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A NOTE ON THE STRUCTURE OF COMPLETE ALTERNATIVE

LOCAL ALGEBRAS

JAYANTA MANOHARMAYUM

Abstract. Let (A,m) be an alternative algebra with maximal ideal m which
is complete and separated for the m-adic topology. Assuming that A/m := kkk is
a perfect field of positive characteristic and that the associated graded algebra
is a kkk-algebra, we show that the reduction map W (kkk) → kkk from the Witt
ring W (kkk) lifts canonically to a morphism W (kkk) → A thereby giving A the
structure of a unital W (kkk)-algebra.

1. Introduction

The structure theorem for commutative complete local rings (see Theorem 29.2
of [3]) tells us that any such ring with perfect residue field is naturally an algebra
over the Witt ring of its residue field. In this note, we establish an analogous result
for complete local alternative algebras: we show, under natural conditions, our
alternative algebras are unital and have a natural structure of an algebra over the
corresponding Witt rings.

We now outline an introduction to our objects of interest; for further details,
see [2], [4], [5], [9]. As we are going to be dealing with potentially non-unital
multiplicative structures, we shall use the term algebra to mean a Z-algebra; by
contrast, rings are always assumed to be unital. Ideals, unless indicated otherwise,
are always assumed to be two sided.

Recall that an algebra A is an alternative algebra if multiplication in A satisfies

x2y = x(xy) and xy2 = (xy)y

for all x, y ∈ A. Equivalently, the algebra A is alternative if and only if the asso-
ciativity condition (xy)z = x(yz) holds whenever {x, y, z} ⊆ A has cardinality at
most 2. Alternative algebras, in a sense, are not too far off being associative: by a
theorem of Artin, an alternative algebra is an algebra in which any two elements
generate an associative subalgebra. In fact, in an alternative algebra, any three
elements that associate with each other generate an associative subalgebra. (See
[8], Theorem 1.)

Products of ideals in an alternative algebra can be formed just as in the asso-
ciative setting: if I and J are ideals in the alternative algebra A, then the additive
subgroup IJ consisting of all finite sums

∑

xy with x ∈ I, y ∈ J is in fact an ideal
of A. By the full n-th power In of the ideal I, we mean the ideal generated by all
possible products of n arbitrary elements of I. The full n-th power In is in fact the
Z-submodule of R generated by all possible products of n arbitrary elements of I,
and we have the recurrence

In = IIn−1 + · · ·+ In−1I for n ≥ 2.
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By a complete alternative local algebra (A,m), we mean an alternative algebra
A together a maximal ideal m such that A is complete and separated under the
m-adic topology i.e. the topology with a base of open neighbourhoods of 0 given
by the filtration of full powers m ⊇ m

2 ⊃ . . . . The natural map

A→ lim
←−

A/mn

is then an isomorphism of topological algebras (with each factor in the product
having the discrete topology). The same filtration also allows us to construct the
associated graded algebra

gr(A) :=
A

m

⊕
m

m
2
⊕

m
2

m
3
⊕ . . . .

While the associated graded algebra gr(A) is always an alternative algebra, there
is no reason to expect gr(A) to acquire additional A/m-algebra structure when the
residue A/m is a field (so commutative and associative). But if it does, then we
have the following consequence for the original alternative algebra; and, this forms
the main result of our note.

Theorem 1.1. Let (A,m) be a complete alternative local algebra. Assume that the
residue algebra A/m := kkk is a perfect field of positive characteristic, and that gr(A)
is a kkk-algebra. Then A is unital. Furthermore, the reduction map W (kkk)→ kkk from
the Witt ring W (kkk) lifts canonically to a ring homomorphism W (kkk) → A thereby
giving A the structure of a unital W (kkk)-algebra.

Our motivation for the above result is from Number Theory, particularly in
relation to completions of orders in Cayley’s octonions1, and also construction of
central elements in completed group algebras. Note that if A is an alternative ring
(i.e. unital alternative algebra) and B ⊆ A is a commutative associative subring,
then A is a B-algebra precisely when B is in the centre of A. (See Section 2.1 for
the definition of the centre of an alternative algebra.) Thus Theorem 1.1 shows that
a complete local algebra has enough elements in its centre provided its associated
graded ring has an algebra structure over a field. Also, while we do not state
this explicitly, it is clear that the hypothesis is necessary for the conclusions of
Theorem 1.1 to hold. As in the case of commutative local rings, we show that we
can construct ‘Teichmüller lifts’ of the residue field and then verify that these are
central elements in the alternative algebra. (For the commutative case, see §5 and
§6 of Chapter II in [6].)

2. A structural characteristic of complete alternative local rings:

proof of Theorem 1.1

2.1. Generalities. We begin by recalling some definitions. Let A be an algebra.
We write (x, y, z) := (xy)z − x(yz) for the associator of x, y, z ∈ A, and write
[x, y] := xy − yx for the commutator of x, y ∈ A. An element x ∈ A is central if it
commutes and associates with all other elements of A i.e.

[x, y] = (x, y, z) = (y, x, z) = (y, z, x) = 0

for all y, z ∈ A. The set of all central elements of A is the centre Z(A) of A; it is a
sub-algebra of A.

1Although John Graves had discovered them earlier; see the introduction in [1].
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We will need to use the following two properties of the associator on an alter-
native algebra. So let A be an alternative algebra. Firstly, the associator is an
alternating form on A, and therefore the identities

(2.1) (x, y, z) = (y, z, x) = (z, x, y) = −(y, x, z) = −(z, y, x) = −(x, z, y)

hold for all x, y, z ∈ A. Secondly, we can factor out terms from associators: if
x, y, z ∈ A, then

(2.2) (x, yx, z) = x(x, y, z) and (x, xy, z) = (x, y, z)x.

(See Chapter 2 Section 3 of [9]; Section 1 of [10]; or, Section 2 of [7].)
The following running assumption will now be in place for the remainder of this

note.

Assumption 2.1. From here on:

• kkk is a perfect field of characteristic p > 0;
• (A,m) is a complete alternative ring with residue field A/m := kkk, and the
associated graded ring gr(A) is a kkk-algebra.

We record some consequences of Assumption 2.1. Firstly, the kkk-algebra structure
on gr(A) implies the following statements hold in A.

(A1) If x ∈ m
n then px ∈ m

n+1.
(A2) If x ∈ A and y ∈ m

n, then the commutator [x, y] ∈ m
n+1.

(A3) If x, y ∈ A and z ∈ m
n, then the associator (x, y, z) ∈ m

n+1.

The next consequence comes from the topology on A. For y, z ∈ A, the sets
{x ∈ A | [x, y] = 0} and {x ∈ A | (x, y, z) = 0} are closed in A (since multiplication
is continuous and {0} is closed in A); taking the intersection of these sets, we obtain
the following consequence for the centre.

(A4) The centre Z(A) is a topologically closed subalgebra of A.

2.2. Multiplicative system of representatives and proof of Theorem 1.1.

Let (A,m) be a complete local alternative algebra as in Assumption 2.1. We say
that a subset X ⊆ A is a multiplicative system of representatives if it is multi-
plicatively closed and the reduction map X → A/m is a bijection compatible with
multiplication.

The following proposition guarantees the existence of a system of representatives.

Proposition 2.2. Let (A,m) be as in Assumption 2.1. Then:

(i) A has a unique multiplicative system of representatives X.
(ii) The elements in X are central elements of A.

We shall now deduce Theorem 1.1 from the above proposition, and leave the
proof of Proposition 2.2 to the next section. Before moving on to the deduction, we
recall that the Witt ring W (kkk) is an initial object in the category of commutative
complete local rings with residue field kkk. If kkk is a finite field of cardinality q then
W (kkk) can be identified with the p-adic completion of the ring Z[ζ] where ζ is a
primitive (q− 1)-th root of unity; and, the multiplicative system of representatives
is given by {0, ζ, . . . , ζq−1}.

Proof of Theorem 1.1 assuming Proposition 2.2. Let e ∈ X be the representative
for 1 ∈ kkk. We will show that e is the multiplicative identity of A. Now e is
an idempotent: as e2 ∈ X and e2 (mod m) = 1, we have e2 = e. Also, left
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multiplication by e is an injective map (because x ∈ m
n \mn+1 implies ex /∈ m

n+1

from the kkk-algebra structure on gr(A)). Now, if x ∈ A then

e(ex− x) = e(ex)− ex = (e2)x− ex = 0,

and we obtain ex = x. Similarly xe = x, and A is unital.
Finally, using (A4), we see that Z(A) is a commutative associative complete local

ring with maximal ideal Z(A) ∩ m and residue field kkk. The section map kkk → X
therefore induces a canonical morphism W (kkk)→ Z(A) ⊆ A of local rings, and this
completes the proof of Theorem 1.1. �

2.3. Proof of Proposition 2.2. As in the commutative associative case, we con-
struct the multiplicative system of representatives by taking limits of compatible
p-powers of elements in the residue field. In our setting, the role of commutativ-
ity and associativity will be replaced by the weaker conditions (A2), (A3), and
completeness; and, the following lemma will allow us to carry this out.

Lemma 2.3. With (A,m) as in Assumption 2.1, let x, y ∈ A and let k be a positive
integer. Then the following statements hold.

(i) If y ∈ m
k then (x+ y)p ≡ xp + yp (mod m

k+1).
(ii) If [x, y] ∈ m

k then [x, yp] ∈ m
k+1.

(iii) If x ≡ y (mod m
k) then xp ≡ yp (mod m

k+1).

(iv) (xy)p
k

≡ xpk

yp
k

(mod m
k).

Proof. Note that, in what follows, all algebraic manipulations work inside the as-
sociative subalgebra of A generated by x and y.

If y ∈ m
k then the usual binomial expansion holds modulo m

k+1 by (A2) i.e.

(x+ y)n ≡ xn + nxn−1y + · · ·+ nxyn−1 + yn (mod m
k+1).

Part (i) of the lemma follows since kkk has characteristic p. Part (iii) is similar: start
with x = y +m where m ∈ m

k, and then expand out (y +m)p.
For part (ii), write xy = yx+m with m ∈ m

k. A straightforward induction then
shows

xyn ≡ ynx+ nmyn−1 (mod m
k+1)

holds for all n ∈ N, and (ii) follows.
We use induction for part (iv) as well. If (xy)p

n

≡ xpn

yp
n

(mod m
n) then

(xy)p
n+1

≡
(

xpn

yp
n)p

(mod m
n+1)

by part (iii). Part (iv) now follows since xpn

yp
n

≡ yp
n

xpn

(mod m
n) by (ii). �

As we will see when we turn to the proof of Proposition 2.2, the preceding
lemma will give elements in the commutative centre of A. If the characteristic p is
different from 3, then the commutative centre is inside the centre Z(A) (see Chapter
7 Corollary 1 of [9]) and no further work is needed. To cover all characteristics, we
will need the following lemma.

Lemma 2.4. With (A,m) as in Assumption 2.1, let k ≥ 0 be an integer and let
x, y, z ∈ R. If both (x, y, z) and [x, y] are in m

k, then (xp, y, z) ∈ m
k+1.

Proof. We prove by induction that if n is a positive integer, then

(x, y, z), [x, y] ∈ m
k =⇒ (xn, y, z) ≡ nxn−1(x, y, z) (mod m

k+1)

for all x, y, z ∈ A.
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The case n = 1 is trivially true. For the inductive step, first note that

(2.3) (xn+1, y, z) = (xn, xy, z) + xn(x, y, z).

Now, using (2.2), we see that

(x, xy, z) = (x, [x, y], z) + (x, yx, z) = (x, [x, y], z) + x(x, y, z)

and [x, xy] = x2y − xyx = x[x, y]. Thus both (x, xy, z), [x, xy] ∈ m
k. Furthermore,

since (x, [x, y], z) ∈ m
k+1 by (A3), we have (x, xy, z) ≡ x(x, y, z) (mod m

k+1). So
assuming the claim for n, we obtain

(xn, xy, z) ≡ nxn−1(x, xy, z) ≡ nxn(x, y, z) (mod m
k+1),

and the assertion follows from (2.3). �

Proof of Proposition 2.2. Let a ∈ kkk. For each positive integer n, choose an element
an ∈ A such that

an (mod m) = ap
−n

.

We call (an
pn

) a sequence of p-power roots of a. Since apn+1 ≡ an (mod m), Lemma
2.3(iii) implies that

an+1
pn+1

≡ an
pn

(mod m
n+1).

The sequence (an
pn

) therefore converges in A. The limit is independent of the

choice of lifts: if (a′n
pn

) was another sequence of p-power roots of a then, for the
same reason,

an
pn

≡ a′n
pn

(mod m
n+1).

We call this limit the Teichmüller lift of a and denote it by ω(a); thus

ω(a) := lim
n→∞

an
pn

.

Note that if X is a multiplicative system of representatives and x ∈ X reduces
to a modulo m, then the constant sequence x, x, . . . is a sequence of p-power roots
of a and so x = ω(a). Hence a multiplicative system of representatives, if it exists,
is unique and consists of Teichmüller lifts.

To show that Teichmüller lifts are central, consider a sequence (an
pn

) of p-power
roots of a, and let x, y ∈ A. Now, both [an, x] and (an, x, y) are in the maximal
ideal m. Using Lemma 2.3(ii) and Lemma 2.4, we conclude that

[an
pn

, x] ∈ m
n+1 and (ap

n

n , x, y) ∈ m
n+1.

Hence [ω(a), x] = (ω(a), x, y) = 0, and therefore the Teichmüller lift ω(a) ∈ Z(A).
We will now verify that the set of Teichmüller lifts is a multiplicative system of

representatives: i.e. if a, b ∈ kkk then ω(ab) = ω(a)ω(b). To see this, let (an
pn

) and

(bn
pn

) be sequences of p-power roots of a and b respectively, and let cn := anbn.
Then

cn
pn

= (anbn)
pn

≡ an
pn

bn
pn

(mod m
n)

by Lemma 2.3(iv), and so (cn
pn

) is a sequences of p-power roots of ab. Hence
ω(ab) = ω(a)ω(b), and we have completed the proofs of parts (i) and (ii). �

Remark 2.5. We could have set our discussion in the context of filtrations on
alternative algebras. More precisely, let R be an alternative algebra together with
a separated and complete filtration R =: I0 ⊇ I1 ⊇ I2 ⊇ . . . of ideals (that is,
the ideals In have trivial intersection and the natural map R → lim

←−
R/In is an

isomorphism), satisfying the following conditions:
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• R/I1; = kkk is a perfect field of positive characteristic;
• ImIn ⊆ Im+n form,n ≥ 0, and the associated graded algebra is a kkk-algebra.

The conclusions of Proposition 2.2 and Theorem 1.1 then hold for R. (The proof
involves simply replacing each ideal mn by I(n) in the preceding arguments.)
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