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Abstract: The corrosion and oxidation of actinide metals, leading to the formation of metal-
oxide surface layers with the catalytic evolution of hydrogen, impacts the management of 
nuclear materials. Here, the interaction of hydrogen with actinide dioxide (AnO2, An = U, Np, 
Pu) (011) surfaces by Hubbard corrected Density Functional Theory (PBEsol+U) has been 
studied, including spin-orbit interactions and non-collinear 3k anti-ferromagnetic behaviour. 
The actinide dioxides crystalize in the fluorite-type structure, and although the (111) surface 
dominates the crystal morphology, the (011) surface energetics may lead to more significant 
interaction with hydrogen. The dissociative adsorption of hydrogen on the UO2 (0.44 eV), 
NpO2 (-0.47 eV), and PuO2 (-1.71 eV) (011) surfaces has been calculated. It if found that 
hydrogen dissociates on the PuO2 (011) surface; however, UO2 (011) and NpO2 (011) surfaces 
are relatively inert. Recombination of hydrogen ions is likely to occur on the UO2 (011) and 
NpO2 (011) surfaces, whereas hydroxide formation is shown to occur on the PuO2 (011) 
surface, which distorts the surface structure.  
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1 INTRODUCTION  

To minimise issues with nuclear interdiction and enable the recycling of decommissioned 

armaments, the conversion of classified actinide materials to commercial reactor-grade fuels is 

of considerable interest. The radiolysis of water and organic matter causes the evolution of 

hydrogen gas [1, 2] and the hydrogen-catalysed oxidative corrosion of actinide metals remains 

an important field. Incidents involving uncontrolled corrosion have resulted in: the formation 

of incondensable gases, the expansion of solids, and thermal excursions.[3-6] To reduce the 

risk of containment failure and conduct environmental assessments, it is important to gain 

insight into the interaction of hydrogen with nuclear materials.[7] To compensate for known 

experimental issues (radiogenic nature, impurity phases, legal constraints), computational 

methods offer a complementary means of investigation.[8-14] 

The unavoidable oxidation of the actinide metals forms an actinide dioxide (AnO2) surface 

layer, where changes in the electronic and magnetic structure impact successive corrosion 

reactions.[15] The actinides are non-trivial highly correlated electron systems, where 

conventional computational methods often fail to describe the electromagnetic structure. To 

model actinide systems, a number of methods have been used: the self-interaction correction 

(SIC) method,[16] Hubbard modified Density Functional Theory (DFT+U),[17-21] hybrid 

density functionals,[22-25] and dynamic mean field theory (DMFT). The computational 

expense of these methods is far from equal,[26] and as a computationally tractable means of 

investigation, DFT+U is especially useful for periodic calculations, as the most advantageous 

methods also depend on the model geometry..[14] The importance of including non-collinear 

magnetic behaviour and spin-orbit interactions (SOI) to correctly describe the electronic 

structure has been highlighted in the literature.[8-11, 27, 28] In earlier hybrid investigations of 

the magnetic strucutre, the PBEsol functional with an appropriate U correction has shown 

comparable results. For instance, in studies comparing DFT+U with HSE06 calculations, 

transverse 3k AFM (UO2, NpO2) and longitudinal 3k AFM (PuO2) states have been 

identified.[9-11, 29, 30]  

The inclusion of relativistic effects is computationally expensive, and scalar collinear 

calculations are often used to approximate the electronic structure.[31] For instance, the 

dissociative adsorption (-5.15 eV) and molecular dissociation (0.48 eV) energy has been 

calculated for hydrogen from non-relativistic scalar DFT+U PuO2 (011) models.[32, 33] 

However, the findings are incomplete and the chemisorption energy is exceptionally 

exothermic; a non-collinear relativistic treatment of actinide systems is therefore needed to 
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obtain accurate surface energetics.[9] It has been shown that the magnetic order of the actinide 

oxides greatly impacts their surface energetics [8-11], and the interaction of hydrogen therefore 

needs to be recalculated considering non-collinear relativistic contributions. Other studies on 

AnO2 interstitial sites have considered the interaction of hydrogen.[34-43] The behaviour was 

found to be complex and controlled by the actinide element. In the early actinides with itinerant 

5f-electrons, hydrogen occupied interstitial octahedral sites, whereas in the late actinides with 

localised 5f-electrons, hydroxyl groups are formed from hydrogen.[34, 35] A number of studies 

contrast actinide oxide behaviour with isostructural cerium dioxide (CeO2), however the 

relatively simplistic electronic structure of cerium is not directly comparable.[44] 

In this paper, the interaction of hydrogen with the AnO2 (An = U, Np, Pu) (011) surface has 

been investigated by DFT+U, including relativistic effects. Earlier work has shown that the 

dissocation of molecular H2 does not occur on the (111) surface;[45] however, the (011) surface 

offers an energetically less stable and more reactive substrate. Therefore, the following work 

complements and contrasts with the earlier study on AnO2 (111) surface investigations.[45] To 

accurately represent the surface structure within the limits of computational resources, non-

collinear 3k AFM behaviour and SOI are implemented throughout the study.   

 

2 COMPUTATIONAL METHODOLOGY 

2.1 Calculation Details 

The interaction of hydrogen with AnO2 (011) surfaces has been calculated with the Vienna Ab-

initio Simulation Package (VASP).[16, 26, 46] The code uses relativistic effective core 

potentials (ECPs), the frozen-core projector-augmented wave (PAW) method, and a planewave 

basis set.[23, 47] A planewave basis set cut-off energy of 500 eV has been used. The explicit 

valence electrons included: hydrogen (1s1), oxygen (2s2, 2p4), uranium (6s2, 7s2, 6p6, 6d2 5f2), 

neptunium (6s2, 7s2, 6p6, 6d2 5f3), and plutonium (6s2, 7s2, 6p6, 6d2 5f4). To improve on earlier 

functionals that calculate the exchange correlation energy, the revised Perdew-Burke-

Ernzerhof for solids (PBEsol) functional has been used.[8, 48, 49] The iteration thresholds for 

the electronic (1·10-5 eV) and ionic (1·10-2 eV·Å-1) convergence are shown. The code by 

Henkleman et al. [50-52] was used (See Supporting Information) for the Bader charge 

analysis.[53] 
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To compensate for the highly correlated nature of the AnO2 systems via the Liechtenstein et 

al. formulism, the on-site Coulomb repulsion of An 5f-electrons is treated with Coulomb (U) 

and exchange (J) modifiers: [17-21]  

 

E辰達岫n賦岻 噺 Uに n賦担誰担岫n賦担誰担 伐 な岻 伐 Jに布n賦担誰担嫡嫡 岫n賦担誰担嫡 伐 な岻 (1) 

 

The double counting energy term (Edc), the on-site occupancy matrix (n), and the spin index 

(j) are shown. The method is identical to the Dudarev et al. formulism when J = 0.00 eV; 

however, J has been shown to increase f-electron anisotropy.[8, 19, 54, 55] A transverse 3k 

AFM state for UO2 (U = 3.35 eV, J = 0.00 eV) and NpO2 (U = 4.25 eV, J = 0.00 eV) model is 

used; whereas, a longitudinal 3k AFM for PuO2 (U = 6.00 eV, J = 0.00 eV) model was used.[9-

11] The results can be compared directly with our earlier investigations.[45]  

The surface models have been constructed from the methodology described in our earlier 

work.[9] An ionically relaxed bulk cell has been used to construct the non-dipolar AnO2 (011) 

surface with the METADISE code,[56] which considers the surface as a series of stacked 

planes. The low-index AnO2 (011) model employed herein is a slab comprised of 7 monolayers 

and to isolate the surface from its periodic image, a vacuum gap of 20 Å was used.[57, 58] The 

integration of the Brillouin zone was calculated by a 4·4·1 d-centred k-point grid with the 

Gaussian method[9, 59] and all models have considered SOI.[60] The spin quantisation axis is 

defined by (0, 0, 1) plane, from which magnetic and spinor-like values are calculated. Full ionic 

relaxation of the surfaces was carried out and the density of states have been illustrated by the 

SUMO code, a command-line plotting tool for ab-initio calculations.[61] The electronic 

structure of the clean AnO2 (011) surface can be found in the Supplementary Online Material. 

The methodology employed is consistent throughout this work. 

 

2.2 Inequivalent Positions 

The dissociative adsorption and molecular adsorption of hydrogen on the AnO2 (011) surfaces 

must be considered for multiple inequivalent lattice sites, where the effect of magnetic 

inequivalence is assumed to be negligible (Figure 1). The ions superior (S) or inferior (I) to the 

   
 T

hi
s 

is
 th

e 
au

th
or

’s
 p

ee
r 

re
vi

ew
ed

, a
cc

ep
te

d 
m

an
us

cr
ip

t. 
H

ow
ev

er
, t

he
 o

nl
in

e 
ve

rs
io

n 
of

 r
ec

or
d 

w
ill

 b
e 

di
ffe

re
nt

 fr
om

 th
is

 v
er

si
on

 o
nc

e 
it 

ha
s 

be
en

 c
op

ye
di

te
d 

an
d 

ty
pe

se
t. 

P
L

E
A

S
E

 C
IT

E
 T

H
IS

 A
R

T
IC

L
E

 A
S

 D
O

I:
1
0
.1

0
6
3
/5

.0
0
1
0
2
0
0



 
Manuscript: Interaction of Hydrogen with Actinide Dioxide (011) Surfaces J.T.Pegg et. al. 
 

 

 

plane of the surface are designated by the relevant subscripts, where the plane of the surface 

bisects the OS2- ions.[45]  

 

Figure 1: a) Plan view of the initial inequivalent configurations of the dissociative atomic and molecular hydrogen 

on the AnO2 (011) surface. The An4+ (blue) and O2- (red) ions are indicated. The individual hydrogen positions 

are shown in grey. The minimum distance of the hydrogen atoms above the plane of the surface is 1 Å. The 

hydrogen molecule is considered with either orthogonal (v) or parallel (n) orientations relative to the surface plane. 

b) Side view of the low-index AnO2 (011) surface. The An4+ (blue) and O2- (red) ions are indicated by the colours 

in the parentheses. The surface plane bisects the Os2- ions as ill ustrated by the dashed black line. Ionic sites are 

differentiated, either as superior (S) or inferior (I), by their position relative to the plane of the surface. 

 

The inequivalent sites of interest on the AnO2 (011) surface include: four on-top atomic (AnS, 

AnI, OS, OI) positions, four bridging (AnS-OS, AnS-OI, AnI-OS, AnI-OI) and three interstitial 

(IA, IB, IC) sites. The orientation relative to the plane of the surface of molecular H2 has been 

considered as either orthogonal to the surface (v), or parallel to the surface along the direction 

of a bond (n). Initially, hydrogen was placed at a minimum of 1 Å above the plane of the 

surface. The ionic coordinates, magnetic vectors, and dimensions of the unit cell can be found 

in the Supplementary Online Material. 
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2.3 Hydrogen Adsorption 

The hydrogen adsorption energy (Eads) has been calculated from the: total energy of the surface 

with the adsorbate (Eslab+absorbate), the energy of the adsorbate (Eabsorbate), and the energy of the 

clean (adsorbate-free) surface (Eslab). To avoid the formation of a dipole during adsorption, 

hydrogen is adsorbed at equivalent sites on both sides of the slabs.  

 

Eads = 0.5[Eslab+absorbate – (Eslab + Eabsorbate)] (2) 

 

The energy of the hydrogen adsorbate (Eabsorbate) has been calculated in an earlier PBEsol study, 

where the H2 molecule was modelled in isolation in a 10 Å3 cubic unit cell.[45] The difference 

in dissociation energy between experiment and computation (relative to the energy of 

chemisorption) was found to be negligible.[45, 62, 63] 

 

3 RESULTS & DISCUSSION 

3.1 Uranium Dioxide 

The dissociative adsorption of hydrogen on the UO2 (011) surface (as with the UO2 (111) 

surface) is endothermic (Figure 2). In the aH(011) configuration, (Eads = 1.13 eV), atomic 

hydrogen is located 2.044 Å from the US ion; whereas, in the bH(011) configurations (Eads = 1.45 

eV), atomic hydrogen is located 2.092 Å from the US ion. In the high-energy cH(011) 

configuration, atomic hydrogen is located within the IC interstitial channel, which offers a 

means by which hydrogen ions might diffuse across the surface. The minimum UI-H (2.250 

Å), OS-H (2.317 Å), and OI-H (2.258 Å) distances have been calculated. 

The formation of the U f-defect state near the conduction band minimum (CBM) and the 

absence of hybrid H s- and O p-states in the high-energy a-cH(011) configurations is indicative 

of the oxidation of the U4+ ion to a U5+ ion and the existence of a hydride group, which is 

confirmed by the Bader charge distribution (Supplementary Online Material). As the a-cH(011) 

configurations are energetically unfavourable, a hydride-induced corrosion mechanism by the 

UO2 (011) surface seems improbable.[34, 64-66] 
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Figure 2: Upper figure: Side (top) and plan (bottom) views of the dissociative adsorption sites of atomic H on the 

UO2 (011) surface, U4+ (blue), O2- (red) and H (grey), also indicating the energies of adsorption (Eads). Lower 

figure: Density of states of the a-dH(011) configurations for the UO2 (011) surface; total density of states (black), 

U f- (blue), U d- (green), O p- (red), and H s- (yellow) bands are coloured. The labelling in the density of states 

(a-d) corresponds to the individual adsorption sites. The Fermi level is set at 0.00 eV. Note: the hydrogen s-band 

has been magnified by a factor of 40 for clarity. 

 

The s-band located close to the valence band maximum (VBM) indicates physisorption for the 

a-cH(011) configurations; whereas, the s-band located at the lower -8 eV to -9 eV range indicates 

chemisorption for the dH(011) configuration. In the lower-energy dH(011) configuration, the 

hydrogen atom is positioned along the UI-OS bond. The surface undergoes considerable 

distortion, causing an increase in the US-OS bond distance from 2.313 Å to 2.446 Å. The 

minimum UI-H (2.644 Å) and OS-H (0.995 Å, reminiscent of an OH group) distances have 

been calculated. The surface rearrangement is limited to the first monolayer and is not seen in 

the sub-surface layers. The density of states (DoS) shows an U f-defect (reduction of U4+ to 

U3+) and hybrid H s-states with O p-states (OH formation), where a protonic state and the 

reduction of the U (b) ion is confirmed by the Bader charge analysis (Supplementary Online 

Material).  
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Figure 3: Upper figure: Side (top) and plan (bottom) views of the adsorption sites of molecular H2 on the UO2 

(011) surface, U4+ (green), O2- (red) and H (grey), also indicating the energies of adsorption (Eads). Lower figure: 

Density of states of the a-lH2(011) configurations for the UO2 (011) surface; total density of states (black), U f- 

(blue), U d- (green), O p- (red), and H s- (yellow). The labelling in the density of states (a-l) corresponds to the 
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individual adsorption sites. The Fermi level is set at 0.00 eV. Note: the hydrogen s-band has been magnified by a 

factor of 10 for clarity. 

The interaction of molecular H2 on the UO2 (011) surface results in 12 distinct a-lH2(011) 

configurations (Figure 3). In each instance, molecular H2 is physisorbed with adsorption 

energies in the 0.07 to -0.11 eV energy range. The electronic structure for molecular a-hH2(111) 

configurations has been calculated, where the absence of defect states or of hybrid H s- and O 

p-states indicates physisorption. The magnitude of the electrostatic interaction is indicated by 

the position of the H s-band. In the low-energy iH2(011) configuration, the Bader charge 

indicates that the H2 molecule is partially polarised by 0.04 e (See Supplementary Online 

Material), which is unusual as the hydrogen ions occupy equivalent lattice positions. The 

observed polarisation of the hydrogen ion could be explained by the inherent magnetism. The 

individual magnetic moment and chemical bond orientation slightly impacts the local structure; 

whereby, the accompanying crystallographic distortion produces a local electric 

polarization.[67] 

The dissociation of molecular H2 on the UO2 (011) surface is not observed, similar to earlier 

calculations of hydrogen interaction with the UO2 (111) surface.[45] Steric hindrance could 

impede a molecular dissociative mechanisms. It is noted for instance that an OH group is 

formed with atomic hydrogen on the UO2 (011) surface, however the dissociative adsorption 

energy is endothermic. It is therefore probable that thermodynamic factors are the limiting 

factor.  

 

3.2 Neptunium Dioxide 

The interaction of hydrogen with the NpO2 (011) surface forms a-bH(111) configurations 

(Figure 4). An endothermic adsorption energy (1.86 eV) for the aH(011) configuration has been 

calculated. Minor hybrid H s- and Np f-defect states are found. The oxidation of Np4+ to Np5+ 

(Np5+-H bond length of 2.129 Å) occurs on hydrogen adsorption and the formation of a hydride 

ion has been confirmed via Bader charge analysis. In contrast to the aH(011) configuration, the 

adsorption energy for bH(011) is exothermic (-0.47 eV). The formation of an OH group (bond 

length of 0.997 Å) has been confirmed by Bader charge analysis (H charge of 0.64 e). The 

formation of the OH group (hybrid H s- and O p- states) and the reduction of Np4+ to Np5+ (Np 

f-defect) can be inferred from the DoS. The formation of the Np f-defect results in Mott-

Hubbard characteristics.  
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It is noted that the electronic structure is greatly affected by the adsorbed hydrogen. The 

epitaxial absorbance measurements of NpO2 thin films report a band-gap of 2.85 eV,[68] 

whereas electrical resistivity measurements of NpO2 report a band-gap of 0.4 eV.[69] The 

difference between the two measurements has been accredited to the sample preparation 

methods employed, showing how the inhomogeneity of samples is a major obstacle for 

experimental measurements of the band structure. 

 

Figure 4: Left figure: Side (top) and plan (bottom) views of the adsorption sites of dissociative atomic H on the 

NpO2 (011) surface, Np4+ (blue), O2- (red) and H (grey), also indicating the energies of adsorption (Eads). Right 

figure: Density of states of the a-bH(011) configurations for the NpO2 (011) surface, total density of states (black), 

Np f- (blue), Np d- (green), O p- (red), and H s- (yellow) bands. The labelling in the density of states (a-b) 

corresponds to the individual adsorption sites. The Fermi level is set at 0.00 eV. Note: the hydrogen s-band has 

been magnified by a factor of 40 for clarity. 

 

The energies of adsorption of molecular H2 on the NpO2 (011) surface range from -0.10 eV to 

-0.06 eV, where 10 distinct a-jH(111) configurations have been identified (Figure 5). The 

adsorption sites include positions: near the NpS ion (the a-bH2(011)), near the NpI ion (the c-

dH2(011)), near the OS ion (eH2(011)) and near the OI ion (f-hH2(011)). In the i-jH2011) 

configurations, molecular H2 occupies interstitial positions. The position of the H s-band in the 

DoS reflects the relative adsorption site stability. Notable surface reorganization or molecular 

H2 dissociation has not been observed.  

The dissociation of molecular H2 is not observed in the low-energy molecular fH2011) 

configuration, In the dissociative atomic bH(011) configuration, it is noted that atomic hydrogen 

binds to form an OH group. It is curious that despite this significant activity, dissociation of 
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the molecular H2 is not observed. It is assumed that steric factors may hinder secondary OH 

group formation, making the dissociation reaction energy barrier too high. 
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Figure 5: Upper figure: Side (top) and plan (bottom) views of the adsorption sites of molecular H2 on the NpO2 

(011) surface, Np4+ (blue), O2- (red) and H (grey), also indicating the energies of adsorption (Eads). Bottom figure: 

Density of states of the a-jH2(011) configurations for the NpO2 (011) surface; total density of states (black), Np f- 

(blue), Np d- (green), O p- (red), and H s- (yellow) bands. The labelling in the density of states (a-j) corresponds 

to the individual adsorption sites. The Fermi level is set at 0.00 eV. Note: the hydrogen s-band has been magnified 

by a factor of 10 for clarity. 

 

3.3 Plutonium Dioxide 

The dissociative adsorption of hydrogen on the PuO2 (011) surface (Eads of -1.71 eV) is 

exothermic (Figure 6). In contrast with dissociative hydrogen adsorption on UO2 and NpO2 

(011) surfaces, the PuO2 (011) aH(011) configuration is the only adsorption site, however the 

increased adsorption site stability is an artefact surface reactivity. The OS-H bond length (1.00 

Å) indicates the formation of an OH group, which is confirmed by the DOS band located at -7 

eV to -6 eV, comprised of H s- and O p-states. The number of Pu f-states in the valence band 

increases, whereas the number of Pu f-states in the conduction band decreases, which indicates 

that the interaction of hydrogen with the surface causes high-energy Pu f-states to shift to lower 

energy levels. In addition, the Bader charge distribution indicates that atomic hydrogen exists 

in a protonic state (Supplementary Online Material), with a corresponding reduction of the 

Pu(a) ion, whereas the charge of the O ions is only partially increased. The formation of the 

OH group distorts the PuO2 (011) surface, increasing the PuS-OS (2.30 Å to 2.44 Å) and PuI-

OS (2.23 Å to 2.24 Å) bond lengths. The single dissociative adsorption of hydrogen differs 

from an earlier study of the PuO2 (011) surface, where two distinct chemisorption sites with a 

very large energy difference (-1.695 eV and -5.147 eV) have been described.[32, 33]   

 

Figure 6: Left figure: Side (top) and plan (bottom) view of the adsorption site of dissociative atomic H on the 

PuO2 (011) surface, Pu4+ (blue), O2- (red) and H (grey), also indicating the energy of adsorption (Eads). Right 

figure: Density of states of the aH(011) configuration for the PuO2 (011) surface; total density of states (black), Pu 
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f- (blue), Pu d- (green), O p- (red), and H s- (yellow) bands. The labelling in the density of states (a) corresponds 

to the individual adsorption site. The Fermi level is set at 0.00 eV. Note: the hydrogen s-band has been magnified 

by a factor of 40 for clarity. 

 

The interaction of molecular H2 on the PuO2 (011) surface results in 13 distinct a-mH2(011) 

configurations (Figure 7). A physisorption energy of -0.04 eV to -0.18 eV defines the a-lH2(011) 

configurations (confirmed by the electronic structure). In the c-dH2(011) configurations 

(adsorption energies of -0.13 to -0.14 eV), molecular H2 is located near the PuI ion and 

positioned orthogonal to the surface. As a potential prelude to dissociation of molecular H2 

(owing to the resemblance of this configuration to the aH(011) configuration), molecular H2 is 

near the OS ions in the i-jH2(011) configurations (physisorption energies of -0.10 eV to -0.11 

eV). However, molecular H2 does not dissociate spontaneously from this configuration, 

probably owing to a high energetic barrier due to by steric forces, which could hinder the 

dissociation process. Finally, the k-lH2(011) configuration offers another unreactive site located 

between PuI ions. 
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Figure 7: Upper figure: Side (top) and plan (bottom) views of the adsorption sites of molecular H2 on the PuO2 

(011) surface, Pu4+ (blue), O2- (red) and H (grey), also indicating the energies of adsorption (Eads). Bottom figure: 

Density of states of the a-mH2(011) configurations for the PuO2 (011) surface; total density of states (black), Pu f- 

(blue), Pu d- (green), O p- (red), and H s- (yellow) bands. The labelling in the density of states (a-m) corresponds 

to the individual adsorption sites. The Fermi level is set at 0.00 eV. Note: the hydrogen s-band has been magnified 

by a factor of 10 for clarity. 

 

The dissociation of molecular H2 on the PuO2 (011) surface forms the mH2(011) configuration. 

Two chemically inequivalent OH groups are found and a chemisorption energy of -2.57 eV has 

been calculated. To differentiate the chemically inequivalent OH groups, gH (located above 

the PuI ion) and くH (located above the OS ion) are defined. The atomic aH(011) and O-gH (bond 

length = 1.011 Å) groups are isostructural; whereas, the O-くH (bond length = 0.975 Å) group 

is bound orthogonally to the surface plane. The Bader charge of the gH ion is 0.64 e; whereas, 

the Bader charge of the く-H ion is 0.56 e. The formation of the OH groups shifts Pu 5f-states 

from the conduction to valence band with a corresponding reduction of the Pu(c) ion, confirmed 

by Bader charge analysis. Individual hybrid H s- and O p-bands are also located at -6 eV to -7 

eV, which confirm the formation of the chemically inequivalent OH groups.  
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4 CONCLUSIONS 

The dissociative and molecular adsorption of hydrogen on the AnO2 (011) surfaces has been 

studied, where the models include SOI and non-collinear 3k AFM contributions to obtain 

accurate structures and energies. The results complement an earlier AnO2 (111) surface-

hydrogen interaction investigation [45] 

The nature of the interaction of the hydrogen molecule with the AnO2 oxides is reasonably 

complex. On ionic oxides, H2 can dissociate heterolytically forming a proton on an O ion (OH 

group) and a hydride on a surface cation (MH). This does not lead to the chemical reduction of 

the oxide. The other possibility is homolytic dissociation, where two OH groups are formed 

(adsorbed protons) and the two electrons of the H2 molecule are transferred to low-lying d or f 

states of the cations. This leads to a change in oxidation state and a reduction of the oxide. The 

formation of two OH groups is observed on PuO2 indicating homolytic dissociation; whereas, 

the formation of a hydride or of an OH on UO2 and NpO2, indicates heterolytic dissociation. 

The preferential formation of a hydride ion [(UO2)n]+H- or hydroxide ion [PunO2n-1]+[OH]- has 

been shown earlier.[34] Here, the more itinerant uranium and neptunium 5f electrons enable 

hydride formation; whereas, the more localized plutonium electrons promote hydroxide 

formation. 

The number of viable adsorption sites decreases along the U-Pu series, corresponding to an 

increase in surface energies.[9] In each instance, the dissociative adsorption of hydrogen leads 

to the formation of an OH group with a surface OS ion. The formation energy across the AnO2 

(011) surfaces changes from endothermic to exothermic: UO2 (0.44 eV), NpO2 (-0.47 eV), and 

PuO2 (-1.71 eV). The increasing energy along the clean AnO2 (An = U, Np, Pu) (011) surface 

offers a simple rationalisation; here, higher-energy surfaces are more readily passivated by 

hydrogen treatment. In contrast, the endothermic-exothermic transition for OH formation on 

AnO2 (111) surfaces has been studied in an earlier investigation; where the energy of 

adsorption for UO2 (0.82 eV), NpO2 (-0.10 eV), and PuO2 (-1.25 eV) has been calculated.[45] 

It has been shown that hydrogen dissociation on the AnO2 (111) surfaces does not occur. 

As shown by the relatively higher surface energy compared to the UO2 and NpO2 (011) 

surfaces,[9]  the PuO2 (011) surface is less stable and more reactive, which enables the 

dissociation of the H2 molecule with the formation of inequivalent OH groups (bond lengths = 

0.975 Å, 1.011 Å). In comparison, molecular H2 becomes only physisorbed on the PuO2 (111) 

surface (of lower surface energy), il lustrating the role of surface stabilities, as quantified by the 
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surface energies, on the dissociation potential.[45] When compared with scalar calculations of 

hydrogen interactions with the PuO2 (011) surface,[32, 33] it is clear that our non-collinear 

relativistic treatment identifies higher binding energies. These results therefore also highlight 

the challenge of modelling AnO2 systems with current computational methods.  

 

5 SUPPLEMENTARY INFORMATION 
See supplementary material for the following information: Clean surface—fixed unit cell 

dimensions, ionic positions, magnetic structure, k-point convergence, and electronic density of 

states, and hydrogen interactions—ionic positions, magnetic structure, and Bader charges. 
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