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Research highlights: 8 

 Social media images have more aesthetic value than random ones from the same area. 9 

 Probability models can be used to rank-order images for aesthetic value. 10 

 Incomplete paired comparison datasets can be used to rank order of the images. 11 

 Model results were upscaled for 22,615 images and mapped. 12 

Abstract 13 

Cultural ecosystem services such as aesthetic value are highly context-specific and often present 14 

difficulties in their assessment. Here we present a case study in the northern English protected area 15 

of the Yorkshire Dales National Park. Utilising publicly available images, paired-comparisons survey, 16 

machine-learning based text annotations, natural language processing and regression analysis, we 17 

developed a spatial model to predict and map landscape aesthetics across the whole site. The 18 

predictive model found eighteen significant variables, including the positive role of rural areas, 19 

mountains and vegetation for aesthetic value. Finally, we demonstrate the potential of our approach 20 

to varying size datasets and partial paired-comparison matrices, finding a very good agreement with 21 

only 20% of paired comparisons was found. This study demonstrates the use of freely available data 22 

and mostly open source tools to ascertain landscape aesthetic value in a large protected area. 23 

Keywords: Bradley-Terry model, Flickr photos, LUCAS photos, Google Vision, probability models, 24 

image content analysis. 25 

Introduction 26 

Landscapes are integral to human welfare and support many human activities, including scientific, 27 

education, heritage-based, aesthetic, symbolic, sacred or for entertainment purposes (Haines-Young 28 

and Potschin, 2018). These services are integral to human existence, as highlighted by the European 29 

Landscape Convention (2000), which recognised their importance for quality of life. Under the 30 

Common International Classification of Ecosystem Services (CICES version 5.1), living systems that 31 

enable aesthetic experiences are defined as a separate class in the cultural (biotic) service section of 32 

the classification (Haines-Young and Potschin, 2018; Oteros-Rozas et al., 2018), providing an 33 

aesthetic value to society. The importance of aesthetic services as a cultural service is well accepted, 34 

having been enshrined in the Millennium Ecosystem Assessment in 2005 (de Groot and 35 

Ramakrishnan, 2005) and the UK National Ecosystem Services Assessment Follow-on reports (Kenter 36 

et al., 2014). 37 

Landscape aesthetics has been studied across different disciplines, including psychology, 38 

anthropology, evolutionary biology and landscape planning. Whilst this field has grown in socio-39 

ecological research and public interest, it is still missing well developed quantitative and 40 

standardised techniques for assessment (Daniel, 2001; Frank et al., 2013; Tenerelli et al., 2017). 41 

Biophysical approaches have included spatial modelling (e.g. Dramstad et al., 2006), using stated 42 

preference methods such as participatory GIS (Fagerholm and Käyhkö, 2009; Gosal et al., 2018), 43 
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interviews and questionnaires (Casado-Arzuaga et al., 2013; Kienast et al., 2015), and photographic 44 

surveys (Cheng et al., 2019; Palmer, 2004; Schirpke et al., 2013) with numeric Likert scales to allow 45 

participants to score photos. Several studies have shown that people aesthetically prefer natural 46 

over urban environments (de Groot et al., 2005; Kaplan and Kaplan, 1989).  47 

Gobster et al. (2007) suggests that the history of ancient farming and forestry systems in Europe 48 

contribute to the attachment by, and identity of its people, leading to the landscape as being 49 

perceived as attractive. Van Zanten et al. (2016) utilised Flickr, Instagram and Panaromio social 50 

media photos to quantify aesthetic and recreation values at a continental European scale, finding 51 

preference for more mountainous areas. Peña et al. (2015) used aesthetic preference as a proxy for 52 

recreation in the Basque Country, Spain, finding mountains and water bodies in landscapes were 53 

preferred over homogenous landscapes. Casado-Arzuaga et al. (2014) investigated recreation and 54 

aesthetic services in peri-urban environments using a GIS approach finding coastal areas, mountain 55 

summits, forests and rural areas corresponded with high aesthetic value. The linkages between 56 

ecology and aesthetics have been investigated by Gobster et al. (2007) highlighting that aesthetic 57 

experiences are a result of interaction with the ‘perceptible realm’ (the scale at which humans 58 

engage with their landscape surroundings) and are affected by context (landscape or personal-59 

social) . Figueroa-Alfaro and Tang (2017) undertook spatial analysis of geo-tagged photos in 60 

Nebraska to identify areas of aesthetic value, and were able to identify clusters of ‘new’ areas of 61 

aesthetic value. Casalegno et al. (2013) quantified online geo-tagged images to evaluate the 62 

perceived aesthetic value of an ecosystem finding hotspots of aesthetics value were in coastal areas 63 

and a negative correlation with population density. Tenerelli et al. (2017) used social media to 64 

investigate the scenic beauty of mountain landscapes in the French Alps, using a technique which 65 

combined the images with visual indicators of scenic beauty, with results showing that naturalness, 66 

ephemera and visual scale attract foreign visitors, whilst local visits were more attracted by 67 

historicity, imageability and complexity. Other studies investigating the features than contribute to 68 

aesthetics have included analysis of bundles of landscape features (Oteros-Rozas et al., 2018), within 69 

agricultural landscapes (van Zanten et al., 2016b), and Dutch river landscapes (Tieskens et al., 2018).  70 

The usual method of eliciting preference in landscape aesthetics research utilise a Likert scale to rate 71 

the images (Hägerhäll et al., 2018; Kaplan and Kaplan, 1989). For example, Masuda et al. (2008) used 72 

a Likert scale-based survey to investigate aesthetic preference differences between Americans and 73 

East Asians of portrait photos in varying contexts. Seresinhe et al. (2015) demonstrated how 74 

crowdsourced ratings for the scenic quality of geotagged photos could be coupled with health data, 75 

finding that inhabitants of scenic areas report better health. Research has also shown that social 76 

media data combined with OpenStreetMap data (to remove photos taken within buildings) increases 77 

the accuracy of scenic quality estimates compared to models using census data alone (Seresinhe et 78 

al., 2017a), with the application of neural networks and deep learning allowing extraction of scenic 79 

features from images (Seresinhe et al., 2017b).  80 

While being simple to use, the use of Likert scales has known inherent problems. Heine et al. (2002) 81 

suggested that cross-cultural comparisons using subjective Likert scales are compromised as they 82 

capture a response related to a shared norm, not to the participants’ absolute standing. The 83 

‘endpoints’ of the Likert scale are often set to an individual’s expectation of the dimension being 84 

measured (Heine et al., 2002; Volkmann, 1951) which varies from one individual to another. 85 

Alternatives to the Likert approach are choice experiments and paired comparisons (e.g. Hägerhäll et 86 

al. (2018)) to mitigate against the ‘endpoints’, or internal scale, of the Likert issue.  87 

In a paired-comparison survey, interviewees are faced with two options at each step and are asked 88 

to pick the one they prefer. Each comparison is typically done in a second or less. Indeed, literature 89 
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suggests that people make ‘better’ choices if they do not engage in conscious thought, with post-90 

choice satisfaction being reduced with introspection (Dijksterhuis and van Olden, 2006) and the 91 

greater the number of choices made available (Iyengar and Lepper, 2000). Dijksterhuis and Nordgren 92 

(2008) suggest that whereas conscious thought is better for simple decisions, complex decisions are 93 

better suited with unconscious thought. Dijksterhuis (2004) suggests that the unconscious thought 94 

allows more polarized, clear and integrated representations in memory. Photo paired-comparisons 95 

have been used in several studies to understand aesthetics and scenic beauty (DeLucio and Múgica, 96 

1994; Schirpke et al., 2019; Tahvanainen et al., 2001; Tyrväinen et al., 2003). Tyrväinen et al. (2003) 97 

used paired-comparisons between images of forests under different management types in. 98 

Tahvanainen et al. (2001) examined scenic beauty in Ruissalo Island, Finland, using paired 99 

comparison. DeLucio and Múgica (1994) used the paired comparison method to explore landscape 100 

preferences from four Spanish national parks. More recently, aesthetic landscape preferences have 101 

been investigated by Schirpke et al. (2019) from a paired photo-based survey and other landscape 102 

indicators. 103 

In contrast to Likert scale, analysis of paired-comparisons data is slightly more complicated and 104 

requires a statistical approach. The Bradley Terry (BT) model is a predictive probability logistic model 105 

first studied in the 1920s by (Zermelo, 1929) and later by Bradley and Terry (1952) after whom the 106 

model is named. The BT model is built on the concept of ‘contests’ between two alternatives, be it 107 

players, scenarios or images. The model is based on the probability of one item being chosen over 108 

another, allowing a full ranking of items to be derived from a sample of paired comparisons (Agresti, 109 

2002; Turner and Firth, 2012; Zucco et al., 2019). The potential for using the BT model with natural 110 

landscapes has been highlighted by Hägerhäll et al. (2018) in the field of environmental psychology, 111 

who used 9 images, and 36 total comparisons, in a study to investigate human preference for natural 112 

landscapes. A second challenge with pair-comparisons data is in upscaling – the number of pair 113 

combinations increases as N2 where N is the number of options (e.g. images). However, there are 114 

ways to use the BT model with partial paired-comparison data sets as shown in (Zucco et al., 2019). 115 

Many of the previously mentioned studies used social media data. In their review, Ghermandi and 116 

Sinclair (2019) counted 15 studies that used social media to assess aesthetic value of landscapes. 117 

Though the use geotagged images and/or photo-user days alone to assess aesthetic value of an area 118 

can often be conflated with recreation, making it difficult to understand how much of each service is 119 

really being assessed. Innovative approaches have included Lovato et al. (2013) whom attempted to 120 

extract aesthetic preference by analysing aspects of Flickr user ‘favourite’ images, including scenes 121 

and colours, which allowed different users to be identified from preference. Yoshimura and Hiura 122 

(2017) mapped aesthetic values of landscapes in Hokkaido using social media images and calculation 123 

of viewsheds for demand and MaxEnt for supply. 124 

Whereas paired-comparisons based probability models have been previously used in a more limited 125 

scope (e.g. Hägerhäll et al. (2018)), here we look at how it can be upscaled across an entire 126 

protected area landscape using social media images and machine learning. Our study considers 127 

several pertinent issues in the field that guide our research questions: 128 

(a) As the number of paired comparisons increases by a power of 2, how well can this technique be 129 

applied to larger datasets with partial coverage and the BT model? 130 

(b) Given that social media photos are likely to be ‘aesthetic’ (at least to the Flickr user who took and 131 

uploaded them), would including publicly available and systematically stratified European Land Use 132 

and Coverage Area frame Survey (LUCAS) survey photos (Ballin et al., 2018) give a reference set with 133 

a wider ‘aesthetic gradient’ on which we can train a predictive model? 134 
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(c) Can machine learning be used to create a useable set of linguistic predictors for a regression 135 

analysis, allowing to extrapolate a BT model based on a subset of images to predict landscape 136 

aesthetics at the landscape scale in a given cultural context? 137 

Methods 138 

We adopt multiple techniques, including photo retrieval and content analysis of images using 139 

machine-learned APIs and Python scripts, text mining to filter for landscape only images, using 140 

natural language processing for synonym term group predictor variables, probability modelling for 141 

aesthetic value and finally linear regressions, model selection and mapping. The various steps of the 142 

analysis are shown in Figure 1 and explained in detail in the following sections. 143 

Study site 144 

The Yorkshire Dales National Park (YDNP), situated in the north of England (Figure 2) was the site 145 

used for this study. The park is known for its natural beauty, with fells over 700m in height, grassy 146 

rounded hills with deep ravines, glacial and post-glacial landforms, waterfalls and pastoral landscape 147 

(Yorkshire Dales National Park Authority, 2018a). The park is nestled in a highly cultural landscape, 148 

with several Areas of Outstanding Natural Beauty (AONB) designated adjacent to the national park 149 

including North Pennines AONB, Nidderdale AONB and Forest of Bowland AONB. Designated in 150 

1954, and further expanded in 2016, the YDNP habitats are predominantly enclosed pasture/ grass 151 

crop farmland and unenclosed uplands used for grazing (Wilson et al., 2018). The YDNP is seen as a 152 

prime example of limestone scenery in the UK, with the largest exposure of Carboniferous limestone 153 

in England and having over 30% of English limestone pavements, with three quarters classed as 154 

being in good condition (Lee, 2015; Yorkshire Dales National Park Authority, 2018a, 2017).  Just 155 

under half of the UK’s upland calcareous grassland is found in the park, with its blanket bog and 156 

upland heathland being important at an international level (Yorkshire Dales National Park Authority, 157 

2017). The park is also home to many important bird species including Curlew, Lapwing and Black 158 

Grouse, and provides high-value areas for breeding waders, with important invertebrate species 159 

(e.g. the Northern Brown Argus butterfly), Atlantic white-clawed crayfish and mammals including the 160 

red squirrel (Wilson et al., 2018; Yorkshire Dales National Park Authority, 2017).  161 

Over 24,000 people work and live in the park (Yorkshire Dales National Park Authority, 2018a). It has 162 

been predicted that over the next five years, the resident population in the park will decrease, with a 163 

skewed age structure due to younger people moving out of the area (Yorkshire Dales National Park 164 

Authority, 2018a). Tourism is important for the national park with 3.85 million visitors (including 165 

0.52 million overnight visitors) totalling 5.06 million tourist days in 2017 alone, bringing in £263 166 

million into the regional economy (Yorkshire Dales National Park Authority, 2018b). 167 
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 168 

Figure 1. Flow chart of methodology, including additional exploratory processes and relation to table and other 169 
figures in this study. The numbers of images (N) at various stages have been included for clarity.  170 

 171 
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 172 

Figure 2. Location of the study site, the Yorkshire Dales National Park, situated in the north of England, with 173 
twenty social media (Flickr) and twenty images from the LUCAS database used in this study highlighted. British 174 
A and B roads have been included to show proximity to accessible locations. The inset shows the location of 175 
the national park within the United Kingdom. © Crown Copyright and database right 2019. 176 

 177 

Photo retrieval 178 

Flickr images with associated metadata (including geographic coordinates, date and unique 179 

photographic ID) were downloaded for the park with bounding box coordinates and Flickr’s 180 

Application Programming Interface (API) using the Python ‘Scrapy’ package. Images were selected 181 

for the years 2009-2018 and geographically cropped to the boundary of the Yorkshire Dales National 182 

Park resulting in 43,863 images. In addition, we used LUCAS data, which is from points that are 183 

sampled from the intersections of a 2 km grid that includes around 1 million points all over the EU 184 

(Ballin et al., 2018). Cardinal photos taken by surveyors can be ordered online (Eurostat, 2020). As 185 

the location of LUCAS points is pre-determined as a desk-based exercise before field visits, there is 186 

no a-priori reason for those photos to be ‘beautiful’, in contrast to social media photos, which 187 

represent the outcome of cognitive decision to take a photo and share it publicly by users. We will 188 
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hereafter refer to LUCAS points as being ‘random’ in space, from a landscape aesthetics perspective. 189 

Of the combined LUCAS photos surveyed in 2009, 2012 and 2015 (n=302), we randomly kept twenty 190 

LUCAS images through a stratified sample using an overlaid 2 by 5 grid (Supplementary material 191 

Figure A1).  192 

Content analysis and predictor variables 193 

Images were analysed for content using Google’s Cloud Vision API and Python scripts. Google Vision 194 

provides labels, hereafter referred to as terms, and confidence scores (between 0 - no confidence 195 

and 1 - high confidence) using their pre-trained machine learning algorithm(Google Cloud Vision, 196 

2019), for example, an image may result in being tagged with the term ‘highland’ with a score of 197 

‘0.948’. The results were returned as JSON files, which were parsed to extract the terms and scores, 198 

above 0.8, in RStudio (RStudio Team, 2015). All terms were manually checked, with 1,393 terms 199 

related to human activity or infrastructure, for example, ‘terrier’, ‘garden gnome’, or ‘coffee house’, 200 

used to filter the images, resulting in 22,615 images related to landscape with minimal human 201 

infrastructure. The term ‘farm’ was kept, as though it is related to human infrastructure, the UK 202 

landscape is heavily influenced with a history of farming which has shaped our landscapes. The final 203 

set of photos in predominantly natural landscape type images. Of these, twenty images were 204 

selected at random for the paired-comparisons survey (Supplementary material Table A1). 205 

Techniques from text mining were used to create a term-document matrix of all terms from all forty 206 

images (twenty each from Flickr and LUCAS) using the ‘tm’ R package (Feinerer et al., 2008; Feinerer 207 

and Hornik, 2018), with infrequent partial terms greater than a threshold of 0.95 removed, resulting 208 

in 36 terms (such as ‘plant’, ‘highland’ and ‘stream’). These remaining terms were passed into 209 

‘Wordnet’ lexical English database, where words are grouped by sets of cognitive synonyms, using 210 

the ‘wordnet’ R package for nouns and verbs, and the synonyms for each term extracted (Feinerer 211 

and Hornik, 2017; Fellbaum, 1998). The resulting term synonym groups (e.g. highland had ‘highland’ 212 

and ‘upland’) were used to filter terms for all images (all landscape filtered Flicker images and LUCAS 213 

images), and dummy variables created, allocating ‘0’ for non-presence and ‘1’ for presence of the 214 

term synonym group. The term synonym groups ‘grass’ and ‘pasture’ were removed, as all images 215 

had presence of these groups, resulting in 34 dummy variables which were later used as predictors. 216 

Paired-comparison survey 217 

An online experiment interface was built using Construct 3 (Scirra Ltd, 2019), a system designed 218 

predominantly as a game editor. The experiment was designed to present in a random order all 219 

paired comparisons (780 in total for 40 images), with the user asked to choose the image they found 220 

most aesthetically pleasing. Physical participant information sheets were read, and consent forms 221 

were signed before participants began. The user clicked the image they chose, and the system 222 

presented the next pair until all comparisons were made.  Each user was allocated a unique ID and 223 

image choice and image pair order presented to the user stored for analysis. Ten participants were 224 

recruited from University of Leeds PhD students, with an equal number of males and females, 80% 225 

were aged between 26-35 with the remaining 20% between 36-45, and 70% had master’s degrees or 226 

equivalent (with the remainder having PhDs).  227 

Modelling aesthetic value 228 

The data from the paired-comparisons survey was modelled using the BT model using the 229 

‘BradleyTerry2’ R package (Turner and Firth, 2012) with the value set relative to the baseline 230 

category (set a posteriori to be the highest-ranked image) (Zucco et al., 2019) and normalised 231 

between 0 and 1. The model predicts ‘ability (α)’ (also called the ‘estimate’ or ‘worth’ value), for 232 
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clarity and ease of understanding in our study, the modelled value will henceforth be referred to as 233 

the ‘aesthetic value’. The statistical significance of differences in value between each image and the 234 

baseline image (highest ranked image) is also included. Following Zucco et al. (2019), as it is not 235 

feasible for all p-values to be reported between all paired comparisons, bootstrapped confidence 236 

intervals for the aesthetic value and rank order of each image are reported. This involved drawing 237 

1000 simulations for each image’s position from a multivariate normal distribution with mean and 238 

variance-covariance matrix set to their empirical values, with each image’s 5th and 95th percentile 239 

rank across all simulations reported.  240 

Partial BT modelling 241 

To investigate the potential of partial or incomplete paired comparisons (where participants only 242 

rate a subset of paired image comparisons) to model aesthetic value, the paired-comparisons data 243 

was modelled in parallel with differing numbers of responses (truncated at 104, 200, 300, 400, 500, 244 

600 and 700 responses, in order of paired comparison, out of the total 780 comparisons) using the 245 

BT model. In this study we used a fully connected undirected ‘graph’ (the set of vertices (images) 246 

connected by edges (paired comparisons). This meant the lowest truncation was 104, as lower than 247 

this would have left the graph unconnected. This value is not theoretical and specific to our 248 

experiment and will vary with the same value for N due to randomization of the paired comparisons 249 

used in a partial dataset. Although methods exist to analyse partial matrices with unconnected 250 

graphs with variants of the BT model, we use the standard model which required a fully connected 251 

graph to allow the model to rank the images based on maximum likelihood estimates. To investigate 252 

the applicability to varying image datasets, three random subsets of 10 (25%), 20 (75%) and 30 (75%) 253 

images each were taken, and BT model analysis repeated, once again using truncated paired-254 

comparison matrices for each. The total number of comparisons for each subset was 45 comparisons 255 

for 10 images, 190 comparisons for 20 images, 435 comparisons for the 30 images and 780 256 

comparisons for the full set of 40 images. Kendall’s tau-b was calculated to investigate correlation, 257 

due to its ability to handle tied ranks.  258 

Regression analysis and mapping aesthetic values 259 

Linear regression modelling was used, with the aesthetic value (from the full paired-comparison BT 260 

model) as the outcome variable. The ‘waterway’, ‘watercourse’, ‘riparian zone’ and ‘body of water’ 261 

predictors had the same presence distribution across 40 images, hence were grouped into a single 262 

collective variable. This resulted in 31 term synonym groups as predictor variables. Variance Inflation 263 

Factors (VIFs) were calculated to investigate multicollinearity, with the highest VIFs removed until all 264 

VIFs were under 10. Some collinearity is to be expected, due to the nature of the landscape type 265 

predictors and the use of synonym groups. Stepwise selection (both directions) was used, and non-266 

significant predictors were successively removed until the model consisted of only significant 267 

predictors. Cross-validation was used to quantify uncertainty in the model. The final model was used 268 

to predict the aesthetic score for accessible areas within Yorkshire Dales, using for all 22,615 269 

landscape-only Flickr images in the park and mapped at a 1 km2 resolution, using the mean aesthetic 270 

estimate of all images within a cell. Mapping was undertaken in ESRI ArcMap (v.10.6), with a 271 

standard deviation (n=2.5) stretch applied to all visualised maps.  272 

273 
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Results 274 

Paired comparison survey 275 

Our analysis revealed that perceived aesthetic value can be discerned  through paired-comparisons 276 

and Bradley-Terry models, with LUCAS images having both a lower mean and rank for aesthetic value 277 

compared to Flickr images (Figure 3). Images were ranked by perceived aesthetic value , see 278 

Supplementary Information Appendix C. The estimates are provided relative to the baseline category 279 

(the highest-ranked image) set arbitrarily at zero, and then normalised between 0-1 for ease of 280 

interpretation. The statistical significances reported refer to the difference to each image and the 281 

baseline. The top two images are not significantly different from each other; hence there is some noise 282 

in the estimated values, though both are Flickr images. Remaining images are significantly 283 

distinguishable from each other (P < 0.01), compared to the baseline (highest scoring) image. 284 

Following Zucco et al. (2019), we computed bootstrapped confidence intervals for the rank order for 285 

each image in lieu of reporting p-values for all paired comparisons. The average standard error of the 286 

aesthetic value was 0.23, with the Flickr images having slightly less at 0.22 and LUCAS images having 287 

0.23. The median estimate and rank were higher for Flickr images with 0.68 and 11.5 respectively, 288 

with LUCAS images having lower value of 0.41 and 30.5. Flickr images also dominated the higher the 289 

ranks, with 75% of the most aesthetic images being of Flickr origin, in agreement with our postulate 290 

that aesthetic preference is higher in non-random landscape images from social media.  291 
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  292 

Figure 3. Estimated aesthetic value (Bradley-Terry model estimates) for forty samples images using complete 293 
paired comparisons from the Yorkshire Dales National Park. P-values compared to the baseline (highest value) 294 
image (04) (*P < 0.01). The CI’s reports the 90% confidence intervals of aesthetic value and rank order of each 295 
image, computed using a 1000 simulation parametric bootstrap. 296 

Partial paired comparison data 297 

A set of seven partial (or incomplete) paired comparison subsets of the data at 16-90% of the total 298 

780 comparisons, were modelled and compared to the full 100% model shown in Figure 4. Results 299 

show that even at 14% of the full set of pair-comparisons a strong correlation (R2 of 0.93) between BT 300 

model estimates for full and partial set exists, increasing to 0.99 from 38%. The standard error 301 

increases with less responses, between 0.225 to 0.616 with the maximum width of the rank-order 302 

confidence interval increasing from 7 to 14 with the least responses BT-model (Supplementary 303 

Information Appendix C, Table C1). Differences are to be expected between varying response models, 304 

though correlation between all paired comparison models to the truncated paired comparisons 305 

models show a high level of similarities.  306 
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 307 

Figure 4. Complete paired comparison Bradley-Terry model estimates vs varying BT models using different 308 
number of paired comparisons (partial matrices) for forty sample images. Adjusted R2 shown. 309 

310 
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To demonstrate the transferability of the method, random subsets of 10 (25%), 20 (75%) and 30 311 

(75%) images were modelled using the Bradley-Terry model (each subset modelled in parallel with 312 

differing levels of partial paired-comparison data). Kendall’s Tau-b was used to indicate the 313 

correlation between the partial and full paired comparison data within each subset independently) 314 

(Figure 5). It can be seen that Kendall’s tau-b reaches higher values at lower paired comparison 315 

truncations the higher the sample size, though a tau of over 0.80 can be achieved having at least 316 

20% paired comparisons in any of the subsets. 317 

 318 

 319 

Figure 5. Plot showing the correlation between complete paired comparison BT model estimates and varying 320 
BT models using different number of paired comparisons (partial matrices) for three subsets of the dataset: 10, 321 
20 and 30 images, with three replicates (n=3). Panel (d) shows multiple Kendall’s Tau-b values for partial 322 
paired-comparisons (in % of total number of possible pairs) by images used. Tau-b values used in (d) are 323 
intercept values from a linear model for respective (a), (b) and (c) BT models.  324 

  325 



13 
 

Predictive modelling 326 

The BT estimates for the original complete BT model (Figure 3) were regressed onto synonym groups 327 

derived from content in landscape images from the Yorkshire Dales National Park. The final model 328 

has an adjusted R2 of 0.62 and an RMSE of 0.17 (based on 8-fold cross-validation) with 8 negative 329 

predictors and 11 positive predictors (Table 1 and Figure 6), with the latter having an overall higher 330 

level of significance. The most important of the positive predictors were ‘rural areas’ and ‘mountain’ 331 

with estimates of 0.671 and 0.60, with ‘vegetation’, ‘ecoregion’, ‘plain’, ‘stream’, ‘prairie’ and ‘fell’ all 332 

having estimates between 0.29 and 0.44. The strongest negative predictor was ‘field’ with a value of 333 

-0.75, followed by ‘land lot’, ‘steppe’, and ‘highland’, with estimates ranging from -0.33 to -0.46. 334 

Whereas the model explains a significant percentage of the variance using regression based on 335 

machine learning (using reduced term synonym groups), the results suggest that there are factors 336 

outside of the synonym groups that impact aesthetic preference, as would be expected.  337 

 338 

Table 1. Linear regression model (using forty sample images) after stepwise and Variance Inflation Factor 339 
selection (VIF<10) and removal of non-significant variables. This resulted in R2 of 0.797 (adjusted R2 = 0.622) 340 
with model p-value <0.001. Variables p-values are indicated as *** <0.001, ** <0.01, * <0.05. 341 

  Aesthetic value ability 

Predictors Estimates CI 

(Intercept)  0.05 -0.17 – 0.27 

Rural area  0.71 *** 0.43 – 0.99 

Mountain  0.60 *** 0.35 – 0.84 

Vegetation  0.44 *** 0.29 – 0.60 

Ecoregion  0.35 ** 0.17 – 0.52 

Plain  0.33 ** 0.11 – 0.55 

Stream  0.32 *** 0.17 – 0.46 

Prairie  0.30 ** 0.10 – 0.50 

Fell  0.29 ** 0.10 – 0.48 

Mountainous landforms  0.20 * 0.05 – 0.35 

Green  0.16 ** 0.05 – 0.27 

Farm -0.12 * -0.24 – -0.01 

Tundra -0.19 * -0.36 – -0.01 

Hill -0.24 * -0.41 – -0.07 

Water -0.24 * -0.42 – -0.06 

Highland -0.33 ** -0.53 – -0.14 

Steppe -0.34 ** -0.54 – -0.14 

Land lot -0.46 ** -0.70 – -0.23 

Field -0.75 *** -1.04 – -0.45 

 342 

  343 
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 344 

 345 

Figure 6.  Predicted aesthetic estimates vs actual BT model estimates using the original full model with all 346 
images and paired comparisons. Note: all values normalised between 0 and 1.  347 

Mapping aesthetic value 348 

The regression model was used to predict aesthetic value for all landscape for the entirety of the 349 

Yorkshire Dales National Park (Figure 7). High values can be seen across the National Park. Highlights 350 

include the region north of Sedbergh, a hilly area with some including the Howgill Fells which is used 351 

by climbers and known locally for its picturesque views. White spaces in the map are 34% (752 km2) 352 

of all pixels, where no Flickr landscape photos were found and are noticeably away from easy access 353 

(roads). An area with many roads and the River Swale, to the north of Hawes and Aysgarth, also 354 

exhibits high aesthetic value.  Malham Moor, north-east of Settle, has high valued pixels, as does the 355 

village Ingleton, and Bolton Priory (Augustinian priory ruins set in riparian rural landscape). To 356 

explore the visual correlation between the areas with high aesthetic value and number of photos 357 

taken, the top 20% and photo density were mapped (Figure 8) and showed visual similarity in spatial 358 

pattern. 359 

 360 
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 361 

Figure 7. (a) Predicted aesthetic values for the Yorkshire Dales National Park using 22,615 images (prefiltered 362 
to only landscape images), (b) estimated RMSE per pixel. White space between pixels indicate areas where no 363 
landscape images were present. © Crown Copyright and database right 2019. [COLOUR PRINT] 364 

 365 

Figure 8. (a) Top 20% of predicted aesthetic values, (b) density of photos taken, per km2 in the Yorkshire Dales 366 
National Park. White space between pixels indicate areas where no landscape images were present. © Crown 367 
Copyright and database right 2019.  368 

Lastly, images with high and low aesthetic value from the National Park were extracted and visually 369 

inspected (Figure 9). High scoring images can be seen to be exhibit more ‘complexity’, having a ‘hilly’ 370 

character, with the horizon not being complexly ‘horizontal’. There also appears to be a variety of 371 

components in each image, including vegetation (both low, i.e. grass, and high such as trees) and 372 

water. There are also images of snow, though the underlying landscape can be seen at least in part. 373 

The low scoring images often show a flatter horizon, with large swathes of low green vegetation, i.e. 374 

fields and grassland. Visual analysis shows that the techniques culminating in the final mapping of 375 

aesthetic value suggest the method was robust.  376 
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 377 

Figure 9. The top five (a1 – a5) and bottom five (b1 – b5) images with predicted standardised (0-1) aesthetic 378 
value estimates from 2,428 available Creative Commons images within the dataset (from a total of 22,615 379 
images that were identified as landscape images). Note, estimates are rounded to two decimal places. Where 380 
multiple images had the same aesthetic value estimates, the images were selected based on numerical 381 
descending ID number of the image. Grey upper and lower bounding bars and black outlines were added to 382 
images for this figure for clarity and are not present in the originals. Full Creative Commons attributions are 383 
given in Supplementary Information Appendix E. [COLOUR PRINT] 384 

Discussion 385 

The use of paired-comparisons, while remediating the ‘endpoints’ of inter-personal variability of 386 

Likert scale surveys, is difficult to upscale to larger number of photos. This study showed that a 387 

partial matrix of paired-comparison data can be used to provide results that are not dissimilar from 388 

using complete paired-comparison data to extract aesthetic preference from social media images. 389 

This highlights the potential of the techniques demonstrated to combat the N2 challenge from using 390 

paired comparison methods whilst still maintaining the ability to get reliable R2 values. We found 391 

very good agreement with only 20% of the paired comparisons. Additionally, similar patterns in the 392 

data can also been seen in different values of N. Results were expected, as other studies such as 393 

Zucco et al. (2019) have successfully used partial paired comparison datasets, having used 275 out of 394 

666 potential comparison sets (or 41%).  395 

Our final model using regression based on machine learning and content tags reduced by synonym 396 

grouping explained a large amount of the variance in the BT model output. When used at the 397 

landscape scale, the final maps showed areas with high aesthetic value were often those where 398 

many photos were taken (Figure 8). This affirms the expectation that landscapes with high aesthetic 399 

value attract more recreational users, and thus have more photos taken (and uploaded to Flickr) (as 400 

this would translate into a high photograph user-days (PUD) value (e.g. Gosal et al., (2019)). The 401 

resulting high-value aesthetic images from the upscaled data showed a preference for landscape 402 

complexity, which has been shown to be a driver for preference (Ode et al., 2010). The models also 403 

showed a positive impact of mountains, mountainous landforms and streams. This partially follows 404 

van Zanten et al. (2016) who found that the strongest predictors for high aesthetic value were hills 405 

and mountains, while ‘hills’ in our study show a moderate negative effect, perhaps a result of the 406 

differentiation in the Google Vision tags for these terms. Though our results are confirmed by Peña 407 

et al. (2015) whom found that personal aesthetic assessments were predominantly based on 408 

naturalness of an area and how land use management impacted it. They found that diverse, 409 

mountainous and those landscapes with water bodies were preferred over flat, homogenous, water-410 
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less landscapes. Casado-Arzuaga et al. (2014) found that high aesthetic value areas were 411 

corresponded with more natural landscapes, especially coastal ecosystems, rough summits, 412 

forest/pasture mosaic areas and rural settlements. They found that the human influence of farming, 413 

in terms of farmhouse, livestock or crops) added aesthetic value in landscape compared to those 414 

landscape that no longer had farming associations. This helps to explain our own result of rural area 415 

being the strongest positive predictor in our model.  416 

Areas of high landscape coherence are often considered of higher aesthetic value, including those 417 

physiognomic classes with agricultural areas, forests, water bodies and areas of transitional 418 

vegetation, with low coherence seen in areas with urban fabric and bare rocks (Karasov et al., 2020). 419 

This high coherence can be seen in our results (i.e. positive predictors including rural area, streams, 420 

ecoregion, prairie and ‘green’. Field, land lot, steppe and tundra, all negative predictors in our study 421 

are indicative of low coherence areas. 422 

It has also been found that high landscape aesthetic quality in mountain ranges in Germany, riverine 423 

areas, coastal areas and lower in urban areas (Hermes et al., 2018). Our results showing 424 

mountainous landscape, and mountains having positive effects reinforce Hermes' et al. (2018) study. 425 

It has been found that viewpoints, agricultural land and cultural/historical features contributed 426 

highly landscape aesthetic capacity (Langemeyer et al., 2018). Interestingly, Langemeyer et al. (2018) 427 

found that context impacted landscape aesthetic capacity. For example, in littoral-mountainous 428 

landscapes, it was the presence of sea and forest elements that increased value, in mountainous 429 

landscapes the crest line (scenic-ness in the background) and in urban landscapes, it was rivers and 430 

hills.  431 

It has been suggested that the attractiveness of landscapes are linked to its physical attributes 432 

(Casado-Arzuaga et al., 2014; De Vries et al., 2007), and our results would confirm that features of 433 

landscapes identified from photographs are indeed strong predictors of aesthetic value, and 434 

generally is consistent with other studies that have investigated the impact of landscape 435 

characteristics on landscape aesthetics. Our study is coherent with Tieskens et al. (2018), whom also 436 

found that grass and water were positively predictive of high aesthetic value the close the relative 437 

feature was to the geolocated photo. Though in contact, forest was also predictive, though is not 438 

one of our significant predictors in our model.  439 

Seresinhe et al. (2017b) used a neural network approach to extract features from images and used 440 

scenic scores from an online platform. They found that mountain-related terms such as ‘mountain 441 

snowy’, ‘mountain, ‘mountain’ paths were positive predictors of scenic-ness, consistent with our 442 

results. The term ‘green’ was also weakly positive, and the term ‘farm’ weakly negative, for both our 443 

studies. Though on some terms, such as tundra. Hence it is suggested that use of automated 444 

processes can create more consistency and aid in the removal of human error for feature extraction. 445 

Whereas the regression model explained a large proposition of the variance, other factors in the 446 

photographs must have contributed to aesthetic preference. Non-symmetrical landscape images are 447 

preferred over symmetrical images, which was not analysed in our study (Bertamini et al., 2019). 448 

This may explain why more unsymmetrical images ranked higher in the examples given in Figure 9. 449 

Seasonal stages have also been found to influence preference of landscape elements, with flowering 450 

stages most liked (Junge et al., 2015), and indeed the use of photographs from all seasons in this 451 

study was a limitation. Coloured flowers, especially blue ones, have been found to be preferred 452 

(Hůla and Flegr, 2016). Colours generally in the images may have impacted aesthetic preference. For 453 

example, Huang and Lin (2019) have found that in mountainous landscapes, magenta-green colour 454 

diversity is preferred.  455 
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By using only ten people in this study, similar in age and education level, with an interest in 456 

geography as a subject, there was a potential limitation in not being representation of the general 457 

population. Though all participants lived and work within 30km of the study area, hence were 458 

assumed to have some familiarity of the area. While some studies have shown that landscape 459 

preference can be impacted by socio-demographic factors (i.e. age, gender and residential 460 

experience (Luo et al., 2019; Lyons, 1983)), Kalivoda et al. (2014) argues that positively rated 461 

landscapes share broad consensus across socio-demographic characteristics.  Indeed, while the 462 

results in Figure 7 may be culturally context-dependent (because of our respondents’ sample) the 463 

similarity to PUDs (Figure 8) supports the argument in the latter study. 464 

The upscaling and transferability of the method is dependent on the availability of photos for a given 465 

landscape. LUCAS photos are available across the EU states, with social media data, including Flickr, 466 

being available for 61% (of 5401) national parks globally (Tenkanen et al., 2017). The method 467 

employed is restricted in that it only generates aesthetic values for those areas that are accessible, 468 

or at least ‘visually’ accessible. Future work should address larger and more diverse photos and 469 

respondents sample size, other photos’ qualities such as symmetry and seasonality. 470 

Being able to map aesthetic preferences for any given protected are important for management 471 

decision making. van Zanten et al. (2016b) found that within agricultural landscapes hedgerows and 472 

tree lines where valued for aesthetics and recreation value in the Netherlands, in Germany, it was 473 

trees and crop diversity. Hence the values of aesthetic services can vary geographically, and hence 474 

approaches such as ours that are highly context-relevant are important for advising management 475 

decisions. Section 61 of the Environment Act 1995 assert that English National Parks should 476 

‘promote opportunities for the understanding and enjoyment of the special qualities [of the national 477 

parks] by the public’ (Yorkshire Dales National Park Authority, 2018a). With UK's exit to the Common 478 

Agricultural Policy, a new land management system for farming system will have unknown 479 

consequences for the parks landscape (Yorkshire Dales National Park Authority, 2018a). Hence it 480 

becomes even more important to assess the current aesthetic assets that are held. This study 481 

demonstrates an up-scalable approach that only uses free and publicly available photos and using 482 

opens-sourced tools (mostly in R) for analysis. 483 

Conclusion 484 

Landscape aesthetics are nuanced. Our methods help to elucidate the subtle nature of landscape 485 

aesthetics through combining techniques that have been used in other fields such as BT models and 486 

machine learning. Aesthetics are both spatially and temporally explicit and subject to a myriad of 487 

factors, but the use of public data and advanced algorithms opens a potential to successfully value 488 

landscape aesthetics at large extents – which is key to prevent further degradation of our natural 489 

heritage. 490 
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