
This is a repository copy of A family of T6SS antibacterial effectors related to 
L,D-transpeptidases targets the peptidoglycan.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/162745/

Version: Published Version

Article:

Sibinelli-Sousa, S., Hespanhol, J.T., Nicastro, G.G. et al. (6 more authors) (2020) A family 
of T6SS antibacterial effectors related to L,D-transpeptidases targets the peptidoglycan. 
Cell Reports, 31 (12). 107813. ISSN 2211-1247 

https://doi.org/10.1016/j.celrep.2020.107813

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence 
allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the 
authors for the original work. More information and the full terms of the licence here: 
https://creativecommons.org/licenses/ 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Article

A Family of T6SS Antibacterial Effectors Related to
L,D-Transpeptidases Targets the Peptidoglycan

Graphical Abstract

Highlights

d Tlde1 is an antibacterial T6SS effector related to L,D-

transpeptidases

d Tlde1 does not form crosslinks between peptide stems

d Tlde1 has L,D-carboxypeptidase and L,D-transpeptidase

exchange activity

d Tlde1 reduces the availability of peptidoglycan precursors

and impairs synthesis

Authors

Stephanie Sibinelli-Sousa,

Julia T. Hespanhol,

Gianlucca G. Nicastro, ...,

Robson F. de Souza, Cristiane R. Guzzo,

Ethel Bayer-Santos

Correspondence

ebayersantos@usp.br

In Brief

Antibacterial toxic effectors are an

armory used by bacteria to compete

against rivals. Sibinelli-Sousa et al. reveal

the mechanism by which a family of T6SS

effectors interferes with target bacteria

peptidoglycan. Tlde1 cleaves and

modifies peptide stem precursors and

reduces their availability, preventing

peptidoglycan synthesis.

Sibinelli-Sousa et al., 2020, Cell Reports 31, 107813

June 23, 2020 ª 2020 The Authors.

https://doi.org/10.1016/j.celrep.2020.107813 ll

mailto:ebayersantos@usp.br
https://doi.org/10.1016/j.celrep.2020.107813
http://crossmark.crossref.org/dialog/?doi=10.1016/j.celrep.2020.107813&domain=pdf


Article

A Family of T6SS Antibacterial Effectors Related
to L,D-Transpeptidases Targets the Peptidoglycan

Stephanie Sibinelli-Sousa,1,4 Julia T. Hespanhol,1,4 Gianlucca G. Nicastro,1 Bruno Y. Matsuyama,2 Stephane Mesnage,3

Ankur Patel,3 Robson F. de Souza,1 Cristiane R. Guzzo,1 and Ethel Bayer-Santos1,5,*
1Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de S~ao Paulo, S~ao Paulo 05508-900, Brazil
2Departamento de Bioquı́mica, Instituto de Quı́mica, Universidade de S~ao Paulo, S~ao Paulo 05508-000, Brazil
3Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
4These authors contributed equally
5Lead Contact

*Correspondence: ebayersantos@usp.br

https://doi.org/10.1016/j.celrep.2020.107813

SUMMARY

Type VI secretion systems (T6SSs) are nanomachines used by bacteria to inject toxic effectors into compet-

itors. The identity and mechanism of many effectors remain unknown. We characterized a Salmonella T6SS

antibacterial effector called Tlde1 that is toxic in target-cell periplasm and is neutralized by its cognate

immunity protein (Tldi1). Microscopy analysis reveals that cells expressing Tlde1 stop dividing and lose

cell envelope integrity. Bioinformatic analysis uncovers similarities between Tlde1 and the catalytic domain

of L,D-transpeptidases. Point mutations on conserved catalytic residues abrogate toxicity. Biochemical as-

says reveal that Tlde1 displays both L,D-carboxypeptidase activity by cleaving peptidoglycan tetrapeptides

between meso-diaminopimelic acid3 and D-alanine4 and L,D-transpeptidase exchange activity by replacing

D-alanine4 by a non-canonical D-amino acid. Phylogenetic analysis shows that Tlde1 homologs constitute

a family of T6SS-associated effectors broadly distributed among Proteobacteria. This work expands our

current knowledge about bacterial effectors used in interbacterial competition and reveals a different mech-

anism of bacterial antagonism.

INTRODUCTION

Bacteria commonly live in densely populated polymicrobial com-

munities and compete over scarce resources. Several types of

contact-dependent antagonistic interactions between bacteria

have been described (Garcı́a-Bayona and Comstock, 2018).

The type VI secretion system (T6SS) is a dynamic contractile

structure evolutionarily related to bacteriophage tails that de-

livers protein effectors in a contact-dependent manner into

diverse cellular types, including eukaryotic host cells and rival

bacteria and fungi (Hachani et al., 2016; Coulthurst, 2019; Trunk

et al., 2019). T6SSs were also reported to display contact-inde-

pendent functions in which secreted effectors facilitate the scav-

enging of scarce metal ions (Wang et al., 2015; Si et al., 2017a,

2017b; DeShazer, 2019).

The T6SS is anchored in the bacterial envelope and is

composed of 13 core structural components that assemble

into 3 major complexes: the trans-membrane complex, the

baseplate, and the tail (Nguyen et al., 2018). A conformational

change in the T6SS baseplate is thought to trigger the contrac-

tion of a cytoplasmic sheath, expelling a spear-like structure to

puncture target cell membranes (Wang et al., 2017; Salih et al.,

2018). The spear is composed of Hcp (hemolysin co-regulated

protein) hexamers capped with a trimer of VgrG (valine-glycine

repeat protein G) proteins and a PAAR (proline-alanine-alanine-

arginine) protein tip (Mougous et al., 2006; Renault et al., 2018;

Shneider et al., 2013). Cargo effector proteins associate through

non-covalent interactions with these structural components,

while specialized effectors are presented as additional C-termi-

nal domains fused to Hcp, VgrG, or PAAR proteins (Cianfanelli

et al., 2016; Jana and Salomon, 2019). Consequently, along

with the Hcp-VgrG-PAAR puncturing device, a cocktail of effec-

tors is delivered into the target cell after each contraction event.

Antibacterial effectors delivered by the T6SS induce toxicity

by targeting important structural components or affecting

target-cell metabolism. Several families of effectors have been

described, including peptidoglycan amidases and hydrolases,

phospholipases, nucleases, nicotinamide adenine dinucleotide

(phosphate) (NAD(P)+)-glycohydrolases, pore-forming proteins,

and enzymes that synthesize (p)ppApp (Russell et al., 2011,

2012; Koskiniemi et al., 2013; Whitney et al., 2013; Ma et al.,

2014; Altindis et al., 2015; Tang et al., 2018; Ahmad et al.,

2019; Jana et al., 2019; Mariano et al., 2019; Wood et al.,

2019). An example of an effector inducing toxicity by posttrans-

lational modification (ADP-ribosylation) of the cytoskeleton

component FtsZ has also been reported (Ting et al., 2018). To

prevent self-intoxication, bacteria have a specific immunity pro-

tein for each antibacterial T6SS effector. Immunity proteins are

encoded adjacent to their cognate effector, reside in the same

cellular compartment where the effector exerts its toxic effect,
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and typically work by binding directly to the effector (Hood et al.,

2010; Russell et al., 2012).

The peptidoglycan sacculus maintains cell shape and pro-

vides mechanical strength to resist osmotic pressure (Vollmer

et al., 2008). The mesh-like structure surrounds the cytoplasm

and inner membrane and is composed of glycan chains of alter-

nating N-acetylglucosamine (NAG) and N-acetylmuramic acid

(NAM) residues crosslinked by short peptides containing both

L- and D-amino acids. In Gram-negative bacteria, the peptide

component is usually made of the following amino acids: L-

alanine1, D-isoglutamic acid2 (D-iGlu), meso-diaminopimelic

acid3 (mDAP), D-alanine4, and D-alanine5 (Typas et al., 2011).

Peptide stems are crosslinked to one another by transpepti-

dases (TPases) that could be either D,D-TPases, forming cross-

links between the D-Ala4 of a pentapeptide donor stem and the

mDAP3 of a tetrapeptide acceptor stem (4 / 3 crosslink), or

L,D-TPases, forming crosslinks between themDAP3 of one tetra-

peptide and themDAP3 of another tetrapeptide (3/ 3 crosslink)

(Vollmer and Bertsche, 2008). D,D-TPases (also called penicillin-

binding proteins [PBPs]) are the primary enzymes performing

crosslinks in the peptidoglycan and are inhibited by b-lactam an-

tibiotics, which mimic the terminal D-Ala4-D-Ala5 moiety of the

donor pentapeptide (King et al., 2016).

T6SS effectors targeting the peptidoglycan distribute into 2

groups: (1) those that act as amidases and cleave within the

peptide stems or crosslinks (Russell et al., 2012) and (2) those

that act as glycoside hydrolases and cleave the glycan back-

bone (Whitney et al., 2013). T6SS amidase effectors form 4

phylogenetically distinct families called Tae1–Tae4 (type VI

amidase effectors), and the preferred cleavage site within the

peptidoglycan varies between each family (Russell et al.,

2012). Tae1 and Tae4 cleave between D-iGlu2 and mDAP3

within the same peptide stem, while Tae2 and Tae3 cleave

the crosslink bridge between D-Ala4 and mDAP3 of different

peptide stems (Russell et al., 2012). An additional effector

called TaeX cleaves between NAM glycan and the first L-Ala1

of the peptide stem (Ma et al., 2018). The superfamily of

T6SS glycoside hydrolases was divided into 3 families called

Tge1–Tge3 (type VI glycoside hydrolase effector) (Whitney

et al., 2013). Tge members have a lysozyme-like fold and

were shown to cleave the glycoside bond between NAM and

NAG (Whitney et al., 2013).

In Salmonella enterica, T6SS gene clusters are encoded within

different pathogenicity islands (SPIs), depending on the subspe-

cies and serovar (Blondel et al., 2009; Bao et al., 2019).

S. enterica subsp. enterica serovar Typhimurium (S. Typhimu-

rium) encodes only one T6SS that is located within SPI-6. The

expression of SPI-6 T6SS genes is not detected under laboratory

culture conditions, but it is activated in later stages of macro-

phage infection (Parsons and Heffron, 2005; Mulder et al.,

2012) and in the mammalian gut, where it works as an antibacte-

rial weapon to kill the resident species of the microbiota, contrib-

uting to Salmonella colonization (Sana et al., 2016). The histone-

like nucleoid structuring protein (H-NS) (Brunet et al., 2015) and

the ferric uptake regulator (Fur) (Wang et al., 2019) were reported

to repress SPI-6 T6SS genes in vitro. Only one effector (Tae4)

has been described to date as a substrate for SPI-6 T6SS.

Tae4 is an antibacterial effector and works as an L,D-endopepti-

dase cleaving between D-iGlu2 and mDAP3 (Russell et al., 2012;

Benz et al., 2013; Zhang et al., 2013).

Here, we set out to identify new SPI-6 T6SS effectors and

report the characterization of a family of antibacterial effectors

containing the domain of unknown function DUF2778, which dis-

plays both L,D-carboxypeptidase (CPase) and L,D-TPase ex-

change activities. This family is evolutionarily related to enzymes

that have an L,D-TPase fold and is broadly distributed among a-,

b-, and g-Proteobacteria. We also describe a protein containing

DUF2195 as the immunity protein (Tldi1). Expression of Tlde1 in

the periplasm of target Escherichia coli prevents cell division and

induces cell elongation, swelling, and lysis. Our study reveals a

different mechanism for effector-mediated bacterial antagonism

and indicates that Tlde1 targets the peptidoglycan synthesis in

two ways: (1) the L,D-CPase activity reduces the amount of

acceptor tetrapeptide stems, thus reducing the formation of

new crosslinks by D,D-TPases; and (2) the L,D-TPase exchange

activity promotes the incorporation of non-canonical D-amino

acid (NCDAA) into tetrapeptides affecting their recycling and

reducing the availability of cell wall precursors and substrates

for D,D-transpeptidation. These activities together result in an

altered formation of the division septum and an overall weak-

ened peptidoglycan structure.

RESULTS

Tlde1-Tldi1 Are an Antibacterial Effector-Immunity Pair

To search for new T6SSeffectors secreted byS. Typhimurium,we

inspected the SPI-6 T6SS gene cluster of the 14028s strain look-

ing for bicistrons that could resemble an antibacterial effector-im-

munity pair (Figure 1A). The gene annotated as STM14_0336

(Tlde1) encodes a small protein of 173 amino acids and contains

a DUF2778 (PF10908). Upstream to this gene, there is another

small protein (138 amino acids) containing a DUF2195 annotated

as STM14_0335 (Tldi1), which encodes a predicted Sec signal

peptide sequence for periplasmic localization (Figure S1A) (Alma-

gro Armenteros et al., 2019). Bastion6 software prediction (Wang

et al., 2018) indicates that STM14_0336 could be a T6SS effector

(score 0.758). To test whether STM14_0336 and STM14_0335 are

a bona fide effector-immunity pair, we cloned these genes into

compatible vectors under the control of different promoters. To

evaluate the toxicity of STM14_0336 upon expression in E. coli

and to establish in which cellular compartment the toxin exerts

its effect, STM14_0336 was cloned into the pBRA vector under

the control of the PBAD promoter (inducible by L-arabinose and

repressed by D-glucose), both with and without an N-terminal

PelB periplasmic localization sequence (pBRA SP-Tlde1 or

pBRA Tlde1). The putative STM14_0335 immunity protein was

cloned with its endogenous signal peptide into the pEXT22 vector

under the control of the PTAC promoter, which can be induced by

isopropyl b-D-1-thiogalactopyranoside (IPTG) (pEXT22 Tldi1).

E. coli strains carrying different combinations of pBRA and

pEXT22 plasmids were serially diluted and incubated on LB

agar containing either 0.2% D-glucose or 0.2% L-arabinose plus

200 mM IPTG (Figure 1B). Results showed that STM14_0336 is

toxic when directed to the periplasm of E. coli (pBRA SP-Tlde1)

but not to the cytoplasm (pBRA Tlde1), and that STM14_0335

(pEXT22 Tldi1) could neutralize its toxicity (Figure 1B). To confirm
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the subcellular localization of the immunity protein,E. coli cells ex-

pressing a C-terminal FLAG-tagged version of Tldi1 were sub-

jected to subcellular fractionation, and results confirmed its peri-

plasmic localization (Figure 1C). Western blot signals detected

with anti-FLAG and anti-maltose-binding protein (MBP) in the

cytoplasmic fraction represent a portion of soluble periplasmic

proteins that were not completely extracted during the osmotic

shock (Figure 1C).

The SPI-6 T6SS ofS. Typhimurium is repressed in LBmedia by

the silencer protein H-NS, and its deletion activates the T6SS

(Brunet et al., 2015). After analyzing published RNA sequencing

(RNA-seq) data comparing wild-type (WT) and Dhns strains (LT2

strain background) (Navarre et al., 2006), we confirmed that

VgrG/STM0289 and Tae4/STM0277 mRNA levels were upregu-

lated by 7.2-fold and 4.6-fold, respectively, in Dhns compared to

WT. The same pattern was observed for Tlde1/STM0288, which

was upregulated by 3.5-fold in Dhns compared to WT. To

analyze whether Tlde1 is a T6SS substrate, we performed inter-

bacterial competition assays using WT and DtssL (attacker)

versus a mutant strain lacking the effector-immunity pair

Dtlde1/tldi1 (prey), either in the Dhns (activated T6SS) or the

WT background (repressed T6SS). Results showed that the

prey recovery rate was �3-fold higher in DtssL/Dhns compared

to Dhns, while no difference was observed when the T6SS was

repressed (Figure 1D). These results confirm that Tlde1 is an anti-

bacterial effector secreted via the SPI-6 T6SS.

Tlde1 Intoxication Causes Altered Cell Division,

Swelling, and Lysis

To gather further insight on the mechanism by which Tlde1 in-

duces toxicity, we performed time-lapse microscopy to evaluate

the growth and morphology of individual E. coli cells carrying

Figure 1. Tlde1/Tldi1 Are an Antibacterial Effector-Immunity Pair

(A) Schematic representation of SPI-6 T6SS gene cluster of S. Typhimurium 14028s: membrane complex (orange), baseplate (green), tail (light blue), toxins (red),

immunity proteins (dark blue), chaperone and stabilizing protein (pink), ATPase for disassembly (dark gray), and accessory proteins (light gray). Accession

numbers are indicated below.

(B) The 4-fold dilutions of E. coli containing pBRA and pEXT22 constructs, as indicated, spotted onto LB agar plates. Growth inhibition is observed upon

expression of the SP-Tlde1 construct and can be neutralized by co-expression of Tldi1.

(C) E. coli cells expressing pEXT22 Tldi1-FLAG were fractionated and analyzed by western blot using anti-FLAG, anti-DNAk (cytoplasmic), anti-OmpA

(membranes), and anti-MBP (periplasm) antibodies.

(D) Bacterial competition assay using S. Typhimurium LT2 strain (WT, DtssL, and Dtlde1/tldi1) either in the Dhns (activated T6SS) or the WT background

(repressed T6SS). The prey recovery rate was calculated by dividing the colony-forming unit (CFU) counts of the output by the input. Data represent the mean ±

SD of 3 independent experiments performed in triplicate and were analyzed through comparison with WT that were normalized to 1. **p < 0.01 (Student’s t test).

See also Figure S1.
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pBRA SP-Tlde1. E. coli cells grew normally when incubated on

LB agar pads containing 0.2% D-glucose (repressed) over a

time frame of 16 h (Figure 2A; Video S1). However, incubation

in the presence of 0.2% L-arabinose induced a series of alter-

ations in cell division and morphology (Figures 2A–2F; Video

S2). At early time points (up to 4.5 h) after induction with L-arab-

inose, intoxicated cells tend to stop dividing or divide with

increased doubling times (Figures 2B and 2C). Between 0 and

4.5 h of incubation in L-arabinose, only 52% of intoxicated cells

were observed to undergo at least 1 round of cell division, with a

doubling time of 93 ± 34 min, while 84% of cells grown with

D-glucose divided in the same time frame, with a doubling time

of 54 ± 20 min (Figures 2B and 2C). Although intoxicated cells

had clearly impaired cell division, they continued to increase in

Figure 2. Tlde1 Is a Periplasmic-Acting Toxin That Alters Cell Division and Weakens the Peptidoglycan

(A) Time-lapse microscopy of E. coli cells expressing SP-Tlde1 grown on LB agar pads containing either 0.2% D-glucose (repressed) or 0.2% L-arabinose

(induced). Scale bar, 5 mm. Timestamps in hours:minutes.

(B) Percentage of dividing and non-dividing cells observed in (A) between 0 and 4.5 h.

(C) Doubling time in minutes of cells that divided quantified in (B); error bars represent the SDs of the means of ~100 cells in each condition. ***p < 0.0001

(Student’s t test).

(D) Cell length of cells observed in (A) between 0 and 4.5 h; error bars represent the SDs of themeans of ~30 cells measured at each time point, andwere analyzed

through comparison with D-glucose at 0.5 h by 1-way ANOVA followed by Dunnett’s multiple comparison test. ***p < 0.0001 and ns, not significant.

(E) Fluorescence microscopy images of E. coli cells harboring pBRA SP-Tlde1 labeled with the membrane dye FM 4-64 and incubated with 0.2% D-glucose

(repressed) or 0.2% L-arabinose (induced). Scale bar, 5 mm.

(F) Fluorescence microscopy images of E. coli FtsZ-mVenus carrying pBRA SP-Tlde1 incubated with 0.2% D-glucose (repressed) or 0.2% L-arabinose (induced).

Scale bar, 5 mm.
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Figure 3. Tlde1 Is Evolutionarily Related to L,D-Transpeptidases

(A) Maximum likelihood phylogenetic tree of Tlde1 (DUF2778) homologs identified using JackHMMER and HMMsearch. Tlde1 is a distant homolog of L,D-TPases

with the YkuD domain (PF03734). DUF2778-containing proteins grouped separately (clade 1, red) from known L,D-TPases.

(B) Partial amino acid sequence alignment of consensus sequences from clades 1–4. Arrows indicate conserved catalytic histidine and cysteine residues of

L,D-TPases.

(C) The 4-fold dilutions of E. coli containing pBRA and pEXT22 constructs, as indicated, spotted onto LB agar plates. Growth inhibition is observed upon the

expression of SP-Tlde1, but toxicity is abolished by H121A and C131A point mutations.

(D) Reversed phase-HPLC (RP-HPLC) coupled to MS showing purified monomeric GM-tetrapeptides or dimeric GM-tetrapeptide-GM-tetrapeptide incubated

with recombinant Tlde1. The schematic structure of a muropeptide is shown. L-Ala, L-alanine; D-iGlu, D-isoglutamic acid; mDAP, meso-diaminopimelic acid;

D-Ala, D-alanine; G, N-acetylglucosamine; M, N-acetylmuramic acid.

(legend continued on next page)
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size (Figure 2D; Video S2). After 4.5 h, cells grown in L-arabinose

had an average cell length of 20 ± 12 mm, while cells grown in D-

glucose displayed an average length of 3.7 ± 0.7 mm (Figure 2D).

To analyze whether intoxicated cells were not dividing or dividing

but not segregating into daughter cells, we incubated E. coliwith

the membrane dye FM 4-64 (Figure 2E). Results showed that

elongated cells lack membrane invaginations indicative of a divi-

sion septum (Figure 2E). Transformation of an E. coli strain in

which mVenus was fused to the endogenous ftsZ gene (Moore

et al., 2016) with our pBRA SP-Tlde1 plasmid showed that the

FtsZ-mVenus localization pattern was altered in intoxicated cells

(Figure 2F). It is unclear at this point whether the Z-ring assembly

was affected by the Tlde1 activity or is an indirect result of a

pleiotropic effect such as the loss of membrane potential.

After 4.5 h in L-arabinose, E. coli pBRA SP-Tlde1 cells tend to

swell and burst, indicating that the integrity of their peptido-

glycan structure was compromised (Figure 2A; Video S2). No

obvious alterations were observed in E. coli pBRASP-Tlde1 cells

grown in the presence of D-glucose during the same time frame

(Figure 2A; Video S1).

Tlde1 Is Evolutionarily Related to L,D-Transpeptidases

To gain insight into the molecular function of Tlde1, we used its

amino acid sequence as a query in JackHMMER searches

(Potter et al., 2018) to fetch a total of 143,242 sequences with

significant similarity (inclusion threshold %10�3 and e-value %

10�6) from the NCBI nr database (June 7, 2019). Additional

JackHMMER searches using selected hits of the first iterative

search as queries and the Pfam models DUF2778 (PF10908),

YkuD (PF03734), and YkuD_2 (PF13645) resulted in a total of

153,327 sequences. To reduce data complexity, we clustered

amino acid sequences requiring 80% coverage for all pairwise

alignments generated by MMseqs (Steinegger and Söding,

2017), and amaximume-value of 10�3, resulting in 4,113 groups.

A single amino acid sequence was chosen as representative

from each group with at least 9 members, resulting in 943 se-

quences representing a sample of 145,969 homologs. These

representative sequences were used to build a phylogenetic

tree using the maximum likelihood method (Figure 3A). The ho-

mologs of Tlde1 clustered into 5 main clades: clade 1 (red,

6,332 sequences), to which Tlde1 belongs, is composed of pro-

teins containing the uncharacterized DUF2778 domain (Tlde1

family); clade 2 (blue, 44,540 sequences) contains the L,D-

TPases from Bacillus subtilis (LdtBs, PDB: 1Y7M) (Bielnicki

et al., 2006); clade 3 (green, 44,090 sequences) contains L,D-

TPases from Enterococcus faecium (Ldtfm, PDB: 1ZAT) (Biar-

rotte-Sorin et al., 2006), Mycobacterium abscessus (LdtMab,

PDB: 5UWV) (Kumar et al., 2017), and Mycobacterium tubercu-

losis (LdtMt1-3, PDB: 3TUR, 5DCC) (Erdemli et al., 2012; Bianchet

et al., 2017); clade 4 (purple, 25,242 sequences) contains an

enzyme from Helicobacter pylori (Csd6, PDB: 4XZZ) that has a

catalytic domain resembling L,D-TPases but with L,D-CPase ac-

tivity (Kim et al., 2015); and clade 5 (gray, 25,765 sequences)

contains an L,D-TPase from E. coli (YcbB, PDB: 6NTW) (Caveney

et al., 2019) and proteins recognized by the Pfammodel YkuD_2.

Multiple amino acid sequence alignments of proteins from

each clade revealed conserved residues similar to the conserved

motif described for L,D-TPases: HXX14-17[S/T]HGCh (underlined

letters are conserved catalytic residues and ‘‘h’’ hydrophobic

residues) (Erdemli et al., 2012) (Figure 3B). According to the

Pfam hidden Markov model (HMM) logo, the number of residues

between the conserved catalytic His and Cys is smaller in

DUF2778 (PF10908) compared to YkuD (PF3734). To evaluate

whether the conserved His in position 121 and Cys in position

131 of Tlde1 are required to induce toxicity, we produced point

mutations by substituting these residues for alanine. Plasmids

containing point mutations (pBRA SP-Tlde1H121A and pBRA

SP-Tlde1C131A) were transformed into E. coli cells and grown in

the presence of 0.2% L-arabinose, revealing the complete loss

of toxicity (Figure 3C).

To determine the enzymatic activity of Tlde1, we incubated

purified recombinant protein (Figure S2A) with purified peptido-

glycan muropeptides and analyzed the reaction product by

reverse-phase high-performance liquid chromatography

(HPLC) coupled to mass spectrometry (MS) (Figures 3D and

S2B). Results showed that Tlde1 has L,D-CPase activity and

cleaves NAG-NAM-tetrapeptides (GM-tetrapeptide) between

mDAP3 and D-Ala4, producing GM-tripeptides (45% of substrate

was converted) (Figures 3D). The formation of crosslinked GM-

tripeptide-GM-tetrapeptide could not be detected, suggesting

that Tlde1 does not have standard L,D-TPase activity (Figure 3D).

Crosslinked dimeric GM-tetrapeptide-GM-tetrapeptide forms

were also provided as substrates and a small proportion of

cleavage was detected between the mDAP3-D-Ala4 of the

acceptor peptide stem during the same incubation period

(11% of substrate was cleaved), thus confirming the L,D-CPase

activity and suggesting that Tlde1 preferentially usesmonomeric

GM-tetrapeptide as a substrate (Figure 3D). Also, we could not

detect any product indicating that Tlde1 cleaves the D-Ala4-

mDAP3 crosslink bridge between peptide stems (Figure 3D). In

addition, co-incubation of GM-tetrapeptides (GM-AEmDAPA)

with 1 mM D-methionine and recombinant Tlde1 produced

GM-tetrapeptides with D-Met at position 4 (GM-AEmDAPM)

(92% of substrate was converted), showing that Tlde1 is able

to exchange the last amino acid of GM-tetrapeptides for a

NCDAA, as was reported for other L,D-TPases (Figure 3E) (Main-

ardi et al., 2005).

The composition of peptidoglycan extracted from E. coli cells

growing at exponential phase is enriched in monomeric GM-tet-

rapeptides and dimeric GM-tetrapeptide-GM-tetrapeptides

(Glauner et al., 1988). During the synthesis of new peptidoglycan,

the GM-pentapeptide precursor works as donor peptide stem

(E) RP-HPLC coupled to MS showing purified monomeric GM-tetrapeptides incubated with recombinant Tlde1 and 1 mM D-methionine. Tlde1 shows L,D-TPase

exchange activity and incorporation of non-canonical D-amino acid (NCDAA) into peptidoglycan.

(F) RP-HPLC coupled to MS showing total ion chromatograms of muropeptides obtained after mutanolysin digestion of peptidoglycan extracted from E. coli

harboring empty pBRA (black), pBRA SP-Tlde1 (red), and pBRA SP-Tlde1C131A (gray). Inferred muropeptide structures and relative abundance (relative

percentage of total) of each peak was quantified by MassHunter software (bottom).

See also Figure S2.
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and is crosslinked to acceptor GM-tetrapeptide stems by the ac-

tion of D,D-TPases, forming 4/ 3 crosslink bridges (Typas et al.,

2011). As Tlde1 turns GM-tetrapeptides into GM-tripeptides

in vitro, we hypothesized that this activity would promote toxicity

in vivo by depleting the pool of acceptor GM-tetrapeptides, thus

reducing the formation of new crosslinks by endogenous D,D-

TPases. To test this hypothesis, we extracted peptidoglycan

from E. coli cells carrying (1) empty pBRA plasmid, (2) pBRA

SP-Tlde1, or (3) pBRA SP-Tlde1C131A incubated with 0.2%

L-arabinose for 3 h and analyzed the muropeptides profile by

HPLC-MS (Figure 3F). The relative levels of muropeptides in

E. coli cells expressing SP-Tlde1 were reduced in GM-tetrapep-

tide (GM-AEmDAPA) (21%) compared to cells with empty

plasmid (33%) or SP-Tlde1C131A (33%), comprising a 36%

reduction in GM-AEmDAPA relative levels (Figure 3F). Likewise,

the proportion of GM-tripeptides (GM-AEmDAP) was enriched in

cells expressing SP-Tlde1 (25%) compared to empty and SP-

Tlde1C131A (13%), which constitutes a 78% increase in relative

levels of GM-tripeptides (Figure 3F). Moreover, the proportion

of most crosslinked forms were reduced in E. coli cells express-

ing SP-Tlde1 compared to cells carrying the empty plasmid or

expressing SP-Tlde1C131A (Figure 3F). In vitro peptidoglycan

synthesis assays showed that GM-tripeptides could work as ac-

ceptors for D,D-TPases (Born et al., 2006; Bertsche et al., 2005;

Catherwood et al., 2020). However, a study of PBP1B TPase

showed that the Km of GM-tripeptides is higher (35 ± 4 mM)

than the KM of GM-tetrapeptides (8.1 ± 0.3 mM), indicating that

GM-tripeptides may not be preferential substrates for PBP1B

in vivo (Catherwood et al., 2020).

Incorporation of NCDAA into peptidoglycan was reported to

negatively regulate the amount of peptidoglycan of a given cell

and its strength (Lam et al., 2009; Cava et al., 2011). These

changes occur mainly because the incorporation of NCDAA

into GM-tetrapeptide impairs its recycling, thus leading to

reduced amounts of acceptor GM-tetrapeptides and donor

GM-pentapeptides for D,D-transpeptidation during peptido-

glycan synthesis (Templin et al., 1999; Hernandez et al., 2020).

In agreement with the D-amino acid exchange activity detected

in vitro (Figure 3E), we noticed an increase in GM-AEmDAPG

(13%) in E. coli cells expressing SP-Tlde1 compared to cells

with empty plasmid (6%) or catalytic inactive SP-Tlde1C131A
(6%), which represents a 116% increase in relative levels (Fig-

ure 3F). This result supports the hypothesis that the exchange

activity and the incorporation of NCDAA are also relevant in vivo.

Overall, the combined action of both Tlde1 enzymatic activities

impair the peptidoglycan synthesis and its structural strength.

Tlde1 Family Is Widespread among a-, b-, and g-

Proteobacteria

Comprehensive phylogenetic analysis of sequences from clade 1

comprising the Tlde1 family (Figure 3A) showed that proteins

segregate into 3 subfamilies (Figure 4A). Given that all subfamilies

contain the domain DUF2778, we propose calling them Tlde1a,

Tlde1b, and Tlde1c (Figure 4A). The Tlde1a subfamily contains

the S. Typhimurium Tlde1 effector (Tlde1aSTM) and is composed

mainly of S. enterica subsp. enterica serovars encoding SPI-6

T6SS, species of Bordetella, and some a-Proteobacteria from

Rhizobiaceae and Sphingomonadaceae (Figure 4B; Table S1A).

A few examples of S. enterica subsp. diarizonae (SPI-20 and

SPI-21 T6SSs) and S. enterica subsp. salamae (SPI-19 T6SS)

were detected in the Tlde1a subfamily (Figure 4B; Table S1A). In

addition, the Tlde1a subfamily also contains examples of Actino-

bacteria (Streptomycetaceae) and Cyanobacteria (Synechococ-

caceae, Microcystaceae, Aphanothecaceae); however, it is not

clear at this point whether these proteins are secreted by alterna-

tive secretion mechanisms, such as the extracellular contractile

injection systems (eCIS) (Chen et al., 2019), or simply work in

the remodeling of peptidoglycan. The Tlde1b subfamily is abun-

dant in a large variety of species from Enterobacteriaceae, Erwi-

niaceae, and Yersiniaceae. Examples of S. enterica subsp. arizo-

nae (SPI-20 and SPI-21 T6SSs) and S. enterica subsp. diarizonae

(SPI-20 and SPI-21 T6SSs) and a few S. enterica subsp. enterica

serovars such as Fresno (SPI-6 T6SS)were detected in the Tlde1b

subfamily (Figure 4B; Table S1B). The Tlde1c subfamily is the

most widespread and can be found in Enterobacteriaceae,

Burkholderiaceae, Pseudomonadaceae, Erwiniaceae, and Yersi-

niaceae (Figure 4B; Table S1C). Examples ofS. enterica subsp.di-

arizonae (SPI-20 and SPI-21 T6SSs) andS. enterica subsp. houte-

nae (SPI-19 T6SS) were detected in the Tlde1c subfamily.

Examining the genomic context of Tlde1a–Tlde1c members,

we observed that at least one member of each subfamily is en-

coded within a T6SS gene cluster, thus supporting their role as

T6SS substrates (Figure 4C; Table S2). In addition, Tlde1b and

Tlde1c were found to be associated with orphan Hcp proteins

(Figure 4C; Tables S2B and S2C), suggesting that these proteins

are secreted as cargo effectors associated with Hcp proteins.

Tlde1a members were found outside the T6SS gene cluster

together with their putative immunity proteins, although none

of these examples were associated with an orphan Hcp (Table

S2A). From the total of 1,028 genomes containing a Tlde1amem-

ber, 615 (59.8%) are encoded in the vicinity of a T6SS structural

gene (Figure 4C). The same high frequency is observed for

Tlde1b and Tlde1c subfamilies, with 76.6% (623 of 813) and

42.6% (1,495 of 3,510) of the genomes containing a member in

the vicinity of T6SS structural genes, respectively.

Genomic analysis revealed that some organisms encodemore

than one member of the Tlde1 family (Figures 4C and 4D; Table

S1D). S. Fresno encodes 2 members within its SPI-6 T6SS,

Tlde1aSF (WP_000968384.1) and Tlde1bSF (WP_058115706.1).

Tlde1aSF is closely related to S. Typhimurium Tlde1aSTM

(STM14_0336), but the Tlde1bSF homolog is absent in S. Typhi-

murium 14028s (Figure 4C). A close inspection of the S. Typhi-

murium 14028s SPI-6 T6SS locus revealed that it contains an

orphan Tldi1bSTM immunity protein (STM14_0332) orthologous

to S. Fresno Tldi1bSF (WP_077921582.1) in the same genomic

location (Figures 1A and 4C). This gene is located next to a

Tai4 orphan immunity protein (STM14_0331) homologous to

Rap1a, which confers immunity to the Tae4 family member

Ssp1 from Serratia marcescens (English et al., 2012). Growth in-

hibition assays showed that the Tldi1bSTM immunity protein was

not able to neutralize the toxicity of Tlde1aSTM, thus confirming

the specificity of each immunity protein to its effector (Figure S3)

and suggesting that Tldi1bSTM and Rap1a may play a role in im-

munity against effectors secreted by other bacteria.

The domain architecture of most Tlde1 members is usually

quite simple and composed of a single DUF2778 domain, but
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a few examples such as Shigella sonnei WP_052983304.1 pre-

sent DUF2778 at the C-terminal region of rearrangement hotspot

(Rhs) proteins, which are encoded close to PAAR-containing

proteins that are secreted via T6SS (Koskiniemi et al., 2013).

These Rhs-DUF2778 proteins are mainly represented in the

Tlde1c subfamily, in which 11% (387 of 3,510) of the genomes

display a member fused to Rhs protein (Table S1C). Moreover,

DUF2778-containing proteins could be found located in the vi-

cinity of genes encoding other secretion systems such as

T1SS (abc, omf, mfp), T2SS (gspD-N), T4SS (virb1-10), and

T5SS (PF03797, PF03895, translocator) (Table S2) (Abby et al.,

2016), suggesting that these DUF2778-containing proteins

may have been recruited to be part of the polymorphic toxin cas-

settes that are known to be associated with various protein

secretion systems (Zhang et al., 2012). These results are in line

with bioinformatic analyses that predicted polymorphic toxins

with L,D-peptidase domains fused to Rhs repeats or domains

related to secretory systems and were linked to the neighboring

immunity proteins DUF2750/Imm16 and DUF2750/Imm57

(Zhang et al., 2012).

DISCUSSION

In this study, we identified and characterized a family of T6SS

antibacterial effectors, which is evolutionarily related to

L,D-TPases containing the YkuD domain (formerly called ErfK/

YbiS/YcfS/YnhG). The founding member of this family, Tlde1

from S. Typhimurium, displays both L,D-CPase activity, cleaving

Figure 4. Tlde1 Family Is Widespread in Proteobacteria

(A) Maximum likelihood phylogenetic tree of Tlde1 family (clade 1; Figure 3A), showing its division into 3 subfamilies (Tlde1a, Tlde1b, and Tlde1c). Non-parametric

bootstrap values at the branches defining each subfamily are indicated. The position of S. Typhimurium Tlde1a is highlighted by an orange dot.

(B) List of common bacterial species encoding members of Tlde1a, Tlde1b, and Tlde1c. The toxic effector is widespread and detected among a-, b-, and g-

Proteobacteria.

(C) Schematic representation of the genomic context of Tlde1a, Tlde1b, and Tlde1c members. T6SS structural genes (orange), VgrG genes (green), Hcp genes

(light blue), Tlde1a-c members (red), and their cognate immunity proteins Tldi1a-c (dark blue). Bacterial species and genome accession number are described on

the right side of each cluster. Colored dots on the left side denote the subfamily to which the effector belongs: yellow (Tlde1a), blue (Tlde1b), and green (Tlde1c).

(D) Venn diagram representing the total number of bacterial genomes that encode one or more Tlde1a– Tlde1c member.

See also Figure S3 and Tables S1 and S2.
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peptidoglycan tetrapeptides between mDAP3 and D-Ala4, and

L,D-TPase exchange activity, replacing D-Ala4 by a NCDAA. The

specificity and toxic mechanism of Tlde1 are different from pre-

viously characterized T6SS effectors targeting the peptido-

glycan. T6SS amidase effectors Tae1 and Tae4 cleave the

bond between D-iGlu2 and mDAP3 within the same peptide

stem, while Tae2 and Tae3 cleave the crosslink bridge between

D-Ala4 and mDAP3 of different peptide stems (Russell et al.,

2012). T6SS glycoside hydrolases (Tge) cleave the glycoside

bond between NAM and NAG (Whitney et al., 2013). In addition,

the evolutionary origin of Tlde1 is different from T6SS amidases:

while the Tae1–Tae4 catalytic domains are related to CHAP

(PF05257) and NlpC/P60 (PF00877) amidases (Anantharaman

and Aravind, 2003; Bateman and Rawlings, 2003), the Tlde1a–

Tlde1c catalytic domains are related to YkuD of L,D-TPases

(PF03734) (Biarrotte-Sorin et al., 2006).

Due to the importance of peptidoglycan in providing shape and

resistance to osmotic pressure, it is not surprising that a large

number of bacterial toxins target the synthesis and/or integrity

of the sacculus. The peptidoglycan is made of glycan strands

crosslinked by short peptides, whose composition is highly

diverse among bacterial species (Vollmer and Born, 2009). The

greatest variation occurs at the third position of the peptide

stem, which is mDAP in almost all Gram-negative bacteria

(including some species of Bacillus, Lactobacilli, andMycobacte-

rium) and L-Lys in most Gram-positive bacteria, but other amino

acids can occur at this position such as L-ornithine, D-Lys,

meso-lanthionine, L-homoserine, L-Ala and L-Glu. Moreover,

mDAP and L-Lys can be hydroxylated or amidated in a few spe-

cies (Vollmer and Born, 2009). Such variability in the peptido-

glycan may be the reason why T6SS-containing bacteria use

such a diverse array of effectors to target this important structure.

A detailed study of 20 species representing 5 orders of the class

Alphaproteobacteria revealed a great diversity in peptide stem

composition and crosslink (Espaillat et al., 2016). Modifications

in the peptidoglycan of Acetobacteria could provide protection

against T6SS amidases Tae1 from Pseudomonas aeruginosa

and Tae2 from Acidovorax citrulli; these species naturally coexist

in the soil (Espaillat et al., 2016).

Besides the variability in target-cell peptidoglycan structure,

it is known that T6SS effectors display conditional toxicity de-

pending on pH, salinity, temperature, and oxygen availability

(LaCourse et al., 2018). Furthermore, some effectors exhibit a

synergistic effect and are more proficient in killing target cells

when combined with other T6SS effectors (LaCourse et al.,

2018). This evidence helps explain why bacteria harbor so

many effectors for the same cellular target. In the case of

Salmonella enterica, most serovars live in a variety of environ-

ments such as soil, water, plants, and vertebrate hosts (e.g.,

chicken, cattle, humans) (Bäumler et al., 1998; Winfield and

Groisman, 2003). In light of this vast range of environmental

conditions, one can only imagine the great diversity of rival

bacterial species encountered, so it makes sense for Salmo-

nella to deliver a cocktail of effectors into target cells, which

may have different levels of effectiveness depending on the

pH, salinity, temperature, and oxygen availability at that spe-

cific encounter. This could be the case for Salmonella Tae4

effector and the newly identified Tlde1.

L,D-TPases form mDAP3-mDAP3 crosslinks between peptide

stems by transferring the peptide bond between the third residue

of a tetrapeptide donor stem to the side-chain amide group of a

third residue of an adjacent acceptor stem. The catalytic mech-

anism was proposed to occur in a two-step enzymatic reaction

requiring a cysteine residue; it involves the acylation of the

enzyme by the penultimate peptide of the donor stem with the

release of the C-terminal amino acid residue D-Ala4, followed

by deacylation of this acyl-enzyme intermediate by an acceptor

stem (Biarrotte-Sorin et al., 2006; Erdemli et al., 2012). Enzymes

displaying L,D-TPase activity (LdtBs, Ldtfm, LdtMt) (clades 2 and 3;

Figure 3A) have an elongated active site, with the catalytic resi-

dues accessible via two paths. However, Csd6 from H. pylori,

which displays an L,D-TPase domain but only L,D-CPase activity

(clade 4; Figure 3A), has the active site in a deep pocket, with the

catalytic triad positioned at the bottom and accessible via a sin-

gle narrow path (Kim et al., 2015). The absence of detailed struc-

tural information for Tlde1 does not allow us to determine its pre-

cise catalytic mechanism at this point; however, we speculate

that structural features that restrict access to its active site

may explain its activity. The lack of crosslinked GM-tetrapeptide

dimer products during in vitro assays (Figure 3D) and their L,D-

CPase and D-amino acid exchange activities support the hypoth-

esis that the active site of Tlde1 is not accessible to larger

acceptor substrates such as GM-tetrapeptides; instead, Tlde1

preferentially uses small molecules such aswater and free amino

acids as acceptors.

Peptidoglycan synthesis is differentially controlled during cell

division and elongation, with the septal synthesis machinery be-

ing favored during cell division (Woldringh et al., 1987; Wientjes

andNanninga, 1989). It has been shown that cell division ismedi-

ated by the filaments of FtsZ and FtsA that treadmill circumferen-

tially around the division ring and drive the motion of peptido-

glycan-synthesizing enzymes (Bisson-Filho et al., 2017; Yang

et al., 2017). The rate of division septum closure is mainly deter-

mined by the D,D-TPase activity of FtsI (Coltharp et al., 2016). The

toxic phenotype induced by periplasmic expression of Tlde1

seems to be the result of a series of events. First, up to 4.5 h of

intoxication, cells stop dividing but continue growing in length.

Our hypothesis that Tlde1 promotes toxicity by interfering with

peptidoglycan synthesis and transpeptidation fits with the

finding that division septum closure is limited by peptidoglycan

synthesis. Second, the phenotype observed after 4.5 h in which

cells form blebs and lyse (Video S2) is also aligned with the idea

of diminished peptidoglycan synthesis and crosslink rates; when

the peptidoglycan growth rate falls behind that of overall cell

growth, the peptidoglycan net stretches, resulting in changes

in pore size that alter the integrity of the cell wall (Typas et al.,

2011).

In T6SS+ organisms, Tlde1 proteins are encoded in bicistrons

with their putative immunity proteins (Figure 4C). Divergence

among immunity proteins was considerably higher than that

found within the effector families. The immunity protein for

Tlde1a subfamily has a DUF2195 domain (Tldi1a), while Tldi1b

and Tldi1c immunity proteins are encoded by genes with no an-

notated domain. Tldi1a and Tldi1b immunity proteins encode a

Sec signal peptide for periplasmic localization, while Tldi1c

immunity proteins have one or more transmembrane domains
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(Figure S1) (Krogh et al., 2001). A similar diversity in localization

signals of T6SS immunity proteins was observed for homologs

of the toxin encoded at the C-terminal of VgrG2b (DUF4157) of

Pseudomonas aeruginosa (Wood et al., 2019). The greater

sequence divergence in immunity proteins has been reported

previously and is likely due to less restrictive selective pressure

compared to effectors; while immunity proteins are selected

for effector binding, effectors are selected for both immunity pro-

tein binding and catalysis (Russell et al., 2012). Due to the small

length of these immunity proteins and their diversity, which

impeded automated bioinformatic analysis, we did not attempt

further assessment of their phylogeny.

T6SSs translocate effectors by decorating the Hcp-VgrG-

PAAR puncturing device (Cianfanelli et al., 2016; Jana and Salo-

mon, 2019). Small effector proteins composed of only one toxic

domain, such as Tlde1, usually interact with Hcp proteins for

secretion as their size favors fitting inside the narrow tube formed

by Hcp hexamers (Silverman et al., 2013; Jana and Salomon,

2019). Further supporting this notion, our bioinformatic analysis

showed that Tlde1 familymembers associated with Hcp proteins

(Figure 4C). Initial attempts to detect protein-protein interaction

between Tlde1aSTM and S. Typhimurium Hcp1–3 using bacterial

two-hybrid and co-immunoprecipitation were unsuccessful.

The distribution of Tlde1a, Tlde1b, and Tlde1c effectors be-

tween different organisms gives an idea of how these toxins

are used by different species to intoxicate competitors. It is inter-

esting to note that most S. enterica subsp. enterica serovars

encode only a Tlde1a member (e.g., S. Typhimurium). According

to our analysis, Tlde1b members are mainly represented among

species of the Enterobacteriaceae, indicating that Tlde1b/Tldi1b

effector/immunity pairsmust be a commonly used ammunition in

the gut environment. Therefore, it does not seem to be a great

competitive advantage for S. Typhimurium to keep a Tlde1b

effector in its repertoire as many species already living in the

gut encode a Tldi1b immunity. Similarly, despite that most

S. enterica subsp. enterica serovars encode only Tlde1a, they

frequently encode an orphan Tldi1b immunity, suggesting that

although not attacking competitors using Tlde1b, Salmonella

are protected from the attack of members of the microbiota en-

coding a Tlde1b effector. Overall, from the perspective of an

enteric pathogen that needs to kill competitor species in the

gut to colonize the environment, S. enterica subsp. enterica se-

rovars arewell equippedwith a Tlde1amember, which is not pre-

sent in most members of Enterobacteriaceae.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rabbit polyclonal anti-FLAG Sigma-Aldrich Cat#F7425

Mouse monoclonal anti-DNAk Abcam Cat#ab69617

Mouse monoclonal anti-maltose binding

protein (MBP)

New England BioLabs Cat#E8032L

Rabbit polyclonal anti-outer membrane protein

A (OmpA)

David Holden N/A

Bacterial and Virus Strains

Salmonella Typhimurium str. 14028s wild-type Marcelo Brocchi ATCC 14028

S. Typhimurium str. LT2 wild-type Eric Cascales ATCC 700720

S. Typhimurium str. LT2 DtssL (STM0282) This paper N/A

S. Typhimurium str. LT2Dtlde1/tldi1 (STM0287/

0288)

This paper N/A

S. Typhimurium str. LT2 Dhns (STM1751) This paper N/A

Escherichia coli DH5a Lab Stock N/A

E. coli SHuffle T7 New England Biolabs Cat#C3026J

E. coli XL10-Gold Agilent Technologies Cat#200314

E. coli BW27783 strain ftsZ::ftsZ-mVenus Moore et al., 2016 N/A

E. coli D6ldt Meberg et al., 2001 N/A

P22 phage lysate Dhns Beraud et al., 2010 N/A

Chemicals, Peptides, and Recombinant Proteins

FM4-64 Molecular Probes Cat#T3166

Pronase Roche Cat#10 165 921 001

Mutanolysin Sigma-Aldrich Cat#M9901

Critical Commercial Assays

QuikChange II XL Site-Directed Mutagenesis

Kit

Agilent Technologies Cat#200521

Oligonucleotides

See Table S3 for full list. N/A N/A

Recombinant DNA

pKD46 Datsenko and Wanner, 2000 N/A

pKD4 Datsenko and Wanner, 2000 N/A

pCP20 Datsenko and Wanner, 2000 N/A

pBRA Souza et al., 2015 N/A

pBRA-SP Bayer-Santos et al., 2019 N/A

pBRA Tlde1 This paper N/A

pBRA SP-Tlde1 This paper N/A

pBRA SP-Tlde1(H121A) This paper N/A

pBRA SP-Tlde1(C131A) This paper N/A

pEXT22 Dykxhoorn et al., 1996 N/A

pEXT22 Tldi1a This paper N/A

pEXT22 Tldi1a-FLAG This paper N/A

pEXT22 Tldi1b This paper N/A

pET28a Novagen Cat#69864-3

pET28a-Tlde1 This paper N/A

(Continued on next page)
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RESOURCE AVAILABILITY

Lead Contact

Further information and requests for reagents should be directed to and will be fulfilled by the Lead Contact, Ethel Bayer Santos

(ebayersantos@usp.br).

Materials Availability

Strains and plasmids generated in this study are available upon request to the LeadContact, Ethel Bayer Santos (ebayersantos@usp.

br).

Data and Code Availability

The code for data collection and analysis of gene neighborhood used in this study is available upon request to the LeadContact, Ethel

Bayer Santos (ebayersantos@usp.br).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

A list of bacterial strains used in this work can be found in Key Resources Table. Strains were grown at 37�C in Lysogeny Broth (10 g/L

tryptone, 10 g/L NaCl, 5 g/L yeast extract) under agitation. Cultures were supplementedwith antibiotics in the following concentration

when necessary: 50 mg/mL kanamycin, 100 mg/mL ampicillin, 50 mg/mL streptomycin, 15 mg/mL chloramphenicol.

METHOD DETAILS

Cloning and mutagenesis

S. Typhimuriummutant strains were constructed by l-Red recombination engineering using a one-step inactivation procedure (Dat-

senko and Wanner, 2000). All primers are listed in Table S3. STM14_0336 was amplified by PCR and cloned into pBRA vector under

the control of PBAD promoter (Souza et al., 2015) with or without PelB signal peptide sequence from pET22b (Novagen) (Bayer-Santos

et al., 2019). Immunity proteins (STM14_0332 and STM14_0335) were cloned into pEXT22 under the control of PTAC promoter (Dykx-

hoorn et al., 1996). For protein expression and purification, STM14_0336 residues between 2-174 were cloned into pET28a (Nova-

gen), including a N-terminal His-tag. Point mutations were created using QuikChange II XL Site-Directed Mutagenesis Kit (Agilent

Technologies) and pBRA SP-Tlde1 plasmid was used as template. All constructs were confirmed by sequencing.

Growth inhibition assay

Overnight cultures of E. coliDH5a co-expressing effectors for cytoplasmic (pBRA-Tlde1) or periplasmic (pBRA SP-Tlde1) localization

and immunity proteins (pEXT22-Tldi1) were serially diluted in LB (1:4) and 5 mL were spotted onto LB agar (1.5%) containing either

0.2% D-glucose or 0.2% L-arabinose and 200 mM IPTG plus streptomycin and kanamycin and incubated at 37�C. Images were ac-

quired after 24h.

Bacterial competition assays were performed using S. Typhimurium LT2 strain (WT,DtssL andDtlde1/tldi1) either in the Dhns (acti-

vated T6SS) or WT background (repressed T6SS). LT2 strain has a point mutation in rpoS gene which helps support the detrimental

effect of hns deletion (Navarre et al., 2006; Lucchini et al., 2006). Due to the high frequency of spontaneous compensatory mutations,

Dhns strains were freshly prepared at every experiment by P22 phage transduction (Beraud et al., 2010). Overnight cultures of

attacker and prey cells were subculture (1:10) until reaching OD600nm 1, cultures were mixed 4:1 attacker:prey (OD600nm 0.5), 5 mL

spotted onto 0.22 mm nitrocellulose membranes (1 3 1 cm), and incubated on LB agar for 16 h at 30�C. The membranes containing

the bacterial mixture was placed on 1.5mL tubes containing 1mL LB, homogenized by vortex, serially diluted, and plated on selective

plates with antibiotics. Prey recovery rate was calculated by dividing the CFU counts of the output by the input. Data represent the

mean ± SD of three independent experiments performed in triplicate and were analyzed through comparison with WT that were

normalized to 1.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

Neighborhood script Robson F. de Souza upon request

MassHunter Agilent Technologies N/A

FIJI Schindelin et al., 2012 https://fiji.sc/

MMseqs Steinegger and Söding, 2017 https://search.mmseqs.com/search

FastTree 2 Price et al., 2010 http://www.microbesonline.org/fasttree/
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Subcellular fractionation

Subcellular fractionation was adapted from Gauthier et al. (2003) and English et al. (2012) and is based on osmotic shock and ultra-

centrifugation. Briefly, E. coli cells harboring pEXT22-Tldi1-FLAG grown overnight with 200 mM of IPTG were harvested (aliquot cor-

responding to total proteins was collected for analysis), washed twice with phosphate buffer saline (PBS) and resuspended in 1mL of

50mMTris-HCl pH 7.4, 20% sucrose, 10mMEDTA and protease inhibitor. Cells were incubated for 10min at 30�C and recovered by

centrifugation (10min, 8000 g, 22�C). Pellets were resuspended in 1mL of ice-cold water and incubated for 10min on ice. After centri-

fugation (10 min, 8000 g, 4�C), 900 mL of the supernatant was retained for analysis (enriched in periplasmic proteins). The pellet

containing cytoplasmic and membrane proteins was resuspended in 1 mL of sonication buffer (10 mM Tris-HCl pH 7 and protease

inhibitor), sonicated 6 rounds of 15 s with amplitude 30% and centrifuged (15 min, 16000 g, 4�C) to remove insoluble proteins. Su-

pernatant was transferred to an ultracentrifuge tube and centrifugated (1 h, 50000 g, 4�C). Supernatant (900 mL) corresponding to the

cytoplasmic fraction was retained for analysis, and the pellet with total membrane proteins was washed with sonication buffer once,

centrifugated (1 h, 50000 g, 4�C) and resuspended in SDS-PAGE buffer. Fractions were precipitated with 4 volumes of acetone and

resuspended in equivalent volumes of SDS-PAGE buffer. Protein extracts were separated by SDS-PAGE and analyzed by western

blot with anti-FLAG (Sigma-Aldrich #F7425), anti-DNAk (Abcam #ab69617), anti-maltose binding protein (MPB) (New England Bio-

Labs #E8032L) and anti-outer membrane protein (OmpA) antibodies.

Microscopy

For time-lapse microscopy, LB agar pads were prepared by cutting a rectangular piece out of a double-sided adhesive tape which

was taped onto a microscopy slide as described previously (Bayer-Santos et al., 2019). E. coli DH5a harboring pBRA SP-Tlde1 was

spotted onto 1.5% LB agar pads supplemented either with 0.2% D-glucose or 0.2% L-arabinose and antibiotics. Phase contrast

images were taken every 15 min for 24 h using a Zeiss AxioVert.Z1 microscope fitted with an AxioCam MRm camera and an a

Plan-Apochromat 63x oil objective. Images were analyzed using FIJI software (Schindelin et al., 2012). To quantify the percentage

of dividing or non-dividing cells and the cell doubling time, approximately 100 cells were analyzed in each condition. To determine cell

length, approximately 30 cells were measured at each time point (from 30 min to 4.5 h), totaling 150 measurements. To visualize

membrane labeling, overnight cultures of E. coli carrying pBRA SP-Tlde1 were harvested by centrifugation (3 min, 8000 g), washed

twice with LB and normalized to OD600nm 0.5. Membrane dye FM 4-64 (Molecular Probes) were mixed to cells at 1:1 and 4 mL were

spotted onto 1.5% LB agarose pads supplemented with 0.2%D-glucose or 0.2% L-arabinose. After 20 h, cells were imaged using a

Zeiss AxioVert.A1 microscope fitted with an AxioCam ICm1 camera and a FLUAR 100x oil objective. To analyze FtsZ localization,

overnight cultures of E. coli FtsZ-mVenus expressing pBRA SP-Tlde1 were diluted 1:100 and grown in liquid LB media to an

OD600nm 0.2. Cells were harvested by centrifugation (3 min, 8000 g), washed twice with LB and added 0.2% D-glucose or 0.2%

L-arabinose. At OD600nm 0.5 cells were harvested, washed twice with PBS and 4 mL were spotted onto 1.5% PBS agarose pads

supplemented with 0.2% D-glucose or 0.2% L-arabinose. Cells were imaged using a Zeiss AxioVert.A1 microscope fitted with an

AxioCam ICm1 camera.

Recombinant protein expression and purification

E. coli SHuffle cells expressing pET28a-Tlde1 were subcultured in LB and grown at 37�C to OD600nm 0.7 prior to induction with

0.4 mM IPTG for 16 h at 16�C (150 rpm). Cells were harvested by centrifugation, resuspended with buffer (20 mM Tris-HCl pH

7.35, 200 mM NaCl) and lysed by 10 passages in a French Press system. The lysate soluble fraction was loaded onto a 5 mL HiTrap

chelating HP column (GE Healthcare) immobilized with 100 mM cobalt chloride and equilibrated with the lysis buffer. After the

removal of unbound proteins, the fusion protein was eluted with lysis buffer supplemented with 400 mM imidazole. Purified proteins

were concentrated in Amicon Filter Units (Millipore) before purification by size exclusion chromatography using a HiLoad 26/600

Superdex 75 column (GE Healthcare).

Peptidoglycan purification and enzymatic assays

Peptidoglycan was purified as described byMesnage et al. (2008) with small modifications. Briefly, bacterial cells were grown in 1 L of

LB to OD600nm 0.7 and harvested by centrifugation (15 min, 4000 g, 15�C). Pellets were washed with PBS and resuspended in 20 mL

of PBS. Cell suspensionswere added dropwise to a glass flask containing 80mL of boiling 5%SDS and incubated for 30min. Lysates

were washed 4 times with water and treated with pronase 2 mg/mL overnight at 60�C. The following day, 1% SDS was added, incu-

bated for 10 min at 95�C and washed 4 times with water. Muropeptides were obtained by digestion with mutanolysin, followed by

reduction with sodium borohydride in borate buffer and separation in reverse-phase high performance liquid chromatography

(RP-HPLC) (Mesnage et al., 2008). Monomeric and dimeric substrates were purified from reduced disaccharide-peptides obtained

from the E. coli D6ldt mutant (Meberg et al., 2001). Briefly, peptidoglycan was digested by mutanolysin and muropeptides reduced

prior to their separation by RP-HPLC using a water-acetonitrile gradient. The fragments corresponding to the monomer GM-tetra-

peptide and dimer GM-tetrapeptide-GM-tetrapeptide were collected and freeze-dried, later their concentrations were estimated

by nuclear magnetic resonance (NMR) using trimethylsilylpropanoic acid (TSP) as a reference. For in vitro assays, 10 mM of purified

recombinant Tlde1 protein was added to 100 mM of monomeric or dimeric GM-tetrapeptide in buffer containing 50 mM Tris pH 7.5

and 50 mM NaCl and incubated for 4 h at 37�C. Digestion products were analyzed by RP-HPLC-MS as described previously (Ro-

drı́guez-Rubio et al., 2016). For the amino acid exchange assay, reactions were performed in the same conditions with the addition
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of 1 mM D-methionine. For the muropeptide profile analysis, E. coli carrying empty pBRA, pBRA SP-Tlde1 and pBRA SP-Tlde1C131A
were used. Cells were grown overnight, subcultured 1:100 in 250 mL of LB and grown until OD600nm 0.5 with 50 mg/mL streptomycin

and 0.2% D-glucose. Cells were washed twice with 20 mL of LB, added 0.2% L-arabinose and incubated for 3 h until peptidoglycan

was extracted as described above. MS data were analyzed with MassHunter software (Agilent Technologies).

Bioinformatic analysis

Iterative profile searches using JackHMMER (Potter et al., 2018) with a cutoff e-value of 10�6 and amaximum of twenty iteration were

performed to search for similar sequences in the non-redundant (nr) protein database from the National Center for Biotechnology

Information (NCBI). Similarity-based clustering of proteins was carried out using MMseqs software (Steinegger and Söding,

2017). Sequences alignments were produced with MAFFT local-pair algorithm (Katoh et al., 2005) and non-informative columns

were removed with trimAl software (Capella-Gutiérrez et al., 2009). Approximately-maximum-likelihood phylogenetic tree were built

using FastTree 2 (Price et al., 2010). Proteins were annotated using the Pfam database (El-Gebali et al., 2019) and protein secretion

systems were identified using models from TXSSdb (Abby et al., 2016) and the HMMER package (Potter et al., 2018). To collect the

neighborhood of the genes of interest an in-house python script was used based on information downloaded from the complete ge-

nomes and nucleotide sections of the NCBI database.

QUANTIFICATION AND STATISTICAL ANALYSES

Statistical tests, number of events quantified, standard deviation of the mean, and statistical significance is reported in figure leg-

ends. Statistical analysis has been performed usingGraphPad Prism5 software and statistical significance is determined by the value

of p < 0.05.
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