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Abstract
Background: The expression of XCR1 receptor and its metamorphic ligand lym-
photactin (hLtn) has been shown in cancers but their precise role in tumorigenesis 
is poorly understood including the significance of the physiologically existing hLtn 
monomeric (CC3) and dimeric (W55D) confirmations where the latter thought to 
function as the receptor antagonist. The aim of this study was to explore the func-
tional role of bioengineered hLtn variants and the role of fibroblasts in XCR1/hLtn 
expression regulation in oral cancer cells (OCCL).
Material and methods: qRT-PCR and flow cytometry were performed to evaluate 
mRNA and protein expression of XCR1 and hLtn. Recombinant hLtn variants (wild-
type, CC3 and W55D mutant) were designed, expressed, purified and evaluated using 
proliferation, adhesion and chemotaxis assays. XCR1 and hLtn expression regulation 
by fibroblasts was determined using indirect co-culture. XCR1 and hLtn expression 
in primary and metastatic OSCC tissue was assessed using immunohistochemistry.
Results: hLtn caused a significant decrease in OCCL XCR1 surface protein expres-
sion. hLtn CC3 mutant was highly functional facilitating proliferation and migration. 
Conditioned media from primary cancer-associated and senescent fibroblasts signifi-
cantly upregulated XCR1 and hLtn mRNA expression in OCCL. Immunohistochemistry 
revealed higher XCR1 and hLtn expression in metastatic tumour deposits and sur-
rounding stroma compared to primary OSCC tissue.
Conclusions: The development of hLtn biological mutants, regulation of XCR1 expres-
sion by its ligand hLtn and crosstalk with fibroblasts are novel findings suggesting an 
important role for the XCR1/hLtn axis within the OSCC tumour microenvironment. 
These discoveries build upon previous studies and suggest that the hLtn/XCR1 axis 
has a significant role in stromal crosstalk and OSCC progression.
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1  | INTRODUC TION

Chemokines are chemo-attractive cytokines with four subfamilies 
classified by the arrangement of the N-terminal cysteine residues 
(C, CC, CXC and CXXXC). Chemokines function primarily in medi-
ating immune cell navigation and inflammatory responses (Sokol & 
Luster, 2015). Chemokines and their receptors have been shown 
to play a key role in tumour metastasis and reported to be overex-
pressed in the tumour microenvironment (TME) facilitating cancer 
progression (Nagarsheth, Wicha, & Zou, 2017). In particular, stromal 
fibroblasts (i.e. cancer-associated fibroblasts, CAF) have been shown 
to promote tumour growth, progression and migration through para-
crine signalling (Liu et al., 2019).

XCR1 is the sole member of the C-chemokine family, and its li-
gand is lymphotactin (hLtn) (Hughes & Nibbs, 2018). Recently, it has 
become apparent that chemokines influence survival and progres-
sion in a range of tumours including oral squamous cell carcinoma 
(OSCC; Panda, Padhiary, & Routray, 2016). Expression of XCR1 and 
hLtn outside the immune system and their involvement in cancer cell 
regulation was first shown by our previous work in OSCC (Khurram 
et al., 2010). Since then, further studies have shown a role for the 
XCR1 receptor in breast, lung and ovarian carcinoma revealing a 
wider role than what was first envisaged (Kim & Wu, 2012; Wang 
et al., 2015; Yang, Qi, Lin, & Ou, 2017).

The ligand lymphotactin (hLtn) is a metamorphic protein, 
adopting two distinct conformations with canonical (CC3) and 
non-canonical (W55D) chemokine protein folds (Volkman, Liu, & 
Peterson, 2009). The structure is salt and temperature dependent 
with the monomeric (CC3) form predominately seen at higher salt 
concentrations and at 10°C, whereas the dimeric structure (W55D) 
is present at lower salt concentrations and at a temperature of 
40°C (Kuloglu, McCaslin, Markley, & Volkman, 2002). Interestingly, 
both forms are distributed equally in physiological conditions 
with a conversion rate of ~1/s (Volkman, Liu, & Peterson, 2009). 
Currently, there are no studies investigating the biological role of 
each conformation.

Increased proliferation, adhesion and migration are a hallmark 
of cancer cells and chemokine–chemokine receptor interactions 
have been shown to influence these characteristics. hLtn has been 
shown to mediate cell proliferation in oral cancer cell lines (OCCL) 
through its receptor XCR1 (Khurram et al., 2010). However, it is 
not known whether this interaction is associated with the canoni-
cal chemokine fold only. Another key characteristic of cancer cells 
is the ability to adhere to extracellular matrix (ECM) components 
facilitating migration and invasion. Whilst it has been previously 
reported that hLtn with a canonical fold can activate the receptor 
and mediate adhesion to ECM, migration and invasion, the exact 
contribution of different hLtn conformations in cancer is still 
unknown.

In the current study, we further evaluate the expression and role 
of XCR1 receptor and its ligand in oral cancer cell regulation as well 
as the influence of fibroblasts.

2  | MATERIAL S AND METHODS

2.1 | Cell culture

Human primary normal oral fibroblast (NOF) (origin buccal) and 
CAF (origin: floor of the mouth and lateral tongue) were ob-
tained from excess tissue removed during biopsy (South Sheffield 
Ethics Approval Committee Ref: 09/H1308/66; Ref: 13/NS/0120, 
STH17021) (Elmusrati, Pilborough, Khurram, & Lambert, 2017). 
OCCL, H357 and SCC4 (ATCC) and primary fibroblasts were grown 
in appropriate media as described previously (Khurram et al., 2010). 
The conditioned media (CM) were prepared by culturing the fibro-
blasts with serum-free media for 24-hr, filtering (0.22 µM cut-off) 
and storing at −20°C until further use. OCCL were seeded in six-well 
plates (2.5—5 × 104 cells) and allowed to adhere overnight, followed 
by serum starvation for 24 hr prior to exposure to the CM.

2.2 | RNA extraction and qRT-PCR

Total RNA was extracted from the cultured cells using a RNeasy Mini Kit 
(Qiagen) and reverse transcribed to complementary-DNA using a High-
Capacity cDNA Reverse Transcription Kit (Thermo Fisher). Subsequently, 
the samples were subjected to TaqMan qPCR analysis using 7900HT 
Fast Real-Time PCR System (Thermo Fisher). The TaqMan probes used 
for amplification were as follows: XCR1 (I.D. Hs00245540_s1) and hLtn 
(I.D. Hs00751481_s1). Amplification was normalised to human B2M 
expression (I.D. Hs00187842_m1) in all samples using the method as 
previously described (Elmusrati et al., 2017).

2.3 | Surface protein expression using 
flow cytometry

OCCL suspensions were prepared using a cell dissociation buffer 
(Sigma-Aldrich) and resuspended at a density of 1 × 106 cells in a 
cold flow buffer (PBS containing 10% [v/v] FCS). Cells were incu-
bated with XCR1 antibody (20 µg/ml) for one-hour on ice. Cells were 
washed three times with buffer before the addition of Alexa Fluor® 
488-conjugated secondary antibodies (2 µg/ml, Thermo Fisher) for 
30 min on ice in the dark. Data were acquired using a FACSCalibur 
(Becton Dickinson) and analysed using FlowJo 10 software. Negative 
control samples were incubated with rabbit serum.

2.4 | Site-directed mutagenesis, protein 
expression and purification

Mutagenesis was performed on the pET24a vector containing the 
HLTEV WT-XCL1 fusion protein using pairs of complementary 
primers (Supplementary S1) and the QuikChange II site-directed 
mutagenesis kit (Agilent) to create W55D and CC3 (V21C, V29C) 
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mutants (Warburton, Omar Ali, & Choon Liong, 2015). The result-
ing plasmid was transformed into Escherichia coli strain BL21(DE3) 
(New England Biolab) and overexpression induced using auto-in-
duction media (Studier, 2014) at 30°C for 24-hr. Plasmid validation 
was performed by gene sequencing while the mutant proteins were 
confirmed by their 280-nm absorbance and using gel electropho-
resis. The subsequent purification scheme for the hLtn variants is 
described in the Supplementary S1.

2.5 | Proliferation assay

These assays were performed as previously described (Khurram 
et al., 2010). OCCL were treated hLtn variants (100 ng/ml) in SFM. 
2 × 103 cells per well were seeded in a 96-well plate and incubated 
at 37°C in a 5% CO2 incubator for 48 and 72-hr. Cell proliferation 
was measured using the CellTiter 96® Aqueous One Solution Cell 
Proliferation assay, a tetrazolium compound [3-(4,5-dimethylthiazol-
2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium, 
inner salt; MTS] (Promega) following a 1-hr incubation and absorbance 
measured at 492 nm. Cell numbers were calculated using a standard 
curve for each assay.

2.6 | Adhesion assay

Adhesion assays were performed as described previously (Khurram 
et al., 2010) using collagen type 1 solution from rat tail, collagen IV 
from human cell culture and plasma fibronectin (1–10 µg/ml, Sigma-
Aldrich). The plate was coated for 1-hr and non-specific binding 
was blocked using 1% (w/v) BSA in PBS. Cells were exposed to hLtn 
(100 ng/ml) for 24-hr prior to seeding in a 96 well plate (4 × 104 cell/

well). Adhered cells were quantified indirectly using an MTS assay.

2.7 | Chemotaxis assay

Chemotaxis was assessed using 8 µm Transwell ® polycarbonate 
membrane cell culture inserts (Sigma-Aldrich) and performed as pre-
viously described (Khurram et al., 2010). The upper chamber was 
seeded with 1 × 105 cells/100 µl with 500 µl hLtn (100 ng/ml in SFM) 
added to the bottom well. Inserts were fixed in 10% (v/v) formalin 
after 4-hr of incubation, and migrated cells were stained with 0.5% 
(w/v) crystal violet (in 10% [v/v] ethanol) for 10 min followed by a 
wash in distilled water. Migrated cells were counted in five random 
fields per membrane (100× magnification) using a light microscope.

2.8 | Myofibroblast differentiation

Cells were seeded into six-well plates (5 × 104 cells/well) and allowed 
to adhere overnight at 37°C. Following 24-hr serum starvation, ex-
posure to TGF-β1 for 24-hr (5 ng/ml; R&D system) was performed 

and phenotypes were identified as previously described (Elmusrati 
et al., 2017). The images were obtained using a fluorescence micro-
scope (Carl Zeiss Ltd.).

2.9 | Senescence induction by genotoxic stimuli

NOFs were grown to approximately 70% confluence before treat-
ment with 500 µM H2O2 in SFM for 2-hr. The H2O2 was then 
removed, and the cells were left in growth media for 14 days to facil-
itate senescence. Media were changed every 2–3 days. Successful 
induction of senescence was determined using the senescence-
associated β-galactosidase detection kit (Abcam) according to the 
manufacturer's instructions. Bright-field microscopy was used to 
estimate the percentage of blue-stained cells per microscopic field.

2.10 | Immunohistochemical analyses

Immunohistochemistry was carried out on primary OSCC (n = 5) with 
matched metastatic lymph nodes (n = 5), and reactive lymph nodes 
(n = 5). Immunohistochemistry for XCR1 and hLtn (both 10 µg/ml, LS-
Bio) was performed as previously described (Khurram et al., 2010). 
Sections were scanned using the TissueFAXS SL 120 Histo High-
throughput System (Wien, Austria). Percentage of positive cells and 
staining intensity was quantified in six random regions (~0.3 mm2) of 
interest (tumour and adjacent stroma) using the HistoQuest Analysis 
Software (Tissue Gnostics Imaging Solution).

2.11 | Statistical data analysis

Data were expressed as mean and standard error of mean. Paired 
Student's t test was used to determine the statistical significance of 
results, and a p < .05 was considered statistically significant. All as-
says were performed in triplicate.

3  | RESULTS

3.1 | XCR1 surface expression in OCCL is 
downregulated following exposure to hLtn whilst 
adhesion to ECM components is increased

Flow cytometry showed variable XCR1 surface expression in 
OCCL with greater expression in SCC4 cells (88.67%) compared 
to H357 cells (36.67%; p < .0001) (Figure 1a,b). Following 24-hr 
exposure to hLtn, a significant elevation in SCC4 XCR1 mRNA ex-
pression was detected (Figure 1b, p < .01). Significant downregula-
tion of surface XCR1 expression was seen compared to the control 
with SCC4 cells showing a greater reduction in median fluores-
cence intensity (16% reduction; p < .05) compared to H357 (8% 
reduction, p < .05) (Figure 1c).
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OCCL adhesion to collagen I, fibronectin and collagen IV was investi-
gated since attachment to these is a key step in OSCC migration, invasion 
and progression (Figure 1d,e). Adhesion to collagen I was observed for both 
H357 and SCC4 cells with the highest seen to fibronectin and the lowest 

to collagen IV. hLtn exposure significantly increased SCC4 and H357 ad-
hesion to collagen I (15% and 10%, respectively (p < .05), compared to 
control. Only SCC4 cells showed significant adhesion to collagen IV and 
fibronectin with 5% and 9% increase, respectively (p < .05), postexposure.

F I G U R E  1   hLtn regulates the 
expression of the surface XCR1 receptor 
and increases OCCL adherence to 
extracellular matrix (ECM) components. 
(a) Surface XCR1 expression in H357 and 
SCC4 showing varying expression of the 
receptor. OCCL exposure to hLtn (100 ng/
ml) for 24-hr influence the (b) mRNA 
transcripts and (c) surface expression of 
XCR1. Adhesion of (d) H357 and (e) SCC4 
on fibronectin, collagen I and IV (0.1–
10 µg/ml). (f) hLtn exposure (100 ng/ml) to 
ECM components significantly increases 
adhesion of OCCLs. All the experiments 
were performed with three independent 
repeats where data presented as 
mean ± SEM. (*p < .05, **p < .01, 
***p < .001, ****p < .0001)

F I G U R E  2   Functional evaluation of 
hLtn mutant variants in OCCLs. (a) The 
solution structure of metamorphic hLtn 
with its different conformations with 
the wild-type (in green), CC3 (in red) 
and W55D (in blue) mutant. The image 
was produced using PyMOL, and the 
data were obtained from protein data 
bank PDB: 1J90, PDB: 2HDM, and PDB: 
2JP1, respectively. (b) The functionality 
evaluation of the recombinant hLtn 
variants using chemotaxis assay. (c) 
H357 and (d) SCC4 proliferation after 
48- and 72-hr exposure to hLtn mutant 
variants. Data presented with mean ± SEM 

(*p < .05, **p < .01, ***p < .001)
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3.2 | hLtn variants influence OCCL proliferation 
while the canonical hLtn induces chemotaxis

OCCL proliferation, adhesion to ECM components and chemotaxis 
have been shown previously to be influenced by wild-type hLtn. 
CC3 is a mutant with a canonical chemokine fold while W55D ex-
ists in a dimer form (Liu et al., 2019). Exposure of H357 cells to wild-
type, rCC3 and rW55D variants significantly increased proliferation 
(p < .05) compared to controls with rCC3 inducing the highest in-
crease of 2.3-fold (p = .01). No significant differences were seen be-
tween the other hLtn mutant variants (Figure 2a). Exposure to all hLtn 
variants also significantly increased the proliferation of SCC4 cells for 
WT, rWT, rCC3 and rW55D (p < .05) (Figure 2b).

Canonical chemokine fold hLtn variants (WT, rWT, rCC3) also sig-
nificantly increased OCCL migration compared to control (p = .019, 
p = .016 and p = .023, respectively) (Figure 2c). rCC3 induced higher 
migration compared to the WT, rWT and rW55D variants (p = .028, 
p = .046 and p = .03, respectively). Interestingly, the rWT stimulated 

migration significantly more than the commercially available WT 
(p = .014). No migration towards the rW55D was observed.

3.3 | Conditioned media from CAF upregulate 
whereas senescent fibroblasts downregulate mRNA 
expression of XCR1 and hLtn in OCCL

Fibroblasts are the predominant cells in OSCC microenvironment. 
To investigate the role of fibroblasts in modulating XCR1 and hLtn 
expression in OSCC, CM derived from fibroblasts was used to treat 
H357 and SCC4 OCCLs. Different fibroblast phenotypes were em-
ployed: primary CAF, TGF-β1-induced myofibroblasts and hydrogen 
peroxide-induced senescent fibroblasts (s-NOF). CAF phenotype 
was assessed through α-smooth muscle actin (α-SMA) expression, 
and expression was seen in TGF-β1-induced fibroblasts and pri-
mary CAF (Figure 3b–e). CAF-derived CM significantly increased 
mRNA expression of XCR1 and hLtn in SCC4 but not in H357 cells 

F I G U R E  3   Conditioned media from 
fibroblasts regulates expression of 
XCR1 and XCL1 mRNA in OCCL. CAF 
phenotype assessment of alpha-smooth 
muscle actin (α-SMA) protein expression 
in the (a) normal oral fibroblasts, (b) 
myofibroblast, (c, d) cancer-associated 
fibroblast. Relative change in mRNA 
expression of (e) XCR1 and (f) hLtn (XCL1) 
in SCC4 and H357 cells, respectively, 
following 24 hr culture with conditioned 
media from myofibroblast and cancer-
associated fibroblasts (CAF002, CAF004). 
Relative mRNA expression of (g) XCR1 
and hLtn in SCC4 and H357 cells following 
24-hr culture with conditioned media 
from H2O2-induced senescent fibroblast. 
Senescence-associated β-galactosidase 
assay in oral fibroblasts (h) with and 
(i) without hydrogen peroxide (H2O2) 
treatment (500 µM), and (j) the blue 
precipitation was quantified using ImageJ. 
Data presented with min to max ± SEM 

for three independent repeats. (*p < .05, 
**p < .01, ***p < .001, ****p < .0001)
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compared to control (CAF004: p < .05, CAF002: p < .01) (Figure 3f–
g). In contrast, CM from experimentally induced myofibroblasts 
downregulated XCR1 and hLtn mRNA expression, ranging from 
2.3- to 3.3-fold in both cell lines (SCC4: p < .05, H357: p < .001). 
Following the assessment of the senescence phenotype (Figure 3h–
j), the OCCLs were similarly treated with senescent-NOF CM. The 
results showed a significant downregulation in both XCR1 (p < .001) 
and hLtn (p < .0001) mRNA transcripts in SCC4 cells compared to 
the normalised vehicle control (Figure 3k). No significant changes in 
H357 cells were observed.

3.4 | Stromal expression of XCR1 is higher in 
metastatic deposits compared to the primary site

XCR1 and hLtn expression have been shown previously in OSCC tis-
sue both in primary and metastatic tumours (Elmusrati et al., 2017), 
and our findings confirmed this. Diffuse expression of XCR1 was 
seen within the primary tumour, with greater staining in the basal 
layers of dysplastic surface epithelium and the invasive component 
(Figure 4).

Strong staining for XCR1 was seen in both the primary and 
metastatic OSCC tissue (90%–95% positive expression) with 

significantly higher expression intensity seen in metastatic depos-
its (59.73% ± 7.89) compared to the primary tumour (34.27% ± 3.66) 
(p < .05) (Figure 4g). The metastatic tumours also showed significantly 
higher XCR1 percentage positivity (p < .05) than primary tumours in 
the surrounding stroma (Figure 4h). Positive expression of hLtn was 
identified in primary and metastatic tumours (72.18% ± 15.06 and 
95.57% ± 0.92, respectively) as well as stroma but no significant dif-
ferences were detected (Figure 5).

4  | DISCUSSION

OSCC spreads from the primary site in the oral cavity to neck lymph 
nodes due to their proximity resulting in poor prognosis (Irani, 2016). 
In this study, we aimed to build on our previous work and further elu-
cidate the role of XCR1 and hLtn in oral cancer, the relationship be-
tween their expression and the role of fibroblasts, the predominant 
cell type in OSCC microenvironment. There is a significant volume of 
literature showing the role of chemokines in cancer but a significant 
gap in knowledge relating to the C-chemokine family particularly in 
the context of oral cancer.

Chemokine receptors have been shown to be regulated by their 
ligands in homeostasis and disease, mediated through autocrine or 

F I G U R E  4   XCR1 expression in 
OSCC tumours and their metastatic 
counterparts. Representative 
photomicrographs showing 
immunohistochemical staining of XCR1 
in (a, b, c) primary tumour and (d, e, f) 
its matched metastatic; with (a, d) 100× 
magnification and (b, c, e, f) corresponding 
400× magnification. XCR1 expression 
quantification using HistoQuest software 
for the (g) tumour and (h) stromal 
(primarily by the fibroblasts) by their 
positivity and intensity ± SEM. (*p < .05). 
Abbreviations: C, cortex; CL, connective 
tissue layer; EL, epithelial layer; IC, 
invasive carcinoma; MC, invading 
metastatic carcinoma
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paracrine signalling (Chen et al., 2018). Our results showed a de-
crease in surface XCR1 receptor after 24-hr exposure to its ligand 
and previous work has shown cytoplasmic hLtn within the OCCL 
(Khurram et al., 2010) raising the possibility of XCR1/hLtn interac-
tion further suggesting possible autocrine regulation through re-
ceptor internalisation (Bennett, Fox, & Signoret, 2011). Autocrine 
regulation has been reported for other chemokine receptors in skin 
after wounding (Kroeze et al., 2012) and in systemic sclerosis by der-
mal fibroblasts (Carulli et al., 2005).

The hLtn variants developed and employed in this study modu-
lated the behaviour of OCCLs. The key difference between the CC3 
and W55D mutant is that the former is the monomer form while the 
latter is the dimer form of hLtn. Functionally, the dimer is thought 
to act as a receptor antagonist and does not induce chemotaxis 
and calcium flux in XCR1-transfected HEK cell (Fox et al., 2015). 
Proliferation assays showed hLtn/XCR1 involvement in the process, 
where the canonical fold (WT and CC3 mutant) appeared to influ-
ence OCCL growth as previously described (Khurram et al., 2010). 
However, the dimeric form still induced proliferation of OCCLs com-
parable to other variant forms. Due to the complexity of chemokine 
receptor activation and mechanism of action, a possible explana-
tion is that receptor activation initiates signal transduction through 
homo- or hetero-dimerisation of chemokine receptors allowing 

dimeric ligand anchorage (Kleist et al., 2016), or the receptor activa-
tion allows production of intracellular hLtn by OCCL which has been 
shown to stimulate receptor activity (Khurram et al., 2010).

Cancer progression is a dynamic process involving changes in 
cancer cells and the TME through secretion of pro-tumour factors 
by CAF. In ovarian cancer, CAF have been shown to secrete numer-
ous chemokines such as CCL5, CXCL1, CXCL 11, CXCL12, cytokines 
and soluble factors facilitating its progression (Thuwajit et al., 2017). 
CM from CAF have shown to influence pro-cancerous behaviour 
in gastric cancer cells (Hu et al., 2013), endometrial cancer (Teng 
et al., 2016), cervical cancer (Chu, Yang, Huang, & Liu, 2014) and oral 
cancer (Elmusrati et al., 2017). Our results show that mRNA tran-
scripts of both XCR1 and hLtn are upregulated in OCCL when exposed 
to CAF-CM. In contrast, myofibroblast conditioned medium causes 
downregulation of both transcripts compared to control. Our initial 
assumption was that myofibroblasts would behave in a similar way to 
CAF due to phenotype similarities although it is not unusual to find 
heterogeneous fibroblast subpopulations in tissues (Sriram, Bigliardi, 
& Bigliardi-Qi, 2015). The difference in behaviour could perhaps be 
attributed to variability between primary CAF and experimentally 
induced cells following stimulation. Fibroblasts have been shown 
to express different markers between subtypes further adding to 
fibroblast heterogeneity (Vaheri, Enzerink, Räsänen, & Salmenperä, 

F I G U R E  5   hLtn (XCL1) expression 
in OSCC tumours and their metastatic 
counterpart. Representative 
photomicrographs showing 
immunohistochemical staining of hLtn 
in (a, b, c) primary tumour and (d, e, f) 
its matched metastatic; with (a, d) 100× 
magnification and (b, c, e, f) corresponding 
400× magnification. hLtn expression 
quantification using HistoQuest 
software for the (g) tumour and (h) 
stromal (primarily by the fibroblasts) 
by their positivity and intensity ± SEM. 

Abbreviations: C, cortex; CL, connective 
tissue layer; EL, epithelial layer; IC, 
invasive carcinoma; MC, invading 
metastatic carcinoma
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2009). CAF-CM have also been shown to induce proliferation and 
angiogenesis in ovarian cancer cells in vitro through TGF-β1, VEGF 
and PCNA (Xu, Xu, Cai, Yang, & Lin, 2013) and promote carcinogen-
esis in hepatocellular carcinoma (Ding et al., 2015). Moreover, the 
result showed significantly higher XCR1 and hLtn mRNA expression 
in SCC4 cells compared to H357 by CAF-CM, suggesting the influ-
ence is XCR1-dependent as SCC4 cells express higher levels of the 
receptor and ligand. Additionally, senescence in cancer can be either 
pro- or anti-tumorigenic in association with chemokine. CCL5 from 
senescent fibroblast CM has been shown to promote growth and 
angiogenesis in prostate cancer (Eyman, Damodarasamy, Plymate, & 
Reed, 2009). In our case, the mRNA expression of both XCL1 and 
XCR1 is reduced in SCC4 cell line. CAFs contain mix population with 
senescent fibroblast, where this in line with the result with myofi-
broblast. This study is the first to demonstrate regulation of XCR1 
and hLtn in oral cancer by secreted factors from CAF.

Expression of XCR1 and hLtn in reactive lymph nodes as well as 
primary and metastatic OSCC is consistent with our previous find-
ings; however, in the current study, we have used matched controls 
and quantitative analysis to show that XCR1 and hLtn staining are 
different between primary and metastatic tumours as well as ana-
lysing staining within the stroma (Khurram et al., 2010). The quan-
titative evaluation showed a high number of XCR1-expressing cells 
in both primary and metastatic OSCC with increased staining inten-
sity in metastatic deposits and surrounding stromal fibroblasts was 
seen compared to primary OSCC. Crosstalk between tumour and 
stroma has been shown to play a key role in cancer dissemination 
suggesting that XCR1 and hLtn may influence cancer growth and 
dissemination through tumour/stromal crosstalk (Yang et al., 2017), 
possibly through stimulation of cell migration and invasion which 
would facilitate tumour invasion and metastasis to lymph nodes in 
vivo (Khurram et al., 2010).

In conclusion, our novel findings show that hLtn can regulate 
the expression of its receptor XCR1 through a possible autocrine 
mechanism. Our hLtn constructs are functional with the non-ca-
nonical hLtn W55D promoting OCCL proliferation but not migra-
tion. Additionally, CM from CAF increase XCR1 and hLtn mRNA 
expression in OCCL. Moreover, XCR1 and hLtn are expressed in 
both primary and metastatic OSCC tissue with higher tumour and 
stromal expression in metastatic deposits. This suggests an im-
portant role for XCR1 and hLtn in OSCC progression through in-
teraction with the microenvironment and needs to be elucidated 
further.
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