶ ;ŐƌĂŶƚ STA 
ϴϱϬͬϭϵ-Ϯ ǁŝƚŚŝŶ SPP ϭϳϯϴͿ͕ ĂŶĚ ďŝůĂƚĞƌĂů SůŽǀĞŶŝĂŶ-GĞƌŵĂŶ 
ƉƌŽũĞĐƚ ͞MĂƚŚĞŵĂƚŝĐĂů FŽƵŶĚĂƚŝŽŶƐ ŽĨ SĞůĞĐƚĞĚ TŽƉŝĐƐ  
in SĐŝĞŶĐĞ͘͟ TŚŝƐ ƉĂƉĞƌ ǁĂƐ ĐŽŶĐĞŝǀĞĚ Ăƚ ƚŚĞ WŽƌŬƐŚŽƉ  
ŽŶ DŝƐĐƌĞƚĞ ĂŶĚ CŽŵƉƵƚĂƚŝŽŶĂů BŝŽŵĂthematics, and 

MĂƚŚĞŵĂƚŝĐĂů CŚĞŵŝƐƚƌǇ͕ KŽƉĞƌ͕ SůŽǀĞŶŝĂ͕ ϭϱ � ϭϳ NŽǀĞŵďĞƌ 
ϮϬϭϳ͕ ŽƌŐĂŶŝƐĞĚ ďǇ ƚŚĞ SůŽǀĞŶŝĂŶ DŝƐĐƌĞƚĞ ĂŶĚ AƉƉůŝĞĚ 
MĂƚŚĞŵĂƚŝĐƐ SŽĐŝĞƚǇ ĂŶĚ UŶŝǀĞƌƐŝƚǇ ŽĨ PƌŝŵŽƌƐŬĂ͕ FAMNIT͕ 
ĂŶĚ ĐŽŵƉůĞƚĞĚ Ăƚ ƚŚĞ ϯϯrd TBI WŝŶƚĞƌƐĞŵŝŶĂƌ͕ BůĞĚ͕ 
SůŽǀĞŶŝĂ͕ ϭϭ � ϭϳ FĞďƌƵĂƌǇ ϮϬϭϴ͘ 
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