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Abstract— This paper presents a delay-suppressed 

sliding mode observer (SMO) to observe the real-time rotor 
position of a permanent magnet synchronous machine 
(PMSM) controlled by vector control (VC) algorithms. 
Firstly, in order to solve the low pass filter (LPF) delay 
problem existing in the traditional signum function-based 
sliding mode observer (SMO), a brand-new hyperbolic 
function is initially selected as the switching function. 
Because a hyperbolic function with proper boundary layer 
is capable of reducing the chattering phenomenon of a 
SMO, it is not necessary to re-employ LPFs to eliminate the 
adverse impacts of chattering on the position estimation 
accuracy. In order to ensure the reachability and stability of 
the hyperbolic function-based SMO, the observer gain is 
calculated by the means of a Lyapunov function in this 
paper. Secondly, to solve the problem of calculation delay 
caused by digital computation, a current pre-compensation 
scheme based on dual-sampling strategy in one switching 
period is proposed. After compensating the calculation 
delay, the accuracy of position estimation as well as the 
motor control performance can be improved. Finally, the 
proposed SMOs with and without delay compensation are 
verified by both simulation and experiments which are 
conducted on a three-phase 1.5kW PMSM drive prototype. 

 
Index Terms— Permanent magnet synchronous 

machine, sensorless control, sliding mode observer, 
switching function, delay compensation. 

 

I. INTRODUCTION 

UE to the advantages of high power density, high 
efficiency, simple structure and wide speed range, 
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permanent magnet synchronous machines (PMSM) have drawn 
increasing attention in the computer numerical control (CNC) 
machine tools, elevator control and traction drives [1]-[6]. To 
take full advantage of these superior electromechanical tools, 
many high-performance control strategies have been 
cooperatively developed, the most popular of which is vector 
control (VC) [7]-[9]. In practice, since a PMSM receives 
sinusoidal magnetic flux from the permanent magnets (PM) 
mounted on/in the rotor, it is necessary to obtain the precise 
rotor position and speed for normal control [10]. Usually, the 
required information can be measured by position sensors, such 

as resolvers and encoders. Whereas，it is well-known that the 

cost would goes up while the system reliability gets reduced by 
the use of those extra position detection and signal processing 
devices [11]-[14]. At present, the most effective solution to the 
problem is to employ sensorless control techniques to estimate 
the rotor position as well as the rotating speed for VC.  

Sensorless control technologies can be classified into two 
principal categories: back electromotive force (EMF)-based 
method for high-speed range and saliency-tracking-based 
method for low-speed range. They have been investigated for 
decades [15]-[19].  Now, among the commonly used 
high-speed targeted algorithms which include Luenberger 
observer, extended Kalman filter and sliding mode observer 
(SMO), etc., SMO is especially well-known for its robustness 
and thus has been broadly adopted [20], [21]. However, the 
conventional SMO used for VC has the problem of low-pass 
filter (LPF) delay and calculation delay, deteriorating the 
accuracy of position estimation and further the drive control 
performance. 

a) LPF delay 
The conventional SMO uses the signum function as the 

switching function [22]-[24], leading to inevitable chattering 
phenomenon when the system states go through the sliding 
surface (SS) from one side to the other. In order to attenuate the 
adverse effect of chattering on the accuracy of position 
calculation, the LPFs with fixed or variable cut-off frequency 
are commonly adopted [23], [24].  However， the inherent delay 
attribute of the LPFs would bring about errors between the real 
and estimated values. At the moment, an additional position 
compensator which is related to the rotating speed should be 
designed, as in [25]. The main defect of this method is that the 
sensorless control topology as well as the implementation 
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Fig. 1.  Calculation delay of vector control. 

becomes complex. On this ground many scholars have studied 
the schemes that can reduce the chattering effects without using 
LPFs that are endowed with delay properties. High-order 
SMOs have been proven to be effective on solving the LPF 
problems, but the observer design complexity increases 
dramatically because more parameters are needed to be tuned 
[26], [27]. [28] and [29] have proposed relatively simple 
solutions by just replacing the discontinuous signum function 
with a continuous saturation or sigmoid function depending on 
the boundary layer (BL) law. However, literature [30] 
demonstrates that the saturation-function-based method in [28] 
is not very satisfactory because the chattering might still exist 
with large uncertainties, and a fuzzy system which acts like a 
saturation function with a nonlinear slope inside the BL is 
presented to tackle the problem. But in practice, it is usually 
tedious to tune the parameters of a fuzzy system. Although the 
slope of the sigmoid function in [29] is nonlinear, paving a way 
for developing the novel SMOs without using LPFs, the 
stability analysis and observer parameter design process should 
be further discussed. 

b) Calculation Delay  
Now, digital processors are often used in PMSM drives to 

process the status information, execute control algorithms and 
generate control signals. However, a typical feature of this kind 
of digital system is “one step delay” caused by a large number 
of calculations [31]-[34]. In terms of the VC-based algorithms 
which include abc/dq and dq/αβ transformation, speed and 
current regulation, and complicated space vector PWM 
(SVPWM) computation procedures, the real actuation moment 
will always lag behind the measurement (sampling) point by td 
within one switching period Ts, as in Fig.1. When the traditional 
SMO uses the sampling currents at tk to estimate position, θi can 
be obtained but when the SVPWM signals are applied, the rotor 
will rotate forward to θa. In this case, the machine performance, 
especially the load capability, might be degraded. And 
theoretically, the adverse effect of calculation delay will get 
more significant as the speed increases. Yet there are few 
researchers paying attention to this problem.   

In order to solve the LPF and calculation delay problems, 
this paper proposes an improved SMO for PMSM sensorless 
vector control. A continuous hyperbolic function (upper and 
lower limits are 1 and -1, respectively) with innate nonlinear 
property is selected to serve as the switching function. Without 
using a LPF to eliminate chattering, the filter delay can be 
avoided.  In order to analyze the stability of the new SMO, a 
Lyapunov function is constructed and an elaborated stability 
condition is innovatively obtained by contrast with the scheme 
in [29]. Besides, the calculation delay is compensated by using 
a current pre-compensation method based on dual-sampling 

technique in one switching period, improving the accuracy of 
position estimation. On these grounds the structure of the rest of 
the paper is as follows. Section II describes the PMSM model 
and the conventional signum function-based SMO. Section III 
describes the proposed SMO. Particularly, the hyperbolic 
function and the observer’s stability are analyzed in detail. In 
Section IV, a current pre-compensation method for removing 
the calculation delay is discussed. The results of the simulation 
and experimental verifications are presented in Section V, and 
Section VI presents the conclusion part.  

II. CONVENTIONAL SMO 

A.  PMSM Modeling 

The mathematical model of IPMSM in the αβ stationary 
reference frame is expressed by the following differential 
equations, where the iron saturation, magnetic flux leakage, 
eddy current and hysteresis loss are assumed to be negligible: 
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  (1)     

where iα, iβ, eα, eβ and uα, uβ represent the current, back EMF, 
and voltage for each phase in the stationary reference frame, 
respectively. Rs and Ls are the stator resistance and inductance, 
respectively. 
 The back EMF for each phase can be represented in the 
fixed-frame as: 
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                           (2) 

Where Ψf is the permanent magnet flux linkage, ωm is the rotor 
mechanical angular speed, p is the number of pole pairs and θ is 
the angular rotor position. It can be noticed that the α-, β-axis 
back EMF contains the real rotor position θ, but they cannot be 
measured directly. On this ground a sliding mode variable 
structure controller will be employed to extract the position 
information.  

B.  Conventional Signum-Function-based SMO   

The back EMF based SMO of the PMSM system (1) can be 
represented as: 

*

*

* *
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 (3) 

where iα*, iβ* are the estimated current in the stationary 
reference frame. i and i represent the errors between the 

estimated currents and the real currents, that is, *=i i i  − and 

*=i i i  − . For a traditional SMO, F( i ) and F( i ) are signum 

functions, namely, 
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Fig. 2.  Structure of the conventional SMO. 
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k is the observer gain, and in order to maintain the SMO stable, 
it should satisfy the following inequality condition: 

max(| |,| |)k e e                                  (5) 

According to the equations (1) and (3), the estimated back 
EMF eα* and eβ* can be written as: 

*

*

( ) sign( )

( ) sign( )

e F i i
k k

e F i i

  

  

    
=  =     

         

                    (6) 

In order to attenuate the chattering effect, eα* and eβ* will 
pass through a LPF to filter out the high-order harmonics before 
they are used to calculate position, as in Fig.2. Then, to 

compensate the delay introduced by the LPF, an extra term   

is added to the calculated value to obtain the final position and 
speed information (θ*, ωm

*): 

arctan( )m

c

p


 =                                  (7) 

where ωc is the cut-off frequency of LPF and p is the number 

of pole pairs. In this case, the maximum angle of lag is 
4


 

when the electrical angular velocity pωm approaches ωc.  
It should be noticed that for the traditional SMO based on 

signum function, the LPF must be used for chattering 
reduction and the delay compensation part should be 
employed to reduce the impacts from the LPF, which 
complicates the structure of the SMO.  Consequently, it is 
valuable to develop novel observers without using LPFs, and 
then the compensator is dismissed completely. 

III. IMPROVED SMO WITHOUT USING LPF 

Fundamentally, the LPF delay issue of the classic SMO 
arises from the chattering effect disposition method, so an 
effective solution is to reduce the undesirable chattering 
without using a LPF. This section proposes a novel SMO which 
utilizes a hyperbolic function as the switching function, 
requiring neither a LPF nor an extra compensator any longer.   

A. Hyperbolic Function 

With reference to literature [30], this paper aims to reduce 
the chattering phenomenon of SMO by smoothing out the 
control discontinuity and the step change within a BL near the 
sliding surface. To achieve this target and obtain better 
performance, the switching function should satisfy the 
following requirements: 

a) The function is continuous. 
b) Referring to the saturation function, the upper and lower 

limit are 1 and -1. 
c) The slope within the BL is nonlinear. 
d) The function has no time-delay characteristic. 

 A hyperbolic function with the expression of (8) is totally 
qualified, so it will be used in the new SMO.   
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                            (8) 

where m is a positive constant used for regulating the BL which 
is defined as the magnitude of the independent variable when 
F=0.99, as in Fig.3. Substitute (8) into (3), the improved SMO 
model used for eα* and eβ* estimation can be eventually 
established. 

B. Stability Analysis 

Since a new switching function is adopted in the SMO, it is 
crucial to reappraise the stability of the observer. For the new 
SMO, the defined α, β-axis sliding surfaces (Sα, Sβ) 
are i and i which can be denoted as:  

S
S i

S i
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 

  
= =   
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                                  (9) 

To ensure the stability of the designed observer, the 
following equation is necessary based on Lyapunov function: 

2 21 1 1
S S=

2 2 2
T

V i i =   +                          (10) 

Obviously, V > 0. Then, according to the Lyapunov stability 

decision theorem, only by deducing 
d

0
d

V

t
  can we conclude 

that the SMO can reach a stable state. Take the time derivative 
of equation (10): 

ddd dS
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d d d d
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Substitute (1) and (3) into (11), it can be further derived as: 
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And the polynomial expression of (12) is: 
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Obviously, term1 is less than 0. In order to keep the SMO stable, 
both term1 and term2 are expected to be less than 0. Therefore, 
the observer gain can be derived to meet the following criteria: 

max(| |,| |)
( ) ( )

ee
k

F i F i



 

                            (14) 

Clearly, the stability condition differs from (5) derived in [29],  
and it can be noted that k should be much larger because |F| is 
less than 1 over the BL range. In practice, i and i are the 

estimation errors, and referring to the sliding mode theory, they 
will fluctuate mostly around the sliding surfaces with small 
variations with the range of tolerance. Define the lower 
tolerance as ξ, which is: 

min(| |,| |)i i  =                               (15) 

And the minimum |F| can be rewritten as: 
-
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e e
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Therefore, the observer gain can be selected as: 
'

_ max3 3
| |

2 min | |

e f mC p
k

F
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=


                            (17) 

where ωm_max is the maximum speed of the machine and it can 
be set as the rated value. C’

e is the voltage constant relevant to 
the motor. The parameter k can guarantee the reachability of the 
observer,  and during the control process, although i and i  

might be smaller than ξ when the system gets to the equilibrium 
state, the proposed SMO can re-converge afterwards.  

C. Position and Speed Calculation 

An arctangent function is highly suitable for position 

extraction, and the estimated rotor position *  can be 

calculated by: 
*

*

*
arctan( )

e

e





 = −                                  (18) 

And the estimated angular speed *
m

  is:  

*
* d

d
m

t

 =                                       (19) 

Overall, the proposed hyperbolic function-based SMO 
without using LPF and position compensator can be 
illustrated in Fig.4. In virtue of the new method, the LPF 
delay issue can be tackled totally. 

IV. CALCULATION DELAY PRE-COMPENSATION 

Undoubtedly, the calculation delay would lead to lagging 
control behaviors of VC. To some extent, the root cause of this 
phenomenon is that the currents sampled at tk are not equal to 
the values at tk + td. Therefore, an effective way to eliminate the 
delay effect is to predict the currents at tk + td in advance and use 
the predicted currents to calculate the rotor position 
information. This is exactly the so-called pre-compensation 
method in this paper. For the sake of convenience, this part 
takes the a-phase current ia as an example to detail the 
compensation procedures.  

In order to realize the proposed compensation strategy, two 
assumptions need to be made: 1) the current will shift linearly 
in each switching period when one voltage vector is selected 
and applied, and only when another voltage vector is applied 
will the rate of current change differ in the next period; 2) the 
computation delay remains constant. Compared to the 
traditional VC which is characterized by that there is only one 
sampling point at the beginning of each execution period, the 
pre-compensation scheme is on the basis of dual sampling. The 
detailed implementation process consists of the following two 
phases: delay estimation and compensation.  

1) td estimation 
  When estimating td, the traditional VC algorithm of which 
position information is provided by the improved SMO without 
compensation will be applied. Fig.5 (b) shows the delay 
computation strategy, and it can be noticed that in each 
switching period there are two sampling points, one of which is 
still at the start of a period. The other stands at the actuation 
moment when the SVPWM algorithm is completed. In Fig.5 (b), 
the sampling currents over tk-1~tk and tk~tk+1 are ia_1(k-1), ia_2(k-1) 
and ia_1(k), ia_2(k), respectively. According to the first assumption, 
the delay can be calculated by: 

                         
_ 2( ) _1( )

_ 2( ) _ 2( 1)

| |

| |

a k a k

d s

a k a k

i i
t T

i i −

−
= 

−
                   (20) 

 2) Compensation  
 Denote the current control period as tk as well. After 
obtaining the delay time td, the proposed pre-compensation 
procedures are as follows at tk: 

 a) Phase current measurement: use current sensors to detect 
the real phase currents. 
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Fig. 7. Chattering effect under different boundary layer or m. (a) Back 
EMF when m=1. (b) Back EMF when m=0.25. (c) Back EMF when 
m=0.1. (d) Back EMF when m=0.01. (e). THD and amplitude of the 
estimated back EMF. 
 

b) Compensation: predict the current variation △ia(k) in td, as 

in Fig.5 (c):  

_1( ) _ 2( 1)

( )

a k a k

a k d

d

i i
i t

T t

−−
 = 

−
                       (21) 

ia_2(k-1) represents the sampling current in the last interval as 
well, and the a-phase current used for position estimation is: 

'
( ) _1( ) ( )a k a k a ki i i= +                             (22) 

Following the above step b), the compensated b-phase and 
c-phase current ib

’ (k) and ic
’ (k) can also be calculated. Then, 

the compensated phase currents will be used to calculate ia and 
iβ by abc/αβ transformation for obtaining the rotor position 
information. The block diagram of the delay-suppressed SMO 
based VC is illustrated in Fig.6.  

Interestingly, it can be further noticed that the compensated 
iα and iβ are utilized for d, q-axis current computation, which 
means that the calculation delay effect can also be removed in 
the current regulation process.  

V. VERIFICATIONS  

The performance of the proposed SMO is tested by the 

means of both simulation and experiments. The motor and 
control parameters of the PMSM prototype are listed in Table I. 
Compared to the experiemental cases,  the simulation is carried 
out on a personal computer of which processing speed is 
thousandhold faster than the pratically used digital processors. 
Therefore, the proposed solution to calculation delay will be 
only verified by experiments.  

A. Simulation Results 

a) Analysis on boundary layer 
The BL of the hyperbolic function is determined by m and it 

is closely associated with the chattering suppression effect. 
Theoretically, the narrower the BL is, the larger the total 
harmonic distortion (THD) caused by chattering will become 
because the velocity approaching the SS is higher. Fig.7 (a)-(d) 
illustrate the estimated back EMF under different m when the 
machine operates at the corner speed ωcor, and the THD has a 
nonlinear relationship versus the BL, which is shown in Fig.7 
(e). It can be witnessed that the harmonics takes up 41.5%, 
18.6%, 9.5% and 1.7% for m=1, 0.25, 0.1 and 0.01, respectively. 
Although the chattering effect experiences a downward trend as 
the BL widens, m cannot be set to an infinitesimal value 
because another significant phenomenon is that the amplitude 
of the estimated back EMF also goes down while the voltage 
phase remains fixed, which reveals the defect of a switching 
function with low approaching speed. Unfortunately, this might 
reduce the robustness and dynamics of the SMO [25]. In 
practice, we must adjust the parameter m to simultaneously 
guarantee good steady-state and dynamic control performance.  
What needs to be addressed is that the back EMF of the PMSM 
will grow as the speed increases while the magnitude of the 
chattering is nearly invariable, which is conducive to 
weakening the chattering impact. Thus, the m designed at the 
corner speed can also be suitable over the higher speed range. 

TABLE I 
MOTOR AND CONTROL PARAMETERS 

Parameter VALUE Unit 

stator winding resistance Rs 0.6383 Ω 
d-axis inductance Ld 2 mH 

q-axis inductance Lq 2 mH 
the number of pole pairs p 4 - 
moment of inertia J 0.013 kg·m2 
viscous coefficient B 0.0035 - 
permanent magnet flux linkage Ψf 0.085 Wb 
DC-link voltage UDC 310 V 
switching period Ts 0.0001 s 
voltage constant C’

e 1.67 - 
rated speed ωrated 314 rad/s 
rated torque Trated 5 Nm 
rated bus current Irated 6 A 
corner speed ωcor 52.3 rad/s 
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Fig. 9. Steady-state performance at the speed of 2000 rpm. 
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Fig. 10. Dynamic performance. 

Fig. 11. Experimental setup. 
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Fig. 8. Steady-state performance at the speed of 500 rpm. 
 

Based on the aforementioned analysis and the test cases, m is 
set as 0.01 where BL=265 in this paper, and below are the 
corresponding results.  

b) Steady-state performance  
Fig.8 illustrates the steady-state performacne characteristics 

when the motor rotates at the corner speed (reference speed 
nref=500 rpm). The amplititude of the symmetrical phase 
currents is about 0.5 A, representing the no-load current. The 
rotor speed nm

* can remain stable at 500 rpm with slight 
fluctions of ±7.5 rpm (1.5%). Significantly, the proposed SMO 
shows good position tracking capability according to the third 
picture in Fig.8, and the position estimation error (PEE) ∆θ is 
within ±0.1 rad. In order to discuss the esitmation and control 
performance over the high-speed range, a reference speed of 

2000 rpm is set. Fig.9 demonstrates that the no-load current 
rises by nearly 0.3 A compared to the low-speed case. The back 
EMF curves verify that the THD caused by chattering decreases 
as the speed goes up, and it is merely 0.8% when the speed 
stabilizes at 2000 rpm. Besides, benefitting from the inherent 
properties of the back EMF based SMO, although the speed 

fluctuation (SF) becomes ±24 rpm，it just accounts for 1.2% of 

the reference. As far as the postion is concerned, better 
estimation accuracy can be witnessed. The estimation error ∆θ 
is approxiamately within ±0.05 rad.  

c) Dynamic performance  
The dynamic performance tests include speed regulation and 

sudden load/unload change (as in Fig.10). On the one hand, the 
reference speed is set to 1000 rpm between 0.05 and 0.15 s 
initially, and it is 1200 rpm between 0.15 and 0.25 s, after 
which it is reset as 1000 rpm. On the other hand, a step load 
torque (Tl) of 2 Nm is applied to the shaft at 0.1 s and it is 
removed suddenly at 0.2 s.  

Firstly, when using the estimated speed and position 
information to control the system, the machine rotating speed 
can track the reference well regardless of the acceleration and 
deceleration process, of which overshoot is 55 rpm (4.6%) and 
42 (4.2%) rpm, respectively. Then, when the step load is 
applied and removed, the speed fluctuates slightly at first, and 
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Fig. 13. Experimental steady-state performance at the speed of 2000 
rpm.  (a), (c), (e). SMO without calculation delay compensation. (b), (d), 
(f). SMO with delay compensation. 
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Fig. 14. Experimental steady-state performance at the speed of 3000 
rpm.  (a), (c), (e). SMO without calculation delay compensation. (b), (d), 
(f). SMO with delay compensation. 
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Fig. 12. Experimental steady-state performance at the speed of 500 
rpm.  (a), (c), (e). SMO without calculation delay compensation. (b), (d), 
(f). SMO with delay compensation. 

then it returns to a stable state quickly. Meanwhile, the machine 
has a very fast response speed concerning the output 
electromagnetic torque Te. This demonstrates that when m=0.01, 
the system still has strong robustness against the external load 
change. As to the position, the estimation error witnesses an 
obvious growth up to 0.25 rad when the speed increases, while 
it is nearly invariable when the load changes. 

B.  Experimental Results 

Experiment is conducted on a three-phase PMSM whose 
parameters are also consistent with Table I. The experimental 
equipment is shown in Fig.11. Insulated gate bipolar transistor 
(IGBT) modules, FP25R12KT3, constitute the voltage inverter 
with the switching frequency of 10 kHz. The proposed SMO 
algorithm and the VC control algorithm are implemented on a 
DSP TMS320F28335 control board. The real rotor position can 
be detected by a rotary encoder. Hall current sensors, HIOKI 
3275 Clamp On Probe, are used to measure the phase currents 
while the motor d, q-axis currents are calculated by the digital 
controller. An induction motor driven by an Automation Drive 
FC 301 with torque control mode, is coupled to the test machine, 
providing the required load torque. 

For the sake of the comparative discussion about the 
performance before and after delay compensation, the delay 
time will be tested beforehand according to the proposed 
pre-compensation approach in this part. Under no load 
condition, the delay time is measured when the machine is 
controlled by the VC algorithm. In this process, the improved 

SMO without pre-compensation is employed to detect the rotor 
position. Table II records the delay value in fifteen different 
switching periods. It should be noted that the average delay of 
the test drive system is about 0.0341 ms, accounting for 34.1% 
of one single cycle. Undoubtedly, this will influence the 
position estimation accuracy as well as the control 
performance.   
 Fig.12 illustrates the steady-state no-load control 
performance of the improved SMOs with and without 
calculation delay when the machine rotates at 500 rpm. Firstly, 
the rotor speed can stabilize at the reference value with pimping 
fluctuations for both algorithms. Then, because no load is 
imposed on the machine shaft, the q-axis current is just slightly 
higher than zero (against viscous resistance) and the d-axis 
current is about zero. But interestingly, the q-axis current of the 

TABLE II 
TIME DELAY IN FIFTEEN DIFFERENT PERIODS 

kth 
period 

Delay 
(ms) 

kth 
period 

Delay 
(ms) 

kth 
period 

Delay 
(ms) 

1 0.0334 6 0.0353 11 0.0352 
2 0.0332 7 0.0346 12 0.0336 

3 0.0343 8 0.0333 13 0.0342 
4 0.0343 9 0.0338 14 0.0342 
5 0.0340 10 0.0346 15 0.0336 
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SMO with calculation delay pre-compensation reduces by 0.04 
A (4.6%) in comparison with the scheme without compensation. 
Moreover, there are few harmonics in the estimated back EMF, 
with a THD of 1.25% and 1.23% for the two strategies, 
respectively. What needs to be observed is that the amplitude of 
the back EMF is about 18 V, which is closer to the ideal value 
than the simulation result. Finally, both of the algorithms show 
marked tracking capability in terms of the position estimation 
process, as is shown in Fig.12 (e) and (f). The estimation errors 
are within ±0.2 rad. This is exactly the reason why the machine 
can be controlled to run well.  

To further prove the applicability of the proposed strategies, 
their steady-state performance characteristics are compared in 
Fig.13 when the rotor speed is 2000 rpm. In comparison with 

Fig.12, at first, the machine has remarkable speed tracking 
performance as well. Secondly, the viscous force becomes 
higher as the speed goes up so that the q-axis current rises to 
over 1 A. But comparatively, the iq for the compensation 
algorithm is 1.08 A, 6.1% smaller than that (1.15 A) for the 
non-compensation method. This means that the effect of 
calculation delay compensation gets more significant over high 
speed range. Besides, there are fewer harmonics in the 
estimated back EMF. The THD is 0.64% and 0.62% for the two 
strategies, respectively. In this case, the amplitude of the back 
EMF is about 70 V. As far as the rotor position, the two 
algorithms show more satisfying performance. The estimation 
errors are less than ±0.1 rad. When the machine speed rises to 
3000 rpm  

 (as in Fig.14), the q-axis current for the compensation 
algorithm is 7.5% lower than that for the non-compensation 
method, indicating the impact of calculation delay on the 
control performance gets more obvious and the compensation 
effect is better. Much fewer harmonics in the estimated back 
EMF can be witnessed, with the THDs of 0.59% and 0.55% for 
the two methods, respectively. Similar to Fig.13, the PEE is less 
than ±0.1 rad.  

In order to intuitively compare the differences between the 
SMOs with and without compensation means, an extra 
experiment is designed: use the two algorithms to calculate the 
rotor position when the motor is controlled by VC strategy, of 
which the required control information is obtained from the 
position sensor. In Fig.15, it can be noticed that *  before 

compensation lags those after compensation by about 0.03 and 
0.045 rad at the speed of 2000 and 3000 rpm, respectively. In 
practice, the gap widens over a higher speed range according to 
the previous analysis, degrading the machine performance.  
 In accordance with the simulation procedures, the dynamic 
performance of the improved delay-suppressed SMO is tested 
(as in Fig.16). When a sudden load of 2 Nm is imposed on the 
shaft, the machine speed decreases to 977 from 1000 rpm 
immediately but it recovers to the reference point quickly. By 
contrast, the machine speed experiences a rise of 18 rpm (1.5%) 
when the load is removed. When the reference speed changes 
from 1000 to 1200 rpm, the settling time is about 0.1 s and the 
overshoot is only 10 rpm (0.8%). In terms of deceleration, an 
overshoot of 6 rpm can be witnessed. Fig.16 (c) and (d) display 
the position under the conditions of sudden loading and sudden 
unloading, respectively. The impact of the load change on the 
position estimation accuracy can be nearly ignored. Whereas, 
during acceleration and deceleration, the PEEs will increase. 
Luckily, after the speed arrives at the setpoint, the estimation 

TABLE III 
PRINCIPAL STEADY-STATE PERFORMANCE CHARACTERISTICS  

Conditions 
Speed 
(rpm) 

SF 
(rpm) 

THD of 
Back EMF 

PEE (rad) 

Simulation 
500 7.5 1.7% < 0.1 

2000  24 0.8% < 0.05 

Experiment 
(non-compensation) 

500  35 1.25% < 0.2 

2000  54 0.64% < 0.1 

Experiment 
(compensation) 

500  33 1.23% < 0.2 

2000  51 0.62% < 0.1 
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accuracy will resume the normal position (within 0.15 rad). 
 Finally, Table III summaries the principal steady-state 
performance characteristics (SF, THD of back EMF and PEE) 
of the proposed algorithms at the speed of 500 rpm and 2000 
rpm to improve the visualization of the novel technique 
contributions. It can be noted that firstly, the proposed SMO is 
effective to provide accurate position information for control, 
and the position estimation results will get slightly better after 
delay compensation. Secondly, both the experimental and 
simulation results prove that the chattering effects can be 
effectively suppressed by using the proposed SMO which does 
not employ any LPFs.  

VI. CONCLUSION 

This paper proposes an improved SMO for PMSM 
sensorless VC method to solve the LPF and calculation delay 
problems. The main contributions of this paper are as follows: 

1) A brand-new hyperbolic function is selected as the 
switching function following the BL theory. In this case, the 
LPF can be eliminated because it is found that the chattering 
phenomenon can be repressed by adjusting the width of BL. 
Consequently, the proposed SMO succeeds in eliminating the 
LPF delay.  

2) By designing a dual sampling method for the phase 
current in each switching period, the calculation delay is 
estimated at first and then, a current-pre-compensation strategy 
is proposed to compensate the PEE (0.03 and 0.045 rad at the 
speed of 2000 and 3000 rpm for the test drive, respectively) 
caused by calculation delay, improving the position estimation 
accuracy. 

The simulation and experimental results prove that the 
proposed algorithm has good steady-state and dynamic 
performance. Consequently, it can be concluded that a 
hyperbolic function is qualified to reduce the chattering of a 
SMO and simultaneously, the LPF delay can be removed. 
Further, the proposed calculation pre-compensation approach is 
able to reject the adverse effects of the delay on the machine 
performance. 
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