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Evaluating the Potential of Full-waveform Lidar for Mapping Pan-Tropical Tree Species Richness

Short title

Lidar and Pan-Tropical Tree Species Richness

Abstract

Aim:

Mapping tree species richness across the tropics is of great interest for effective conservation and
biodiversity management to help prevent species extinction. In this study, we evaluated the potential of
full-waveform lidar data for mapping tree species richness across the tropics by relating measurements
of vertical canopy structure, as a proxy for the occupation of vertical niche space, to tree species

richness.

Location:

Tropics

Time period:

Present

Major taxa studied:

Trees
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Methods:

First, we evaluated the characteristics of the vertical canopy structure across 15 study sites using
(simulated) full-waveform lidar data and related these findings to in-situ tree species information. Then,
we developed structure-richness models at the local (within 25-50 ha plots), regional (biogeographic
regions), and pan-tropical scale at three spatial resolutions (1.0, 0.25 and 0.0625 ha) using Poisson

regression.
Results:

The results showed a weak structure-richness relationship at the local scale. At the regional scale (within
a biogeographical region) a stronger relationship was found between canopy structure and tree species
richness across different tropical forest types, for example across Central Africa and in South America (R?
ranging from 0.44-0.56, RMSD ranging between 23-61%). A weaker relationship was found at the pan-

tropical scale, including data across four continents (R? = 0.39 and RMSE = 43%, 0. 25 ha resolution).
Main Conclusions:

Our results may serve as a basis for future development of a set of structure-richness models to map
high resolution tree species richness using vertical canopy structure information from the Global
Ecosystem Dynamics Investigation (GEDI). The value of this effort would be enhanced by access to a
larger set of field reference data for all tropical regions. Future research could also support the use of
GEDI canopy structure data in frameworks using environmental and spectral information for modelling

tree species richness across the tropics.
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Biodiversity, canopy structure, GEDI, lidar, plant area index, tropical forests
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1. Introduction

Tropical forests are known for their high tree species diversity. Current estimates suggest in the order of
15,000 tree species in Amazonia alone, in contrast to 124 tree species in temperate forests in Europe,
and more than 40,000 different tree species across the tropical region (Slik et al., 2015; Ter Steege et al.,
2015). High levels of tree species richness are essential for maximizing the provision of essential
ecosystem services (Liang et al., 2016). Unfortunately, 35% of pre-agricultural global forest cover has
been lost over the past 300 years, largely due to increasing human pressures on the environment. 82%
of the remaining forest is estimated to have experienced some degree of human impact (Watson et al.,
2018). Current extinction rates are estimated to be at least 1000 times higher than background
extinction rates (Pimm et al., 2014), and it was recently estimated that in the Amazonian tropics alone
approximately 25% of the tree species are threatened with extinction (Ter Steege et al., 2015). The
Convention of Biological Diversity (CBD) and Group on Earth Observations Biodiversity Observation
Network (GEO BON) have developed a list of important variables aiming to provide quantitative
information on biodiversity to reach the Aichi biodiversity targets 2020 (Pereira et al., 2013; Skidmore et
al., 2015). Among the identified needs is the mapping of taxonomic diversity at high spatial resolution
over large scales (Pereira et al., 2010). Here we focus on tree species diversity. The collection of tree
species diversity data is traditionally done in the field, and such information has previously been used to
create predictive maps of tree species richness across the globe at low spatial resolution (Kier et al.,
2005; Mutke & Barthlott, 2005). More recently, passive remote sensing data, such as optical imagery
from different airborne and spaceborne platforms, has been used in combination with field reference
data to predict tree species diversity in different regions (Foody & Cutler, 2006; Carlson et al., 2007,
Féret & Asner, 2014; Rocchini et al., 2016; Schéfer et al., 2016; Bongalov et al., 2019). Even though such

methods have been progressively developing over the last decade, they are not yet operational for
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mapping tree species richness across the tropics due to, among others, a lack of consistent remote

sensing and training data over such scales, insufficient model accuracy and/or low spatial resolution.

The scientific community has called for bolder science in conservation strategies to enable effective
management of the Earth’s forests and allow for better conservation of our natural ecosystems (Watson
et al., 2016). In this study we focus on the use of active remote sensing, specifically lidar, for mapping
taxonomic tree species richness in the tropics. While local tropical forest diversity is largely independent
of biomass (Sullivan et al., 2017), it remains unclear if substantial amounts of variation in species
diversity are associated with other features of forest structure. Here, we explore for the first time
whether small-scale vertical canopy structure variation is significantly associated with the spatial
variation in tropical tree species richness. On a global scale it has previously been shown that canopy
height explains a limited portion of the variation in tree species diversity, as such data provides
information on the available niche space (Gatti et al., 2017). It has since been hypothesized that
including information on the vertical canopy structure, must explain more of the variation in tree
species diversity than canopy height alone; as such data provide information on the occupation of the
vertical niche space. Marselis et al., (2019) demonstrated that information on canopy height and vertical
canopy structure, expressed as the Plant Area Index (PAl) profile from full-waveform airborne lidar data,
could be used to map tree species diversity in Gabon, Africa. However, it is not clear whether this
relationship is of similar nature and strength across different regions, or even the entire tropics. If
existent, than the use of such a structure-diversity relationship(s) could become operational at a pan-
tropical scale with the rapidly increasing availability of spaceborne canopy structure information derived
from the Global Ecosystem Dynamics Investigation (GEDI), a full-waveform spaceborne lidar system
(Dubayah et al. under review). GEDI is expected to provide over 10 billion measurements of vertical

canopy structure across the temperate and tropical forests between 2019 and 2021.
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Factors influencing tree species diversity on a global scale differ from those affecting spatial patterns at
regional or local scales. In general, tropical tree species diversity increases with increasing precipitation,
forest stature, soil fertility, time since catastrophic disturbance and rate of canopy turnover and
decreases with seasonality, latitude, and altitude (Givnish, 1999). At large-grain scales historical
biogeography processes are more important, whereas at the plot-scale environmental variables strongly

influence diversity (Keil & Chase, 2019).

Similar to species diversity, forest structure at the global scale is influenced by interacting historic,
environmental, and human related variables; precipitation in the wettest month being the most
important single predictor of plant height (Moles et al., 2009). Forest structure measured in the field is
mainly comprised of four variables: canopy height, biomass, basal area and tree density (Palace et al.,
2015). However, active remote sensing techniques have revolutionized the study of canopy structure
(Newnham et al., 2015). With lidar remote sensing, for example, it is now possible to obtain information
on canopy height, as well as the position and amount of plant material along the vertical axis of the
canopy (Tang et al., 2012). Palace et al. (2015) stressed that high resolution lidar data possess vertical

structure information which is inherently linked to ecological processes.

We hypothesize that structure-diversity relationships will vary across different biogeographical and
phylogenetic regions (Corlett & Primack, 2011; Slik et al., 2018) and that it may be more fruitful to
develop multiple relationships rather than one pan-tropical relationship for operationalizing tree species
diversity mapping with spaceborne active remote sensing data. Additionally, the strength of the
relationship between a variable and tree species diversity often changes with resolution (plot size) as
tree species diversity is not linearly related with area (species-area curve) (MacArthur & Wilson, 1967).
This complicates the development of predictive models at specific resolutions, and also limits the
extrapolation of estimates at one resolution to a larger area, which impedes the mapping of pan-tropical

tree species diversity at high spatial resolution.
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In sum, we know that both species diversity and canopy structure vary greatly within and across
continents. Hence, our objective is to assess whether canopy structure information can explain tree
species richness at the local, regional and/or global scale with the ultimate goal to evaluate the efficacy
of spaceborne full-waveform lidar for mapping tree species richness across the tropics. First, we
compare characteristics of the vertical canopy structure, measured with full-waveform lidar data, of
tropical forests across the world. Second, we evaluate the differences in species richness and species-
area curves across the different study sites using field measurements. Third, we evaluate the potential
for developing local (within 25-50 ha field plots), regional (within biogeographical regions) and pan-
tropical structure-richness relationships, relating canopy structure metrics from lidar to tree species
richness measurements from the field at three spatial resolutions (0.0625, 0.25 and 1.0 ha). Lastly, we
discuss the potential of full-waveform lidar data from GEDI for mapping tree species richness across the

tropics using structure-richness relationships.
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2. Materials and Methods

We address the relationship between canopy structure and tree species richness in terra firme forest in
the tropical region between 23.5° N & S. We compiled a comprehensive field and lidar dataset covering
colonizing forest, old-growth tropical forest and forests under different degrees of degradation and
savanna. We included such a wide variety of forest stages as most of the Earth’s tropical forests have
been degraded or otherwise affected by natural and human influences (Lewis et al., 2015). Hence, when
developing a method that allows for estimating pan-tropical tree species richness it is important to
include data from across this range of possibilities. Species diversity can be expressed with many
different metrics. Generally, three levels of diversity are recognized: a, B, and y diversity. a diversity
refers to the local diversity of a community, habitat or field plot. B diversity refers to the differences in
diversity between habitats and y diversity to the total diversity of a region (Colwell, 2009). In this study
we focus on a diversity. a diversity can be expressed with many different indicators. In this study we
focus on species richness (S) expressed as the total number of species in a plot of a given size. Hence,
from here on forward we only refer to tree species richness, used to express the local tree species

diversity.

2.1 Field Datasets

Field data were used to calculate the reference values of tree species richness. We used 15 datasets:
one from Australia, two from South-East Asia, six from Africa, three from South America and three from
Central America (Figure 1). All field datasets used in this study have been previously collected and
published and have coincident airborne lidar data available. Each field dataset is labeled with a three-
letter code and contained information on tree location, species and diameter at breast height (DBH). All
datasets were collected by different organizations and research teams resulting in different data

characteristics (Table 1, SI1). Four datasets consisted of one large plot of 25 ha (rob, Australia and rab,
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149  Figure 1: Location of field sites across the three continents, colors of each study site are consistent

150  throughout the paper. Gridlines indicate 10° intervals in longitudinal and latitudinal directions. The size
151  of the place markers represents the size of the total sampled area relative to each other.
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Table 1: Information on the original plot size, the amount of total area sampled in the field and the
source of the data which is either a website where the data are published and/or a publication in which
the data are described further.

Project No. Total
Country native area Source / Additional Information
code
plots (ha)
Oceania

Australia rob 1 25 ] (Bradford et al., 2014)

South-East Asia
Malaysia dan 1 50 | https://forestgeo.si.edu/sites/asia/danum-valley
Malaysia sep 9 36 | https://www.forestplots.net/en/ (Jucker et al., 2018)

Africa
DRC mal 21 21 | (Bastinetal., 2015)
DRC yan 9 9 (Kearsley et al., 2013)
Gabon rab 1 25 | https://forestgeo.si.edu/sites/africa/rabi (Memiaghe et
al., 2016)

Gabon lop 11 9.5 | https://www.forestplots.net/en/ (Labriére et al., 2018)
Gabon mon 10 10 | (Fatoyinboetal., 2017)
Gabon mab 10 10 (Bastin et al., 2015; Labriére et al., 2018)

South America
Peru tam 6 6 https://www.forestplots.net/en/ (Boyd et al., 2013)
Brazil s11 9 1.44 | http://www.paisagenslidar.cnptia.embrapa.br/webgis/
Brazil s12 19 4.8 | http://www.paisagenslidar.cnptia.embrapa.br/webgis/

Central America
Costa Rica Isv 12 6 https://tropicalstudies.org/carbono-project/
Costa Rica cha 3 2
Panama bci 1 50 | https://forestgeo.si.edu/sites/neotropics/barro-colorado-

island (Lobo & Dalling, 2013)

In this study, we assessed the structure-richness relationship at three spatial resolutions (1.0, 0.25,

0.0625 ha) because of the non-linear relationship between the number of tree species (S) and sampled

area. We selected squares of 1.0 ha (100x100 m) because they are often-used in ecology and it has been

shown that the spatial mismatch of plot location and remote sensing products is minimized at this

resolution (Réjou-Méchain et al., 2014). We used squares of 0.25 ha (50x50 m) because these yielded

the best results describing the structure-diversity relationship in Gabon (Marselis et al., 2019), and

squares of 0.0625 ha (25x25 m) because they correspond to a resolution close to the GEDI footprint size.

The datasets were used at one, two or three of the aforementioned resolutions depending on the

original plot size and the availability of stem maps or subplots (Error! Reference source not found., full
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table in SI1). For each of the field sites we calculated S for the entire dataset and for each plot at each
plot size (Table 2). Only live trees with a DBH > 10 cm were included, to ensure consistency among
datasets and we removed all plots of each resolution in which more than 20% of the trees were not

identified to the genus level.

Table 2: The total number of species identified at each study site and the average (x) and standard
deviation (s) of the species richness for each of the three plot sizes expressed as x + s (including only live
trees with DBH > 10 cm).

Species Species Species
Project Total No.  Total sampled | richness richness richness
Country Name species area used (ha) 1.0 ha 0.25 ha 0.0625 ha
Oceania
Australia rob | 205 25 | 98+10 56+ 8 27+5
South-East Asia
Malaysia dan 430 2 117 +13 51+7 194
Malaysia sep 517 32 102 +22 53+11 -
Africa
DRC mal 116 21 37+11 20£7 -
DRC yan 232 9 50+ 23 24+ 13 10+6
Gabon rab 234 25 84+8 42+6 17+4
Gabon lop 118 9.5 32+22 17110 8t4
Gabon mon 146 10 32+15 15+9 75
Gabon mab 196 10 55+8 - -
South America
Peru tam 517 6 171+13 709 245
Brazil s11 91 1.44 - - 17 +3
Brazil s12 135 4.8 - - 16+4
Central America
Costa Rica Isv 216 6 - 48+ 8 19+5
Costa Rica cha 81 2 58 285 13+4
Panama bci 220 50 87+8 42+6 173

2.2 Lidar Datasets

Each of the field datasets had coincident discrete return airborne laser scanning (ALS) data, or full-
waveform lidar data from the Land Vegetation and Ice Sensor (LVIS), collected over the field plots within
5 years of field data collection. We used the GEDI simulator (Hancock et al., 2019) to create lidar

waveforms from the ALS data over the field plots. The ALS data was originally collected with a variety of

10
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airborne instruments, but the GEDI simulator ensures a reliable GEDI-like waveform with minimal
influence of the original instrument-specific characteristics. In this way, all lidar information could be
processed in a consistent way across all study sites ensuring a reliable inter-comparison of canopy
structure metrics derived from the waveforms and allowing for easy transfer of the developed models to
future on-orbit GEDI data. Lidar waveforms were simulated with a 22 m ground footprint (Gaussian
distribution of laser energy, o = 5.5 m). Lidar waveform locations were determined by filling each field
plot, using the original field plot size and shape, with footprint center locations 6.25 m from the plot
edge and 5 m between footprint center locations (Error! Reference source not found.). In this way, a
reliable measure of canopy structure could be acquired for each plot by averaging lidar metrics from all
waveforms inside the plot, instead of using single waveforms in the plot center and evaluating structure-
richness relationships based on such potentially biased or unrepresentative waveforms. The following
information was extracted from each simulated lidar waveform using mature and published algorithms:
canopy height (expressed as the 98" percentile of the relative height metric; RH98), total Plant Area
Index (PAI), and Plant Area Index at a 1 m vertical resolution (Drake et al., 2002; Tang et al., 2012;
Marselis et al., 2018; Hancock et al., 2019). The 1 m vertical profile was used to compare the canopy
structure across the study sites. It was aggregated into a 10 m vertical profile, summing all PAIl values in
each 10 m vertical bin, to be used in the structure-richness analyses. We chose to use the PAI profile
because it is a biophysical variable describing the amount of plant material along the vertical forest axis,
thus directly indicating the occupation of vertical niche space, and Marselis et al., (2019) previously
showed this information relates well to tree species richness in Africa. The average of each of the
resulting metrics from all waveforms within each plot was computed to represent the canopy structure

for each plot at each spatial resolution.
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Figure 2: lllustration of simulated lidar waveform layout. The waveforms (red circles) have a Gaussian
energy distribution with 0=5.5 m, resulting in a roughly 22 m diameter footprint. Example of simulated
footprint distribution locations in a 1.0 (solid outline), 0.25 and 0.0625 ha field plot (dashed outline).

2.3 Canopy Structure across the tropics

To evaluate the canopy characteristics across the different study sites we calculated the median plant
area volume density profile (composed of the PAIl values for each 1 m vertical bin), using all simulated
lidar waveforms for each study site. In addition to the median (50" percentile), we calculated the 10, 30,
70 and 90" percentiles of the PAl values in the same 1 m vertical bins, to provide a representative

distribution of the canopy structure across the study site.

2.4 Species-area relationships across the tropics

We created species-area relationships, calculating the mean and standard deviation of S for plot sizes
ranging between 0.01 and 50 ha, to assess how species richness changes by plot size across our study
sites. Each of the original field plots was filled with as many non-overlapping subplots as possible at 17
spatial resolutions (0.01, 0.0225, 0.04, 0.09, 0.16, 0.25, 0.36, 0.64, 1.0, 2.25, 4.00, 6.25, 9.00, 12.25, 16.0,
25.0, 50.0 ha) with each tree assigned to a subplot at each resolution. The plot sizes used at each study

site depended on the original plot size and the availability of stem maps (SI1). We visualized the mean

12
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and standard deviation of S for each plot size at each study site to evaluate the differences in species-

area curves across the tropics.

2.5 Structure-Richness Analysis

To evaluate the existence of a relationship between vertical canopy structure and tree species richness
across the tropics, we developed models at three scales: local, regional and pan-tropical, because many
historical and environmental drivers of (tree) species diversity have stronger or weaker relations
depending on the scale of observation (Gaston, 2000; Keil & Chase, 2019) as do different ecosystem

functions (Chisholm et al., 2013). Definitions of the scales are presented in the following sections.

2.5.1 Local Analysis

The local analysis focused on the structure-richness relationship within large (25 or 50 ha) plots. We
used data from adjacent field plots to evaluate the relationship between S and the canopy structure
expressed as canopy height (RH98), total PAl and vertical canopy profile (PAl at 10 m vertical intervals).
The local analysis was performed on data collected in bci (50 ha), rab and rob (25 ha). The other 50 ha
plot (dan) was not suitable for this analysis because the species identification was incomplete at the
time of analysis (Error! Reference source not found., Error! Reference source not found.). We related
the canopy structure with S using a generalized linear model with a Poisson error distribution. We used
5-fold cross-validation, extracting 20% of the data at random in each fold as test data. We first
performed feature selection on the training data, choosing the model with the lowest Bayesian
Information Criterion (BIC) score, and then constructed the predictive model based on the same training
data. We evaluated model performance using R?, Root Mean Squared Difference as a percentage of the
mean (RMSD%) and bias based on the predictions for the test data (Pifieiro et al., 2008). The average

and 95% confidence interval of these metrics were recorded for each study site at each resolution.
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2.5.2 Regional and Pan-tropical Analysis

The regional analysis was focused on the structure-richness relationship based on non-adjacent plots
across study sites within the same biogeographical zone. We evaluated different combinations of study
sites at three spatial resolutions (Error! Reference source not found.). To prevent the large plots from
dominating the regional and pan-tropical analyses, we thinned their contribution to both the regional
and pan-tropical datasets. From the 25 ha plots we selected 1.0 ha plots at each corner, and from the 50
ha plots we selected all corner and the middle plots along the long sides of the plot (6 1.0 ha plots total).
To avoid mixing local and regional effects, we employed a Monte-Carlo simulation approach in which we
drew different samples from the full regional dataset. In each Monte-Carlo run we randomly sampled
one plot at the given resolution from each original plot location (especially important at the 0.25 and
0.0625 ha resolutions at which up to 16 plots exist at the location of each original 1.0 ha plot) and
applied a cross-validation (80/20) or leave-one-out cross validation (if n < 25) approach. In the cross-
validation we again performed a two-step approach: first we performed variable selection on the
Poisson regression model choosing the model with lowest BIC (using the bestglm package in R), and
then built the predictive model with the chosen variables. We applied the model to the test data and

calculated the model performance statistics for each fold according to Pifieiro et al. (2008).

The pan-tropical analysis focused on the structure-richness relationship combining the information from
all 15 study sites across all tropical regions, in other words, it was a special case of the regional analysis

in which data from all sites was included. Thus applying the same methods as for the regional analysis.

14
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Table 3: Datasets used for regional and pan-tropical analysis of the structure-richness relationships. Note
that one region may not contain the same number of plots across all resolutions (values in the table
indicate total number of plots for each region) and resolution due to limitations in the availability of
subplot and stem map information, limiting the use of data from some study sites to only one or two

resolutions.
Region 1 ha resolution 0.25 ha resolution 0.0625 ha resolution
Africa
2
(Gabon & DRC) 6 26 36
South America 36
(Brazil & Peru)
Central America 27 27
South-East Asia 11 11
Pan-tropical 89 101
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3. Results

3.1 Vertical forest structure across the tropics

The vertical canopy structure of forests, in terms of the vertical distribution of plant material varies
between tropical regions (Error! Reference source not found.). Maximum canopy height in our study
sites in the Neotropics and Central Africa is typically around 40 m, and slightly lower in Australia, while
canopy heights in South-East Asia exceed 60 m. Many sites show a distinct understory layer and a
decrease in plant material through the canopy. Relative to the understory, the canopy layer sharply
declines in vegetation density (sep and dan, Malaysia) or steadily declines along the vertical axis (bci,
Panama; rab, Gabon; mal, DRC; rob, Australia). This vertical distribution of declining vegetation is
exacerbated in degraded forests: in s11, s12 (Brazil) and mon (Gabon), where the bulk of the vegetation
exists close to the forest floor at ~5 m height, but remnant trees in some plots may reach 40 m. Other
sites, especially undisturbed ones, have distinct canopy layers. In tam (Peru) and in the old-growth
forest in Isv (Costa Rica) there are multiple peaks of high-density vegetation across the vertical strata of
the forest. The profiles of yan (DRC) and lop (Gabon) are characterized by a multiple-peak pattern, with
one peak 20-30 m in the canopy and another within 5 m of the ground, reflecting the inherent structure
of the forest-savanna mosaic. The less disturbed mab (Gabon) forest shows high variability in canopy

structure between plots (e.g. the wide shaded area in Figure 3) and higher canopies.
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Figure 3: Canopy structure expressed as the Plant Area Volume Density profile (PAVD), expressing the
Plant Area Index for each 1 m vertical bin, displayed as the median of all plots within each study site
(solid line), the 30'-70" percentile (darker shaded area) and 10™-90"" percentile (lighter shaded area).

3.2 Species-area relationships

The number of species increases with plot size, but the rate of increase varies across study sites (Error!
Reference source not found.). For example, in rob (Australia) 82-117 species occur in a 1.0 ha plot

compared to 16-44 species in 0.0625 ha plots. By contrast, tam (Peru) contains 154-185 species/ha, bu

t
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only 11-35 species in a 0.0625 ha plot, similar to rob. Thus, species’ composition of adjacent 0.0625 ha

plots in tam must be more different from each other than adjacent 0.0625 ha plots in rob (Australia), in

other words, the B diversity of the plots in tam is higher than in rob. The species-area curves vary in

shape across study sites, with the highest total species richness in tam and lowest species richness in the

African sites (Error! Reference source not found.). Curves that are initially steep and decrease in slope

at larger plot sizes indicate a high a diversity but a lower B diversity (e.g. when the area is increased, the

same species are encountered).
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Figure 4: Relationships between tree species richness and area for each study site (note the change in y-
axis across panels from left to right).

3.3 Structure-richness relationships

Pulling together the information on tree species richness and canopy structure (RH98 and Total PAl),

species richness generally increases with increasing canopy height and increasing total Plant Area Index

across the tropics (Figure 5).
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The cross-validation results of the local models reveal weak structure-richness relationships. Of the
three large plots (25 and 50 ha), only the models for bci (50 ha) show evidence of a significant
relationship between the predicted and observed values (R?=0.32 at 1.0 ha, SI2). Even though species
richness within all three large plots can be predicted with a root mean squared error between 7-20% of
the mean species richness, the low RMSD% found only indicates that the predictions at the local scale
are close to the mean species richness, however in rab and rob the canopy structure is insensitive to the
local variation in tree species richness (see example figure in S12).

Regional structure-richness models generally show much better performance (Figure 6) than the local
models in terms of the variance in species richness that can be explained with the canopy structure
information (mostly significant models and higher R? values). However, prediction error (as percentage
of the mean species richness) is generally higher, partly due to the larger range in species richness in
these regional datasets. Regions of Africa and South America (Table 3) show the best model
performance whereas regions including the Costa Rica datasets show much poorer performance
(regions indicated with centralamerica). Results from an additional analysis on the compositional
similarity (Bray-Curtis; Faith et al., 1987, SI3) of the Costa Rica dataset showed that, even though species
richness varies in Costa Rica (Error! Reference source not found.), the plots share many species, i.e. the
composition is similar. In the africa and southamerica datasets the variation in species richness is
accompanied by a much larger variation in species composition (SI13). The variation of the model
performance for seasia is very high to the low number of plots available for this region and at the 0.25
ha resolution it was not possible to create a significant model >95% of the monte-carlo iterations (Table

3).
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the 95% range of values for each performance metric. Solid dots indicate >95% of the generated models
was statistically significant, open circles indicate a lower percentage was significant.

Pan-tropical structure-richness models show more similar performance across all spatial resolutions

with mean R? ranging between 0.25 and 0.39 and RMSD% between 66 and 43%, for the plot sizes from

1.0 and 0.0625 ha (Figure 8), indicating that around 39% of the variation in tree species richness can be

explained using canopy structure metrics alone at the 0.25 ha resolution at the global scale. Sites with

extremely high values of observed species richness are generally predicted poorly (S14).
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4. Discussion

4.1 Structure-richness relationships across scales

In this study we explored the relationships between vertical canopy structure and tree species richness
at different resolutions across local, regional and pan-tropical scales. We found weak relationships
between canopy structure and tree species richness at the local scale and the strongest relationship at
the regional scales in Africa and South America. We also found significant relationships between canopy

structure and tree species richness combining the data from all study sites across the tropics.

At the local scale, within one big plot inside one forest type, the variation in the canopy structure is
determined largely by variability in growth structure within the same species (the 25 and 50 ha plots
have a similar composition throughout the plot, SI1). For example, an adult tree of species X may range
in height from 20-40 m, so even though structure may differ between two plots of similar composition,
the difference is not attributed to a difference in species composition. Furthermore, if a 20 m and 40 m
tree of species X exist in the same plot, due to the difference in canopy structure the model may predict
a species richness of 2 based on variation in structure. On the other hand, as area increases it is more
likely that the difference in structure is caused by a difference in composition. Individuals of most
tropical forest species are spatially aggregated (Condit, 2000) so the composition of two adjacent plots is
more similar than the composition of two more distant plots. This is the case for bci, where a 50 ha area
was sampled and included in the local analysis, which led to more successful prediction of species
richness based on structure. Within the 25 ha plots sampled at rab and rob, the variation in composition

is smaller and no significant structure-richness relationships were found (SI3).

Increasing the scale, we found that regions consisting of sites exhibiting a large variation in species
composition among plots, but with a similar biogeographical history, show a much stronger structure-

richness relationship. However, we note that model performance differed quite drastically across
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regions. The forest in Isv, Costa Rica, consists of largely similar species composition, whereas species
composition is much more different in regions where the structure-richness models perform better
(South-America, Africa), supporting the result from local scale models that species richness can be

better predicted from canopy structure in areas with greater B diversity.

At the pan-tropical scale we find a significant relationship between canopy structure and tree species
richness across all spatial resolutions. At the intermediate resolution (0. 25 ha) this relationship appears
to be slightly stronger than at the higher and lower resolutions, but no significant difference was found.
However, the observed difference may be attributed to the lower sensitivity of species richness to rare
species at smaller plot sizes. For example, tam (Peru) plots have very high species richness at the 1.0 ha
resolution (Error! Reference source not found.), whereas at the 0.0625 ha resolution the species
richness ranges between 11-35 species, which is still higher than most other sites but much less than at
the 1.0 ha plot size. Because the 1.0 ha plot size captures more rare species in each plot, the 1.0 ha pan-
tropical model predictions for tam contain highly erroneous predictions that are not present in 0.0625
ha models (SI4). Rare species do not contribute much to the canopy structure, thereby complicating the
relationship between structure and richness at a scale at which they contribute largely to species

richness numbers.

4.2 Limitations

This research could be significantly improved by using more coincident lidar and field data to thoroughly
evaluate the existence and strength of the structure-richness relationship across all tropical regions.
However, the collection of such data is costly and time-consuming. Here, we were able to exploit 15
independently collected datasets (SI1). However, there is quite a data gap, especially in the Amazon
basin, the mainland of South-East Asia, New Guinea and Australia. Apart from the spatial representation

problem, the low number of plots for certain regions attributes largely to the observed variability in
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model performance. The pan-tropical models (with n > 89) show much more stable performance than
models of regions with low numbers of plots (e.g. seasia). A training dataset that does not fully
represent the range of structure in the full dataset can lead to highly erroneous predictions for some of
the test plots. Such errors are exacerbated by the logarithmic link model in Poisson regression because
errors can increase exponentially. Even so, negative predictions are possible with linear regression and
the risk of underestimating tree species richness is higher for diverse areas. Hence, we chose to use
Poisson regression, knowing that it may lead to extreme predictions in some cases that should be

accounted for when operationalizing this method.

Species diversity can be identified in many different ways (Gotelli & Colwell, 2001; Colwell, 2009) and
there are risks and pitfalls using just one metric. In this study we only used ‘species richness’ (S), defined
by the number of different tree species in a defined area (the plot, with different sizes), as this metric is
easy to interpret and a prediction of the number of species/area can probably be used most directly by
ecosystem managers. Hereby we did not control for the number of stems in the plot, nor for the
abundancy of the different species. Such things can be taken into account for example by using the
Shannon diversity index or rarefaction curves. Moreover, depending on the type of metric, a different
model will need to be selected. For example, a generalized linear regression with a Poisson error
distribution, as used here, is more suitable for estimated tree species richness as this is count data,
whereas a linear model with a Gaussian error distribution will be better for estimating Shannon
diversity. Hence, we chose to focus on one metric of diversity to test the structure-richness
relationships, while acknowledging other metrics may provide better, worse, or more useful predictions

of tree species diversity and these should be considered in the future.

This study serves as a first attempt to study the pan-tropical structure-richness relationship and should
be improved and further developed when more data become available. Additionally, the characteristics

of each dataset differed widely because all data were collected by different people and institutions. We
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accounted for this as much as possible by using datasets only at reliable plot and subplot resolutions,
including only trees > 10 cm DBH and including only plots with less than 20% of unidentified trees at the
genus level. Nonetheless, we acknowledge that the quality of the species identification varied and may
have affected our models as species identification in the tropics can be challenging due to the vast
variety of tree species and the fact that new species are still encountered. Species identification of new
and existing data could be improved using more botanists or genetic tests in the lab, which has been

done for some of the datasets used here, but is not yet feasible for all datasets.

The availability of stem maps and subplots in each study site determined the spatial resolutions at which
datasets could be used. This resulted in the inclusion of different datasets for each region (Table 3). This
makes the comparison of model performance in the same region at different resolutions unreliable
because the models were not always built on the same data (plots and study sites), but we weighed this
decision to maximize the sizes of the datasets used to build the structure-richness models. Hence, no

conclusion can be drawn about the optimal resolution for the structure-richness relationships.

Accurate geolocation of field plots is key for the development of reliable species-richness models.
However, geolocation of field plots in the tropical forest can be challenging due to difficulties receiving a
reliable GPS signal under dense canopy. This should be taken into account, especially when evaluating
the performance of models build with small field plots, where the effects of such geolocation errors will

be larger (Réjou-Méchain et al., 2014).

We included data from a range of forest stages, including old-growth forest, successional stages,
disturbed forest and even low tree density savanna sites. The relationships we found are partially driven
by this gradient (Figure 5). However, we deemed it essential to include data from across this range of
forest types, because if this method is to be operationalized using canopy structure information from

across the tropics, we will encounter all these different stages of forest (Lewis et al., 2015).
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4.3 Future research & Applications

Our results provide confidence regarding the existence of regional and pan-tropical structure-richness
relationships that may be used to map pan-tropical tree species richness. The most accurate predictions
seem to be achieved at the regional scale when adequate data are available and when forested areas
are grouped by regions of similar biogeographical history. However, in the absence of such data it may
be of more immediate interest to further develop pan-tropical models that can explain up to 39% of
variation in tree species richness. At the time of writing, GEDI is collecting canopy structure information
close to the finest resolution tested here (0.0625 ha) and thus these data may be well suited for
mapping tree species richness across the tropics. GEDI is a sampling mission in which lidar waveforms
with 25 m diameter footprints are collected across 8 tracks (600 m between-track spacing, 60 m along-
track spacing). GEDI gridded data products will have a 1 km? resolution in which the GEDI data samples
are averaged to 1 km? values (Dubayah et al. under review). Our local scale models show that
predictions of adjacent 0.0625 ha plots (or in the future, footprints) are on average correct, but they will
not detect local nuances in species richness within forests of uniform composition. We suggest that the
species richness predictions could potentially be used in a similar way as for gridded GEDI data products
and estimate the average number of species/0.0625 ha within a 1 km? cell, as such information may still
be of interest to local land managers. Given the variable species-area relationships, it is not easy to
translate species richness predictions at 0.0625 ha resolution to the expected number of tree species in
1 km?. Also, the amount of variance in species richness explained is limited. Therefore, we propose two
future research avenues of interest: fusion with spectral and/or radar data and using an environmental
framework. Both spectral data and radar data have previously been shown to predict some of the
variance in tree species richness (Foody & Cutler, 2006; Wolf et al., 2012; Schifer et al., 2016; Bae et al.,
2019; Bongalov et al., 2019; Marselis et al., 2019) and may improve our models and allow for more

accurate predictions of tree species richness across the tropics and the creation of wall-to-wall data
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products at higher spatial resolution. Especially data from the hyperspectral HISUI (Matsunaga et al.,
2013) instrument, that is soon to be launched to the International Space Station, the radar BIOMASS
mission (Le Toan et al., 2011), or the TanDEM-X mission (Qi et al., 2019), may be highly relevant for such
applications. Alternatively, we believe that the inclusion of structural data within previously developed
environment and biogeographical frameworks will help to predict tree species diversity (Keil & Chase,
2019). Such frameworks could benefit from GEDI lidar data providing information on the occupation of

the vertical niche space and likely improve predictions of tree species richness across the tropics.
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5. Conclusions

In this study we evaluated the existence of local, regional and pan-tropical relationships between
vertical canopy structure and tree species richness in the tropics at three spatial resolutions: 1.0, 0.25,
and 0.0625 ha. Our results show that canopy structure can explain a limited percentage of variation in
tree species richness across the different regions. On a pan-tropical scale, 39% of the variation in tree
species richness can be explained with the vertical canopy structure using one single predictive model
a 0.25 ha plot size. A full set of regional structure-richness models will most likely aid accurate pan-
tropical species richness mapping, but the development of such a set of models is contingent on the
availability of sufficient coincident field & lidar data across the tropics. Alternatively, canopy structure
information from GEDI could be included in existing modeling frameworks, combining spectral,

environmental and structural information to provide more accurate tree species richness predictions.

at
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Data Availability Statement

Some of the field and lidar data used in this study can be downloaded directly from the internet. We
have grouped the data in three groups here: (i) LVIS lidar data, (ii) ALS lidar data and (iii) field data. All
datasets not mentioned in this statement were previously collected but have not been made publicly

available and were accessed through personal collaboration with the data providers.
(i) LVIS lidar data

The LVIS data for the rab, lop, mon and mab study sites can be downloaded from the NASA data archive

at the following DOI: https://doi.org/10.3334/ORNLDAAC/1591.

The LVIS data for the cha and Isv study sites is available on the following website:

https://lvis.gsfc.nasa.gov/Data/Maps/CR2005Map.html.

(ii) ALS lidar data

The ALS data over rob is available through the auscover data portal

ftp://ald.auscover.org.au/airborne validation/lidar/robsons creek/.

The ALS data over s11 and s12 can be downloaded from the sustainable landscapes data portal

http://www.paisagenslidar.cnptia.embrapa.br/webgis/.

(iii) Field data

Field data from rob has been published through the Terrestrial Ecosystem Research Network (TERN)

data portal linked from https://supersites.tern.org.au/supersites/fngr-robson.

The dan and rab field data are all available through the Forestgeo website at

https://forestgeo.si.edu/sites/asia/danum-valley, https://forestgeo.si.edu/sites/africa/rabi and
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https://forestgeo.si.edu/sites/neotropics/barro-colorado-island.

The sep, lop and tam field data are all available through forestplots.net and can be found under the

project names ‘sepilok’, ‘lope’ and ‘tambopata’ at https://www.forestplots.net/en/.

The mon field data is archived through the NASA data archiving center and available at DOI:

https://doi.org/10.3334/ORNLDAAC/1580.

The s11 and s12 were available throught the data portals of the sustainable landscapes projects and can
be found under the field data from the Sdo Félix do Xingu region collected in 2011 and 2012 in the

following data portal: http://www.paisagenslidar.cnptia.embrapa.br/webgis/.
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