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Assessment of a Power Law Relationship Between

P-band SAR Backscatter and Aboveground Biomass

and its Implications for BIOMASS Mission

Performance
Michael Schlund, Klaus Scipal, and Shaun Quegan

Abstract—This paper presents an analysis of a logarithmic
relationship between P-band cross-polarized backscatter from
Synthetic Aperture Radar (SAR) and aboveground biomass
(AGB) across different forest types based on multiple airborne
data sets. It is found that the logarithmic function provides a
statistically significant fit to the observed relationship between
HV backscatter and AGB. While the coefficient of determination
varies between datasets, the slopes and intercepts of many of the
models are not significantly different, especially when similar
AGB ranges are assessed. Pooled boreal and pooled tropical
data have slopes that are not significantly different, but they
have different intercepts. Using the power law formulation of
the logarithmic relation allows estimation of both the Equivalent
Number of Looks (ENL) needed to retrieve AGB with a given
uncertainty and the sensitivity of the AGB inversion. The cam-
paign data indicates that boreal forests require a larger ENL
than tropical forests to achieve a specified relative accuracy. The
ENL can be increased by multi-channel filtering, but ascending
and descending images will need to be combined to meet
the performance requirements of the BIOMASS mission. The
analysis also indicates that the relative change in AGB associated
with a given backscatter change depends only on the magnitude
of the change and the exponent of the power law, and further
implies that to achieve a relative AGB accuracy of 20% or better,
residual errors from radiometric distortions produced by the
system and environmental effects must not exceed 0.43 dB in
tropical and 0.39 dB in boreal forests.

Index Terms—P-band synthetic aperture radar (SAR), above-
ground biomass retrieval, forestry, BIOMASS mission.

I. INTRODUCTION

FORESTS play a key role in the global carbon cycle and

climate change, acting as sinks for CO2 when growing

and sources of CO2 when disturbed [1]. Information on

forest biomass, its spatial distribution and change over time

is therefore essential in estimating the global carbon balance

[2]; this has led to major efforts to estimate aboveground forest

biomass (AGB) from satellite data using passive microwave

[3] and LiDAR sensors [4], [5], and combinations of different
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sensors [5]–[7]. Another key technology for this purpose is

Synthetic Aperture Radar (SAR) operating at L- or P-band

(wavelengths around 24 and 70 cm respectively), which yield

much higher sensitivity to AGB than shorter wavelengths [8]–

[10]. This is the rationale underlying the European Space

Agency (ESA) BIOMASS mission, ESA’s 7th Earth Explorer

[11], which will carry a fully polarimetric P-band SAR capable

of providing near-global, spatially explicit measurements of

forest height, biomass and biomass change.

The use of P-band SAR builds on a long research heritage

which suggests a logarithmic relationship between AGB and

the cross-polarized backscatter γ0

HV (where HV indicates

horizontal-vertical polarization). The backscattering coefficient

γ0

HV is defined as γ0

HV = σ0

HV / cos θ, where σ0

HV is the

normalized radar cross section and θ is the local incidence

angle. This relationship was reported for data collected in

forests in northern boreal and hemi-boreal latitudes [10], [12]–

[15], the temperate zone [8]–[10] and the tropics [9], [10],

[16]–[19]. A similar relationship was also found for other

wavelengths in various biomes [9], [13], [16], [18], [20]. All

these studies evaluated the logarithmic relationship at only one

or a few sites and mostly in a single biome. As a result, the

empirical basis for this model has not been rigorously assessed

and its validity and generality has been questioned [21]. For

example, poor correlation and high uncertainty were reported

when parameters of the regression model found in a boreal

site were transferred to a hemi-boreal site and vice versa [15].

Based on a thorough and consistent analysis using available

campaign data from boreal, hemi-boreal, temperate and tropi-

cal forests, as well as a temperate forest plantation, it is shown

that for all sites considered there is a statistically significant

logarithmic relationship between γ0

HV and AGB. In addition,

a covariance analysis (ANCOVA) is performed to evaluate the

consistency of the model parameters between sites (Section

IV). Having established the generality of the logarithmic

backscatter-AGB relationship, we use its equivalent power law

form to quantify how backscatter measurement uncertainty

due to speckle affects AGB retrieval accuracy and also the

implications for estimating biomass change (Section V).

It should be noted that some authors have used combinations

of the polarimetric channels in estimating AGB [15], [19],

essentially to minimize the effects of soil moisture or topog-

raphy on the HV signal before developing the logarithmic re-

lationship between HV backscatter and AGB. A more complex
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model involving the intensity of the HH, VV and HV channels

has also been used to estimate biomass [22]. Nevertheless,

the logarithmic model gives a first order approximation that

is adequate for estimating the equivalent number of looks

(ENL) needed for BIOMASS to meet a given AGB accuracy.

This is shown to have strong implications for data processing.

In addition, a related analysis can be used to quantify the

sensitivity to system errors.

II. DATA

We analyze data from airborne P-band campaigns in the

boreal, hemi-boreal, temperate and tropical forest biomes

(Tab. I), gathered from forests in La Selva, Costa Rica [18],

Mabounie and Lopé, Gabon [23], Paracou, French Guiana

[24], Alaska and Maine, USA [12], [13], Remningstorp and

Krycklan, Sweden [25], [26], and Landes, France (which is

the single example of a plantation forest in the dataset) [8].

The NASA-JPL AirSAR system acquired P-band SAR data

over La Selva, Alaska, Maine and Landes, while the DLR

E-SAR system was used over Remningstorp and Krycklan,

the DLR F-SAR system over Mabounie and Lopé and the

ONERA SETHI system over Paracou. For Remningstorp,

multi-temporal acquisitions were performed to capture the

substantial differences in soil moisture occurring at this site

and their impact on the signal [14]. Acquisitions with different

flight headings were used in Remningstorp, Krycklan and Lopé

in order to evaluate the sensitivity of the model to topography.

The backscatter coefficients γ0

HV at HV polarization were

calculated consistently for all datasets in order to achieve a

first order topographic correction.

Spatially and temporally collocated forest plots or stand data

with AGB measurements were available for each study site.

Diameter at breast height and tree height were measured in

the field within plots, and species- or biome-specific allome-

tries were then used to estimate AGB for individual trees,

from which the AGB for each plot was computed [8], [12],

[13], [18], [23]–[26]. Based on plot data, stand level AGB

was further estimated for the boreal/temperate and plantation

sites [8], [12], [13], [25], [26]. One exceptional case was

Remningstorp, where additional laser scanning data, together

with plot- and species-stratified information, supported the

estimation of AGB for the stands [15]. Descriptions of the

in situ datasets are provided in the references in Table I.

In general, we assumed that the available AGB information

is accurate at stand or plot level and thus sufficient for the

purpose of this study.

III. LOGARITHMIC AND POWER LAW RELATIONSHIPS

BETWEEN ABOVEGROUND BIOMASS AND HV

BACKSCATTER

In this section we consider two equivalent representations

of the relationship between AGB and HV backscatter. The first

is a logarithmic relationship:

γ0

HV [dB] = a log
10

AGB + b (1)

where a and b are model parameters. We will use this form

to estimate the fitting parameters a and b and test whether

TABLE I
STUDY SITES AND AVERAGE AGB (WITH AGB RANGE IN BRACKETS) OF

COLLOCATED FOREST PLOTS. N IS THE NUMBER OF COLLOCATED

FOREST PLOTS USED IN THIS STUDY.

Biome Site AGB (t/ha) N Reference

T
ro

p
ic

al

La Selva 138 (7-270) 28 [18]
Mabounie 309 (175-465) 7 [23]

Lopé 264 (60-370) 8 [23]
Paracou 393 (330-474) 24 [24]

B
o

re
al

&
te

m
p

er
at

e Alaska 108 (1-231) 20 [12]
Maine 131 (0-331) 37 [13]

Remningstorp 138 (11-287) 58 [25]
Krycklan 99 (27-183) 27 [26]

Landes 90 (0-153) 22 [8]

this relationship is statistically significant. Equation (1) can

be regrouped as a power law:

AGB = 10−b/a(γ0

HV )
p (2)

where γ0

HV is in natural units and p = 10

a . This form is better

for analyzing the consequences of this relation for BIOMASS

performance.

A. Evaluation of the logarithmic relationship between AGB

and HV backscatter

Linear least squares regressions were performed on the loga-

rithmic form of the relation between HV backscatter and AGB

(1). In the fitting process, only forest plots or stands with an

AGB greater than 10 t/ha were considered, in order to exclude

non-forest stands/plots. We also generated various diagnostics

to test the appropriateness of a linear fit, by namely plots of the

residuals against fitted values, quantile-quantile plots, scale-

location plots, and residuals versus leverage plots (Cook’s

distance plots) [27], [28]. The coefficient of determination was

also calculated to estimate the fraction of variance explained

by the model [29], [30]

R2 = 1−
SSRes

SSTot
(3)

where SSRes is the residual sum of squares and SSTot the

total sum of squares. The F-test and corresponding p-values in

the linear models were used to estimate the overall significance

of the linear regression. Model coefficients were calculated for

each individual site and for the pooled tropical and boreal sites.

B. Comparison of the log-log relationship between sites

The estimated slope a and intercept b in (1) vary from site

to site. We performed an Analysis of Covariance (ANCOVA)

to analyse the dependence of these coefficients between sites.

ANCOVA is typically used to compare two or more regres-

sions by testing the effect of a categorical factor (in our case

the site) on a dependent variable (γ0) while controlling for

the effect of a continuous co-variable (AGB) [27], [28]. In

practice, a dummy variable coded as 0 or 1 was introduced in

order to add the categorical factor (Site) to the linear models

[28]. Two models for the pairwise combination of sites were

tested:
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• Model 1: Separate regressions with different slopes for

each site.

• Model 2: Separate regressions with the same slopes but

different intercepts for each site.

Model 1 included, in addition to AGB and Site, an inter-

action term between AGB and Site, and the F-statistic and

p-value were calculated to estimate the significance of the

different terms. Model 1 thus has the form

γ0 = b+ a log
10

AGB + cSite + d log
10
(AGB)Site (4)

where here and in what follows we have dropped the HV

subscript on γ0. Confidence levels for the significance are

based on p-values of 90%, 95%, 99% and 99.9%. A significant

interaction term indicates that the slope was different between

the sites, otherwise there is no evidence that the two fitted

lines are not parallel [27], [28].

The difference of the intercept terms was further ana-

lyzed only for those combinations whose slopes were not

significantly different (i.e. testing Model 2), since there is

no provision within ANCOVA for comparing intercepts for

models with significant different slopes [27]. The interaction

term was removed, resulting in a regression model of the form:

γ0 = b+ a log
10

AGB + cSite (5)

The categorical variable Site was again coded as 0 for one site

and 1 for the other. Therefore, the models could be rearranged

as

γ0

Site1 = b+ a log
10

AGB (6)

γ0

Site2 = b+ a log
10

AGB + c (7)

= (b+ c) + a log
10

AGB. (8)

A small value of c suggests little difference in intercept

between the two sites. A significant effect of the site on the

dependent variable (i.e., p-value inside the confidence interval)

implies a significant difference of the intercept between the

sites, in which case the linear fits are parallel but distinct. If the

slopes and intercepts of the two fits do not differ significantly,

there is no evidence that they are not identical.

IV. RESULTS

Plots of γ0

HV against log
10

AGB for the pooled bo-

real/temperate and pooled tropical forest data, together with

the associated diagnostics, are presented on the left and right

sides of Fig. 1 respectively. Visual analysis of the plots

strongly suggests a linear relationship in log-log space between

AGB and HV backscatter. Both the plots of the residuals

against the fitted values and the scale-location plots show

no systematic deviation from a horizontal line, which would

indicate that the linear model is not a good fit to the data.

The residuals are normally distributed since they follow a

straight line in the quantile-quantile plot. This conclusion is

also supported by the p-values of the F-test statistics at the

individual sites, which show that the relationship between γ0

HV

TABLE II
OVERVIEW OF P-BAND HV BACKSCATTER AND AGB RELATIONSHIPS

FOR VARIOUS STUDY SITES. hi INDICATES DIFFERENT FLIGHT

HEADINGS. TROPICAL AND BOREAL INDICATE STATISTICS DERIVED BY

COMBINING ALL RESPECTIVE DATA INTO ONE SAMPLE.

Site a b p =
10

a
R2 p-value

T
ro

p
ic

al

La Selva 6.09±0.34 -28.1±0.7 1.6 0.93 <0.001
Mabounie 5.22±1.2 -27.1±3 1.9 0.79 <0.01
Lopé h1 3.91±1.07 -23.2±2.5 2.6 0.69 <0.05
Lopé h2 4.71±1.45 -25.1±3.5 2.1 0.68 <0.05
Lopé h3 6.24±1.76 -29.8±4.2 1.6 0.68 <0.05
Paracou 7.89±1.8 -33.3±4.7 1.3 0.47 <0.001

B
o

re
al

&
te

m
p

er
at

e

Alaska 2.37±0.67 -18.5±1.4 4.2 0.46 <0.001
Maine 4.07±0.28 -21.8±0.9 2.5 0.86 <0.001

Remningstorp
(09/03/2007) h1

4.73±0.4 -20.7±0.8 2.1 0.71 <0.001

Remningstorp
(02/04/2007) h1

4.44±0.38 -20.6±0.8 2.2 0.71 <0.001

Remningstorp
(02/05/2007) h1

4.24±0.35 -20.7±0.7 2.4 0.73 <0.001

Remningstorp
(09/03/2007) h2

5.26±0.47 -21.5±0.9 1.9 0.71 <0.001

Remningstorp
(31/03/2007) h2

4.25±0.43 -20±0.9 2.4 0.65 <0.001

Remningstorp
(02/05/2007) h2

4.58±0.51 -20.8±1 2.2 0.63 <0.001

Krycklan h1 1.32±0.52 -16.2±1 7.6 0.21 <0.05
Krycklan h2 1.84±0.65 -17.8±1.3 5.4 0.25 <0.01

Landes 10.14±0.84 -34.2±1.7 1.0 0.88 <0.001

Tropical 5.18±0.29 -26.4±0.7 1.9 0.8 <0.001
Boreal 4.64±0.22 -21.4±0.5 2.2 0.5 <0.001

and log
10

AGB is significant at the 99.9% level for all sites

except Mabounie and Krycklan h2 (significance of 99%) and

Lopé and Krycklan h1 (significance of 95%) (Tab. II).

The log-log fit between AGB and HV backscatter exhibits

coefficients of determination (R2) better than 0.46 except for

the two Krycklan acquisitions (Tab. II), for which the R2

values are 0.21 and 0.25. However, Krycklan has the smallest

range of AGB values and strongest topography of all sites, and

topography in particular has marked effects on the γ0

HV -AGB

relation [15]. The R2 value was 0.8 for pooled tropical forest

data and 0.5 for pooled boreal/temperate forest (Tab. II).

The slope parameter a of (1) is in most cases higher

for the tropical sites than for boreal/temperate areas, but its

highest value is for the plantation forest of Landes, France.

Consequently, the exponent p in (2) is lower in the tropics

than for boreal/temperate sites (Tab. II). The difference of the

slopes between tropical, boreal and plantation forests is also

reflected in the cross-comparison of the sites.

The slopes in tropical forest do not differ significantly (Tab.

III), except between La Selva and Lopé h1. There are no sig-

nificant differences between the slopes for Mabounie, the three

Lopé headings, Paracou, Maine and the various Remningstorp

acquisitions nor, as expected, between the slopes for the

Remningstorp acquisitions. In contrast, the slopes for Krycklan

(which has hilly terrain [15]) and Landes (plantation forest)

are significantly different from those at the other sites, as is

the slope for Alaska (which has flat to moderate topography

[12]) and most of the other sites. Differences between the

slopes for the individual boreal/temperate sites and the pooled

tropical data were in most cases insignificant, whereas most

boreal/temperate sites have significantly different slopes than
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(a) Boreal/temperate (b) Tropical

Fig. 1. Scatterplots of HV backscatter (γ0 [dB]) against aboveground biomass (t/ha) in (a) boreal/temperate and (b) tropical forest; both scatterplots also
show the regression lines for the boreal (solid) and tropical data (dashed). Below each scatterplot is the associated plot of residuals versus fitted values, the
quantile-quantile (Q-Q) plot, the scale-location plot, and the plot of residuals versus leverage.

the pooled tropical data.

As mentioned in Section III-B, the intercepts were only

compared where slopes did not differ significantly. For these

cases, the intercepts did not differ significantly between any

of the pairs of individual sites except for Lopé h3 and the

boreal sites (Tab. IV). This is expected since the intercepts do

not differ substantially between the different sites within each

biome (Tab. II). However, the intercept of the pooled tropical

data differs from those of the individual boreal sites and the

pooled boreal/temperate data (Tab. IV).

V. IMPLICATIONS OF THE POWER LAW RELATIONSHIP FOR

BIOMASS MISSION PERFORMANCE

Although it is easier to estimate fitting parameters and

investigate the quality of the model-data fits using the log-log

relationship (1), the implications for BIOMASS performance

and processing requirements are most easily analyzed using

the power law relationship (2), so this is used throughout

Section V.

A. Required effective number of looks

The power law model (2) provides a simple framework

to estimate the ENL needed to meet the requirement for

BIOMASS of a 20% error in AGB at 200 m resolution [11].

Differentiating (2) with respect to γ0 gives

dAGB

dγ0
= 10−b/ap(γ0)p−1 (9)

Approximating the derivative by the ratio of differences, we

can therefore write the relative error in AGB associated with

a relative error in γ0, under the assumption that the error is

not too large, as

∆AGB

AGB
= p

∆γ0

γ0
(10)

where ∆ denotes difference. The 20% error requirement on

AGB can thus be expressed as

∆AGB

AGB
= p

∆γ0

γ0
< 0.2 (11)

A variety of system error sources, including instrument

noise, radiometric bias and accuracy, ambiguities, etc., con-

tribute to the error in γ0, but a significant component is due

to speckle. If other error sources take up 0.2 − x of the

relative error budget then the relative error in AGB due to

speckle cannot exceed x (clearly x must be less than 0.2 if

the requirement is ever to be met, and its true value will be

better quantified when we have fuller knowledge about the
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TABLE III
SIGNIFICANCE VALUES FOR THE HYPOTHESIS THAT SLOPES ARE DIFFERENT BETWEEN PAIRWISE COMBINATIONS OF SITES (GRAY TONES INDICATE A

SIGNIFICANT DIFFERENCE WITH VERY LIGHT GRAY FOR 90%, LIGHT GRAY FOR 95%, GRAY 99% AND DARK GRAY FOR 99.9%, N.S. INDICATES

THAT SLOPES ARE NOT SIGNIFICANTLY DIFFERENT).

Site Mab. Lopé h1 Lopé h2 Lopé h3 Paracou Alaska Maine Rem. t1h1 Rem. t2h1 Rem. t3h1 Rem. t1h2 Rem. t2h2 Rem. t3h1 Kryck. h1 Kryck. h2 Landes Boreal Tropical

La Selva n.s. <0.05 n.s. n.s. n.s. <0.001 <0.05 <0.1 <0.05 <0.01 n.s. <0.05 <0.01 <0.001 <0.001 <0.001 n.s. n.s.

Mabounie n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. <0.05 n.s. <0.05 n.s. n.s.

Lopé h1 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. <0.05 <0.1 <0.001 n.s. n.s.

Lopé h2 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. <0.01 <0.05 <0.01 n.s. n.s.

Lopé h3 n.s. <0.05 n.s. n.s. n.s. <0.1 n.s. n.s. n.s. <0.001 <0.01 <0.05 n.s. n.s.

Paracou <0.1 n.s. n.s. n.s. n.s. n.s. n.s. n.s. <0.01 <0.05 n.s. n.s. n.s.

Alaska <0.05 <0.01 <0.01 <0.01 <0.001 <0.05 <0.05 n.s. n.s. <0.001 <0.05 <0.001
Maine n.s. n.s. n.s. <0.1 n.s. n.s. <0.01 <0.05 <0.001 n.s. <0.05

Rem. t1h1 n.s. n.s. n.s. n.s. n.s. <0.001 <0.01 <0.001 n.s. n.s.

Rem. t2h1 n.s. n.s. n.s. n.s. <0.001 <0.01 <0.001 n.s. n.s.

Rem. t3h1 <0.1 n.s. n.s. <0.001 <0.01 <0.001 n.s. <0.05
Rem. t1h2 n.s. n.s. <0.001 <0.001 <0.001 n.s. n.s.

Rem. t2h2 n.s. <0.001 <0.01 <0.001 n.s. <0.1
Rem. t3h2 <0.001 <0.01 <0.001 n.s. n.s.

Kryck. h1 n.s. <0.001 <0.01 <0.001
Kryck. h2 <0.001 <0.05 <0.001

Landes <0.001 <0.001

Boreal n.s.

TABLE IV
SIGNIFICANCE VALUES FOR THE HYPOTHESIS THAT INTERCEPTS ARE DIFFERENT BETWEEN PAIRWISE COMBINATIONS OF SITES (GRAY TONES

INDICATE A SIGNIFICANT DIFFERENCE WITH VERY LIGHT GRAY FOR 90%, LIGHT GRAY FOR 95%, GRAY 99% AND DARK GRAY FOR 99.9%, N.S.
INDICATES THAT INTERCEPTS ARE NOT SIGNIFICANTLY DIFFERENT, COMBINATIONS WITH - HAVE A SIGNIFICANTLY DIFFERENT SLOPE).

Site Mab. Lopé h1 Lopé h2 Lopé h3 Paracou Alaska Maine Rem. t1h1 Rem. t2h1 Rem. t3h1 Rem. t1h2 Rem. t2h2 Rem. t3h1 Kryck. h1 Kryck. h2 Landes Boreal Tropical

La Selva n.s. - n.s. n.s. n.s. - - - - - <0.001 - - - - - <0.01 n.s.

Mabounie n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. - <0.1 - n.s. n.s.

Lopé h1 n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. n.s. - - - n.s. n.s.

Lopé h2 n.s. n.s. n.s. n.s. n.s. n.s. <0.1 n.s. n.s. n.s. - - - n.s. n.s.

Lopé h3 n.s. - <0.05 <0.01 <0.01 - <0.05 <0.01 <0.05 - - - <0.1 n.s.

Paracou - n.s. n.s. n.s. <0.1 n.s. n.s. n.s. - - n.s. n.s. n.s.

Alaska - - - - - - - n.s. n.s. - - -
Maine n.s. n.s. n.s. - n.s. n.s. - - - n.s. -

Rem. t1h1 n.s. n.s. n.s. n.s. n.s. - - - n.s. <0.001
Rem. t2h1 n.s. n.s. n.s. n.s. - - - n.s. <0.001
Rem. t3h1 - n.s. n.s. - - - n.s. -
Rem. t1h2 n.s. n.s. - - - n.s. <0.001
Rem. t2h2 n.s. - - - n.s. -
Rem. t3h2 - - - n.s. <0.001
Kryck. h1 n.s. - - -
Kryck. h2 - - -

Landes - -

Boreal <0.001

BIOMASS system). Equating the absolute error in γ0 due to

speckle to the standard deviation associated with the ENL, L,

then ∆γ0

Speckle =
γ0

√
L

. We therefore require

p
∆γ0

Speckle

γ0
=

p
√
L

< x (12)

Consequently, keeping the relative error due to speckle within

the required bounds depends on the number of looks, L, and

the exponent, p, in (2). Earlier end-to-end performance studies,

based on Monte Carlo simulations under a simplified inversion

scheme, suggest that about 10% (or half of the error budget)

has to be allocated for system errors [11], so x = 0.1, and we

then require

L > 100p2. (13)

Using (13) with the p values from the pooled boreal and pooled

tropical data (Tab. II) indicates that the ENL required is 464

(boreal) and 373 (tropical). The lower values for the tropics

arise from the lower exponent in (2). The required ENL for

various values of the relative AGB error (i.e., the value of x
in (12)) were further calculated using the p values from the

pooled data (Fig. 2). (Note that in Fig. 2 the relative error

is allowed to take values up to 30% even though the target

maximum error for BIOMASS is 20%). Reducing the speckle-

related relative error in AGB to 5% would require more than

1000 looks in all biomes.

Providing such a large number of looks while meeting

the 200 m spatial resolution requirement is not possible for

single BIOMASS images, since the allowable bandwidth of the

BIOMASS system is restricted by International Telecommu-

nication Union regulations to 6 MHz [11], which corresponds

roughly to 50 m ground range resolution. Since the system is

designed to give 6 looks in azimuth at 50 m resolution, spatial

averaging will yield only 96 looks at 200 m resolution for

a single image product. However, the accuracy requirements

can be met by multi-channel filtering. This type of linear filter

can exploit multi-temporal or multi-polarized acquisitions, or

both. It causes minimal loss of spatial resolution, unlike spa-

tial filtering and multi-looking techniques, while significantly

increasing the ENL [31], [32].

A general expression for this filter is given in [32], where

it is shown that for an input dataset of M registered intensity

images, the output will be M intensity images which are
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Fig. 2. Dependence of required number of looks on percentage relative error
in aboveground biomass due to speckle for different power law exponents. In
the figure the relative error (the term x in (12)) is allowed to take values up
to 30% even though the target maximum error for BIOMASS is 20%.

unbiased (i.e. the radiometry is preserved in each image), have

optimal speckle reduction, and which all have the same (local)

ENL. In the simplest case of M uncorrelated input images with

the same ENL, L, the filter has the form

Jk(x, y) =
σ̂k(x, y)

M

M∑

i=1

Ii(x, y)

σ̂i(x, y)
, 1 ≤ k ≤ M (14)

where Ii and Ji, i = 1, ...,M, are the input and output images,

respectively, (x, y) denotes position, and σ̂i(x, y) denotes the

local mean intensity at position (x, y) in input image i [32],

[33]. A variety of spatial filters can be used to estimate the

local mean intensity, but if we simply average over a window

containing N independent pixels, the theoretical ENL in each

output image will be approximately constant across the image

and will have the value [32]

ENL =
MNL

M +N − 1
. (15)

This increases as the number of images increases, but the

increase diminishes as each extra channel is added, funda-

mentally because the local mean intensity is estimated from

the data, i.e, σ̂i(x, y) is not known exactly.

In practice, however, some of the channels used for filtering

may be correlated (e.g. the HH and VV polarizations from the

same acquisition), in which case the ideal ENL is given by [32]

ENL = L

M∑

i,j=1

R−1

ij (16)

where Rij(x, y) is the local intensity correlation matrix. There

is no known equivalent to (15) that takes into account the

effect of estimating the local correlation matrix from the data,

although we expect a similar slowdown in the increase of

ENL as extra channels are added. However, if we assume that

the co-polarized and cross-polarized channels are uncorrelated,

while the local HH-VV intensity correlation coefficient is ρ,

then it is easy to see from (16) that for a single polarimetric

(HH, HV, VV) triplet

ENL = L
3 + ρ

1 + ρ
(17)

For L = 96 this gives ENLs of 224 when ρ = 0.5 and 203

when ρ = 0.8. Subject to the slowdown in ENL gain indicated

by (15), these values would be approximately doubled if we

use ascending and descending images (which will be uncorre-

lated), assuming the local intensity correlation coefficients are

the same in both images. Hence multi-channel filtering using

ascending and descending images will be necessary to meet

BIOMASS performance requirements in the tropics, but multi-

temporal images will also be needed in the boreal zone. These

will need to come from different orbit cycles because the orbit

pattern for BIOMASS is designed to ensure high correlation

between repeat images in the Tomographic and Interferometric

phases [11]; hence their use in the filtering would provide only

a small gain in ENL.

B. Estimating biomass change under a power law relation

Under a power law relation between AGB and γ0, there is

a simple relation between the relative change in AGB and a

dB change in γ0. For a change in γ0 by x dB, we can write

10 log
10
(γ0 +∆γ0)− 10 log

10
γ0 = 10 log

10
(1 +

∆γ0

γ0
) = x

(18)

which is equivalent to

∆γ0

γ0
= 10

x

10 − 1. (19)

Using (10), under small changes in AGB the associated relative

biomass change is

∆AGB

AGB
= p

∆γ0

γ0
= p(10

x

10 − 1) (20)

Hence the relative change in AGB associated with a given dB

change is independent of the AGB or γ0 value and depends

only on the HV backscatter change x and the exponent p of

the power law (2).

Another way to interpret (10) is in terms of the error in

estimated relative biomass change when there are changes in

the signal caused by uncorrected environmental changes (e.g.

changes in vegetation water content, soil moisture, freeze/thaw,

etc.) or variation in the system radiometry. As for the ENL,

the impact of such errors is generally smaller in tropical forest

than boreal forest due to the smaller exponent p. A residual

error of 1 dB will cause a relative biomass change error

of 56% (boreal) and 50% (tropical) (Fig. 3). To achieve a
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Fig. 3. Relation between backscatter change in dB and relative error/change
in aboveground biomass for different power law exponents.

relative accuracy of 20% or better, residual signals (including

uncorrected environmental signals, instrument effects, etc.)

should not exceed 0.43 dB for tropical and 0.39 dB for boreal

forests (Fig. 3).

C. Logarithmic bias

The fitting of a linear model in log-log space assumes an

additive zero-mean random error term ǫ in the observations.

However, after transformation to natural units the power law

model contains a multiplicative error term which can result in

a bias [34]–[37]:

AGB = 10−b/a(γ0

HV )
p10ǫ. (21)

This bias can be corrected if we estimate the value of 10ǫ by

calculating the mean squared error (MSE) of the regression as

MSE =

∑n
i=1

e2i
n− 2

(22)

where e is the regression residual of the ith data pair and n
is the number of pairs [34]. We can then set 10ǫ = 10MSE/2

[34], [37] if the data are normally distributed, otherwise we

should use the expression [34], [36]

10ǫ =

∑n
i=1

10ei

n
. (23)

VI. DISCUSSION

Radar backscatter is not a direct measurement of AGB

[21], but is a function of forest structure and dielectric and

consequently is correlated with AGB. Numerous earlier studies

exploited a logarithmic model to describe the relationship

between HV backscatter and AGB [8]–[10], [12]–[19], [38].

but most of these studies were limited to one or two areas

in a single biome and did not assess the general applicability

of such a model. In this study, a systematic analysis confirms

that to first order a logarithmic model can be used to describe

the relationship between HV backscatter and AGB across nine

sites in boreal, hemi-boreal, temperate and tropical forest, as

well as a managed temperate plantation forest. This observed

consistency of the linear logarithmic model is remarkable,

given the range of forest types and conditions in our dataset,

and the fact that, for airborne systems, the incidence angle

can range from 25◦ to 55◦, and hence the dominant scattering

mechanisms may differ substantially across the swath. The

estimated slopes, intercepts and coefficients of determination

were generally in good agreement with values reported in the

literature (e.g [9], [13]), except where topography was a major

perturbing factor (e.g. at Krycklan [15]).

Despite the empirical support for the logarithmic model,

currently little is known about what determines the slope

of this relationship (although the intercept is in principle

determined by the soil scattering if the power law holds down

to small values of biomass). However, physical models have

been developed in order to simulate the SAR backscatter as

a function of biomass [39]–[41]. One example is the Multi-

static Interferometric Polarimetric Electromagnetic model for

Remote Sensing (MIPERS), in which the vegetation scatterers

are modeled as canonical elements, i.e., dielectric cylinders for

branches or trunks and ellipsoids for leaves [20], [40], [41].

The relationship between AGB and γ0 given by MIPERS was

found to be adequately described by a logarithmic model [20],

but this did not lead to any simple description of how the

associated power law exponent p was related to the model

parameters.

Cross-comparison using Analysis of Covariance indicated

that similar logarithmic models were valid across most study

areas, especially when similar ranges of biomass were com-

pared. This agrees with analysis in [9] which indicated similar

logarithmic relationships between HV backscatter and biomass

for coniferous and evergreen broad-leaf forest. The model

coefficients for high biomass tropical forests and low biomass

boreal forests were significantly different, which concurs with

[13], in which significantly different slopes and R2 values

were reported for low and high biomass forests. As a con-

sequence, the regression for the pooled boreal/temperate data,

which cover a large range of biomass, is not significantly dif-

ferent from those for the individual tropical sites. In contrast,

the tropical data have fewer low biomass values and so the

regression lines for pooled tropical data and the individual

boreal/temperate sites differ significantly in all cases (either

the slopes are significantly different or, if not, the intercepts are

(Tab. III and IV)). Substantial differences were also observed

between the boreal forest of Krycklan and the hemi-boreal

forest of Remningstorp [15], but this comparison is confused

by the fact that Krycklan is a much hillier site, as well as

having a different range of biomass. Note that, in contrast, the

study in [15] found similar logarithmic regression coefficients

for these two sites and that the slope for Krycklan was much

larger than in Tab. II. The values given for a in [15] (after

rearranging the relevant equation) are 7.143 for Remningstorp
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and 6.711 for Krycklan, with associated power law exponents

p = 1.40 and 1.49, respectively. This could be because [15]

used AGB estimates supported by laser scanning for 97 plots

in Krycklan with different areal coverage and range of AGB

than the 27 stands used in this study. In Krycklan, higher

AGB is generally found on steeper terrain. The AGB of the

stands we used is non-uniformly distributed on slopes and has

a different distribution of AGB on slopes than in [15]. This

results in different sensitivity of γ0 to AGB and consequently

a different power law exponent in the two datasets. The

regression in the Landes forest was significantly different

from all other forest types; although the Landes site is very

dissimilar to the other sites, being a plantation forest with very

homogeneous monocultural stands on flat topography [8], the

physical reasons underlying such different behaviour are not

known. In general, further study of what determines the power

law exponent is needed, because Section V makes clear this

exponent has important effects on the ENL needed to recover

AGB to a given relative accuracy.

It might be expected that differences in the intercepts could

be explained by different site and environmental conditions,

assuming that the power law is appropriate down to low

biomass values. However, the only site at which soil moisture

was measured was Remningstorp, and here the results suggest

that soil moisture has only a small effect on the AGB-

γ0 relationship, since acquisitions under different moisture

conditions resulted in similar models, as previously noted

in [14]. This indicates a need for further study of how

environmental conditions affect P-band returns for very low

biomass. However, it should be noted that there may be

calibration errors in the different instruments providing the

datasets analyzed in this study, which would give absolute

backscatter biases between them but would not alter the slopes

of the regressions.

Although the analysis reported here is based on airborne

data, simulations of BIOMASS performance indicate that

a similar relation between backscatter and AGB would be

expected [11], [42], [43]. In addition, spaceborne SAR sys-

tems need to account for ionospheric effects (especially Fara-

day rotation) and possible calibration errors. Assuming that

SHV = SV H (where SHV and SV H are respectively the HV

and VH complex backscattering coefficients), it is shown in

[44] that without calibration errors the maximum likelihood

estimate of SHV (and hence γ0

HV ) is unaffected by Faraday

rotation. When calibration errors are also present there is a

complex interaction with Faraday rotation, leading to errors

in γ0

HV . The ensuing errors in the estimated biomass under a

power law model are analyzed in detail in [44], together with

conditions on channel imbalance and cross-talk if the relative

error in biomass is to not exceed a specified value (20% being

the target for the BIOMASS mission [10], [11]).

It should be noted that the HH/VV polarization ratio and

slope information have been used to reduce topographic effects

in Krycklan [15], and topographic correction using the polar-

ization orientation angle was applied for Paracou in [19]. Here

we applied only a simple first order topographic correction to

the data (γ0

HV = σ0

HV / cos θ) in order to have comparable

backscattering coefficients for all sites. It is likely that some

of the differences in regression coefficients for regions with

similar forest types are caused by residual topographic effects,

especially for sites such as Lopé with substantial topographic

variation. Further topographic correction using channels other

than HV will almost certainly be needed in a more complete

algorithm for recovering AGB from polarimetric data, and this

can be expected to modify the regression coefficients.

VII. CONCLUSIONS

The analysis in this paper is relevant for any SAR sensor

estimating biomass from measurements on the basis of a

power law, but its greatest significance is at P-band where

our extensive empirical analysis confirms the generality of

the relationship between HV backscatter and AGB across a

wide range of airborne datasets [8]–[19]. However, a power

law was also frequently found to be appropriate at other

wavelengths [9], [13], [16], [18], [20] and from modeling [20].

The regressions for tropical and boreal data were found to be

significantly different which implies that the regression model

needs to be adjusted to the forest type. Under a power law

relationship, it was shown that accurate estimates of biomass

require an ENL whose value depends crucially on the exponent

of the power law, with smaller exponents giving better relative

accuracies. The smallest exponent was found in plantation

forest, and tropical forest exhibited a smaller exponent than

boreal forest. This implies that boreal forests will need a higher

ENL than tropical forests in order to meet BIOMASS require-

ments. A very important conclusion in terms of BIOMASS

data processing is that both boreal and tropical forest will

require an ENL whose value exceeds that available in a single

polarimetric image BIOMASS product (i.e., an ENL of around

96). This implies that multi-channel filtering [11], [32], [43]

will be needed in order to increase the ENL without degrading

the spatial resolution. In the filtering, combining the HV

channel with a co-polarized channel will roughly double the

ENL because of the low correlation between these channels,

but adding the second co-polarized channel gives less gain

in ENL because of the correlation between the HH and VV

channels [43]. Using repeat images from the Interferometric

or Tomographic Phases of the mission as inputs to the filtering

will bring little gain in ENL since, by design, there will be

strong correlation between them [43], [45]. Therefore, it will

be necessary to combine data from ascending and descending

passes (which will be uncorrelated) and/or from different orbit

cycles (for which we would expect little or no correlation in

forested areas).

Furthermore, the relative change in AGB associated with a

relative change in γ0

HV is, to first order, proportional to the

exponent and independent of the absolute biomass value. This

places stringent conditions on the acceptable level of uncor-

rected disturbance to the HV backscatter from environmental

(e.g. moisture, topography and freeze/thaw) and system effects

if BIOMASS is to meet its performance requirements. Any

residual error will result in an AGB estimation error, and to

achieve the required AGB accuracy of 20% for BIOMASS

mission, the residual backscatter error should not exceed 0.39

dB in the worst case of boreal forest. The same analysis is
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also important for measuring biomass disturbance: the biomass

change must exceed 20% in order to be detected if the

backscatter correction is to an accuracy of 0.39 dB.

Our findings are based purely on the γ0

HV -AGB relationship,

while extra information about biomass may be obtained by use

of more polarizations and information derived from Polarimet-

ric SAR interferometry and SAR tomography [10], [11], [22],

[46]. However, similar constraints on ENL and change are

likely for these more advanced methods since they rely on

AGB-backscatter relations that are approximately power laws,

especially in the higher ranges of biomass.
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