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Generic Context-Aware Group Contributions

Christoph Flamm, Marc Hellmuth, Daniel Merkle, Nikolai Nøjgaard, Peter F. Stadler

Abstract—Many properties of molecules vary systematically with changes in the structural formula and can thus be estimated from

regression models defined on small structural building blocks, usually functional groups. Typically, such approaches are limited to a

particular class of compounds and requires hand-curated lists of chemically plausible groups. This limits their use in particular in the

context of generative approaches to explore large chemical spaces. Here we overcome this limitation by proposing a generic group

contribution method that iteratively identifies significant regressors of increasing size. To this end, LASSO regression is used and the

context-dependent contributions are “anchored” around a reference edge to reduce ambiguities and prevent overcounting due to

multiple embeddings. We benchmark our approach, which is available as “Context AwaRe Group cOntribution” (CARGO), on artificial

data, typical applications from chemical thermodynamics. As we shall see, this method yields stable results with accuracies

comparable to other regression techniques. As a by-product, we obtain interpretable additive contributions for individual chemical

bonds and correction terms depending on local contexts.

Index Terms—Group Contributions, Thermodynamics, Lasso regression, Frequent Subgraph Mining, Cheminformatics

F

1 INTRODUCTION

G ROUP contribution methods have a long history in
chemistry. They are based on the observation that

simple constituents of chemical structures, often identified
as functional groups, contribute in a predictable and largely
context-independent way to a molecules physico-chemical
properties. In the simplest case, group contributions are ad-
ditive and we will only be interested with additive models
in this contribution.

Many thermodynamic properties can be estimated in
this manner from the molecular structure alone. In classical
approaches such as the Joback/Reid method, molecules
are partitioned into (functional) groups each of which con-
tributes a single term [1]. This simple ansatz yields useful
estimates e.g. for boiling and melting points, critical tem-
perature and pressure, heat of formation, Gibbs energy of
formation. More elaborate schemes, such as UNIFAC [2] in
addition model interactions between groups at the expense
of a much larger set of parameters.

From a mathematical point of view, group contribution
methods are regression models. Despite their differences in
the details, they share a common strategy comprising three
distinct steps [3]: (i) collection of a database of accurate
experimental data, from which the parameters of the group
contribution are learned, (ii) identification of the (functional)
groups, and (iii) a decomposition of molecules into their
constituents.

Step (ii) usually involves manually determined lists of
groups that are tailored to the specific chemistry being mod-
elled. The need for pre-defined groups, however, becomes a
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problem when very large and diverse sets of compounds are
of interest. In the context of generative models of chemistry
such as MØD [4], [5], this limitation becomes crippling
and limits the exploration of chemical space to compounds
that are entirely composed of the predetermined groups. In
order to overcome this limitation, we propose here a graph-
theoretical approach to defining groups that is agnostic of
chemical knowledge but nevertheless encodes the salient
features implicitly in a manner that still allows a direct
interpretation of the regression model.

Traditionally, group contribution methods often require
in step (iii) that the functional groups form a vertex par-
tition. This kind of tiling problem is known to be NP-
complete [6]. More problematically, however, there is no
guarantee that the partition is unique. As a consequence,
both parameter estimation in the training step and the
estimation of properties become dependent on the ambigu-
ous partition, adding a layer of avoidable inaccuracy. We
therefore abandon the requirement of vertex partitoning
here and instead opt for a graph covering scheme that is
guaranteed to be unambiguous. In some application scenar-
ios, vertex partitions even are not desirable from a chemist’s
point of view: Molecular energies, for instance, are usually
very well approximated as the sum of the average bond
energy for each chemical bond in the molecule. The energy
contributions are parametrized as a function of the two
incident atoms and the type of the chemical bond [7], [8].
Modelling energies more accurately at the level of quantum
mechanics we see, however, that the total energy appears
as the solution of a large eigenvalue problem that does
not factorize exactly. Hence there is also no partition of
the molecule into parts that contribute strictly additively.
The localization of electrons in discernible bonds, on the
other hand, ensures that contribution of individual bonds
are almost always an acceptable approximation.

Nevertheless, the chemical environment of a bond has
a non-negligible influence. For instance C C bonds have
somewhat different average energies depending on whether
one or both carbons is incident to a single or double bond, or
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part of a carbonyl group. Clearly, if we allow the contribu-
tion of a bond to depend on the entire rest of the molecule,
this additivity of the contributions is a mathematical trivial-
ity (and in fact the decomposition into bond contributions
is arbitrary). The approach becomes non-trivial (and practi-
cally useful) only if it is possible to limit the size of a bond’s
context sufficiently to enumerate all relevant contexts and to
assign energies to them. Details of the implementation vary
depending on the scope of chemistry and the properties
under consideration. In [9], [10] for instance, contributions
are divided into first, second, and third order groups. An
interesting extension is the estimation of standard Gibbs
energy of reactions combining reactant contributions and
group contributions [11].

Group contribution models are by no mean specific to
chemistry or molecular properties. The prediction of RNA
secondary structure, for example, relies on the fact that
additive contributions of base-pair stacking and loop strain
energies explain measured free energies of folding with very
high accuracy [12]. This example provides further motiva-
tion for the construction of a group contribution method that
is applicable generically to labeled graphs (c.f. Supplemental
Information).

2 NOTATION

In this contribution we consider undirected simple graphs
that are equipped with an edge- and vertex-labeling, hence-
forth called graphs for short. The vertex set and edge set
of a graph G is denoted by V (G) and E(G), respectively.
Moreover, we write l(x) for the vertex-labels (x ∈ V (G))
and edge-labels (x ∈ E(G)). Since our approach is strongly
motivated by chemistry, sometimes it is more natural to
talk about the graphs as molecules, their vertices as atoms
(with labels defining the atom type), and their edges as
bonds (whose labels distinguish single, double, triple, and
aromatic bonds, for instance), while still using common
graph terminology for mathematical precision.

Given two graphs G and G′ and a bijection ϕ : V (G)→
V (G′), we say ϕ is edge preserving if (v, u) ∈ E(G) if and
only if (ϕ(v), ϕ(u)) ∈ E(G′). Moreover, an edge preserving
map ϕ is label preserving if for any v ∈ V (G) it holds
that l(v) = l(ϕ(v)) and for any edge (v, u) ∈ E(G) we
have l((v, u)) = l((ϕ(v), ϕ(u))). The bijection ϕ is called an
isomorphism if it is both edge and label preserving, and we
say that G and G′ are isomorphic, denoted by G ≃ϕ G′, if
there exists an isomorphism ϕ between them. If there is no
risk of ambiguity or the map ϕ is not important, we simply
write G ≃ G′. If G = G′, then any isomorphism between G
and G′ is also called an automorphism.

A graph H is a subgraph of G, in symbols H ⊆ G,
if V (H) ⊆ V (G) and E(H) ⊆ E(G). Given two graphs
H ′ and G we say that H ′ is subgraph isomorphic to G,
if there exists a subgraph H of G with H ′ ≃ H . The
isomorphism ϕ between H ′ and a subgraph H ⊆ G is called
a subgraph isomorphism between H ′ and G and, by slight abuse
of notation, we also write H ′ ⊆ G.

3 PROBLEM DEFINITION

Given a sample S ⊆ G of pairwisely distinct graphs drawn
from a target set G, we assume that the value tobs(S) of a

quantity of interest has been measured for all S ∈ S. Our
goal is to train a regression model for tobs that extends to all
elements of G. The model t belongs to a restricted class of
functions t : G → R, in our case functions that are linear
combinations of contributions of certain subgraphs. The
regressions model t of course has to be an approximation
of tobs on S. This setup can formalized as follows:

Problem 1. GraphRegression
Instance: A set of graphs G, a subset of pairwisely non-isomorphic
graphs S ⊆ G, a class of functions F ⊆ F0 := {t | t : G → R},
and a performance measure ∆ : F0(S) × F0(S) → R

+
0 where

F0(S) is the restriction of F0 to S.
Task: Find t ∈ F such that ∆(t, tobs) is minimal.

In the following section we will specify in detail the
class of subgraph-additive functions on graphs and then
argue for a further restriction of these functions depending
on the subgraphs actually observed in the training set S.
The class of regression functions F advocated here will
comprise linear functions of subgraphs that are observed
“significantly” in S. As performance measures we will use
the well-established LASSO operator [13], see section 4.1.4.

4 CONTEXT-AWARE GROUP CONTRIBUTIONS

4.1 Context-dependent Edge Contributions

4.1.1 Definitions

We start from the set E =
⋃

S∈S
E(S) of all edges in the

training set S and introduce a map tedge : E→ R such that

tobs(S) =
∑

e∈E(S)

tedge(e). (1)

At the outset, of course we do not know the values of tedge.
Eq. (1) merely makes our notion of additive contributions
precise. The key assumption is that tedge(e) is determined by
the surrounding structural context of the graph in which e
resides. Although the ansatz of Eq. (1) is motivated by bond
energy contributions, it is much more general and pertains
to many other properties including those covered by the
Joback/Reid method, see Sec. 6 below.

Next, we formalize the notion of context around an edge.

Definition 1. A context is a pair C = (G, e), where G is a
graph and e is an edge in G. The size of C is defined as the
number of edges in G. We call e the origin or reference edge of
C = (G, e). The context C of size one, consisting of a single
edge, is called trivial.

Two contexts C1 = (G1, e1) and C2 = (G2, e2) are
isomorphic, in symbols C1 ≃ ϕC2, if there exists an isomor-
phism ϕ from G1 to G2 that maps e1 to e2. If C1 ≃ϕ C2,
G1 = G2 and e1 = e2, we write C1 = C2 and say that ϕ is
an automorphism.

Two contexts C1 = (G1, e1) and C2 = (G2, e2) are
subgraph isomorphic, in symbols C1 ⊑ C2 if there exists a
subgraph H of G2 such that there is an isomorphism from
G1 to H that maps e1 to e2. If C1 ⊑ C2 we also say that C1

can be embedded into C2.

In what follows we adopt the convention of coloring the
reference edge red for any illustrated context. Intuitively,
the context is a local substructure around a certain edge
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Fig. 1. Depicted are different contexts of the sizes 1 (trivial), 2, and 3.
The origin edge of each context is colored red.
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Fig. 2. Shown are two graphs H (left) and G (right) together with a
vertex-label and an index of each vertex (the number in brackets). For
simplicity all edge labels are the same and are omitted in the drawing.
The graph H depicts a context C = (H, e) with the origin edge e = (1, 2)
which is highlighted by a red edge. The graph G depicts a sample
graph in which we want to determine the frequency of C. For any edge
e′ ∈ E(H) with e′ 6= (1, 3) we have f(C,G, e′) = 0. Furthermore,
f(H,G, e′) = 2, since there exists two subgraph isomorphisms from H
to G: one that maps the vertex 0 of H to the vertex 2 in G and one that
maps the vertex 0 of H to the vertex 4 in G.

in a graph. More precisely, given a graph G and a context
C = (H, e) such that there is a subgraph isomorphism ϕ
between H and G, then H can be seen as a context around
ϕ(e). We define the number of occurrences of C around an
edge in G as follows:

Definition 2. Given a graph G and a context C = (H, e′)
we say that C is a context around e ∈ E(G), if there is a
subgraph isomorphism ϕ from H to G that maps the origin
edge to e, i.e., it satisfies ϕ(e′) = e. The frequency f(C,G, e)
of C around some edge e ∈ E(G) is the number of subgraph
isomorphisms ϕ1, ϕ2, . . . from C to G that satisfy ϕi(e

′) =
e.

An example of counting the frequency of a context is
shown in Fig. 2.

We can similarly define the total number of occurrences
of C in G as follows:

Definition 3. Given a graph G and a context C , the frequency
of C in G is defined as the sum of the frequencies of C
around all edges in G:

f(C,G) =
∑

e∈E(G)

f(C,G, e).

We emphasize that C can be embedded into G if and
only if f(C,G) > 0.

The definition of the frequency of a context in a graph
does not account for the presence of symmetries. That is, the
context in Fig. 2 is counted twice in the given example, while
it might be more intuitive to count such occurrences only
once. In general, if a(C) is the number of automorphisms
of a given context C , then we will “over-count” the context
around an edge a(C) times, as for the edge e = (1, 3) in the

example of Fig. 2. It would easily be possible to correct this
“over-counting” by dividing the frequency f(C,G) by a(C).
It is not necessary, however, to account for automorphisms
of C since they are independent of the embedding of C
into G. As we shall see below, the frequencies f(C,G) will
appear as coefficients of regressors in a linear regression
model, hence a factor that is independent from G will be
canceled by corresponding scaling of the regressor.

The set of non-isomorphic contexts that are embeddable
into the graphs S ∈ S is finite. We define this set as follows:

Definition 4. The context set CS

k is the set of all contexts
of size k, such that for each context C ∈ CS

k there is some
graph S ∈ S such that f(C, S) > 0. Let CS =

⋃

k C
S

k be all
contexts found in S. For a given trivial context C ∈ CS

1 we
let CS

k,C ⊆ CS

k be the set of all non-trivial contexts of size k
in which C can be embedded into.

If S is a set of sampled molecules and tobs their molecular
energy, we can think of CS

1 as all possible bonds found in S.
Similarly given some bond C ∈ CS

1 , the set CS

k,C represents
all possible contexts found in S containing k bonds and
originates from C .

Functions comprising contributions for contexts CS

k up to
some some order k are already an appealing class of regres-
sion models F. They are, however, still prone to overfitting
since they still involve contexts that are observed very rarely
in S.

4.1.2 Modelling Context Influence

For a graph S ∈ S, the maximal amount of structural
information is given by the contexts C = (G, e) with
G ≃ϕ S, i.e., by specifying S completely. In this case
tedge exactly determines tedge(ϕ(e)). In practise however, this
would generalize very poorly since most graphs outside the
training set S will not match the contexts. As an alternative,
therefore, we have to consider smaller contexts that are
sufficiently frequent in S and that cover at least most of the
graphs for which we wish to predict t. Not all contexts of
a given size are equally frequent in S, of course. Frequent
molecular features thus may be sampled with more accu-
racy, i.e., larger context size, than others (not unlike longer
k-mers allowing more accurate sampling of frequent motifs
in alignment-free sequence comparison methods [14]). We
therefore consider a nested scheme of context contributions.

To this end we introduce the map tC : CS → R that
tracks how each context contributes to the values of tedge.
The values of tC will be defined recursively. The smallest
possible contexts are the trivial ones in CS

1 . Consider such a
trivial context C ∈ CS

1 . Let EC ⊆ E be the set of all those
edges e ∈ E such that C occurs around e. The average value
tC(C) of tedge(e) over all e ∈ EC provides an approximation
tedge(e) for every edge e ∈ EC :

tedge(e) ≈ f(C,G, e) · tC(C) (2)

The accuracy of the estimate tedge(e) will of course be poor
if tedge(e) is strongly influenced by its environment.

The approximation can be improved by considering
contexts of size 2. Suppose that we have a given context
C ∈ CS

1 and a context C ′ ∈ CS

2,C of size 2 such that
C ⊑ C ′. Moreover, let e ∈ EC ∩ EC′ , i.e., both C and C ′

occur around e. We can then ask if the additional structural
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information given by C ′ influences our estimation of tedge(e)
compared to only using tC(C). Let δC|C′ be the difference
of approximating tedge(e) with and without including C ′,
and let tC(C

′) be the average of δC|C′ over all e ∈ E

where C and C ′ occurs around e. We can think of tC(C
′)

as the average contribution of any edge which contains the
environment of C ′. If there is no significant difference in
the estimation of values in tedge when including C ′ or not,
either in terms of effect size or statistical significance over
the available data in S, we may simply discard C ′ and only
use the original set CS

1 for estimating the values of tedge. On
the other hand, if C ′ significantly influences our estimations
of tedge, it would suggest that we would be able to achieve
a better approximation by considering the set of contexts
CS

1 ∪ {C
′} and setting

tedge(e) ≈ f(C,G, e) · tC(C) + f(C ′, G, e) · tC(C
′)

In this way, by determining the significance of any context
in CS

2 in relation to estimating the values of tedge, we can
obtain a set K2 ⊆ CS

1 ∪ CS

2 containing all contexts of size 1
and 2 that significantly influences our estimation of tedge.

This idea immediately generalizes to a chain of nested
sets of contexts CS

1 = K1 ⊆ K2 ⊆ · · · ⊆ Kn, such that Kk

represents all significant contexts of sizes 1 to k and n is the
largest number of edges of all graphs in S. Using the same
argumentation as before, a context C of size k is significant if
considering Kk−1∪{C} provides a better estimation of tedge

compared to only considering Kk−1. Hence, by determining
the significance of all contexts in CS

k we can construct the set
Kk, which we can use to estimate tedge(e) for some edge e
of a given graph G ∈ S:

tedge(e) ≈
∑

C∈Kk

f(C,G, e) · tC(C). (3)

where Kk provides at least as good of an approximation as
Kk−1.

4.1.3 Iterative Inference of Significant Contexts

Eq. (3) provides a way to approximate tedge(e) edge if the
significant contexts Kk and their contributions are known.
Given a graph S ∈ S and all significant contexts Kk we can
use Eqns. (1) and (3) to express the relation between tobs and
the significant contexts:

tobs(S)
Eq. (1)
=

∑

e∈E(S)

tedge(e)

Eq. (3)
≈

∑

e∈E(S)

∑

C∈Kk

f(C, S, e) · tC(C)

=
∑

C∈Kk

tC(C) ·
∑

e∈E(S)

f(C, S, e)

=
∑

C∈Kk

f(C, S) · tC(C) (4)

Introducing an error term ǫ to account for the contributions
that cannot be explained by Kk, and setting tC(C) = 0 for

all C 6∈ Kk we obtain

tobs(S) =
∑

C∈Kk

f(C, S) · tC(C) + ǫ

tobs(S)−
∑

C∈Kk−1

f(C, S) · tC(C) =

∑

C∈Ki\Kk−1

f(C, S) · tC(C) + ǫ

tobs(S)−
∑

C∈Kk−1

f(C, S) · tC(C) =

∑

C∈C
S

k

f(C, S) · tC(C) + ǫ (5)

Hence, if we know the values of tC for the contexts in Kk−1

we can determine the significant contexts in CS

k by solving
the set of equations given by Eq. (5) while minimizing ǫ.

The decomposition of edge values tedge(e) into contri-
butions of different sizes k contains undetermined degrees
of freedom. Estimating the contributions in the order of
increasing sizes, however, implies

0 ≈
∑

S∈S

∑

C′∈C
S

k,C

f(C ′, S) · tC(C
′) (6)

since the terms with k > 1 are “corrections” to the trivial
edge contributions. Estimating the latter by linear regression
implies that the expected value of the residual vanishes, i.e.,
the higher-order contribution k > 1 estimate contributions
that average to 0 on the training set S. The equations from
Eq. (5) and (6) forms the basis of a linear equation system to
find the significant contexts of size k and their contributions
tC under the assumption that we have found the significant
context of size 1 to k − 1.

We therefore consider only the subset of regression mod-
els for which all contexts are significant in S as our final set
F.

4.1.4 Learning Context Contributions

In what follows, we assume w.l.o.g. that the elements in S,
CS

k , and CS

1 are ordered and let Si, Ci, Zi, denote the graph at
position i in S, CS

k , and CS

1 respectively. We can then define
a (|S| + |CS

1 |) × |C
S

k| matrix X, where each row represents
the right hand side of a linear equation from Equation (5)
and (6), and each column represents the coefficients for
a variable tC(Cj) in the respective linear equation. To be
more precise, for every i ∈ {1, . . . , |S| + |CS

1 |} and every
j ∈ {1, . . . , |CS

k|} we put:

Xij =











f(Cj , Si) if i ≤ |S|
∑

S∈S
f(Cj , S) if i > |S|, Cj ∈ CS

k,Zi−|S|

0 otherwise

Similarly we collect the left hand side values of Equation (5)
and (6) in a vector y such that:

yi =







tobs(Si)−
∑

C∈Kk−1

f(C, S) · tC(C) if 1 ≤ i ≤ |S|

0 otherwise
.

Finally, denote by t the |CS

k| × 1 vector of the unknown
contributions of the respective values in tC. Our task is then
to solve the linear system

X · t− y = ǫ (7)
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Fig. 3. Illustrated is the first two rows and columns of the matrix X

constructed as in Sec. 4.1.4 from some sets S and CS

2
. As shown, we

can think of each sample S as a row in X, each column as come context
C, and each entry as the frequency f(C, S).

while collectively minimizing the error terms ǫ in a suitable
fashion. Eq. (7) can of course be solved by standard linear
regression methods such as ordinary least squares (OLS)
[15]. However, since we have not made any assumptions
on the the structure of X we cannot guarantee that the
regressors in X are linearly independent. Moreover, it is not
given that |CS

k| < |S|, and hence the matrix X might contain
more columns than rows, further breaking the assumption
of linear independence.

In addition, a method that supports feature selection will
be helpful to adapt the sets Kk “on the fly”. Obviously
we would like to find a set of contexts that is as small as
possible to explain the variance given by tobs. Any regressor
removed from the regression model using feature selection
corresponds to a context removed from Kk. A particularly
convenient formulation that is able to handle linear depen-
dence of the regressors and supports feature selection is the
Least Absolute Shrinkage and Selection Operator (LASSO)
[13], which corresponds to the global minimization problem

min







|CS

1
|+|S|
∑

i=1



yi −

|CS

k |
∑

j=1

Xijtj





2

+ λ

|CS

k |
∑

j=1

|tj |






, (8)

where λ is some given positive scalar. Here, the term
including λ acts as a L1-regularization technique to per-
form feature selection. As an added benefit, due to the
L1-regularization term, if two regressors are collinear, the
learned model tends to only include one of them by setting
the other to 0. During the transformation of S and CS

k into
a linear regression model, we only retain the structural
information stored in S and CS in the form of the frequency
counting between the two. As a consequence, if the fre-
quencies of two contexts C1 and C2 in CS

k are collinear
with respect to S, we will be unable to distinguish between
them during the regression step. Hence, we assume that
the necessary structural information required to identify
significant contexts for the whole target population is specif-
ically stored in the frequencies between CS

k and S, i.e., if the
frequencies of C1 and C2 are collinear in S they are collinear
in the target population.

4.2 Algorithmic Design

4.2.1 Algoritm

The discussions can be summarized in the algorithm
CARGO, which is outlined in Alg. 1. For increasing k, it

Algorithm 1 A high level view of the CARGO algorithm

1: function CARGO(S, tobs)
2: t← the empty model S→ R

3: for k ← 1 to n do
4: X, y ← FreqMatrix(CS

k, S, t)
5: K, tC ← LASSO(X, y, λ)
6: t.append(K, tC)
7: if ∆(t, tobs) ≤ thres then
8: break

9: return t

learns the significant contexts of size k using the results
from previous iterations. The output of CARGO is a model
t storing the significant contexts Kk together with their
contributions tC. Using the stored information, Eq. (4) can
be used to predict the values of the property of interest for
any graph in the target population.

First (Line 4) the matrix X and the vector y are computed
as outlined in Sec. 4.1.4. Here, the model t is used to
account for the variance explained by the already found
significant contexts Kk−1. Next (Line 5) LASSO is used to
infer the regressors from X and y as explained in Sec.
4.1.4. For any regressor included in the regression model,
we store their corresponding contexts and contributions,
where K ⊆ CS

k contains all selected contexts of size k and
tC their corresponding context contributions. The model t
is then appended with K along with their learned context
contributions tC, such that t stores all significant contexts
of size k; Kk = Kk−1 ∪ K. Finally (Line 7) we check if the
performance measure ∆(t, tobs), as stated in Prob. 1, is under
some given threshold thres. If this is the case we return
the learned model, while otherwise we learn the significant
contexts of size k + 1.

The runtime of Alg. 1 will be bounded primarily by the
size of the largest context in CS

k and the size of CS

k . On the
other hand, the complexity of using the model to predict
properties of graphs not in S will primarily be bounded by
the number of significant contexts Kk. From an algorithmic
point of view, however, considering every context in CS

k is
inefficient because the size of CS

k can scale exponentially
with the size of graphs in S. We therefore consider strategies
to speedup both the learning and the prediction step by
pruning the set of contexts in CS

k and Kk that needs to be
considered.

4.2.2 Context Mining

Contexts that can be embedded in very few graphs in S

are unlikely to contribute meaningful information to the
final model because it is difficult to evaluate whether the
corresponding regressor conveys a signal or not. It makes
sense, therefore, to limit CS

k to include only contexts that can
be embedded into a “reasonable” number of graphs in S. In
other words, we require that the corresponding regressors
explains a significant variance contribution in tobs of several
samples in S. To this end, we define the notion of supported
contexts:

Definition 5. The support sup(C) of a context C ∈ CS is
the number of graphs in S which C can be embedded into.
Given a positive integer τ we say that C is supported if
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sup(C) ≥ τ . We denote by SUP(k, τ) ⊆ CS

k the set of all
supported contexts of size k.

Given a context C = (G, e) ∈ CS and a graph S ∈ S,
we have then G ⊆ S if and only if C is embeddable into
S. To enumerate all supported contexts, it therefore suffices
to first find all graphs that are subgraph isomorphic to at
least τ graphs in S, and then to use the resulting graphs to
construct all supported contexts.

The problem of enumerating all non-isomorphic sub-
graphs occurring in at least τ graphs is known as Frequent
Subgraph Mining (FSM). It is well studied in a variety of
fields of application [16]. FSM is a computationally hard
problem as it involves the problem of subgraph isomor-
phism which is known to be NP-complete [17]. Neverthe-
less, several efficient algorithms exists for solving FSM.

Definition 6. Let G be a set of graphs and k and τ two
integers such that k > 0 and τ > 0. Then FSM(G, k, τ) is the
set of non-isomorphic graphs that contain k edges and are
subgraph isomorphic to at least τ graphs in G.

Clearly, if τ = 1, then FSM(G, k, τ) consists of all non-
isomorphic subgraphs with k edges that can be found in
the graphs in G. For a given integer k, we can construct all
supported contexts of size k as follows: Let G ∈ FSM(S, k, τ)
be a frequent graph of size k in S. For any edge e ∈ E(G)
we can create the context C = (G, e). Since G 6≃ G′ for any
other graph in G′ ∈ FSM(S, k, τ), G 6= G′, it follows that
C 6≃ C ′ for any C ′ = (G′, e′) where e′ ∈ E(G′). It might,
however, still be the case that C ≃ C ′ for C ′ = (G, e′) where
e′ ∈ E(G) due to symmetries in G. Let SUP(G) be the set of
non-isomorphic contexts created from G as explained above.
Then:

SUP(k, τ) =
⋃

G∈FSM(S,k,τ)

SUP(G) (9)

An example of frequent graphs and supported contexts is
illustrated in Fig. 4.

Finally, denote by SUP(k, τ,m) the set of the m most
supported contexts in SUP(k, τ). Instead of using all con-
texts of CS

k as possible significant contexts at iteration k > 1,
as specified in Line 4 of Alg. 1, we use only SUP(k, τ,m). At
the same time, we can accelerate the construction of X and
y by noting that C ∈ SUP(k, τ) implies that its graph is a
subgraph of some S ∈ S, and thus its subgraphs are also
contained in S. It suffices, therefore, to compute f(C, S)
when we previously noticed during the construction of
SUP(k, τ) that C can be embedded into S; otherwise we
immediately set f(C, S) = 0.

4.2.3 Context Representative

The number of contexts can be reduced further using the
following observation:

Theorem 1. Given a positive integer k, let C1 = (G1, e1)
and C2 = (G2, e2) be two contexts in CS

k . If G1 ≃ G2 then
f(C1, S) = c · f(C2, S) for all S ∈ S and some constant
c > 0, i.e., the frequencies of C1 and C2 are collinear in S.

Proof: We emphasize that f(C1, G1) is the num-
ber of automorphisms ϕ : V (G1) → V (G1) that fix
the edge e1 and that f(C1, G1) = f(C1, S), whenever
G1 ≃ S. Let P1, resp., P2 be the set of subgraphs

A

BB

C

A C

A

BD

C

(a)

BA

BC

A

B

C

(b)

BA

BC

A

B

C

A

B

C

(c)

Fig. 4. Assume S contains the graphs illustrated in Fig. 4a and that
τ = 2. Then Fig. 4b illustrates the resulting subgraphs contained in
FSM(S, 1, τ) and FSM(S, 2, τ). Similarly Fig. 4c illustrates the subgraphs
contained in SUP(1, τ) and SUP(2, τ).

in S that are isomorphic to G1, resp., G2. Clearly, we
would be able to express the frequency of C1 in S as:
f(C1, S) = f(C1, G1)·|P1|. Similarly, f(C2, S) = f(C2, G2)·
|P2|. Since G1 ≃ G2 we have |P1| = |P2| and thus,
f(C1, S)/f(C1, G1) = f(C2, S)/f(C2, G2). Writing this

as f(C1, S) = f(C1,G1)
f(C2,G2)

f(C2, S) shows collinearity since
f(C1,G1)
f(C2,G2)

is a constant.

Thm. 1 implies that the regressors for C1 and C2 with
G1 ≃ G2 in the matrix construction X are collinear in the
first |S| rows of X. More precisely, the regressors for C1

and C2 will only break collinearity in exactly the two rows
of X corresponding to the specific Eqns. listed in (6) that
includes either C1 or C2. This suggests that we gain an
insignificant amount of information by including both C1

and C2 as regressors in the linear model. Therefore, we
further reduce the context set by avoiding contexts with
isomorphic graphs.

This simplification however breaks the equations given
by Eq. (6). However, we can relax the constraints given by
Eq. (6) to a single equation:

0 =
∑

S∈S

∑

C∈C
S

1

∑

C′∈C
S

k,C

f(C ′, S). (10)

Clearly if the equations given by (6) holds, then (10) must
hold as well. The other way does not necessarily hold,
however if the relaxed version had a solution then it would
also contain a solution when removing contexts as explained
above, since C1 and C2 would be collinear in Eq. (10).
We then use the relaxed Eq. (10) instead of the equations
given by Equation (6) during the construction of each X

in the algorithm given in Sec. 4.2.1. Hence, the actual set
of supported contexts outlined in the previous section,
SUP(k, τ), will only contain the set of supported contexts
that are pairwisely non-isomorphic.

4.2.4 Predicting New Graphs From the Target Population

Eq. (4) can now be used to predict values of t for any graphs
G in the target population, that is, the set of graphs that
admit a covering by contexts (including trivial) in Kk. To
this end, it is necessary to compute the frequencies f(C,G)
for all C ∈ Kk. As mentioned previously, such computations
can be expensive. Suppose C can be embedded into C ′.
Then f(C,G) = 0 implies f(C ′, G) = 0. Hence, we would
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Fig. 5. Example of a context tree as defined in Definition 7

C

O

N N

H

H H

H

C f(C, S) tC(C)

CN 2 6

CO 1 -3

H

C

N 4 -2

C

O

N N

2 7

Fig. 6. Suppose we want to estimate the molecular energy of the
molecule urea (left) based on the listed significant contexts (right)
and their contribution tC. Let S denote the urea molecule. Using Eq.
(4) we can estimate the molecular energy test(S) of S as: test(S) =
2 · 6 + 1 · (−3) + 4 · (−2) + 2 · 7 = 15. Note, this is just an illustrative
example and in no way models the real molecular energy of urea.

only need to compute the frequency of C ′ if C has a
non-zero frequency. This observation suggest to construct
a context tree:

Definition 7. Given a set of contexts Kk, a context tree is a
tree T = (Kk ∪ r, E) where r is a special vertex designated
as the root and the edge set E is defined as follows: Let
C ∈ Kk. Then the parent of C in T is the largest context
C ′ ∈ Kk, C 6= C ′, that is embeddable into C . If several such
contexts of the same size exists a random one is chosen. If
none exists C is connected to the root r.

We note that the context tree for a set of contexts is not
unique. An example of a context tree is illustrated in Fig. 5.
Given a graph G and equipped with a context tree T for Kk

we can compute the frequencies of Kk in G with the help of
a breadth first search in T starting from the root. Each time
we visit a vertex C in T , except for the root, we compute
the frequency of its corresponding context. If f(C,G) > 0,
we continue down to the children of C in T . If however
f(C,G) = 0, we can prune every descendant of C in T and
set their frequencies to 0.

4.3 Parameter Selection

The runtime peformance of Alg. 1, as well as the quality of
the final model t, are affected by the selection of a few key

parameters. These are: The number of iterations to run (n),
when contexts are considered supported (τ ), the maximum
number of contexts to consider from SUP (k, τ) (m), the
regularization parameter of LASSO (λ), and finally when a
model is considered acceptable (thres). The parameters n
and thres control the size of the contexts that should be
included in the model. Including contexts that are too large
will make the resulting model prone to overfitting, while
only considering very small context will make the model
prone to underfitting. On the other hand, the parameters
τ , m, and λ, controls how many contexts of a certain size
should be included, and also here extreme values for any pa-
rameter might make the model prone to over/underfitting.
The specific parameter values used in each experiment are
listed in the relevant sections of Sec. 6.

4.4 Computational Complexity

Alg. 1 does not solve Prob. 1 exactly. Instead it tries to find
a minimal set of subgraphs that can adequately be used as
a model for accurate future predictions.

To implement Alg. 1 we must be able to solve the follow-
ing problems: Computing f(C, S), computing SUP(k, τ,m),
and solving the LASSO objective function. Any solution
to f(C, S) involves the enumeration of subgraph isomor-
phisms between two graphs. Finding subgraph isomor-
phisms between graphs are known to be NP-complete [17],
and moreover, there can be an exponential number of such
isomorphisms. Note, this also implies that solving Prob. 1
for subgraph additive functions is NP-complete. Similarly,
finding the set SUP(k, τ,m) involves solving FSM, which,
as stated previously, is NP-complete and can again have
an exponential output. LASSO can be solved in polynomial
time using algorithms such as coordinate descent [18]. The
complexity of such algorithms, however, depends on the
number of regressors, which in turn depends on the size of
SUP(k, τ,m).

As we shall see in Sec. 6, all of the above problems can be
solved efficiently in practice. On one hand, this is due to our
ability to adjust peformance using the parameters m and τ
that control the number of contexts. On the other hand, for
real-world datasets, we can often obtain good models with
very small contexts, which trivializes both the subgraph
isomorphism or subgraph enumeration problem.

5 IMPLEMENTATION

The algorithm described in Sec. 4.2.1 was implemented as
a python library, with the computational extensive tasks
being implemented in C++. CARGO is available from https:
//imada.sdu.dk/Employees/daniel/cargo/.

The software relies on the solution of several well-
known computational problems, in particular subgraph
isomorphism enumeration, FSM, and LASSO regression.
Computing the frequency of a context in a graph efficiently
is integral for both the model construction and prediction of
new graphs, and ultimately depends on enumerating sub-
graph isomorphisms. For this purpose we employ the vf2
algorithm [19] implemented in the boost graph library [20].
The enumeration of all frequent subgraphs of S relies on a
multi-threaded implementation of the gSpan algorithm [21]

https://imada.sdu.dk/Employees/daniel/cargo/
https://imada.sdu.dk/Employees/daniel/cargo/
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in the C++ library gBolt [22]. Note, for this work, we have
modified the algorithm such that in addition to accepting a
set of graphs as input it also accepts a positive integer k and
outputs a set of non-isomorphic frequent subgraphs that all
contains exactly k edges. The libraries scikit-learn [23]
and numpy [24] supplied the implementation of the LASSO
regression. For reading and visualizing graphs we use the
software package MØD [4].

For all data-sets tested in Sec. 6 CARGO ran in less than
a minute on a standard desktop PC, however the runtime
will of course depend on the exact parameters chosen, e.g.
the maximum number of iterations to be run during model
construction. The prediction of values on new graphs, when
a model has been learned, as explained in Sec. 4.2.4 all took
less than a second to estimate values of the whole data-set.

6 RESULTS

6.1 Evaluation of CARGO

Although this work was motivated by the need to predict
Gibbs free energies for a very wide range of molecules to
guide large scale explorations of chemical spaces with MØD,
we investigate the general applicability and efficiency of our
approach for several different application scenarios. Thus
the problems addressed below were chosen to generalize at
least one aspect of the typically very focused applications of
group contribution methods.

We start with an artificially constructed example so that
the performance of CARGO can be assessed relative to an
absolute ground truth. We then show that CARGO performs
very well on the most typical task, the prediction of thermo-
dynamic properties, (e.g.., boiling points of hydrocarbones).
Finally, we apply CARGO as a predictor in a scenario where
no functional groups as used in classical group contribution
methods based on metabolic compounds exist. This is illus-
trated based on prediction of energies which are based on
expensive quantum chemical computation of a training set.

Throughout, the standard error of prediction SE =
√

(1/S)
∑

S∈S
(tobs(S)− test(S))2 is used to quantify the

quality of the trained models. Here, test denotes the property
values estimated with CARGO. In order to determine the
λ-values in the LASSO regression, Eq. (8), 10-fold cross-
validation was used. The accuracy of CARGO on graphs
not in S was assessed using double cross-validation with 10-
fold resampling also in the outer validation. The resulting
standard error is denoted by SEcross. For brevity in the fol-
lowing CARGO will refer to results obtained for the whole
data-set, while CARGOcross will refer to cross-validation,
respectively. Similarly, the number of significant contexts
found by CARGO denoted by K and Kcross for whole data-
sets and for the cross-validated data-sets respectively. We
ran CARGO 10 times on each data-set to assess the stability
of CARGO and report the standard deviations of these
replicates.

The residuals of the regression are expected to ap-
proximately follow a normal distribution if CARGO cor-
rectly capture a linear relation between the contributions
of the significant contexts and the observed property val-
ues. We therefore compute the percentage of residuals R1

and R2 that falls within one and two standard deviations

respectively. For normally distributed residuals we expect
R1 ≈ 68% and R2 ≈ 95%.

6.2 Artificial Test Data: Colored Trees

We consider 3-colored trees and the property tobs as an
additive model. To define S, we randomly generated 100
trees each with 12, 15, 18, and 20 vertices and assigned
colors randomly to the vertices. In order to define tobs,
we manually assigned values (10,−20, 30,−40, 50,−60) to
the 6 possible “base” contributions for the coloring of the
vertices of a single edge and then selected 15 contexts of size
2, 15 contexts of of size 3, and 10 contexts of size 4 randomly
from a collection of contexts that all occur in at least 10% of
the samples in S. We then assigned values to them picked
from a uniform distribution on the intervals [1, 20], [1, 10],
and [1, 5] and choose random sign + or − to approximate
Eq. (6) for each edge. The decreasing upper bound of the
intervals was chosen to reflect the intuition that higher order
context yield corrections to lower-order ones. Eqns. (1) and
(3) were then used to compute tobs(S) for all S ∈ S. An
example of the step-wise construction of the synthetic data-
set is illustrated in Fig. 7. Running CARGO and CARGOcross

we obtained
SE SEcross K Kcross R1 R2

7.6± 0.3 9.9± 0.1 106.3± 15.3 101± 4.6 69% 95%

A single run of CARGO and CARGOcross was generated
in 6m33s respectively. The parameters used was n = 4,
τ = 40, m = ∞. The residuals indeed approximate normal
distributions, both for CARGO and CARGOcross, as seen
from Fig. 8a and the values of R1 and R2.

Moreover, we see that SE and SEcross are very similar as
well as K and Kcross indicating some amount of stability
even when removing 10% of the data-set. The robustness
of the model is further confirmed by the low standard
deviation across runs. The accuracy is illustrated in Fig. 8b,
where we see the cross-validated estimates plotted against
the observed values for a single run. The estimated edge
contributions (trivial contexts)

base cont. est. cont
A-A -40.0 -37.8
A-B 30.0 25.7
A-C 10.0 11.0
B-B -60.0 -62.6
B-C -20.0 -15.9
C-C 50.0 42.5

are obtained in the 0th iteration of CARGO and already
closely resemble their a priori values. We do not expect a
perfect match since the higher order contributions in our
artificial model were chosen in a way that does not strictly
enforce Eq. (6). The trivial contexts thus compensate for the
average contribution of the higher-order terms. The variance
of the energy values in each trivial context when embedded
into a sample is shown in Fig. 8d.

In the next iterations, larger contexts stepwisely correct
for the errors incurred by using only trivial contexts. Fig.
8c shows that the standard error of CARGO drops rapidly
by introducing contexts of size 2 and then 3. Not much is
gained thereafter, however. Note, this is also where much of
the variance of K comes from, as some runs chose very few
contexts of size 4. It seems that the variance given by the
true significant contexts of size 4 was instead explained by
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Fig. 7. Illustrative example of the pipeline involved in creating the synthetic dataset. First, the samples are generated as random trees. Bond types
from the constructed samples are identified and assigned energies. Next, frequent contexts are mined from the samples and assigned energies
simulating how bonds are biased by contexts. Finally, the energy of each bond in a sample is computed, and the total energy of a sample is
computed based on the bond energies. For easy reference tCi

refers to the contribution tC(Ci) of the illustrated context Ci.
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Fig. 8. Illustrated results for Sec. 6.2. Top-left: The distribution of resid-
uals for CARGO (red bars) and CARGOcross (blue bars). The black
and gray curve depicts a normal distribution with the same mean and
standard deviation as the two depicted distributions. Top-right: tobs vs.
test, for a single run of CARGOcross. Bottom-left: The mean standard error
of CARGO (red) and CARGOcross (blue) at each iteration. Bottom-right:
The variance in the true values of tedge grouped by their corresponding
trivial contexts.

additional contexts of size 2 and 3, even though they were
not present during the construction of the data-set. This
is not too surprising, since larger contexts introduce more
linear dependence: Clearly if a context C can be embedded
into a context C ′, we would expect some amount of linear
dependence between them. The variance of contexts of size
4 being explained by contexts of size 2 and 3 is further
supported by the fact that K and Kcross both contained
around 100 contexts on average, which is around three
times as many contexts as was used for the construction of
the data-set. The number of contexts found using CARGO

could of course be reduced by increasing the λ parameter of
LASSO, however, the additional contexts seem to produce a
more accurate model even for CARGOcross.

Finally, in Fig. 8c we see a small increasing gap between
SE and SEcross at increasing iterations. This is explained by
the fact that the inclusion of more and larger contexts allows
for more degrees of freedom during the learning of the
model, which in turn leads to more potential for overfitting.

In summary, we have shown that the CARGO approach
is indeed applicable to data-sets containing contexts of rela-
tive small size, occurring in at least 10% of the samples, and
which decrease its contribution with expanding size. In such
an environment, we gain excellent accuracy and robustness
in the model and we observe a clear benefit of including
larger significant context in later iterations.

6.3 Thermodynamics in Metabolic Networks

As a first real-life application we test the quality of the
CARGO models on a dataset of Gibbs Free Energy of
molecules appearing in metabolic networks provided by
[25]. The dataset is comprised of 221 compounds with
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thermodynamic values that have been determined experi-
mentally.

We removed all compounds with less than 4 atoms as
well as compounds containing unusual bond types present
in less than 3 graphs in the original dataset. After prepro-
cessing the original dataset shrunk to 196 entries (88%). The
reason for removing very small compounds is that they
tend to have special structures that do not generalize. For
example a context H O H appears only in water, H2O,
and thus, if included as a regressor, would ensure a perfect
prediction of the value of water. On the other hand, if we
insist on a minimal number of occurrences of C in the
training data, H O H is excluded and it is impossible
to train such cases accurately. A viable strategy is to first
exclude such cases, as we have done here, and if desired re-
include them in a final training designed to incorporate such
special cases into the model without compromising the part
of the model that generalizes to large classes of molecules.

Fig. 9a shows the number of samples containing a given
atom type for all atom types included in the dataset. Specif-
ically, we see that the atoms types Br, F, I, and S only
occur in 3 samples. This is problematic since sulphur, for
instance, is known to play a significant role in the total
energy of a compound, however the low number of samples
makes it impossible for any approach to learn and validate
such information. Moreover, specifically for sulphur the
corresponding variables for the bond types S C and S C
are collinear, and hence indistinguishable which is not the
case in reality.

Instead of determining the λ-value for LASSO by cross-
validation, we used here a fixed parameter λ = 0.1 to save
computational resources and this choice was experimentally
found to produce good results in practice. Moreover, due to
the scarcity of some atom types such as sulfur we chose
to run CARGOcross as a “leave-one-out” approach to ensure
at least two of these atom types are in S during training.
For a single run, the models CARGO and CARGOcross were
generated in 4s and 5m55s respectively. The parameters
used was n = 4, τ = 3, m = 400. An overview of the
results is tabulated below:

SE SEcross K Kcross R1 R2

6.4± 0.0 15.1± 2.2 185± 10.1 185± 6.39 74% 94%

We see that the residuals also here approximate normal
distributions both for CARGO and CARGOcross, as seen
from Fig. 9b and the values of R1 and R2. The average
absolute observed value of a sample in S was found to
be 460, the standard error thus is just above 1%, showing
the CARGO is quite accurate. This conclusion is further
corroborated by the scatter plot in Fig. 9c, which compared
the estimated test and observed tobs values for CARGOcross.

Note, that a large part of the uncertainty in SEcross is
concentrated in few large outliers. The worst of such of-
fenders was the molecule Sulfite SO−2

3 which in some runs
of CARGOcross was mispredicted with a residual of 247,
much larger than any misprediction otherwise observed.
Indeed, SEcross = 13.4 ± 0.0 when ignoring Sulfite during
the evaluation of SEcross.

Still, we observe a notable discrepancy between SE and
SEcross indicating some amount of overfitting. However, this
is not too unexpected since S contains very few samples
with certain atom types. Namely, the worst outliers across
runs of CARGOcross were the molecules Sulfite SO−2

3 , Sul-
fate SO−2

4 , and Carbonic acid H2CO3. Of these both Sulfite

and Sulfate contains sulfur which is likely to explain the
poor prediction. Carbonic acid also is an “exotic” compound

as the context O C

O

O barely appears elsewhere and
hence cannot be learned in our setting. At the same time,
it is not well represented by either diol/diesther O C O

carboxylic acid C

O

O sub-contexts, whence we are left with
the large residual.

Another source of instability in the model seems to stem
from choosing contexts that occurs in too few samples. This
makes the model prone to overfitting by “hiding” variance
in the rare regressors. Running CARGO such that only
contexts that occurs in at least 25% of all samples were
chosen, resulted in the standard errors of SE = 17.2 and
SEcross = 19.7 when ignoring the outliers mentioned above.
The distribution of residuals is also illustrated in Fig. 9e,
where we see the distribution of residuals of CARGOcross

much closer resembling the distribution of residuals from
CARGO. While the overall accuracy of the model decreases
we see an increase of robustness in the model. With this in
mind, context mining as explained in Sec. 4.2.2 should be
seen as a tradeoff between accuracy and overfitting of the
trained model.

As with the synthetic dataset, including increasingly
larger contexts improves the accuracy of the model both
for CARGO and CARGOcross confirming the introduction of
contexts improves the model in real data-sets as well. Note
that, even though SE decreases when including contexts of
size 4, no notable improvement is seen in SEcross.

Finally, comparing CARGO to the model obtained in
[25], we see that they achieved standard errors of SE = 1.9
and SEcross = 2.2 from a set of 85 manually curated groups.
In this respect, CARGO performs markedly worse. It should
however be noted, that the comparison is not completely
fair, since in [25] the Gibbs Free Energy change of reactions
was used in addition to the energy of molecules. As a result,
their sample size consisted of 869 molecules and reactions
used for training compared to the 196 samples used here.
Second, it should be emphasized that our approach is not
intended to outperform methods tailored to a specific chem-
istry but instead to achieve good accuracy in a wide variety
of application scenarios.

6.4 Boiling Point

For testing the quality of the CARGO model when applied
to the prediction of normal boiling points we used a data-
set provided by [26]. It consists of 186 acyclic molecules
with hetero atoms, including acyclic ether, peroxides and
sulfur analogues, whose normal boiling points have been
measured.

The models CARGO and CARGOcross were generated
in 17s and 2m35s respectively. The parameters used was
n = 4, τ = 3, m = 200. An overview of the results is listed
below:

SE SEcross K Kcross R1 R2

5.6± 0.2 6.6± 0.1 55.7± 10.1 57.1± 3.8 81% 95%

Again, we see that R1 and R2 together with Fig. 11a
confirms the assumption that the residuals of CARGO and
CARGOcross approximates a normal distribution.
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Fig. 9. Illustrated results for Sec. 6.3. Top-left: Distribution of atoms found in each sample in S. Top-right: The distribution of residuals for CARGO
(red bars) and CARGOcross (blue bars). The black and gray curve depicts a normal distribution with the same mean and standard deviation as
the two depicted distributions. Top-right tobs vs. test, for a single run of CARGOcross. Middle-left: The mean standard error of CARGO (red) and
CARGOcross (blue) at each iteration. Middle-right: The variance in the true values of tedge grouped by their corresponding trivial contexts. Bottom:
Distribution of residuals for CARGO (red bars) and CARGOcross (blue bars) when only considering contexts that occur in 25% of all samples in S.
The black and gray curve depicts a normal distribution with the same mean and standard deviation as the two depicted distributions.
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Fig. 10. Example of the prediction of carbonic acid, S, for one run of
CARGOcross, along with the significant contexts used to compute test(S).

It should be noted, however, that the overlaid normal
distributions seem to be slightly shifted to the left. This
indicates that CARGO seem to have a tendency to over-
predict the values of certain samples in S. This is made even
clearer by examining Fig. 11b, plotting tobs against test for a
single run of CARGOcross, where we see a slight upwards
bend in the plotted residuals. More specifically, it seems like
CARGO will tend to over-predict samples with the highest
or lowest observed values.

In general however, the accuracy of CARGO seems to
be good when considering the average absolute value of a
sample in S was 133, making the standard error just above
4%. Moreover, we see that SE and SEcross are very similar,
indicating robustness in predictive capabilities of CARGO,
which is further reinforced by the low standard deviation
across runs.

The largest context identified by CARGO was of size 4.
Also here we see that K and Kcross are very similar, however
the standard deviation for K is also fairly high. This might
indicate some variance in the number of contexts selected,
however as we have seen it does not influence the accuracy
of CARGO too heavily.

Regression methods using graph kernels have been used
successfully for the prediction of boiling point values in a
variety of data-sets [27], [28]. In [26] several methods of this
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Fig. 11. Illustrated results for Sec. 6.4. Top-left: The distribution of
residuals for CARGO (red bars) and CARGOcross (blue bars). The black
and gray curve depicts a normal distribution with the same mean and
standard deviation as the two depicted distributions. Top-right: tobs vs.
test, for a single run of CARGOcross. Bottom-left: The mean standard error
of CARGO (red) and CARGOcross (blue) at each iteration. Bottom-right:
An example of the sample CC(C)(C)SC in S with tobs(S) = 101.5, while
CARGOcross obtained the estimation test(S) = 101.54.

type were benchmarked using 10-fold cross-validation. The
best performance was reported for [28] with a standard error
of 6.75, which is slightly worse than the standard error of 6.6
achieved by CARGO. Since both the data and the evaluation
protocol is identical to the one we used for CARGO, the
performance can be compared directly.
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6.5 Thermodynamics in Sugar Chemistry

In contrast to the metabolite data of section 6.3 the 149
(multisets of) sugar compounds in [29] are chemically very
homogenous, comprising a carbon backbone equipped with
hydrogen and oxygen atoms.

Where in previous sections each sample in S specifically
referred to a single connected graph, a sample in this data-
set refers to a collection of molecules, (called “flasks” in
[29]), and effectively translates into a graph with multi-
ple connected components (i.e., several sugar compounds).
Moreover, the number and types of atoms is constant across
samples, ie. each sample contains the same number of ver-
tices connected via edges into a different multi-component
graph. While the approach of CARGO as described in this
paper assumes each sample point is a connected graph rep-
resenting a single molecule, it is trivial to extend CARGO by
simply counting the frequency of contexts in each molecule
included in the sample.

A single run of CARGO and CARGOcross was generated
in 20s and 3m10s respectively. The parameters used was
n = 5, τ = 3, m = 300. An overview of the results is
tabulated below:

SE SEcross K Kcross R1 R2

0.08± 0.0 0.15± 0.0 89.7± 11.9 87.0± 2.9 71% 94%

Like in the previous sections, the expected percentages of
residuals to fall within one and two standard deviations co-
incides with our results. Moreover, we see that the residuals
for CARGO and CARGOcross both approximate a normal
distribution, which can clearly be seen in Fig. 12a.

The average absolute observed value for a sample in
S was 0.9, the standard error is hence around 10%, which
seems fairly accurate. This is also emphasized in Fig. 12a
where we plot tobs against test for a single run of CARGOcross,
although some spread in the residuals is observed.

Notably, a few clear outliers are present in Fig. 12b.
Upon examination of S, we see that these compounds are
the sample of the collection of molecules OC1C(C1O)O,C=O
and the molecule OCOC1C(C1O)O. The larger molecules in
both samples contain a cyclopropane ring. In this 3-member
ring, the angles between succesive C C bonds are strongly
distorted from thermodynamically favorable 109.5◦ to only
60◦ degrees, which introduces high ring strain. Further-
more, both the formaldehyde H2C O molecule in the first
sample and the cyclopropane substructure contained in both
samples are very special. As a consequence, the issue of
identifying the relevant contexts therefore the follows same
arguments as for water H2O in Sec. 6.3 hold. Upon further
investigation in the dataset, it was found that these two
samples are the only ones with this specific cycle, suggesting
such cycles might be important contexts for prediction but
not identified by CARGOcross. This hypothesis is further
reinforced by the compounds not being outliers when in-
cluding the whole training set for fitting using CARGO.

The significant context found for both CARGO and
CARGOcross was of size 5. Moreover, the fact that K found
almost the same number of contexts as Kcross, indicates
robustness in the selection of significant contexts. Note
however, the fairly high standard deviation of K across runs,
that seems to be caused by CARGO sometimes including too
many contexts of size 5 that does not improve the accuracy.
From Fig. 12c we see that the largest improvements in
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Fig. 12. Illustrated results for Sec. 6.5. Top-left: The distribution of
residuals for CARGO (red bars) and CARGOcross (blue bars). The black
and gray curve depicts a normal distribution with the same mean and
standard deviation as the two depicted distributions. Top-right: tobs vs.
test, for a single run of CARGOcross. Bottom-left: The mean standard error
of CARGO (red) and CARGOcross (blue) at each iteration. Bottom-right:
An example of the sample OCCOC(=CO)O in S with tobs(S) = −0.827,
while CARGOcross obtained the estimation test(S) = −0.83.

accuracy was gained by including contexts up to size 4. The
inclusion of larger contexts still improved the accuracy of
CARGOand CARGOcross, however much less dramatically.

7 CONCLUDING REMARKS

We have presented here a general framework for (additive)
group contribution methods that does not require a pre-
scribed lists of “groups”. Instead, we defined a generic no-
tion of context via local subgraphs in such a manner that the
learning step not only determines the regression coefficient
but also the relevant context graphs. To this end we em-
ploy LASSO regression, which implicitly performs feature
selection. The approach described here is centered around a
reference edge around which the contexts are localized in G.
This structure is motivated by the molecular energies, which
are at least conceptually explained by chemical bonds. This
is also true for many other thermodynamic properties of
molecules, which are also determined by chemical bonds
and their local interactions. We have shown that the im-
plementation in software package CARGO is robust and
applicable to a wide variety of application scenarios.

A conceptual advantage of the CARGO model is that
step-wise definition of contributions with increasing context
size k makes the models relatively easy to interpret. Starting
from bond contribution, the larger and larger contexts enter
as corrections to smaller, more generic contributions. As a
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consequence, it becomes easy to estimate the contributions
of chemical substructures of interest, even if they do not
appear as regressors/contexts themselves. This structure
of the model also makes it possible to account for small,
exceptional molecules that do not fit well into the generic
regression model. Examples such as water, carbon dioxide,
carbonic acid, or formaldehyde contain contexts that are
essentially private to these molecules. Adding those as
additional regressors enforces that the measures valued tobs

for such exceptional cases without the need for extra rules
and separate tables.

In the current model, we assume additive contributions
of the regressors. Suitable transformations can be used to
accomodate other functional dependencies. For example,
kinetic constants depend exponentially on (activation) en-
ergies, hence we expect that a log-transform of the data will
be helpful. It is also possible to use other “anchors” than
reference edges. Similar to many graph-kernel methods, for
example, on could just as well use vertices and vertex-
centered contexts [30]. The example of RNA secondary
structure shows that the choice of a suitable basis structure
is important for group contribution methods. In this case,
individual edges are poor predictors, while the isometric
cycles of G provide an excellent approximation. Extensions
of the energy model of RNA secondary structure go beyond
cycles and include also partially overlapping pairs of cycles
as regressors [31].
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