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A B S T R A C T

Myelin loss is the hallmark of the demyelinating disease multiple sclerosis (MS) and plays a signiicant role in
multiple neurodegenerative diseases. A common factor in all neuropathologies is the central role of microglia,
the intrinsic immune cells of the central nervous system (CNS). Microglia are activated in pathology and can
have both pro- and anti-inlammatory functions. Here, we examined the efects of the lavonoid agathislavone
on microglia and remyelination in the cerebellar slice model following lysolecithin induced demyelination.
Notably, agathislavone enhances remyelination and alters microglial activation state, as determined by their
morphology and cytokine proile. Furthermore, these efects of agathislavone on remyelination and microglial
activation were inhibited by blockade of estrogen receptor α. Thus, our results identify agathislavone as a novel
compound that may act via ER to regulate microglial activation and enhance remyelination and repair.

1. Introduction

Oligodendrocytes are central nervous system (CNS) glial cells re-
sponsible for producing myelin, the fatty insulation around axons that is
essential for maintaining axonal integrity and to ensure the rapid
transmission of action potentials [1]. The loss of myelin has devastating
efects on CNS function and ultimately leads to neuronal degeneration,
which are hallmarks of the demyelinating disease multiple sclerosis
(MS) and other neuropathologies [2]. Notably, the CNS contains a
signiicant population of oligodendrocyte precursor cells (OPCs), which
are responsible for oligodendrocyte regeneration and are therapeutic
targets in new strategies for stimulating remyelination and repair [3].

Microglia are the intrinsic immune cells of the CNS and respond to
neuropathology by a process termed activation [4]. Microglia exhibit
multiple states of activation and a high degree of heterogeneity. Based
on expression of speciic proteins and cytokines/chemokines, two dis-
tinct polarized microglial phenotypes have been described in the

literature: pro-inlammatory M1 microglia and anti-inlammatory M2
microglia. However, there is now an abundance of evidence from mi-
croglial transcriptomic and proteomic proiles that characterizing mi-
croglia as being exclusively in an M1 or M2 state is over simplistic [5].
Nonetheless, the M1/M2 terminology remains in use as an indicator of
microglial function and both polarized states are considered crucial to
diferent stages in the pathogenesis of demyelination and remyelination
[6]. Indeed, it has been reported that ‘M1’ microglia predominate
during demyelination, and a switch to an ‘M2’ proile is necessary for
eicient remyelination and repair [7]. Microglia with an ‘M2-like’
phenotype actively and more eiciently clear myelin debris than ‘M1-
like’ microglia and secrete several trophic factors that promote neuro-
genesis and oligodendrocyte diferentiation [8,9]. Therefore, although
the classiication of M1/M2 microglia is an over simpliication, it is
evident that modulating the inlammatory functions of microglia is an
important strategy towards boosting eicient repair and remyelination
[10].
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Flavonoids are a heterogeneous group of polyphenolic bioactive
compounds derived from plants that have prominent anti-inlammatory
activity [11]. Agathislavone is a lavonoid derived from the Brazilian
plant Poincianella pyramidalis (Tul.), which we have previously shown
to have neuroprotective and neuromodulatory efects in vitro [12,13].
Previously, we postulated that agathislavone may act via estrogen re-
ceptors (ER) and retinoic acid receptors (RAR) [14], which are phar-
macological targets for the treatment of demyelinating conditions
[15,16]. Estrogen signalling is recognised to promote remyelination
through its regulation of neuroinlammation [17], whilst retinoic acid
signalling has been shown to promote OPC diferentiation into myeli-
nating oligodendrocytes [18].

Here, we show that in the ex vivo lysolecithin (LPC) model of de-
myelination in cerebellar slices, agathislavone induces polarization of
microglia from an M1- to an M2-like phenotype, while enhancing oli-
godendrocyte diferentiation and promoting remyelination. Moreover,
we demonstrate for the irst time that estrogen receptor activation is
required for agathislavone induced remyelination.

2. Materials and methods

2.1. Animals and tissue

Mice (males and females) were killed humanely by cervical dis-
location, in accordance with the UK Animals (Scientiic Procedures)
Act, 1986 and with the University of Portsmouth Ethics Committee.
Mice aged postnatally (P)10–12 from diferent backgrounds were used
throughout this study. Mice belonging to the C57BL/6 background were
used for protein and gene expression quantiication RT -RT-qPCR and
immunohistochemistry). Transgenic mice in which the expression of
the Enhanced Green Fluorescent Protein (EGFP) is under the control of
the SOX10 or the Glial Fibrillary Acidic Protein (GFAP) genes were used
to identify oligodendrocytes and their precursors (OL/OPC) and astro-
cytes respectively (gifts from William Richardson, UCL, UK and Frank
Kirchhof, University of Saarland, Germany, respectively).

2.2. Organotypic cerebellar cultures

To analyze the efects of agathislavone, we used ex vivo organotypic
cerebellar slices and the L-α-Lysophosphatidylcholine (LPC) model of
demyelination that have been previously described and published
[19–22]. In brief, cerebella from P10-12 mice were dissected into
oxygenated ice-cold dissecting solution containing (in mM): 25.95
NaHCO3, 1.39 NaH2PO4, 10 glucose, 124 NaCl, 2.95 KCl, 10 MgCl2, 2
CaCl2, 1 MgSO4, 1000 units/mL penicillin/streptomycin), and 300 μm
cerebellar parasagittal slices were cut using a vibrating microtome
5100mz (Campden Instruments LTD). Slices were then transferred to a
membrane insert (Millipore, 30 mm diameter, pore size 0.4 μm) and
cultured using an interface method, with 1 ml of serum-based medium
composed of 50% Minimum Essential Medium with Glutamax-1
(MEM), 23% Earle’s Balanced Salt Solution (EBSS), D-glucose (0.13
mg/mLl), 1% penicillin-streptomycin, and 25% horse serum (Gibco
Invitrogen). Slices were maintained at 37 °C, under standard conditions
(95% O2/5% CO2) for 7 days in vitro (DIV), at which timepoint oligo-
dendrocytes diferentiate and there is signiicant myelination [19].

2.3. Agents and treatments

The lavonoid agathislavone (FAB) was extracted from Poincianella
pyramidalis (Tul.) as previously described [23] and stored protected
from light at −20 °C at a stock concentration of 10 mM in dimethyl
sulfoxide (DMSO; Sigma Chemical Co). After 7 DIV, slices were treated
for 15–17 h with medium containing LPC (0.5 mg/mL, Sigma, L4129),
after which LPC-medium was removed and replaced with medium
containing either agathislavone at the concentrations of 5 or 10 μM, or
0.1% DMSO vehicle (LPC + DMSO condition), for a further 2DIV;

concentrations of agathislavone used were based on previous studies
by our group. The efects of LPC were compared to slices that were
maintained in normal medium during 7DIV (controls), which displayed
normal myelination and cellular integrity. To assess the potential in-
volvement of estrogen receptors (ER) on the efects of agathislavone
following LPC treatment, slices were pre-incubated for 2 h in medium
containing the selective ER-α antagonist MPP dihydrochloride at 10 nM
(1,3-Bis(4-hydroxyphenyl)-4-methyl-5-[4-(2-piperidinylethoxy)
phenol]-1H-pyrazole dihydrochloride; Sigma), or the selective ER-β
antagonist PHTPP at 1 μM (4-[2-Phenyl-5,7-bis(triluoromethyl) pyr-
azolo[1,5-a]pyrimidin-3-yl]phenol; Tocris). Finally, slices were in-
cubated for a further 2 DIV in medium containing 10 μM agathislavone
supplemented either with 10 nM MPP dihydrochloride, 1 μM PHTPP or
0.1% DMSO vehicle (LPC + DMSO condition). After 10 DIV, slices were
either processed for RT-qPCR or ixed in 4% Paraformaldehyde (PFA)
for immunohistochemistry (see below).

2.4. Immunohistochemistry

Prior to processing for immunohistochemical labelling, slices were
washed with 0.1 M Phosphate Bufer Saline (PBS) then ixed with 4%
PFA for 1 h, followed by further washes in PBS and either processed for
immunostaining or stored at 4 °C in a solution of 0.05% Sodium Azide in
PBS until ready for use. Slices were then washed in PBS and incubated
overnight in 1% Triton X-100 in PBS at 4 °C, followed by a blocking step
using 20% bovine serum albumin (BSA) in 0.1% Triton in PBS for 3 h,
after which slices were incubated overnight with primary antibodies
diluted in a solution of 1% normal goat serum (NGS) and 1% Triton-X in
PBS. Oligodendroglial lineage cells and myelin were identiied using rat
anti-myelin basic protein (MBP) (1:300, Millipore, MAB386), mouse anti-
APC/CC-1 (1:400, Calbiochem, OP80), rabbit anti-Chondroitin sulfate
proteoglycan (NG2) (1:500, Millipore, MAB5384); neurons and axons
were identiied by using mouse anti-Neuroilament 70 kDa (NF70)
(1:300, Millipore, MAB1615), mouse anti-calbindin D-28k (1:1000,
Swant, 300PUR); microglia were immunostained with rabbit anti-Iba1
(1:1000, WAKO, 019-19741), M1-phenotype rat anti-CD16/32 (1:400,
BD Pharmingen, 553142), M2-phenotype goat anti-CD206 (1:400, R&D
Systems, AF2535); proliferating cells were identiied by mouse anti-Ki67
(1:300, BD Pharmingen, 550609) and apoptotic cells by rabbit anti-
cleaved Caspase-3 antibody (Asp175, 1:300, Cell Signalling, 9661S).
Following overnight incubation in primary antibodies, slices were wa-
shed three times in 0.1% Triton-X in PBS prior to incubation for 3 h with
the appropriate secondary antibodies (Alexa-luor 568, 405, 488, 647,
1:500, Invitrogen) and the nuclear dye Hoechst33342 (1:500, Fisher,
11544876). Slices were then washed three times and mounted with
Fluoromont-G (Invitrogen). Images were acquired using confocal mi-
croscopy (Zeiss LSM 710).

2.5. Cell quantification and myelin/axons index

Photomicrographs were obtained using a laser scanning confocal
microscope (Zeiss LSM710) and 10 z-stacks of 1.0 μm each were ac-
quired using a 20X objective. Cell counts of Sox10-EGFP+, and Iba-1+
cells were performed in a constant ield of view (FOV, 708.49 × 708.49
x 10 μm) on images from white matter, whereas NG2+ cells were
counted in the molecular layer. For MBP or neuroilament (NF) quan-
tiication, grids of 30 μm2 were used to quantify the myelin and axonal
index by counting the number of intersections between MBP + and NF
+ ibres on a grid, and the extent of myelination was expressed as a
percentage of the number of MBP+/NF+ axons over the total NF +
axons.

2.6. Microglial analysis

Microglial morphological analysis was performed as previously
described [24]. Confocal photomicrographs of Iba1+ cells were
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obtained in 4 z-stacks of 2 μm each acquired using a 63X objective.
Cross-sectional area of microglial somata was measured in 20 cells per
image (FOV, 708.49 x 708.49 μm). Binary and skeleton reconstructions
of the z-stacks of confocal images were obtained using ImageJ-Win64
and AnalyzeSkeleton (2D/3D) plugin [25], adjusting brightness, un-
sharp mask, and despeckle to ensure process visualization prior to the
conversion to binary and skeletonized images. The data from each
image (summed number of endpoints and summed process length) was
divided by the number of microglia in the image (20 microglial cells per
each image); data was presented as a individual values column graphs
to better illustrate the full range and patterns of the parameters mea-
sured. Quantiication of microglia-oligodendrocyte contacts was
adapted from the method of Barcia et al. [26], whereby the number of
Iba1+ microglia cell bodies contacting Sox10-EGFP + oligodendrocyte
cell bodies (B-B) and Iba1+ processes contacting Sox10-EGFP + oli-
godendrocyte cell bodies (Pr-B) were counted per constant FOV.

2.7. Quantitative polymerase chain reaction (RT-qPCR)

Quantitative real-time PCR (RT-qPCR) was performed using
PrecisionPLUS qPCR Master Mix. Slices were removed from the insert,
kept on RNA later and stored at −80 °C until ready to be processes for
RNA extraction. Total RNA was isolated from cerebellar slices with
QIAzol® Lysis Reagent according to the manufacturer's speciications.
Total RNA was puriied from cerebellar slices using RNeasy Plus Micro
Kit (Qiagen, Hilden, Germany). Concentration and purity of RNA were
determined by spectrophotometric analysis using a spectrophotometer
(NanoDrop, ND-1000). For cDNA synthesis, the RNA was reverse
transcribed into irst-strand cDNA (NanoScript 2RT kit, Primerdesign,
Southampton, UK) prior to RT-qPCR analysis. Custom designed RT-
qPCR primers (Primerdesign, Southampton, UK), housekeeping genes
and a PrecisionPLUS qPCR Master Mix (Primerdesign, Southampton,
UK) were used in a 20-μL reaction. Thermocycling conditions were
applied on LightCycler® Roche 96 and performed according to manu-
facturer's speciications (enzyme activation for 2 min, at 95 °C; dena-
turation for 10 s, at 95 °C, data collection for 60 s at 60 °C). Fluorogenic
data was collected through the SYBR®green channel. The assays cor-
responding to the genes quantiied in this study were: Ifng (ID 15978),
Tnf (ID 21926), Il1b (ID 16176), Il6 (ID 16193), Il18 (ID 16173), Nos2
(ID 18126), Cx3cr1 (ID 13051), Cxcl10 (ID 15945), Trem2 (ID 83433),
Inhba (ID 16323), C1qa (ID 12259), Nlrc4 (ID 268973), Nlrp3 (ID
216799), Arg1 (ID 11846), Il10 (ID 16153), Tgfb1 (ID 21803), Cntf (ID
12803), Egfr (ID 13649) and Gabrb1 (ID 14400). The actin beta (Actb,
ID 11461) and Hypoxanthine Phosphoribosyl Transferase 1 (Hprt1, ID
15452) targets were used as reference genes (endogenous controls) for
normalization of gene expression data. Data were analyzed using the
2–ΔΔCt method. Results represent the average of 3 independent ex-
periments.

2.8. Molecular docking

Molecular docking analysis was performed using DOCK 6.8 [27],
with the accessory programs DOCK 6.8 (DMS, SPHGEN, and
SPHERE_SELECTOR) for search space delimitation [28,29] and the
molecular properties were calculated by the GRID program in its de-
fault coniguration using the Grid Score function (force ield-based
function) [30]. 3D structures of the proteins (PDB: 1 FCX; 4ZSH; 5KCF
and 1YYE) were obtained from the macromolecular structures bank
Protein Data Bank [31] and prepared through the DockPrep module in
the Chimera program 1.10.1 [32]; water molecules and crystallization
artefacts were removed and addition of the polar hydrogen atoms and
charges (AM1-BCC) was performed. Evaluation of the scoring function
was performed by the root-mean-square-deviation (RMSD) value be-
tween the conformation of the best pose calculated pose after docking
and the crystallographic pose of that ligand. The interactions of the
agathislavone molecule with the RAR, RXRα, RXRγ and α and β

estrogen receptors were analyzed with the aid of the PLIP program.

2.9. Statistical analyses

Statistical analysis was performed using GraphPad Prism 5. We irst
analyzed the data regarding their normality and tested if they had a
Gaussian distribution [33]. For data with a normal distribution, we
performed one- or two-way analysis of variance (ANOVA), as appro-
priate, followed by Bonferroni´s post-hoc test, or paired t-tests were
used to compare the diference between two treatments, when applic-
able; normally distributed data are expressed as mean + SEM. For
samples with a non-Gaussian distribution, we used non-parametric
tests, Kruskal-Wallis followed by Dunn’s multiple comparison test; non-
parametric data were expressed as medium + interquartile range
(IQR), which is appropriate to indicate variability/dispersion among
non-normal samples [33]. Conidence intervals were deined at a 95%
conidence level (p<0.05 was statistically signiicant).

3. Results

3.1. Agathisflavone enhances remyelination and induces oligodendrocyte
proliferation in organotypic cerebellar slices

The efect of agathislavone in response to a demyelinating insult
was examined in ex vivo cerebellar slices that were treated with LPC
[19]. Cerebellar slices from P10-12 mice were kept in normal medium
for 7 DIV to allow normal myelination to occur before exposure to LPC
for 15–17 h and subsequent treatment either with agathislavone (5 and
10μM) or 0.1% DMSO vehicle for a 2DIV, after which slices were ex-
amined for the extent of myelination, using immunolabelling for MBP
and NF (Fig. 1). The efects of LPC were irst compared to untreated
slices that were maintained in normal medium for 7 DIV and the results
show that LPC treatment resulted in a minor, but statistically sig-
niicant, decrease in the axon index (Fig. 1A, B), and a marked 4-fold
decrease in the proportion of MBP+/NF + myelinated axons (Fig. 1A,
C). The efect of LPC was clearly counteracted by treatment with aga-
thislavone at both concentrations tested (Fig. 1A–C).

Proliferation of OPCs is important for regenerating oligodendrocytes
following demyelination [3], hence we examined the efects of aga-
thislavone in cerebellar slices from Sox10-EGFP mice to identify all
oligodendrocyte lineage cells and immunostaining for the cell pro-
liferation marker Ki67 to identify actively proliferating OPCs (Fig. 1D).
Exposure to LPC did not signiicantly alter the total number of Sox10+
oligodendrocyte lineage cells (Fig. 1E) or induce their proliferation
(Fig. 1F), compared to untreated controls. In contrast, Sox10+ cells
were signiicantly increased after treatment with 5 μM agathislavone
and Ki67+/Sox10+ cells were signiicantly increased at both 5 and 10
μM agathislavone, compared to untreated controls (Fig. 1D–F). To
further investigate the efect of agathislavone speciically on OPCs, the
proliferating cells of the oligodendrocyte lineage, we performed NG2
immunostaining (Fig. 1G). Notably, NG2 + OPC were increased fol-
lowing LPC treatment, compared to controls (Fig. 1H), consistent with
the early stage of spontaneous repair that occurs in this model [19], and
this was signiicantly increased further by agathislavone at 5 μM
(Fig. 1H).

3.2. Agathisflavone increases mature oligodendrocytes number and prevents
oligodendrocyte apoptosis

Following proliferation, the diferentiation and survival of OPCs is
essential for remyelination to occur [3]. We examined the protective
efect of FAB on oligodendrocytes in cerebellar slices from Sox10-EGFP
mice immunolabelled for CC1, a marker for mature oligodendrocytes,
and cleaved caspase-3, a classical marker for apoptosis (Fig. 2A). The
results demonstrate that agathislavone increased the proportion of
CC1+/Sox10+ mature oligodendrocytes and this was statistically
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Fig. 1. Agathisflavone enhances remyelination and induces oligodendrocyte proliferation in organotypic cerebellar slices culture. Organotypic cerebellar
slices from P10-12 Sox10-EGFP mice were maintained for 7 DIV and then treated with LPC for 15–17 h, followed by agathislavone (FAB) at 5 or 10 μM for a further 2
DIV, or 0.1% DMSO vehicle. (A) Photomicrographs showing the cerebellar white matter stained with MBP (red) and NF (blue); scale bar 20 μm. (B, C) Bar graphs
showing the NF + axon index (C) and the percentage of MBP+/NF + myelinated axons (D) per constant ield of view (FOV). (D) Oligodendrocyte lineage Sox10-
EGFP + cells (green), immunostained for the proliferating marker Ki67 (red) and counterstained with Hoechst nuclear dye (blue); scale bar 20 μm. (E, F) Bar graphs
showing the number of Sox10+ cells per FOV (E) and the percentage of SOX10+/Ki67+ cells (F) in a constant FOV. (G) Photomicrographs of OPCs immunolabelled
for NG2; scale bar 50 μm. (H) Bar graph showing the number of NG2 + OPCs per FOV. Data are expressed as the mean±SEM (n = 6); *p<0.05, *** p<0.001,
****p<0.0001 (comparing controls to treatment groups); ‡p<0.05, ‡‡‡p<0.001, ‡‡‡‡p<0.0001 (comparing LPC+DMSO to LPC+FAB5 and LPC+FAB10),
One-way ANOVA followed by Tukey’s post-hoc test. (For interpretation of the references to colour in this igure legend, the reader is referred to the web version of
this article.)

Fig. 2. Agathisflavone increases mature oligodendrocyte cells number and prevents oligodendrocyte apoptosis. Organotypic cerebellar slices from P10-12
Sox10-EGFP mice were maintained for 7 DIV and then treated with LPC for 15–17 h, followed by agathislavone (FAB) at 5 or 10 μM for a further 2 DIV, or 0.1%
DMSO vehicle. (A) Oligodendrocyte lineage cells identiied by expression of the Sox10-EGFP reporter (green), immunolabelling for CC1 for mature oligodendrocytes
(yellow) and active Caspase 3 for apoptotic cells (red), and counterstained with Hoechst nuclear dye (blue); scale bar 50 μm. (B, C) Individual values column graphs
showing the percentage of CC1+ /Sox10+ cells (B), Caspase+/SOX10+ cells (C) and Caspase+/CC1+ cells (D) in a constant FOV; data are expressed as
mean± SEM (n = 4–6); *p<0.05, ****p<0.0001 (comparing controls to treatment groups); ‡‡‡‡p<0.0001 (comparing LPC+DMSO to LPC+FAB5 and
LPC+FAB10), One-way ANOVA followed by Tukey’s post-hoc test. (For interpretation of the references to colour in this igure legend, the reader is referred to the
web version of this article.)
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Fig. 3. Agathisflavone modifies microglial activation state. Organotypic cerebellar slices from P10-12 Sox10-EGFP mice were maintained for 7 DIV and then
treated with LPC for 15–17 h, followed by agathislavone (FAB) at 5 or 10 μM for a further 2 DIV, or 0.1% DMSO vehicle. (A) Microglial proliferation was analyzed by
immunolabelling for IBA1 (yellow) and Ki67 (red), counterstained with the nuclear dye Hoechst (blue). (B, C) Bar graph showing the number of IBA1+microglia (B)
and the percentage of IBA1+/Ki67+ proliferating microglia (C); data are expressed as the mean± SEM (n = 5–11) and tested for signiicance using One-way
ANOVA followed by Tukey’s post-hoc test. (D) Photomicrographs and binary and skeletonized IBA + microglia illustrating morphological diferences in the diferent
treatment groups; scale bar 50 μm. (E, F, G) Individual values violin plots of microglial soma size per microglial cell (20 microglial cells/image were analyzed) (E)
and violin graphs of process endpoints (F) and length (G) per microglial cell; data are expressed as the median± IQR; *p<0.05, ****p<0.0001 (comparing controls
to treatment groups); ‡p<0.05, ‡‡p<0.01, ‡‡‡p<0.001, ‡‡‡‡p<0.0001 (comparing LPC+DMSO to LPC+FAB5 and LPC+FAB10); ††p<0.01 (comparing
LPC+FAB5 to LPC+ FAB10); Kruskal-Wallis test followed by Dunns. (For interpretation of the references to colour in this igure legend, the reader is referred to the
web version of this article.)

M.M.A. de Almeida, et al. Pharmacological Research 159 (2020) 104997

6



signiicant at 10 μM but not at 5 μM (Fig. 2B), compared to controls.
There was a signiicant increase in apoptosis-mediated cell death fol-
lowing LPC treatment in Sox10+ and CC1+ oligodendrocytes (Fig. 2C,
D), an efect that was abrogated by agathislavone at both 5 and 10 μM
(Fig. 2C, D).

3.3. Agathisflavone modifies microglial activation and modulates
interactions with oligodendrocytes

Microgliosis plays an important role in the inlammatory response
and is an integral part of the remyelination process following injury
[34]. In order to investigate the efect of agathislavone as a modulator
of microglial activation, we immunostained for the microglial marker
IBA1 and the proliferative marker Ki67 (Fig. 3A). The number of
IBA1+ cells (Fig. 3B) and Iba1+/Ki67+ cells (Fig. 3C) were sig-
niicantly increased after LPC treatment, compared to controls, and this
efect was completely abolished by treatment with agathislavone at
both 5 and 10 μM. The results are consistent with agathislavone having
a dampening efect on LPC-induced microglial activation. We examined
this further by using morphological reconstructions of IBA1+ micro-
glial changes that are characteristic of their activation status (Fig. 3D).
In controls, microglia had small somata and ramiied processes typical
of quiescent or non-activated cells (Fig. 3D, E), whilst in LPC-treated
slices microglial somata were markedly increased compared to control
(Fig. 3D, E), suggesting microglial activation [35]; process number
(Fig. 3F) and length (Fig. 3G) were not altered in LPC. Treatment with
agathislavone (5 μM and 10 μM) resulted in a signiicant reduction in
microglial soma size compared to LPC (Fig. 3D, E), and 10 μM aga-
thislavone increased microglial process number and length (Fig. 3F,
G).

In addition, we quantiied the number of contacts between IBA1+

microglial cells and Sox10-EGFP + oligodendrocytes (Fig. 4A, B), to
understand if agathislavone regulates microglia-oligodendrocyte in-
teractions, which is an indication of their capacity for oligodendrocyte
elimination [36]. In LPC-treated slices, we observed a signiicant re-
duction of microglia-oligodendrocyte contacts via processes (Pr-B,
Fig. 4C) and an increase in their contact via cell body (B-B), and these
efects were reversed by agathislavone treatment (Fig. 4C). Microglia-
oligodendrocyte interactions were further investigated by double im-
munostaining for IBA1 and MBP in Sox10-EGFP cerebellar slices
(Fig. 4D). The results show that in controls, microglia interact closely
with oligodendrocytes and myelin, whereas after LPC damage, micro-
glial clusters were observed surrounding myelin debris and Sox10-
EGFP+ oligodendrocytes. Treatment with agathislavone at both con-
centrations enhanced remyelination and reversed the microglia-cluster
formation with oligodendrocytes, an efect consistent with agathis-
lavone restoring normal microglia-oligodendrocyte interactions and
tissue homeostasis.

3.4. Agathisflavone alters microglial activation state

Results presented above indicate that agathislavone modulates
microglial activation. We examined this further by assessing the mi-
croglial proile using immunostaining (Fig. 5) and RT-qPCR (Fig. 6).
Microglia undergo activation in response to pathology and numerous
studies have characterised microglial activation as being pro-in-
lammatory M1 or anti-inlammatory M2, with a number of key tran-
scriptional regulators that serve as central switches to regulate M1 and
M2 genes [37]. This polarization of M1/M2 phenotypes is an over-
simpliication [5], but it has been reported that a switch from an ‘M1’ to
an ‘M2’ proile relects a change from demyelination to remyelination
and repair [6,7]. Hence, we examined whether agathislavone can
regulate microglia phenotype using double immunoluorescence label-
ling for CD16/32 (CD16, Fc gamma III Receptor; CD32, Fc gamma II
Receptor) and CD206 (a pattern recognition receptor), respectively
considered ‘M1’ pro-inlammatory and ‘M2’ anti-inlammatory proile

markers (Fig. 5A). The immunoluorescence analysis demonstrates that
LPC increased the number of CD16/32+ M1-like microglia, compared
to controls, and this was signiicantly reduced by agathislavone at both
concentrations (Fig. 5B); moreover at 5 μM, agathislavone signiicantly
increased the number of CD206+ M2-like microglia, while 10 μM
agathislavone signiicantly increased CD16/32+ CD206+ microglia
(Fig. 5B). Recognizing that the polarization of M1 and M2 phenotypes is
an over-simpliication, our data demonstrate that the ‘M1/M2’ ratio is
markedly altered in LPC treatment and this was completely reversed by
agathislavone at both concentration (Fig. 5C), consistent with evidence
that the ‘M1’ phenotype is associated with inlammation and demyeli-
nation, whereas the ‘M2’ phenotype supports remyelination and repair
[6,7].

To conirm the efect of agathislavone on neuroinlammation, we
investigated the efect of the treatments on neuroinlammatory-pro-
duced genes, which are mainly, but not exclusively secreted by mi-
croglia, through RT-qPCR (Fig. 6). We observed that LPC upregulated
mRNA expression of the classical inlammatory genes IFNγ, TNFα, IL1β,
NOS2 and C1QA, and of the activin A (INHBA) gene, (Fig. 6A, B) and
downregulated IL6 and IL18 (Fig. 6A, B), an efect that might be due to
a transient delay in the expression of these proinlammatory cytokines
within the timepoint analyzed. In contrast, agathislavone at both
concentrations, controls mRNA expression of inlammatory (TNF, IL1β,
NOS2, and C1QA), regulatory (Arginase, TGFB and TREM2, Fig. 6C, D),
and INHBA, which is present at the site of demyelinated lesions and
regulates myelination [38]. Moreover, in comparison to control and
LPC treated cultures, agathislavone at both concentrations reduced the
mRNA expression of NLRC4 and NLRC3 inlammasome genes.

3.5. Agathisflavone regulates reactive astrogliosis and protects neurons

Reactive astrogliosis is important in CNS inlammation and neu-
ronal damage [39]. The efects of agathislavone on astrocytes were
examined in cerebellar slices from GFAP-EGFP mice (Fig. 7A). In
comparison with the control, LPC increased GFAP luorescence in-
tensity, an indicator of reactive astrogliosis, and this was signiicantly
decreased by 10 μM agathislavone, but not at 5 μM (Fig. 7A, B). The
efect of agathislavone on neurons was examined using im-
munostaining for Calbindin, a marker for Purkinje neurons [40], and
co-stained with cleaved caspase-3 for cell death (Fig. 7C). The overall
number of Purkinje neurons was unaltered by LPC and by treatment
with agathislavone (Fig. 7D), but the number of Calbindin+/Cas-
pase3+ neurons was increased in LPC and this was reversed by aga-
thislavone treatment, indicating that agathislavone is neuroprotective
(Fig. 7E). To further understand the mechanism by which agathis-
lavone mediates neuronal protection, we WE conducted RT-qPCR to
measure mRNA expression of the neurotrophic factors ciliary neuro-
trophic factor (Cntf,), epidermal growth factor receptor (Egfr), and
neuronal GABA b1 receptor subunit (Gabrb1). Treatment with aga-
thislavone signiicantly increased expression of Cntf (Fig. 7F), Egfr
(Fig. 7G) and Gabrb1 (Fig. 7H), compared to controls and LPC treated
slices, with Cntf and Gabrb1 being more signiicantly afected by 5μM
agathislavone and Egfr most markedly increased by 10μM agathis-
lavone.

3.6. Estrogen receptor (ER) activation is required for agathisflavone to
inhibit microgliosis and promote remyelination

In order to understand how molecular recognition occurs between
agathislavone and molecular targets, we performed molecular docking,
a powerful tool that is widely used in drug design, to identify com-
plementarity between molecules and their potential targets [41]. Pre-
vious studies have indicated ER interact with other nuclear receptors
[42] and the neuroprotective actions of agathislavone have been
shown to involve ER and RAR [14]. Hence, we investigated the mole-
cular ainity between agathislavone and ERα, ERβ and RAR, together
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with retinoid X receptors (RXR)α and RXRγ (Fig. 8). The docking suc-
cess refers to when a ligand crystallographic pose is close to a ligand
calculated pose, which is obtained when the root-mean-square devia-
tion (RMSD) is ≤2 Å. We demonstrated that all poses here calculated
were ≤2 Å (Fig. 8A), completely validating the docking analysis. Su-
perimposition with ligand binding sites identiied molecular interac-
tions of agathislavone with the diferent receptors (Fig. 8B), and de-
termination of the ainity energies demonstrated agathislavone
displays ainity with all the receptor targets (RAR -41.35 kcal/mol,

RXRα -35.40 kcal/mol, RXRγ -36.29 kcal/mol, ERα -22.32 kcal/mol,
ERβ -30.67 kcal/mol).

The chemical nature of the active site of the receptors and the
presence of hydroxyl groups on agathislavone favours the formation of
hydrogen bonds, which is important for the molecular and selective
recognition of ligands against the receptors [43]. As illustrated in
Fig. 8B, in the agathislavone -RAR complex, hydrogen bonds are
formed with the amino acid Arg341, Asp269, Ser390, whilst hydro-
phobic interactions are formed with amino acids Ala394 and Ile398 of

Fig. 4. Agathisflavone modulates microglia-oligodendrocyte interactions. Organotypic cerebellar slices from P10-12 Sox10-EGFP mice were maintained for 7
DIV and then treated with LPC for 15–17 h, followed by agathislavone (FAB) at 5 or 10 μM for a further 2 DIV, or 0.1% DMSO vehicle. (A) Photomicrographs of IBA1
immunostaining (red) and SOX10-EGFP+ oligodendrocytes (green) showing oligodendrocytes-microglia contacts in the diferent treatment groups; scale bar 20 μm.
(B) Diagram illustrating microglial processes contacting oligodendrocytes body (Pr-B), or apposition of microglial and oligodendrocyte cell bodies (BeB). (C)
Grouped bar graph showing the number of microglial contacts per SOX10+ cells; data are expressed as the mean± SEM (n = 6), *p<0.05, **p<0.01,
***p<0.001 (comparing control to treatment groups); ‡‡p<0.01, ‡‡‡p<0.001 (comparing LPC-DMSO to LPC+FAB5 and LPC+FAB10; two-way ANOVA followed
by Tukey’s post-hoc test. (D) Photomicrographs of slices illustrating Sox10-RGFP + oligodendrocytes (green) and immunolabelling for MBP (red) and Iba1 (yellow),
showing interrelationships between microglia, oligodendrocytes, and myelinated ibres in the diferent treatment groups; clusters of IBA1+ microglia around myelin
debris and oligodendrocytes are evident following LPCv treatment and are rarely observed in controls or following agathislavone treatment. (For interpretation of
the references to colour in this igure legend, the reader is referred to the web version of this article.)
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the RAR. In RXRα, agathislavone forms hydrogen bonds with Glu-243,
Met-362, Ala-319, together with hydrophobic interactions with the
amino acid Ala-319 on the ligand binding site, whilst in the agathis-
lavone -RXRγ complex, hydrogen bonds form with amino acids Asp-
269, Arg-341, Asn-418, Leu-416 and Glu-395 and hydrophobic inter-
actions between the amino acids Thr-391 and Ala-394 and agathis-
lavone. The agathislavone-ER complex displays formation of a hy-
drogen bond with Asp-351 of the ligand binding site of ERα, and
hydrophobic interactions with the amino acid residues Asn-348 and
Val-534, whereas in ERβ agathislavone formed hydrogen bonds with
amino acid residues Pro-278, Arg-346, Tyr-397 and Trp-345, hydro-
phobic interactions with Ile-355, Pro-358, His-279, and π-stacking with
His-279 and Trp-345. Notably, hydrogen bond interactions in the
phenol ring with Arg is involved in the biological activities of ER [44].

To investigate the involvement of ER signaling on microgliosis in-
hibition and remyelination induced by agathislavone, antagonists of
either the ERα (MPP) or ERβ (PHTPP) isoforms were added to cultures.
Cerebellar slices were maintained in ex vivo organotypic culture for 7
DIV and exposed to the demyelinating agent LPC for 15–17 h, followed
by incubation with MPP or PHTPP for 2 h, and then maintained in 10
μM agathislavone for a further 2DIV (Fig. 8C). As above, the number of
NF + axons and MBP+/NF + myelinated axons was signiicantly in-
creased by agathislavone treatment, compared to LPC, and this efect
was partially ablated by blockade of ERα and, although blocking ERβ
showed no statistical signiicance, the efect on remyelination was
clearly altered (Fig. 8D, E). The number of SOX10-EGFP + oligoden-
drocytes was not altered in LPC or LPC + agathislavone, but their
number was signiicantly increased following blockade of ERα
(Fig. 8F). In addition, agathislavone signiicantly decreased micro-
gliosis in response to LPC, and this efect was completely blocked by the
ERα antagonist MPP, but not the ERβ antagonist PHTPP (Fig. 8G).
Together these data suggest agathislavone may interact with ERα to
reduce microgliosis and enhance remyelination.

4. Discussion

This study demonstrates that the lavonoid agathislavone promotes
remyelination and regulates microglial activation in the lysolecithin
model of demyelination in organotypic cerebellar slices. In this model,
remyelination occurs in normal media after 4DIV, with marked re-
myelination appearing at 6DIV [19]. A key inding of the present study
is that blockade of ER reduced the efects of agathislavone on re-
myelination and microglia, and molecular docking analyses provided
supporting evidence that agathislavone may interact with ER. The
results show that agathislavone may represent a potential non-toxic
therapy to promote repair in MS and other neuropathologies that in-
volve myelin damage and neuroinlammation.

Lysolecithin (LPC)-mediated demyelination in cerebellar slices is a
broadly used model for MS, because it mimics myelin damage and re-
pair along a clearly deined time course [19]. Our results demonstrate
that LPC induced oligodendroglial demise, as measured by Caspase-3
expression, together with prominent demyelination, as indicated by
decreased MBP+/NF + axons. These efects of LPC were completely
reversed by treatment with agathislavone. The results demonstrate
agathislavone is protective for oligodendrocytes and promotes re-
myelination, as well as protecting axons against damage. Remyelination
is dependent on proliferation and diferentiation of OPCs [3], and our
data demonstrated that agathislavone increases proliferating Ki67+/
NG2 + OPCs and increases the overall numbers of NG2 + OPCs,
Sox10-EGFP+ cells and CC1+ mature oligodendrocytes. Overall, the
results show that agathislavone promotes OPC proliferation and dif-
ferentiation, together with their survival, thereby stimulating re-
myelination following LPC treatment.

The CNS response against disease and injury involves complex in-
teractions between microglia and the other cellular elements, oligo-
dendrocytes, neurons, and astrocytes [4]. LPC treatment induced mi-
croglial activation and this was reversed by agathislavone, which is a
crucial event that helps drive remyelination [7]. Our data indicate that
agathislavone reduced LPC-induced microgliosis and microglial

Fig. 5. Agathisflavone promotes a microglial polarization from a M1 to a M2 profile. Organotypic cerebellar slices from P10-12 mice were maintained for 7 DIV
and then treated with LPC for 15–17 h, followed by agathislavone (FAB) at 5 or 10 μM for a further 2 DIV, or 0.1% DMSO vehicle. (A) Microglial proile analyzed by
double immunoluoresecence labelling for the M1 pro-inlammatory marker CD16/32 (red) and M2 anti-inlammatory marker CD206 (green), where co-expression
appears yellow; scale bar 50 μm. (B, C) Bar graphs showing the number of CD16/32+, CD206+ and CD206+/CD16/32+ cells (B) and the M1/M2 ratio (C); data
are expressed as the mean± SEM (n = 6), *p<0.05, **p<0.01, ****p<0.0001 (comparing control to treatment groups); ‡‡‡‡p<0.0001 (comparing LPC-DMSO
to LPC+FAB5 and LPC+FAB10); One-way ANOVA followed by Tukey’s post-hoc test. (For interpretation of the references to colour in this igure legend, the reader
is referred to the web version of this article.)
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contacts with oligodendrocytes, as well as decreasing expression of
important inlammatory molecules, such as Tnf, Il-1β, Nos2, C1q and
Nlrc4, whilst augmenting expression of arginase, Tgf-β, and Trem2,
which have critical roles in inlammatory control and oligodendrocyte

diferentiation [45–47]. Interestingly, agathislavone did not reduce
mRNA expression of IFNγ, which regulates microglia and is implicated
in eicient remyelination [34]. Similarly, agathislavone at 10 μM did
not reduce C1q expression, which requires further investigation, since

Fig. 6. Agathisflavone modulates
transcript levels of neuroinflammatory
genes. Organotypic cerebellar slices from
P10-12 mice were maintained for 7 DIV
and then treated with LPC for 15–17 h,
followed by agathislavone (FAB) at 5 or
10 μM for a further 2 DIV, or 0.1% DMSO
vehicle. (A, B) Heat map showing the
expression of neuroinlammatory genes
(A) and respective graphs (B) of RT-qPCR
analysis showing the expression of neu-
roinlammatory genes. (C, D) Heat map
showing the expression of regulatory fac-
tors (C) and respective graphs (D). Data
are expressed as the mean±SEM or
median±IQR (n = 4); *p<0.05,
**p<0.01, ***p<0.001 (comparing
control to treatment groups); ‡p<0.05,
‡‡p<0.01, ‡‡‡p<0.001, ‡‡‡‡p<0.001
(comparing LPC-DMSO to LPC+FAB5
and LPC+FAB10); ††p<0.01 (com-
paring LPC+FAB5 to LPC+FAB10);
samples with Gaussian distribution (bar
graphs) were analyzed by one-way
ANOVA followed by Tukey’s post-hoc
test, non-parametric samples (individual
values column graphs) by Kruskal-Wallis
followed by Dunns.
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C1q is implicated in the activation of adult OPCs, a crucial step un-
derlying myelin repair [48]. In addition, the pro-inlammatory cyto-
kines IL6 and IL18 were not increased in LPC treated slices, consistent
with previous evidence that LPC does not stimulate microglia to secrete

IL6 in culture [49], although it remains possible that the mRNA’s
measured could change transiently and be reduced again at the time-
point analyzed. Additionally, agathislavone reduces the expression of
activin A (Inhba), which is expressed in microglia/macrophages present

Fig. 7. Agathisflavone regulates reactive
astrogliosis and is neuroprotective.
Organotypic cerebellar slices from P10-12
mice were maintained for 7 DIV and then
treated with LPC for 15–17 h, followed by
agathislavone (FAB) at 5 or 10 μM for a
further 2 DIV, or 0.1% DMSO vehicle. . (A)
Photomicrographs illustrating GFAP-EGFP
+ astrocytes (green) and Hoescht stained
nuclei (blue); scale bar 20 μm. (B) Violin
graphs showing the mean luorescence in-
tensity of GFAP in the diferent treatment
groups. (C) Photomicrographs of Purkinje
neurons immunolabelled for Calbindin
(yellow) and the apoptosis marker cleaved
Caspase-3 (red) and counterstained with
Hoechst (blue). The panels on the left side
show entire cerebellar lobules and the or-
ganization of its layers (ML: Molecular
layer; PCL: Purkinje cells layer; GL:
Granular layer; WM: White matter); scale
bar 50 μm. The remaining panels focus on
the PCL; scale bar 50 μm. Insets illustrate
individual Purkinje cells ; scale bar 20 μm.
(D, E) Violin graphs showing the number of
Calbindin + cells per FOV (D) and the
percentage of Caspase+ /Calbindin + cells
(E). (F, G, H) RT-qPCR analysis Cntf (F),
Egfr (G) and Gabbr1 mRNA expression in
cerebellar slices in the diferent treatment
groups; data are expressed as the
mean±SEM or median± IQR (n = 5);
*p<0.05, **p<0.01, ****p<0.0001
(comparing control to treatment groups);
‡p<0.05, ‡‡p<0.01, ‡‡‡‡p<0.001
(comparing LPC-DMSO to LPC+FAB5 and
LPC+FAB10); †p<0.05, ††p<0.01 and
††††p<0.0001 (comparing LPC+FAB5 to
LPC+FAB10); samples with Gaussian dis-
tribution (bar graphs) were analyzed by
One-way ANOVA followed by Tukey’s post-
hoc test, non-parametric samples (in-
dividual values column graphs) by Kruskal-
Wallis followed by Dunns. (For interpreta-
tion of the references to colour in this igure
legend, the reader is referred to the web
version of this article.)
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at the site of demyelinated lesions and supports myelin repair [38,57]
[]. Overall, our data indicated that agathislavone altered the microglial
activation state and promoted an anti-inlammatory phenotype. How-
ever, based on the mRNA data, we did not observe polarized M1 and
M2 phenotypes following LPC and agathislavone treatment, consistent
with evidence that microglia are highly heterogeneous [50].

In cerebellar slices, LPC signiicantly increases GFAP-EGFP in-
tensity, indicative of reactive astrogliosis, an efect that has been ex-
tensively observed and described in other studies [51]. Notably, re-
active astrogliosis is signiicantly reduced by treatment with
agathislavone. The protective efects of agathislavone on astrocytes
will undoubtedly play a role in the observed efects on oligoden-
drogenesis and remyelination. Notably, astrocytes are a source of CNTF
and EGF, and both Cntf and Egfr are increased by agathislavone and
have been shown to enhance oligodendrogenesis and accelerate re-
myelination [52,53]. Egfr also promote ppro migration of postnatal
neural progenitors in vitro and in vivo. However, this marked upregu-
lation of Egfr by agathislavone needs further investigation [54].
Moreover, LPC signiicantly increases Caspase-3+ in Purkinje neurones
and this is attenuated by agathislavone, indicating its neuroprotective
potential. Consistent with this, agathislavone increases expression of
Gabrb1, which are highly expressed in Purkinje neurones and down-
regulated in pathology [55]. The results demonstrate that agathis-
lavone is protective for neurones and modulates microgliosis and as-
trogliosis, which play important roles in tissue repair and
remyelination.

A novel inding of our study is that ER activation is required for
agathislavone to inhibit microgliosis and promote remyelination.
Notably, pharmacological inhibition indicated these efects are greatest
through ERα receptors, although further studies are required before a
role for ERβ receptors is excluded. In addition, our molecular docking
analyses indicated that, in addition to ER, agathislavone can interact
with the nuclear receptors RAR and RXRα/γ. Our indings support
evidence that ER interact via ligand-binding domains with RAR and
RXR, thereby increasing their potential biological actions [42]. Ad-
ditionally, previous work [14] in a model of glutamate-mediated neu-
rotoxicity showed that agathislavone exerted neurogenic efects via
estrogen signalling and enhanced the neuroprotective properties of
microglia and astrocytes. These indings provide a testable hypothesis
by which agathislavone regulates microglial activation, reactive as-
trogliosis, neuronal survival and myelination via interactions with
multiple nuclear receptors, which are promising targets for re-
myelinating therapies [15,16,56].

5. Conclusions

In summary, this study demonstrates that agathislavone stimulates
oligodendrogenesis and remyelination. A major efect of agathislavone
is the regulation of microglial activation, promoting a microglial phe-
notype that supports su remyelination and repair. In addition, we show
that agathislavone is neuroprotective and dampens reactive astro-
gliosis. Finally, we provide evidence that activation of ERα is required

for agathislavone to inhibit microgliosis and promote remyelination.
These combinatorial efects of agathislavone indicate it may be a po-
tential treatment to slow the progression of demyelinating diseases and
promote remyelination and repair.
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