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4D flow magnetic resonance imaging (MRI) is an emerging imaging technique where

spatiotemporal 3D blood velocity can be captured with full volumetric coverage in

a single non-invasive examination. This enables qualitative and quantitative analysis

of hemodynamic flow parameters of the heart and great vessels. An increase in the

image resolution would provide more accuracy and allow better assessment of the

blood flow, especially for patients with abnormal flows. However, this must be balanced

with increasing imaging time. The recent success of deep learning in generating super

resolution images shows promise for implementation in medical images. We utilized

computational fluid dynamics simulations to generate fluid flow simulations and represent

them as synthetic 4D flow MRI data. We built our training dataset to mimic actual 4D

flow MRI data with its corresponding noise distribution. Our novel 4DFlowNet network

was trained on this synthetic 4D flow data and was capable in producing noise-free

super resolution 4D flow phase images with upsample factor of 2. We also tested the

4DFlowNet in actual 4D flow MR images of a phantom and normal volunteer data,

and demonstrated comparable results with the actual flow rate measurements giving

an absolute relative error of 0.6–5.8% and 1.1–3.8% in the phantom data and normal

volunteer data, respectively.

Keywords: 4D flow MRI, super resolution network, SRResNet, deep learning, computational fluid dynamics, CFD,

velocity fields

INTRODUCTION

Cardiovascular magnetic resonance imaging (MRI) is a rapidly advancing non-invasive
quantitative imaging method which enables precise evaluation of heart function. While being
able to image the time-varying cardiac anatomy with high contrast, it can also acquire images of
intravascular hemodynamics with blood velocity encoded in the phase of the MRI signal. Recent
developments enable full 4D mapping (3 spatial dimensions plus time) of intravascular flow. 4D
Flow provides a promising clinical utility to assess the hemodynamics of the blood inside the heart
chambers and the great vessels for patients with cardiovascular disease [1–5].

Although 4D flow MRI provides complete coverage of blood flow inside the cardiovascular
system, it still has limitations associated with signal-to-noise ratio (SNR), velocity encoding
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(VENC), and spatiotemporal resolution [6]. As the current
resolution for 4D flow MRI is limited, some of the
hemodynamic parameters, such as wall shear stress, cannot
yet be calculated accurately.

To obtain improved resolution, several studies have explored
the use of computational fluid dynamics (CFD) in combination
with 4D flow MRI [7–10]. CFD simulations are computed
by solving the continuity equation and Navier-Stokes equation
within the region of interest. Compared to 4D flow MRI, CFD is
able to achieve higher spatial and temporal resolutions. However,
CFD solutions are dependent on accurate geometry as well as
personalized inlet and outlet boundary conditions, in which 4D
flowMRI can complement to a certain extent. In keeping with the
ability of CFD to accurately model blood flow with (theoretically)
unlimited spatiotemporal resolution, we took advantage of this
to generate high resolution (HR) flow images, and model it as an
image super resolution (SR) problem.

Recent advances in image super resolution using deep learning
[11–13], have shown capabilities in enhancing image resolution,
filling in missing details, and information recovery. However,
image use SR remains a challenging task and an ill-posed
problem. Although advances in natural images and computer
vision have lately been adopted for medical images [14, 15], none
of these studies worked with velocity fields or 4D flow MRI
representations (i.e., phase and magnitude images).

In this study, we propose a novel deep learning approach to
increase the spatial resolution of 4D flow MRI, trained on purely
synthetic 4D flow MR data. The synthetic 4D flow MR data
were generated from CFD solutions and were made consistent
with the image representations and physics of MRI. The deep
learning network was trained to learn the mapping from noisy
low resolution (LR) to noise-free HR phase images. To validate
the method and test whether this mapping is also applicable to
actual 4D flow Magnetic Resonance (MR) images, we evaluated
our method with both synthetic and in vitro 4D flowMRI data in
a flow phantom imaged at two resolutions, as well as an in-vivo
scan of a normal volunteer.

METHODS

Generating Training Data
The ideal training data set for this study would include large
numbers of paired low resolution and high resolution 4D
flow MRI images. However, collecting these data pairs is not
economically feasible. Instead, we propose an approach to
generate training data from CFD simulated flow data.

We used three aortic geometries for the CFD simulations
from a healthy volunteer (aorta01) and two data sets from
MICCAI-STACOM CFD challenge in 2012 (aorta02) and 2013
(aorta03) [16, 17], which both have narrowing in the aortic vessel
(coarctation). The aorta01 geometry was extracted from a 4D
flowMRI study (spatial resolution 2.375× 2.375× 2.4mm) using
temporal mean phase-contrast magnetic resonance angiogram
(PC-MRA) surface extraction in Paraview [18], and manual 3D
geometry modeling using Blender 2.8 [19]. The rough geometry
was automatically extracted using thresholding, connected
component analysis, and surface extraction with triangulation in

Paraview. Blender was then used to manually refine the initial
rough geometry.

Computational meshes with tetrahedral elements were created
for these three geometries using ANSYS Meshing 19.2 from
ANSYS Workbench [20]. Mesh convergence studies were
performed on steady-state simulations for each of the geometries.
ANSYS CFX 19.2 was used to run the CFD simulations.

We set the ascending aortic root as the inlet and the
descending aorta as the outlet. Aorta01 had four aortic arch
branches: the right subclavian artery, right common carotid
artery, left common carotid artery, and left subclavian artery. For
aorta02 and aorta03, the first two branches were simplified by
a common brachiocephalic artery. The three aortic geometries
used for the CFD simulations are shown in Figure 1.

The following boundary conditions were used on each of the
aortic geometries: velocity waveforms at the inlet, constant static
pressure (P0 = 0 Pa) was assumed at the outlet, and pressure
waveforms at the aortic arch branches. Velocity waveforms were
obtained from the healthy volunteer data measurements using
Siemens 4D Flow Demonstrator V2.4 (Siemens Healthineers,
Erlangen, Germany) by placing 2D planes at each location (inlet,
outlet, aortic arch branches). Due to limited spatial resolution,
the measurements in the aortic branches were obtained from
the root of the brachiocephalic artery (BCA) and left subclavian
artery (LSA). Velocity, flowrates, and pressure were directly
available from Siemens 4D Flow software. Pressure waveforms
were calculated using the simplified Bernoulli equation within
the software. The extracted pressure measurements were
then recalculated relative to the constant pressure at the
descending aorta.

In our CFD simulations, we prescribed a uniform velocity
profile in the aortic inlet. Previous studies have shown that the
inlet velocity profile has no significant impact on the flow region
in the aorta, whereas the choice of outlet boundary condition
affects larger regions of the flow in the aorta [21]. Even though
our boundary conditions were not as realistic as some others,
e.g., the Windkessel model, they were able to simulate reasonable
aortic flow patterns suitable for training [22].

A time step of 0.01s was used for the transient simulation
for one heart cycle, with a total time of 0.71s. The second order
backward Euler transient scheme was employed. The Navier-
Stokes equations were solved in ANSYS CFX 19.2. Average
Reynolds numbers (Re) per heart cycle were 1,170, 876, and 1,170
for aorta01, aorta02, and aorta03 respectively; at the peak flow Re
reached 4,530, 3,390, and 4,530 respectively. However, most of
the Reynolds number within the cycle were low (∼1,000), thus
laminar flow was used to model the transient simulation with a
maximum RMS residual of 10−4.

A no-slip boundary condition and rigid-wall assumption were
applied on the vessel wall. Blood was modeled as a Newtonian
fluid with a density of 1060 kg/m3 and viscosity of 4.10−3 Pa s.
The same simulation setup and boundary conditions were
applied for all aortic geometries. Geometry properties, inlet and
outlet boundary conditions are shown in Table 1 and Figure 2.

Each CFD simulation resulted in 72 time frames, with the first
frame omitted due to zero initialization values, resulting in a total
of 71 frames.We extracted the velocity data from each time frame
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FIGURE 1 | Three aorta geometries for CFD simulations. Aorta01 (A) was extracted from PC-MRA of a normal volunteer data, Aorta02 (B) was modified from the

MICCAI-STACOM 2012 CFD challenge, and Aorta03 (C) was taken from the MICCAI- STACOM 2013 CFD challenge. The red arrows mark the coarctation region.

Inlet and outlet boundaries are shown in the Figure. Description: AscAo, ascending aorta; DescAo, descending aorta; RSA, right subclavian artery; RCCA, right

common carotid artery; LCCA, left common carotid artery; LSA, left subclavian artery; BCA, brachiocephalic artery.

TABLE 1 | Geometry properties, inlet and outlet boundary conditions for the three

aorta geometries.

Geometry Aorta01 Aorta02 Aorta03

Dimension (mm) 232.8 × 83.4 ×
105.9

32.3 × 52.3 ×
167.4

203.3 × 48.5 ×
61.2

No. of elements 0.65 × 106 1.15 × 106 0.99 × 106

Inlet diameter 20mm 15mm 20 mm

Re (average) 1,170 876 1,170

Re (peak) 4,530 3,390 4,530

BOUNDARY CONDITIONS

Inlet (AscAo) Velocity waveform Velocity waveform Velocity waveform

Outlet (DescAo) Constant pressure Constant pressure Constant pressure

BCA Pressure

waveform #1

– –

RSA – Pressure

waveform #1

Pressure

waveform #1

RCCA – Pressure

waveform #1

Pressure

waveform #1

LCCA Pressure

waveform #2

Pressure

waveform #2

Pressure

waveform #2

LSA Pressure

waveform #2

Pressure

waveform #2

Pressure

waveform #2

Description: Re, Reynolds number; AscAo, ascending aorta; DescAo, descending aorta;

RSA, right subclavian artery; RCCA, right common carotid artery; LCCA, left common

carotid artery; and LSA, left subclavian artery; BCA, brachiocephalic artery.

by using point clouds with uniform grid of 0.594mm spacing
projected into multiple planes. Velocity fields were represented

as velocity vectors. For each time frame, three velocity images
were obtained, representing three velocity components, Vx, Vy,
and Vz, which correspond to the x, y, and z axes, respectively.
These were then treated as the ground truth noise-free
HR images.

Bridging the “CFD-4D Flow” Gap—Downsampling in

the Frequency Domain
The generated velocity images from CFD simulations do not
share the same characteristics with 4D flow MRI images. The
velocity images are noise-free and not bounded to the value of the
VENC parameter, which is anMR parameter to be specified prior
the acquisition to adjust the maximum velocity corresponding to
an 360◦ phase shift in the data. In 4D flow MRI, complex-data
images are acquired according to the MRI point-spread function
[23], and velocity information is encoded in the phase, whereas
the magnitude is dependent on the transverse magnetization
composition of the voxel (with signal components from fluid, soft
tissue, or air).

In order to represent the velocity image as a 4D flow MRI
equivalent, we performed the following steps for each velocity
component image: (1) choose a VENC higher than the maximum
velocity in the image; (2) encode the velocity component into a
phase image, within a range of –π to π; 3) create a magnitude
image with a non-zero constant value in the fluid region,
representing the magnitude of the fluid signal, and a zero
magnitude outside the flow, representing no-signal regions in
which the phase is undetermined. Although actual 4D flow MR
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FIGURE 2 | Boundary conditions for CFD simulation: velocity waveform for inlet boundary condition (Top) and pressure waveforms for the outlet boundary conditions

(Bottom) which were acquired from 4D Flow MRI measurements. The aorta geometry image (right) shows where the boundary conditions are prescribed. Inlet

velocity waveform is prescribed as the inlet boundary condition; constant pressure P0 is prescribed at the descending aorta as outlet boundary condition; and

pressure waveforms are prescribed at the aortic branches as outlet boundary conditions (see Table 1).

images also have static tissue (non-zero magnitude, low flow)
adjacent to vessels, we found that low flow images were adequate
for mimicking static tissue regions so we did not include extra
static tissue regions in the simulations. Additionally, the network
benefitted from the presence of no-signal regions in the training
data, which improved the recognizability between the different
characteristics of the noise in regions with and without signal.

To make sure the characteristics of 4D flow images were
retained, we downsampled the images in the frequency (k-
space) domain and added the corresponding noise to the LR
images. The noise in the k-space is Gaussian for both real and
imaginary signals [24]. Therefore, we added white Gaussian noise
in the complex signal, resulting LR images with the appropriate
noise distribution in the no-signal region, i.e., uniform noise
distribution in the phase image and Rayleigh noise distribution
in the magnitude image. The downsampling factor was 2.

The steps of the downsampling method (Figure 3) were as
follows: (1) Compute the complex numbers from the phase
and magnitude images. (2) Apply the fast Fourier transform
to convert the complex numbers from spatial to frequency
domain (k-space). (3) Truncate the outer-part (high frequency)
information of the 3D k-space along the three axes so the
dimension becomes half the original. (4) Add a zero-mean
Gaussian noise with a certain standard deviation (σ) to the

k-space to reach the target SNR, (5) apply the inverse Fourier
transform to convert the k-space back to spatial domain.
(6) Compute the magnitude and phase images from the
complex numbers.

We approximated the power of signal Px= 1
N

∑N
n=0 |x (n) |2,

where x(n) = xP(n) + i. xQ(n), where x(n) is a complex number.
Using the equation SNRdb=10log Px

Pn
, we could calculate the

power of noise Pn, which is the variance (σ 2). Since x(n) is
complex, a complex signal’s noise with a sigma of σ can be added
directly to the complex k-space.

An example of resulting HR and LR phase images are shown
in Figure 4. The synthetic HR phase image is noise-free while
the LR phase image contains noise (uniform noise in the non-
fluid regions and Gaussian noise in the fluid regions, dependent
on VENC). By using this paired dataset, the SR network target is
two-fold, improving the resolution by a factor of 2 and removing
the noise in the phase image.

Data Augmentation and Patch Generation
Data augmentation was performed in several parts of the data
preparation process. In the downsampling process, there were
three types of data augmentation. First, VENCs were chosen
randomly from a subset of [30, 60, 100, 150, 200, 250, and
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FIGURE 3 | Downsampling step for synthetic 4D flow phase images. White Gaussian noise was added in the frequency domain to mimic actual MRI acquisition. The

visualization shows a 2D representation of the k-space while the actual downsampling step is performed in 3D.

FIGURE 4 | An example of the different phase images. The figures shows the following: (A) phase image of actual 4D flow MRI of a bifurcation phantom; the real

phantom is shown in the bottom left corner of the image. (B) Actual 4D flow phase image of a normal volunteer; the corresponding magnitude image is shown in the

bottom left corner. (C) Noise-free synthetic phase image from CFD simulation result, which is treated as the ground truth high resolution phase image for the training

dataset; the actual 3D geometry is shown in the bottom left corner. (D) Low resolution synthetic phase image with noise which is a result of the downsampling step.

All values in the image are mapped between [–π, π] range representing negative and positive velocity values encoded as phase.

300 cm/s] for each velocity component. The chosen VENC was
always higher than the maximum velocity component at each
frame to avoid phase aliasing. Secondly, a constant intensity
value was chosen randomly from a range of 60–240 intensity
values for the fluid region in the magnitude image. Finally, we
added different noise levels, by varying the target SNR between
14–17 decibels. These augmentations were chosen randomly and
applied to each time frame.

To compensate for the limited amount of shape and variations
in the geometry, we selected a patch-based approach in training
the super-resolution network. From each frame, we extracted
10 patches of 16 × 16 × 16 voxels (in the LR image). The
locations of the patches were randomly selected, acting as
random translations. For 9 out of 10 patches in each frame, we
asserted a minimum fluid region of at least 20%, leaving the last
patch unconstrained (potentially containing no fluid region). For
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every selected patch, we applied rotations in all 3 planes in 3
different angles, at 90, 180, and 270◦. As a result, 100 patches were
obtained from each frame, adding up to a total of 7,100 patches
per geometry.

The training set consisted of 14,200 patches from aorta01 and
aorta02. Aorta03 was used for test and validation. The validation
dataset consisted of 1 random patch per frame, with 9 different
rotations, resulting in 10 patches per frame and a total of 710
patches. For the test dataset, patches from aorta03 were generated
sequentially with a stride of (n-4), with n as the LR patch size.
Additionally, we utilized actual 4D flow MRI acquisitions of
a bifurcation phantom and a healthy volunteer. The phantom
dataset had two different isotropic resolutions (4 and 2mm),
while the healthy volunteer dataset has a single resolution (2.375
× 2.375× 2.4 mm).

Network Architecture and Training
We developed a deep SR residual network (ResNet) called
4DFlowNet (Figure 5). The network was based on the generator
part (SRResNet) of the SRGAN architecture [12]. We applied
the upsampling layer using Tensorflow’s bilinear resize function
and utilized the residual blocks in both LR and HR space. The
residual blocks in the LR space acted as a denoiser, while the
residual blocks in the HR space refined the prediction after
the upsampling layer. We used eight residual blocks before the
upsampling layer and four residual blocks in HR space.

The input layers consisted of two separate paths, the
anatomical path and the velocity path. Magnitude images were
used as input in the anatomical path to help with denoising
the image and distinguishing fluid and non-fluid areas. The
velocity path’s input layer consisted of three channels, one for
each velocity component (Vx, Vy, Vz). The anatomical images
were composed of 3 channels: PC-MRA, speed, andmag channel.
These images were calculated using the following:

Mag=
√

Mx
2 +My

2 +Mz
2

Speed=
√

Vx
2 +Vy

2 +Vz
2

PC −MRA=Mag∗Speed

where V represents the velocity, M represents the magnitude, x,
y, and z represent the velocity component on its respective axis.
This means the main building block of the input layer consisted
of 6 components:Vx, Vy, Vz, Mx, My, andMz . While the network
took the magnitude patches as input, the output consisted only
the super-resolved velocity components (V

′
x, V

′
y, V

′
z).

The model took LR patches of 16 × 16 × 16 as input data
and output 32 × 32 × 32 SR patches. Input and output velocity
values were normalized to values within the range [−1, 1], with
1 being mapped to the maximum VENC of the phase image.
In terms of images where different velocity components had
different VENCs, the highest VENC was used to normalize the
data. Magnitude values were normalized to values between [0, 1].

Before the output layers, the network branched into 3 separate
prediction paths. Each velocity component was predicted in these
separate layers instead of separate channels, in order to avoid
shared-weighting between predicted velocity components [25].

One common characteristic of ResNet is its constant
dimension throughout the different layers, which utilizes zero
padding and affects prediction near the edge. This is normally
not an issue for large image sizes, however for small patches,
zero padding will corrupt the data and create border artifacts.
To avoid these border artifacts, symmetric padding was applied
before performing every convolution. Each convolution layer was
followed by a Rectified Linear Unit (ReLU) activation function.
The output layer used a sigmoid tangent (tanh) activation
function to make sure the output falls in the specified [−1,
1] range.

Our residual block consists of two convolution layers. The
leaky ReLU activation function was utilized inside the residual
block (Figure 5). Symmetric padding was also applied before
each convolution layer in the residual block.

We implemented 4DFlowNet using Tensorflow 1.80 [26]. The
Adam optimizer was used with the initial learning rate set to
10−4. A decay rate of

√
2 is applied to the learning rate after every

10,000 iterations. Due to memory constraints, we used a batch
size of 20.

Loss Function and Accuracy Metrics
The network was optimized using the mean squared error (MSE)
and a weighted velocity gradient (VG) loss term. The pixel-wise
MSE is applied to each velocity component, which reduces the
magnitude velocity error. However, optimization by MSE tends
to create blurry images, which affects velocity predictions near the
vessel walls. To improve the quality of the image and prediction
near the vessel walls, we introduced a velocity gradient loss term.

We formulated the loss function as the following:

ltotal= lMSE+10−3lVG

The voxel-wise loss was calculated as:

lMSE=
1

W H D

W
∑

x=1

H
∑

y=1

D
∑

z=1

(V ′
x − Vx)

2 +(V ′
y − Vy)

2 +(V ′
z − Vz)

2

The velocity gradient loss was calculated as

lVG=
1

W H D

W
∑

x=1

H
∑

y=1

D
∑

z=1





(

dV
′
x

dx
−

dVx

dx

)2

+

(

dV
′
y

dy
−

dVy

dy

)2

+

(

dV
′
z

dz
−

dVz

dz

)2




where first order differences were used to calculate the gradients:
dVk
dk

=Vk+1− Vk−1

1k with k ∈ {x,y,z}. Here, W, H, and D describe
the dimensions of the output patch. This term helps the network
in smoothing the gradient between the neighboring vectors and
put more emphasis on the predictions near the vessel wall due
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FIGURE 5 | 4DFlowNet architecture. The network utilizes 2 input path which represents anatomical information (top path) and velocity information (bottom path). RB

represents the residual blocks. Conv represents 3D convolutions, with the number of kernel size, filters, and stride are shown above the operation. All convolution

layers utilized symmetric padding and followed by a rectifier non-linearity (ReLU) except for output layers which used hyperbolic tangent (tanh) activation function. The

network outputs 3 velocity components on its respective axis (V′
x, V

′
y, V

′
z ). The inset shows the residual block. Convolution layer utilizes symmetric padding and 3 × 3

× 3 kernel. Plus (+) sign signifies the pixel-wise summation operation.

to the high gradient values. Also, since incompressible fluid
flow is theoretically divergence-free, and the CFD HR data is
approximately divergence-free, this term helps the network learn
to reproduce low divergence solutions.

Evaluation Metric—Relative Speed Error
Relative speed error was defined as the relative difference of
velocity magnitude (speed) compared to the actual speed. To
avoid division by zero, relative error is only evaluated in the fluid
region. This was done by using a binary mask to exclude the
non-fluid region. Additionally, we added a small number in the
denominator (ε = 10−5) as a safety measure to avoid division
by zero.

As a measure of accuracy, we used this metric to gauge the
performance of the network. During training time, this metric
was used to save themodel checkpoint with the best relative speed
error on the validation set.

rel_err=
1

W H D

W
∑

x=1

H
∑

y=1

D
∑

z=1

√

(V ′
x − Vx)

2 +
(

V ′
y − Vy

)2 + (V ′
z − Vz)

2

√

Vx
2+ Vy

2+ Vz
2+ ε

RESULTS

We performed our training on a Tesla K40 GPU with 12GB
memory. Training took 10 seconds per iteration. The network
was trained for over 100,000 iterations, which took ∼10 days.
Predictions were performed on image patches which were then
stitched into a full volume. To perform the stitching method,
LR patches were taken with a stride of (n-4) in each axis
direction, with n representing the patch size. During the image

stitching process, 4-voxels were stripped from each border of the
SR patches.

We tested 4DFlowNet on the following datasets: 71 time
frames of aorta03 CFD (synthetic 4D flow MRI), 1 frame of
bifurcation phantom data (comparing SR from 4–2mm voxel
size), and 1 frame of a 4D flow MRI volunteer dataset (treated
as LR image with no HR data available).

To evaluate the performance of our method, we used relative
speed error, average flow rate, and the divergence field. Due to
availability of the HR images, we evaluated these metrics only
for the synthetic 4D flow images from CFD simulations and 4D
flow MRI phantom data. Additionally, we compared our result
with linear interpolation, cubic spline interpolation, and sinc
interpolation (i.e., by adding zero padding in k-space).

Tests on Synthetic 4D Flow MR Images
Figure 6 shows an example result of the network prediction on
a patch of synthetic 4D flow MRI phase image compared to
the ground truth and other interpolation methods. The figure
shows a 2D slice from a 3D patch, with each velocity component
shown separately in different rows. Additionally, we also show
the divergence vector field of the patch. The prediction results
were very close to the ground truth, while also substantially
reducing the noise. On the other hand, the interpolationmethods
depended greatly on the noise level of the LR image and the
relative velocity toward the VENC. It can be seen visually that the
noise from the LR is interpolated to the SR image in both fluid
and non-fluid regions.

In terms of divergence, we observed also that the network
prediction produced smoother gradients and divergence fields
closer to the ground truth. With the interpolation methods,
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FIGURE 6 | Comparison of different upsampling methods applied to a patch from the synthetic 4D flow MRI phase image with different upsampling methods. Low

resolution patch has a dimension of 16 × 16 × 16 and the upsampled patch has 32 × 32 × 32. For visualization, a 2D slice was taken from the patch. From left to

right: low resolution (LR), high resolution (HR)/ground truth, linear interpolation, cubic spline interpolation, sinc interpolation, 4DFlowNet prediction. All velocity

components have VENC of 100 cm/s. From 1st to 3rd row: velocity components on their respective x, y, z axis. Velocity scale was set to limits of dynamic range (in

cm/s) for each of the velocity component. 4DFlowNet are robust in both high and low velocities, while other interpolation methods do not perform well in low velocity

fields (i.e., Vy and Vz). The fourth row shows a visualization of the divergence vector field of the respective patches. For better visualization, the divergence fields are

only computed within the masked region (i.e., fluid domain).

the divergence fields were greatly affected by noise and non-
uniformity of the vector fields.

To measure the results quantitatively, we calculated the
relative speed error (Figure 7), as measured in our evaluation
metric. In this experiment, full volume predictions of 71 frames
of the synthetic 4D flow images were utilized. Each of the
frames were treated as a separate case. For a fair comparison
with the other interpolation methods, the comparison was
only performed within the fluid region. The relative speed
error was calculated as an average of voxel-wise relative speed
error between the methods compared to the ground truth
speed. We observed comparable performance between the sinc
interpolation and our network prediction in the systolic frames
(frame 0–28), while our network achieved better performance for
low velocity predictions during diastolic frames (frame 29–70).
The relative error values were high for low velocity predictions
due to the low relative velocity values (velocity values compared
to VENC).

Additionally, a Bland-Altman analysis was also performed to
compare 4DFlowNet results to the ground truth HR at the peak

systolic frame and one of the low diastolic frame for each velocity
component (Vx, Vy, andVz). For this analysis, 50,000 voxels were
sampled randomly from within the masked fluid domain. Results
in Figure 8 show that the distribution of the error seem to be
uniformly distributed around the mean.

Statistical tests (Table 2) showed that there were significant
differences (p < 0.05) for all the velocity components except for
Vx at peak systolic flow; however, this was likely due to the large
number of data points since the bias in all cases was very low
(<1% of peak velocity) and unlikely to be clinically significant.
Table 2 also shows the percentage relative speed error. It is likely
that larger relative errors are due to lower velocity regimes, where
a small change in prediction may cause relatively higher error.
In the systolic frames, the main velocity component Vx (see
Figure 1C, aortic flow mainly exist in the x-axis) drives the flow.
These results show that the 4DFlowNet performs well in both
high velocity and low velocity regimes.

Furthermore, we calculated the flow rate at three different
cross-sectional planes on all the 71 time frames, as shown in
Figure 9. Essentially flow rate is calculated from the integral of
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FIGURE 7 | Relative speed error of different methods compared to the actual

ground truth speed, values over 100% are not shown. The relative speed error

is calculated by taking an average of the voxel-wise relative speed error

measurements within the masked fluid regions over the whole volume. Each

time frame is considered as a different case. An increase in relative error

occurs during the diastolic phase (frame 29–70), while the relative error

remains low in the systolic phase (frame 0–28). The spikes in relative error

occurred due to the actual ground truth speed having low values (relative to

the VENC). 4DFlowNet is more robust toward prediction in low velocity fields,

while other methods are less stable.

velocity vector going through the cross-sectional area, which will
average out the noise. We observed comparable results and small
differences between the 4DFlowNet predictions and the other
interpolation methods. Consistent with the previous results, we
observed higher error in the systolic frames, compared to the
diastolic frames. These results indicate that the network is not
introducing error in flow rates, an important clinical quantity.

Tests on Actual 4D Flow MRI
Data—Bifurcation Phantom
We also tested the network capability in predicting SR images
from actual 4D flow MRI data. For this experiment, we utilized
two different 4D Flow MRI resolutions with isotropic voxel size
of 4 and 2mm, respectively, in a flow phantom. We tested our
network in predicting 2mm resolution (from 4mm resolution),
and compared the prediction results with the actual acquisition
at 2 mm resolution.

In this case, we only compared our results to the sinc
interpolation method. Qualitatively the prediction result is

TABLE 2 | Summary of prediction errors (mean ± standard deviation) of

4DFlowNet compared to the ground truth HR at peak systolic flow and a low flow

diastolic frame of a synthetic 4D flow image.

Vx Vy Vz

Peak systolic

flow

Prediction error

(cm/s)

−0.03 ± 7.05 0.07 ± 3.36* 0.48 ± 3.7*

Peak velocity

(cm/s)

200.46 144.95 143.89

Relative speed

error (%)

7.05 ± 14.03

Low diastolic

flow

Prediction error

(cm/s)

0.06 ± 0.81* −0.06 ± 0.56* 0.01 ± 0.55*

Peak velocity

(cm/s)

23.84 20.53 9.88

Relative speed

error (%)

23.16 ± 33.94

*Indicates statistically significant differences between two measurements (p < 0.05). The

results were sampled from 50,000 random points within the fluid domain. Peak velocity

for each axis is also shown to give better context on the scale of error for each velocity

component. Relative speed error was calculated as the voxel-wise difference in velocity

magnitude (speed) compared to the actual speed.

shown in Figure 10. Similar to the result in synthetic 4D flow
images, 4DFlowNet significantly reduces the noise outside the
bifurcation phantom.

For quantitative analysis, three cross-section planes were
taken at the inlet, bifurcation and the outlet of the phantom. The
comparison between the flow rates for different analysis planes
are shown in Table 3. Due to the noisy background, we prepared
a binary mask to calculate the error only within the masked fluid
region. In terms of difference in flow rate, 4DFlowNet offers slight
improvement over the sinc interpolation method; the differences
in relative error were −0.6 vs. 7% at the inlet, 3.3 vs. 4.3% at the
bifurcation, and a comparable 5.8% at the outlet for 4DFlowNet
and sinc interpolation, respectively. The flow rate measurements
were compared to the acquired image to verify that the network
is not adding any bias to the flow estimate.

Tests on Actual 4D Flow MRI
Data—Normal Volunteer Data
To demonstrate the network performance in actual 4D flow
MRI of a healthy volunteer (different from the one used for
aorta01), we upsampled the acquisition resolution (2.375 ×
2.375 × 2.4mm) by a factor of 2, resulting in a resolution
of (1.1875 × 1.1875 × 1.2mm). This dataset was treated as
LR image and HR ground truth image was not available. We
performed this experiment to showcase the network’s ability
to enhance actual human 4D flow MRI data, while being
trained exclusively on synthetic 4D flow MRI from aortic
CFD data.

Figure 11 shows the prediction results by the network,
resulting in noise-free high resolution phase images. As a
comparison, we provided the original LR counterpart as an inset
in the subfigures. The reconstruction of the phase images were
then visualized using Paraview [18]. Figure 11 shows that most
of the noise has been removed and the anatomy can be clearly
seen. A streamline reconstruction was also performed to make
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FIGURE 8 | Bland-Altman analysis. The comparison between 4DFlowNet predictions and ground truth was conducted on the Vx, Vy, Vz velocity components for

50,000 random points within the fluid domain on peak systolic frame (Top) and low diastolic frame (Bottom). The dashed red lines indicate the 95% limits of

agreement (mean ±1.96* standard deviation).

TABLE 3 | Comparison of flow rate of the bifurcation phantom 4D Flow MRI on two different resolutions.

Resolution

LR -> HR

Slice

location

Flow rate (mL/s) Flow rate difference (mL/s)

(% relative flow rate error)

Ground truth 4DFlowNet Sinc 4DFlowNet Sinc

LR 4mm Inlet 111.6 110.9 119.4 −0.7 (−0.6%) 7.8 (7%)

HR 2mm Bifurcation 135.2 139.7 140.9 4.5 (3.3%) 5.8 (4.3%)

Outlet 126.8 134.1 134.2 7.3 (5.8%) 7.4 (5.8%)

The flow rates are measured on three different planes (see Figure 11).

sure there were no discontinuities introduced due to the image
stitching from the patch-based approach. Border artifacts are not
visible in the fully reconstructed volume and the stitching effect
is seamless due to the convolution using symmetric padding.

Additionally, wemeasured the flow rate on three cross-section
planes during the peak flow. The result shows small flow rate
differences: 10.7 mL/s (2.6%), −2 mL/s (−1.1%), and −4.8
(−3.8%) on the cross-sectional planes of ascending aorta, aortic
arch, and descending aorta, respectively.

DISCUSSION

We have developed 4DFlowNet, a deep SR residual network to
increase the resolution of 4D flow MRI by using computational
fluid dynamics as a proxy to generate training data. We
demonstrated the potential of this application in actual 4D flow
MRI of a phantom and healthy subject. Our flow predictions
showed good agreement with the simulations, as well as phantom
MRI acquisitions. Encouraging results were also obtained in a
healthy volunteer.

Apart from providing high resolution phase images, our
proposed network also removed noise in the phase images.
Additionally, the network also improves the visibility of
anatomical regions, which is influenced by the magnitude image
patches that were incorporated in the input layers. As a result,
the SR phase images contain clear boundaries between fluid and
non-fluid regions. Better image quality is obtained with clear
flow prediction near the vessel wall (Figure 11) and improvement
toward divergence-free vector fields (Figure 7).

In our experiments, we have shown that the predicted
velocity results have relatively small bias compared with
ground truth CFD solutions. Additionally, 4DFlowNet
produced smoother predictions compared to the other
interpolation methods.

CFD as Synthetic 4D Flow MRI Dataset
Our training dataset purely consisted of synthetic 4D flow
images, which is not ideal compared to actual 4D flow MRI.
Normally, with super-resolution problems, the LR data is
obtained directly by downsampling original higher resolution
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FIGURE 9 | Flow rate comparison at different slices: inlet, coarctation, and outlet for each time frame. The left column shows the flow rate comparison on 3 different

slices for the ground truth and the different upsampling methods. The middle image shows the location of the analysis planes on aorta03. The right column shows the

flow rate differences between the different methods compared to the ground truth flow rate.

FIGURE 10 | Prediction result on actual 4D Flow MRI data of a bifurcation phantom. The most left image shows a 2D slice of the whole high resolution (HR) phantom

data. Voxel sizes are 4mm for low resolution (LR) and 2mm for HR images. Three cross-sections are placed in the image to measure the velocity and flow rate

comparison between the HR ground truth, sinc interpolation and 4DFlowNet predictions. The image shows the through-plane velocity. Flow rates (see Table 3) are

calculated within the masked region (marked by black circles).

image. Unfortunately, in 4D flow MRI, downsampling of the
phase images would result in different noise distributions,
which are then no longer representative of the actual phase
data. Furthermore, the amount of high resolution 4D flow
MRI data is also limited. By using synthetic 4D flow images,

we indirectly address these limitations. Additionally, the
use of data augmentation through different VENC and
SNR also helps in adding variation to the training dataset,
which otherwise is not economically possible with real
MRI acquisitions.
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FIGURE 11 | Prediction results on actual 4D Flow MRI of a normal volunteer. The first column shows LR phase images, second column shows noise-free SR phase

images predicted by the network. Visualization of the velocity magnitude (third image), velocity vector field (fourth image), and streamline reconstruction of the SR

image (fifth image). The insets show the visualization of the LR images counterpart.

While the CFD simulations were informed by real MRI
measurements, we did not attempt to model accurate boundary
conditions, non-linear viscosity, fluid-structure interactions or
transitions to turbulence. Previous CFD studies [7–10], have been
concerned with achieving accurate personalized CFD solutions
given 4D flow data. In contrast, we have shown how CFD
simulations can be used in a deep learning environment to learn
how to reconstruct uncorrupted images from those corrupted
by noise and low resolution. We therefore avoid the problem
of accurately personalizing the CFD solution to a particular
patient. Obtaining accurate CFD solutions is not a trivial task
due to several factors, including image quality, unobtainable
measurements in smaller vessels (i.e., aortic branches), and ability
to obtain accurate pressure values. Some studies report significant
differences between fluid-structure interactions and the rigid wall
assumption in terms of wall shear stress [27], while other studies
conclude that the rigid wall assumption is adequate and has little
effect on the flow patterns [28, 29].

Also, only one cardiac cycle was simulated, which could
give rise to transient initialization effects. However, negligible
differences were observed when five cycles were simulated for
one geometry (aorta01). While it may be beneficial to produce
simulations (i.e., velocity fields) as close as possible to actual 4D
flow measurements, it was found that the network was able to
learn the filters necessary to enhance velocity fields, regardless of

the flow profiles. Additionally, with our patch-based approach,
the deep learning method is blinded to any kind of geometry or
global flow information. We observed that the network was able
to reconstruct velocity patterns in a phantom and in a volunteer
data, despite being trained on relatively simple CFD simulations.

Network Design
In designing the network, we took a patch-batch approach. Other
thanmemory limitations, as well as mitigating the lack of training
data due to limited geometrical variance, a patch-based approach
also helped to obscure the contextual information. In our case,
the synthetic phase data from CFD is different from the real
acquired MRI phase data. The synthetic phase data has only fluid
flow in the aortic geometry and consists of no other geometry,
while actual 4D flow MRI phase image also contains flow
information from other anatomical regions. The patch-based
approach therefore helped to obscure any global information,
while keeping only local information about the patch. While
this approach may not be optimal, it generalizes the network
to a range of cases containing a fluid region. Furthermore, this
could help the network in learning a variety of flow profiles,
independent of the global geometry.

For the upsampling layer, we did not utilize the state-of-the-
art approach, such as PixelShuffle [30] or sub-pixel convolution
with nearest-neighbor initialization [31]. While these techniques
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were proven to be advantageous in recovering details and finer
image textures in 2D SR networks [12, 32], we found they
did not perform well for 3D velocity images. Additionally, the
checkerboard artifacts were still prominent and the nearest-
neighbor initialization did not solve the problem. As a result we
utilized the conventional bilinear up sample layer, which required
refinements in the HR space due to its blurry interpolated output.

During inference, 4DFlowNet accepts any arbitrary patch size
(cube), up to the limit of the memory capacity. Inference time
for an input size of 32 × 32 × 32 took roughly 1.2 s with a
GPU, resulting in a 64 × 64 × 64 patch. Using 4DFlowNet, a
full volume prediction and reconstruction (with image stitching)
for a typical 4D flow MR image took 40–90 s, depending on the
image size.

Limitations and Future Work
There are several limitations in our study in addition to the
use of CFD simulations discussed above. One main limitation
is the limited amount of geometry (three aortic geometries) and
boundary conditions to generate our training dataset. While
adding more aortic geometries can be beneficial for the training
process, we aim to add different types of geometries in future
work, such as ventricles and atria of the heart, so the network is
able to learnmore flow patterns. Additionally, different boundary
conditions can be used to generate more training data with
different flow profiles. Adding more training data with different
geometries and different boundary conditions will enrich the
capability of the network in distinguishing different flows. Also,
the network should be validated on more 4D Flow MRI cases.
In particular many patients with coarctation of the aorta have a
bicuspid aortic valve and strongly helical aortic flow.Whether the
current network can reproduce these flow features is a topic of
future work. Finally, assumptions and optimizations which affect
the estimation of wall shear stress should be investigated.

CONCLUSION

We have developed 4DFlowNet, a novel deep learning method
of super resolution 4D flow MRI, which was trained solely on
synthetic phase and magnitude images generated from CFD
solutions. We have demonstrated the utility of this approach for
actual 4D flow MRI data from phantom and normal anatomy.
The results showed that the network provides a noise-free super

resolution phase images with clear anatomical regions. This
method has the potential to improve further with more training
data, either synthetic or real 4D flow MRI data. The network
was able to achieve the target upsampling factor of 2, and was
also able to achieve a reduction in noise. The noise-free SR phase
images can potentially be used to delineate regions of interest and
automatically calculate flow parameters.
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