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Abstract

We present a polynomial-time Markov chain Monte Carlo algorithm for estimating the
partition function of the antiferromagnetic Ising model on any line graph. The analysis of
the algorithm exploits the “winding” technology devised by McQuillan [CoRR abs/1301.2880
(2013)] and developed by Huang, Lu and Zhang [Proc. 27th Symp. on Disc. Algorithms
(SODA16), 514–527]. We show that exact computation of the partition function is #P-hard,
even for line graphs, indicating that an approximation algorithm is the best that can be
expected. We also show that Glauber dynamics for the Ising model is rapidly mixing on line
graphs, an example being the kagome lattice.

1 Introduction

In statistical mechanics, the Ising model was proposed by Lenz in 1920 as a mathematical
model of ferromagnetism. The model is defined in terms of simple local interactions between
sites representing atoms. Despite the simplicity of its description, the model exhibits complex
behaviours, which have been hard to unravel. Indeed several years were to pass before the most
fundamental property of the Ising model was established, namely that small changes in the
strength of the local interactions could lead to dramatic changes in macroscopic behaviour. The
model has remained an active object of study ever since, with applications to statistical inference
and image analysis helping to sustain interest [24]. An accessible account of the Ising model can
be found in Friedli and Velenik’s book [8, §3].

For β, ν ∈ R, the partition function of the Ising model on a (simple, undirected) graph Γ is
defined by

Zβ,ν(Γ) =
∑

σ:V (Γ)→{0,1}

w(σ) (1)

∗Work supported by EPSRC grants EP/S016562/1 and EP/S016694/1, “Sampling in hereditary classes”.
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where

w(σ) =
∏

{i,j}∈E(Γ)

exp
(
β |σ(i)− σ(j)|

) ∏

k∈V (Γ)

exp(νσ(k)).

The partition function is a sum over spin configurations σ : V (Γ) → {0, 1}, which assign 0/1
“spins” to the vertices of Γ. The parameter β is an “interaction energy” that controls the strength
of the interaction between spins at adjacent vertices. The parameter ν indicates the strength
of the “external field” that biases the spins at individual vertices. The partition function is
the normalising factor in a probability distribution DΓ,β,ν , the Gibbs distribution, that assigns
weight DΓ,β,ν(σ) = w(σ)/Zβ,ν(Γ) to spin configuration σ. More generally, the uniform interaction
energy β may be replaced by individual interaction energies βi,j for each edge {i, j} ∈ E(Γ), and
the uniform field strength ν by individual field strengths νk for each vertex k ∈ V (Γ). For our
main result, it is crucial that the interaction energies are uniform over edges, but uniformity of
the field is inessential. For simplicity, we carry through the calculation for the uniform case, and
return to varying fields towards the end, in Section 5.

In this article, we analyse the computational complexity of evaluating the partition function (1)
when Γ is a line graph and β > 0. We also address the related problem of sampling configurations
according to the Gibbs distribution DΓ,β,ν . The class of line graphs, which is well-studied in graph
theory, will be defined presently. When β > 0 the spins σ(i) and σ(j) associated with adjacent
vertices i and j tend to differ; that is, configurations σ : V (Γ) → {0, 1} with σ(i) 6= σ(j) make a
greater contribution to the sum (1). The qualifier antiferromagnetic is applied to this situation,
while ferromagnetic describes the case β < 0.1 When β = 0 the spins are probabilistically
independent and the model is trivial.

We now briefly describe the context for our investigation. Exact evaluation of Zβ,ν(Γ) is gener-
ally #P-hard, and hence almost certainly computationally intractable [14, Thm 15]. The main
exception is when the graph Γ is restricted to be planar and the external field is absent (ν = 0), a
situation which is covered by a classical algorithm due to Fisher [7] and Kasteleyn [16]. (Planarity
of Γ can be relaxed somewhat, to the condition that Γ admits a Pfaffian orientation.)

Turning to approximate computation, Jerrum and Sinclair [14] present an efficient algorithm to
estimate (in the sense of Fully Polynomial Randomised Approximation Scheme or FPRAS) the
partition function Zβ,ν(Γ) for general graphs Γ in the ferromagnetic case, even when ν 6= 0. This
algorithm extends to the situation of varying fields, provided that the sign of νk is consistent,
but breaks down if the sign varies. In general, the partition function is hard to approximate in
the antiferromagnetic case. The reason, intuitively, is that the ground states of the model, i.e.,
the configurations of greatest weight, correspond to maximum cardinality cuts in Γ. Thus, an
efficient approximation algorithm for the partition function would most likely yield a polynomial-
time algorithm for finding a maximum cut in a graph, which is an NP-hard problem [9]. So, to
find tractable classes of instances in the antiferromagnetic situation, we need to focus on graph
classes in which a maximum cardinality cut can be found in polynomial time. One obvious
example is the class of bipartite graphs. Graphs in this class are easily dealt with: just invert
the sign of β and flip the interpretation of the spins on one side of the bipartition to yield an
equivalent ferromagnetic Ising model. For this we have an FPRAS, as mentioned earlier.

Here, we focus on another graph class for which maximum cardinality cut is polynomial-time
solvable, namely the class of line graphs. The line graph L(Γ) associated with an underlying
graph Γ = (V (Γ), E(Γ)) is the graph with vertex set V (L(Γ)) = E(Γ) and edge set

E(L(Γ)) =
{
{e, f} : e, f ∈ E(Γ) and e ∩ f 6= ∅

}
.

1This notation is slightly nonstandard, in that our interaction energy β has the opposite sign to usual, but
this convention becomes convenient later on.
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Figure 1: A portion of the hexagonal lattice (open vertices/thin grey edges) and its line graph,
the kagome lattice (filled vertices/thick black edges)

Thus, there is an edge between two vertices in the line graph L(Γ) whenever the corresponding
edges in Γ share an endpoint. See Figure 1 for an example graph and its associated line graph.
That a maximum cardinality cut can found in polynomial time in line graphs was shown by
Arbib [1]; see also Guruswami [11]. Our main contribution (Theorem 1) is an efficient approx-
imation algorithm for estimating the partition function Zβ,ν(Γ) in the antiferromagnetic case,
when Γ is a line graph. The algorithm is efficient in the sense of Fully Polynomial Randomised
Approximation Scheme (FPRAS). An FPRAS is a randomised algorithm that produces an out-
put that is within ratio 1 ± ε of the desired solution, with high probability, and within time
that is bounded by a polynomial in the instance size n and 1/ε. See [20, Defn 11.2] for details.
Along the way, we also find an efficient algorithm (Theorem 2) for sampling configurations in
the same setting. In contrast to the case of bipartite graphs, the reason for tractability of these
two problems, counting and sampling, is non-trivial. Our precise results are the following.

Theorem 1. Suppose β > 0 (the antiferromagnetic case) and ν ∈ R. There is an FPRAS that,
given a line graph L(Γ), estimates the partition function Zβ,ν(L(Γ)) of the Ising model (1).

Theorem 2. Suppose β > 0 (the antiferromagnetic case) and ν ∈ R. There is an algorithm that,
given a line graph L(Γ) and tolerance δ > 0, produces a spin configuration σ from a distribution
that is within variation distance δ of the Gibbs distribution DL(Γ),β,ν . The running time of the
algorithm is polynomial in log δ−1 and the instance size.

One consequence of our results (see Section 5 for details) is that Glauber dynamics for the
antiferromagnetic Ising model on a line graph is rapidly mixing. Glauber dynamics moves around
the space of configurations by making single spin updates according to a simple probabilistic rule.
Its unique stationary distribution is the Gibbs distribution defined earlier. The phrase “rapidly
mixing” indicates that the dynamics converges close to the Gibbs distribution in a number of
updates that is polynomial in the size of the graph. In a recent paper, Chen, Liu and Vigoda [6]
show that Glauber dynamics mixes rapidly up to a natural threshold for β, depending on the
maximum degree of the graph, beyond which it was already known that the mixing time is
exponential. Here we show that, by suitably restricting the underlying graph, we can have rapid
mixing for all β.

Rapid mixing at all β is perhaps a surprising phenomenon in the context of the Ising model, and
has an interesting relationship to phase transitions in infinite systems. As a concrete example,
take the kagome lattice, which is the line-graph of the familiar hexagonal lattice. Figure 1 depicts
a portion of the kagome lattice superimposed on the underlying hexagonal lattice. Consider an
L×L patch of the kagome lattice with top and bottom, and left and right side identified (toroidal
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or periodic boundary conditions). This finite graph is a line graph, so Glauber dynamics mixes
in polynomial time on this graph. Heuristically, this ought to imply that the antiferromagnetic
Ising model on the infinite kagome lattice does not exhibit a phase transition. In other words,
as the interaction strength β is continuously varied, no dramatic change occurs in the typical
macroscopic configurations. Indeed Syôzi [22] has shown that the antiferromagnetic Ising model
on the kagome lattice does not exhibit a phase transition at any β > 0 (which is taken to mean
that a certain observable called the specific heat is continuous in β). This is another example of
the emerging connection between algorithmic tractability of finite systems and absence of a phase
transition in the corresponding infinite system. We leave the connection to phase transitions as a
heuristic observation as there are currently no rigorous results in this direction. Indeed, Goldberg,
Martin and Paterson [10] show polynomial-time mixing of Glauber dynamics on 3-colourings of
finite portions of the square lattice, and yet the infinite lattice has “frozen” colourings from which
no transition is possible.

We note that the kagome lattice is not the only line graph that has been studied in the context
of statistical physics. Another example, this time 3-dimensional, is the pyrochlore lattice, which
is the line graph of a degree-4 graph: see Jurčišinová and Jurčišin [15].

As the kagome lattice exhibits a phase transition in the ferromagnetic situation, we cannot expect
Glauber dynamics to be rapidly mixing for all β < 0, even on line graphs. However, our approach
does show rapid mixing for βc ≤ β ≤ 0, for some βc < 0 depending on the maximum degree ∆
of Γ. This is so at least for small ∆ by direct computation, and probably for all ∆, though we
have not shown this. See Section 5.

It is natural to question whether approximation algorithms are necessary in the context of line
graphs. Lemma 10 and Lemma 12 in Section 6 can be interpreted as asserting that we must
settle for approximate results, assuming RP 6= NP: computing the partition function exactly
is hard even in the case of zero external field (Lemma 10), or in the case of a planar graph
(Lemma 12). As we have noted, imposing both conditions simultaneously leads to tractability.
The Ising model on the kagome lattice is exactly solvable [22] with zero external field, but in the
presence of an external field it seems we have to settle for the approximate solution promised by
Theorem 1.

Finally, we can speculate on the existence of other graph classes on which the antiferromagnetic
Ising model can be solved approximately. The maximum cut problem is known to be NP-complete
on many graph classes. For example, Bodlaender and Jansen [3] show that maximum cut is NP-
hard on several graph classes including chordal graphs and tripartite graphs. For such classes,
it is unlikely that the antiferromagnetic Ising model is tractable, even in the approximate sense.
Indeed, whenever maximum cut cannot be solved to within a constant factor in polynomial time
(under some complexity theoretic assumption) this heuristic claim becomes rigorous. The general
argument is given, in the context of maximum independent set, by Luby and Vigoda [18].

Very recently, Bencs, Csikvári and Regts [2], using a completely different approach to the one
described here, gave a deterministic algorithm for approximating the partition function of an
antiferromagnetic model on a line graph.

2 Overview of the approach

We use an off-the-shelf analytical technique, known as “winding”, devised by McQuillan [19] and
developed and systematised by Huang, Lu and Zhang [12]. As far as the proofs in this article
are concerned, we can treat this technique for the most part as a black box. Nevertheless, we do
have to peer a little way inside the black box. We’ll cover enough of the method for our current
needs and leave the interested reader to consult the original sources for details.
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The first step is to change our viewpoint away from vertex configurations towards edge configu-
rations. Recall that the spin configurations of the Ising model we are working with live on the
vertices of a line graph L(Γ). These configurations can equally be thought of as spin configura-
tions living on the edges of Γ. Such a spin model is called a “holant” in the computer science
literature [4]. In the holant view, the partition function of the Ising model has the form

Zβ,ν(L(Γ)) =
∑

σ:E(Γ)→{0,1}

∏

k∈V (Γ)

fk(σ|E(k)), (2)

where σ|E(k) denotes the restriction of σ to the edges incident at vertex k. The functions {fk}
are specific to the Ising model and depend on the vertex degrees; they will be derived in the next
section.

The basic approach is Markov chain Monte Carlo (MCMC). As usual, we concentrate on solving
the sampling problem (Theorem 2) first, as it is a short step from there to a solution of the
estimation problem (Theorem 1). Our first thought would be to construct a Markov chain whose
state space is the set of configurations σ : E(Γ) → {0, 1}. However, the winding approach, as
developed in [12], requires us to expand the state space somewhat. Think of each edge {i, j} of Γ
as being subdivided into two half-edges one incident at i and the other at j. Denote by E = E(Γ)
the set of all half-edges of Γ. Now consider an enlarged set of configurations σ : E → {0, 1}. We
say that a configuration σ is consistent if, for every edge, the two half-edges that compose it are
assigned the same spin. Let Ω0 denote the set of all consistent configurations, and define

H0(Γ) = H0(Γ; {fk}) =
∑

σ∈Ω0

∏

k∈V (Γ)

fk(σ|E(k)),

where σ|E(k) denotes the restriction of σ to the half-edges incident at vertex k. Clearly H0(Γ) =
Zβ,ν(L(Γ)). We say that a configuration σ is nearly consistent if it is consistent except for
precisely two edges. Denote by Ω2 be the set of all nearly consistent configurations, and define

H2(Γ) = H2(Γ; {fk}) =
∑

σ∈Ω2

∏

k∈V (Γ)

fk(σ|E(k)).

Nearly consistent configurations are needed in general to connect the state space of the Markov
chain from [12] that we are about to define, but could be avoided in this specific application: see
Section 5.2.

We now consider a Markov chain on state space Ω = Ω0 ∪ Ω2 in which a transition is available
between every pair of configurations that differ on exactly two half-edges. It is a simple matter
to choose transition probabilities so that, in the stationary distribution, configuration σ occurs
with probability proportional to ŵ(σ), where

ŵ(σ) =
∏

k∈V (Γ)

fk(σ|E(k)).

Specifically, Huang et al. use transition probabilities P : Ω2 → [0, 1] based on the Metropolis
filter. Denote by d(σ, σ′) the number of half-edges on which σ and σ′ differ, and let m = |E(Γ)|.
Then

P (σ, σ′) =

{
1

4m2 min
{

ŵ(σ′)
ŵ(σ) , 1

}
, if d(σ, σ′) = 2;

0, if d(σ, σ′) /∈ {0, 2},
(3)

and the loop probabilities P (σ, σ) are chosen to satisfy
∑

σ′∈Ω P (σ, σ′) = 1. It may be verified
that P (σ, σ) > 1

2 ; this “laziness” property is convenient in the analysis of mixing time.2 It is an

2Note that the “proposal probability” 1/4m2 here is smaller than the one appearing in [12], which is itself too
large to guarantee P (σ, σ) ≥ 0.
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immediate consequence of the Metropolis transition rule that the stationary distribution assigns
probability proportional to ŵ(σ) to each state σ ∈ Ω.

Note that, in particular, the stationary distribution, restricted to Ω0, is the Gibbs distribution
DΓ,β,ν (under the obvious bijection between Ω0 and assignments E(Γ) → {0, 1}). So we will have
a polynomial-time approximate sampler for DΓ,β,ν if (a) the Markov chain is rapidly mixing,
i.e., comes close to stationarity in polynomially many steps, and (b) the ratio H2(Γ)/H0(Γ)
is polynomially bounded. Condition (b) ensures that, when we stop the Markov chain after
sufficiently many steps, we have a good chance of being at a state in Ω0. (Intriguingly, the ratio
H2(Γ)/H0(Γ) also plays a critical role in bounding the mixing time.)

Condition (b) can be swiftly dispensed with.

Lemma 3. H2(Γ)/H0(Γ) = O(m2), where m = |E(Γ)|. The implicit constant in the O-notation
depends on β, ν and the maximum degree ∆ of Γ.

Proof. Given a configuration σ2 ∈ Ω2, we can reach a configuration σ0 ∈ Ω0 by flipping the spin
on two half-edges. This operation changes the weight by a constant factor, i.e., ŵ(σ0) ≥ Cŵ(σ2)
where C depends on β, ν and ∆. Going backwards, there are

(2m
2

)
≤ 2m2 half-edges on which

we could choose to flip the spin.

To prove rapid mixing of the Markov chain we use the “canonical paths” method or, more
accurately, its generalisation to “multi-commodity flow” [21]. The key parameter of interest is
the so-called congestion of the flow, as the mixing time scales linearly with congestion. Generally
speaking, the construction of appropriate canonical paths and the analysis of their congestion
requires expertise and insight. However, for the holant setting with 0/1 spins, this forbidding step
can to a large extent be reduced to linear algebra by the winding technique. In this approach,
the selection of canonical paths follows automatically from the condition of “windability” of the
functions fk. The concept of windability of functions will be discussed a little later. Then, the
conductance of this set of canonical paths can be bounded in terms of the ratio appearing in
Lemma 3. Thus, in light of that lemma, the canonical paths method and associated concept of
conductance can also be treated as a black box.

In principle, windability of any given function can be tested, at least for reasonable arities, with
the aid of a computer algebra system. The main obstacle we face in the current application is the
need to demonstrate that the particular functions arising from the antiferromagnetic Ising model
are windable for all arities (i.e., for all vertex degrees). As will become apparent, overcoming
this obstacle presents a challenge. There are few natural infinite families of functions that are
known to be uniformly windable, possibly just the examples given by McQuillan [19], namely
parity (Even and Odd) and not-all-equal (NAE). So it is significant that the Ising model has this
property.

3 The Ising model and holants

In this section we formalise the intuition that the partition function Zβ,ν(L(Γ)) of the Ising model
on a line graph L(Γ) can be expressed as a holant on the underlying graph Γ.

Denote the nonnegative real numbers by R+ and the positive integers by N>0. A symmetric
function F : {0, 1}d → R+ of arity d has an associated signature vector [f0, . . . fd] if F (x) = fi
when x has exactly i coordinates set to 1. If F is also self-complementary, that is, F (x) = F (x̄)
for all x, then we have fi = fd−i. In that case, the vector h = [f0, . . . , f⌊d/2⌋] completely
characterises F , and will be called the half-vector of F . Henceforward, all functions F will be
symmetric.
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For β, µ ∈ R and d ∈ N>0, denote by Fβ,µ,d : {0, 1}d → R+ the function with signature vector
[eβi(d−i)+µi : 0 ≤ i ≤ d]. We will write Fβ,d for Fβ,0,d. Note that Fβ,d is self-complementary, but
Fβ,µ,d is not, if µ 6= 0. In the derivation below, we show that Zβ,ν(L(Γ)) can be expressed in the
form (2), in which, for each vertex k, we set fk = Fβ,µ,d(k), where µ = ν/2 and d(k) is the degree
of k. In what follows, E(Γ)(2) denotes the set of unordered pairs of edges of Γ.

Zβ,ν(L(Γ)) =
∑

σ:V (L(Γ))→{0,1}

∏

{i,j}∈E(L(Γ))

exp
(
β |σ(i) − σ(j)|

) ∏

k∈V (L(Γ))

exp(νσ(k))

=
∑

σ:E(Γ)→{0,1}

∏

{e,f}∈E(Γ)(2)

e∩f 6=∅

exp
(
β |σ(e) − σ(f)|

) ∏

e∈E(Γ)

exp(νσ(e))

=
∑

σ:E(Γ)→{0,1}

∏

k∈V (Γ)

∏

{e,f}∈E(Γ)(2)

e,f∋k

exp
(
β |σ(e)− σ(f)|

) ∏

e∈E(Γ)

exp(νσ(e))

=
∑

σ:E(Γ)→{0,1}

∏

k∈V (Γ)

Fβ,d(k)

(
σ(ek,1), σ(ek,2), . . . , σ(ek,d(k))

) ∏

e∈E(Γ)

exp(νσ(e))

=
∑

σ:E(Γ)→{0,1}

∏

k∈V (Γ)

Fβ,µ,d(k)

(
σ(ek,1), σ(ek,2), . . . , σ(ek,d(k))

)
,

where ek,1, ek,2, . . . , ek,d(k) is an enumeration of edges incident at vertex k, and µ = ν/2.

Comparing with (2), it can be seen that we have successfully expressed the partition function
Zβ,ν(L(Γ)) as a holant on Γ.

4 Windability

This section will be a proof of the following.

Theorem 4. The function Fβ,µ,d is windable for all β ∈ R+, µ ∈ R and d ∈ N.

The definition of windable can be found in [19] or [12]. However, a knowledge of the definition
is not essential for an understanding of this paper, as we shall be using the characterisation
of windable that was given by Huang et al., and that is captured in Theorem 5. In order to
understand that theorem we need some preliminary definitions.

Suppose m ∈ N>0 and let n = ⌊m/2⌋. Recall from [12] the definition of the matrix Am ∈
R(n+1)×(n+1), whose coefficients a

(m)
i,j (0 ≤, i, j ≤ n) are, for m = 2n even,

a
(m)
i,j =





(
i

j

)(
2n − i

j

)
j!(i − j − 1)!!(2n − i− j − 1)!! if i ≡ j mod 2 ,

0 otherwise ;

(4)

or, for m = 2n + 1 odd,

a
(m)
i,j =





(
i

j

)(
2n + 1− i

j

)
j!(i − j − 1)!!(2n + 1− i− j)!! if i ≡ j mod 2 ,

(
i

j

)(
2n + 1− i

j

)
j!(i − j)!!(2n − i− j)!! otherwise ,

(5)

where x!! is the double factorial x!! := x · (x−2) · (x−4) . . . for x ∈ N, and we use the convention
(−1)!! = 1.3

3The second formula has a typo in [12], and is missing “!!”.
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The matrix entries a(m)
i,j have a combinatorial meaning: the number of ways of pairing m objects

of two types, i of the first type and m − i of the second, such that exactly j pairs have both
types. There will be one singleton if m = 2n + 1. It follows that

∑i
j=0 a

(m)
i,j is simply the total

number of ways of pairing m objects, so

i∑

j=0

a
(m)
i,j =




(2n − 1)!! if m = 2n;

(2n + 1)!! if m = 2n+ 1.
(6)

The expressions for a
(m)
i,j may be rewritten in a more convenient form, which separates, as far as

possible, factors depending only on i from those depending only on j. Starting with definition (4)
and assuming i and j have the same parity,

a
(m)
i,j = (2n)!

i!(2n − i)!

(2n)!

1

j!

(i− j − 1)!!

(i− j)!

(2n − i− j − 1)!!

(2n − i− j)!

= (2n)!

(
2n

i

)−1 1

j!(n − j)!

(n− j)!

2(i−j)/2[(i− j)/2]! 2n−(i+j)/2[n− (i+ j)/2]!

=
(2n)!

2nn!

(
2n

i

)−1

2j
(
n

j

)(
n− j

(i− j)/2

)
.

Thus we reach the following equivalent form of (4), valid for m = 2n even:

a
(m)
i,j =




(2n− 1)!!

(
2n

i

)−1

2j
(
n

j

)(
n− j

(i− j)/2

)
if i ≡ j mod 2 ,

0 otherwise .

(7)

Starting with (5) and performing very similar manipulations we obtain the following, valid for
m = 2n+ 1 odd:

a
(m)
i,j = (2n+ 1)!!

(
2n+ 1

i

)−1

2j
(
n

j

)(
n− j

⌊(i− j)/2⌋

)
. (8)

Clearly a
(m)
i,j = 0 for i < j, so Am is lower triangular. (We use the usual convention that

(
b
a

)
= 0

if a < 0 or b < a.)

A pinning of a function F : {0, 1}d → R+ is a function G : {0, 1}m → R+ of smaller or equal
arity that is obtained from F by setting certain variables to 0 or 1. If F is symmetric, then the
it does not matter which variables are set to 0 (or 1), only their number. Thus, a pinning of F
may be written

G(x1, . . . , xm) = F (x1, . . . , xm, 0, . . . , 0︸ ︷︷ ︸
d−b

, 1, . . . , 1︸ ︷︷ ︸
a

),

where 0 ≤ a ≤ b ≤ d and m = b − a. Note that, if the signature vector of F is [f0, . . . , fd],
then that of G is [fa, . . . , fb]. Now, to prove that Fβ,µ,d is windable, we use the following result
from [12].

Theorem 5 ([12], Theorem 7). A symmetric function F : {0, 1}d 7→ R+ is windable if and only
if, for every 1 ≤ m ≤ d and every pinning G of F with arity m, the self-complementary function

H(x)
def
= G(x)G(x̄) with half-vector h = [h0, h1, . . . , hn] (where n = ⌊m/2⌋) satisfies the following

condition: The linear equations Amx = h have a nonnegative solution x ∈ (R+)n+1.

To apply this, we first determine H(x) = G(x)G(x̄) for all pinnings G of Fβ,µ,d. To help guide
the reader through the remainder of the section, the naming conventions in Theorem 5 will be
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maintained throughout. So, d will be the arity of some function F , integer m with 1 ≤ m ≤ d
the arity of some self-complementary function H derived from a pinning of F , and n = ⌊m/2⌋.
Thus the indices of the half-vector h representing H run from 0 to n.

Lemma 6. Let d ∈ N>0 and β, µ ∈ R, and let G be a pinning of Fβ,µ,d. Define H as in
Theorem 5. Then, there exists m ≤ d and a constant K ≥ 0 such that H = K · F2β,m.

Proof. Let [f0, . . . , fd] be the signature vector of Fβ,µ,d, where fi = eβi(d−i)+µi. Let G be a
pinning of F , with a variables pinned to 1, and d − b to 0. Its signature vector is of the form
[fi : a ≤ i ≤ b]. Let [zi : 0 ≤ i ≤ m] be the signature vector of H, where m = b − a ≤ d. Then
we have:

zi = eβ(a+i)(d−a−i)+µ(a+i) · eβ(b−i)(d−b+i)+µ(b−i) = eZi

where the exponent Zi is:

Zi = β
(
(a+ i)(d − a− i) + (b− i)(d − b+ i)

)
+ µ(a+ b)

= β(a(d− a) + b(d− b)) + µ(a+ b) + 2βi(b − a− i).

If m = b− a and K = eβ(a(d−a)+b(d−b))+µ(a+b) , this implies that we have:

zi = Ke2βi(m−i) = KF2β,m .

Thus H is a positive multiple of the function F2β,m.

From Theorem 5 and Lemma 6, it follows that

Corollary 7. Fβ,µ,d is windable if and only if for all 1 ≤ m ≤ d the following holds: the system
Amx = h has a solution with x ≥ 0, where h is the half vector representing the function F2β,m.

We can put the equations Amx = h in a more convenient form. Let

b
(m)
i,j =





(
n− j

⌊(i− j)/2⌋

)
if d = 2n+ 1 or i ≡ j mod 2

0 otherwise.

It follows from (7,8) that the equations Amx = h can be rewritten in the form

n∑

j=0

b
(m)
i,j yj =





1

(2n− 1)!!

(
m

i

)
hi if m = 2n,

1

(2n+ 1)!!

(
m

i

)
hi if m = 2n+ 1,

(9)

where yj = 2j
(
n
j

)
xj for all j ∈ [0, n]. Let Bm be the n× n matrix (b

(m)
i,j : i, j ∈ [0, n]), and let bj

be its jth column, so Bm = [b0 b1 · · · bn]. Then we can express the equations Amx = h in a
form which suppresses irrelevant scalars.

The (convex) cone C(S) ⊆ Rn+1 generated by the set S ⊆ Rn+1 is the closure of S under addition
and multiplication by non-negative scalars. That is, for all x ∈ C(S), κx ∈ C(S) for any κ ≥ 0
and, for all x,y ∈ C(S), x + y ∈ C(S). Clearly we always have 0 ∈ C(S). Also, establishing
x ∈ C(S) is clearly equivalent to establishing κx ∈ C(S) for any κ > 0. Then we may restate
Theorem 5 as
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Theorem 8. Let F : {0, 1}d 7→ R+ be a symmetric function and, let G be a pinning of F with

arity m. Let H(x)
def
= G(x)G(x̄) with half-vector h = [h0, h1, . . . , hn], where n

def
= ⌊m/2⌋. Let

Cn ⊂ Rn+1 be the cone generated by the columns of Bm, and let z(h) be the vector such that
z(h)i =

(
m
i

)
hi (i ∈ [0, n]). Then F is windable if and only if z(h) ∈ Cn for every such G.

Lemma 6 implies that we need only apply this criterion to functions H of the form Fβ,d.

From (9), we have z(1) ∈ Cn, where 1 is the all-1’s vector. (To see this, substitute x = 1 in (6)
to give A1 = h, where h = (2n ± 1)!!1. Now transform variables from x to y and compare
with (9).) Observe that b

(m)
i,j = b

(m−2k)
i−k,j−k, for all k ∈ [0, n]. (Informally, deleting the first row and

column of the matrix Bm yields the matrix Bm−2.) Then it follows that there exists a vector of
the form

ŷ = (0, 0, . . . , 0︸ ︷︷ ︸
k copies

, y0, y1, . . . , yn−k)

such that

n∑

j=0

b
(m)
i,j ŷj =

n∑

j=k

b
(m)
i,j yj−k =

n−k∑

j=0

b
(m−2k)
i−k,j yj =





1

(2n− 2k − 1)!!

(
m− 2k

i− k

)
if m = 2n,

1

(2n− 2k + 1)!!

(
m− 2k

i− k

)
if m = 2n+ 1.

(10)
Specifically, we can choose (y0, y1, . . . , yn−k) to be the vector that witnesses, via (9), the mem-
bership of z(1n−k+1) in the cone Cn−k. Thus, for all k ∈ [0, n], the vector

vk =

[(
m− 2k

i− k

)
: i ∈ [0, n]

]

is in the cone Cn. Let Dn be the cone generated by the set {v0,v1, . . . ,vn}. Then Dn ⊆ Cn.
Thus, to show z(h) ∈ Cn, it suffices to show that z(h) ∈ Dn.

Lemma 9. z(h) ∈ Dn, where h is the half-vector representing Fβ,m

Proof. Expanding the exponential function in the definition of hi,

z(h)i =

(
m

i

)
hi =

∞∑

j=0

βj

j!

(
i(m− i)

)j
(
m

i

)
(i ∈ [0, n]) .

Thus, the claim z(h) ∈ Dn will follow from showing that the vector with entries
(
i(m− i)

)j
(
m

i

)

(i ∈ [0, n]) is in Dn for all j ∈ N.

Now, since v0 = z(1) ∈ Dn, the inclusion z(h) ∈ Dn will follow, by induction on j, from the
following

Claim: If u ∈ Dn, then the the vector u∗ with entries u∗i = i(m− i)ui is in Dn.

Proof. It suffices to prove this for the generators of Dn, namely vk = [v0,k, v1,k, . . . , vn,k]. Then,

if v−1
def
= 0,

i(m− i)vi,k =
[
(i− k)(m− k − i) + k(m− k)

](m− 2k

i− k

)

=
(m− 2k)!

(i− k − 1)!(m − k − i− 1)!
+ k(m− k)

(
m− 2k

i− k

)

= (m− 2k)(m− 2k − 1)
(m− 2k − 2)!

(i− k − 1)!(m− k − i− 1)!
+ k(m− k)

(
m− 2k

i− k

)

= (m− 2k)(m− 2k − 1)vi,k+1 + k(m− k)vi,k
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So v∗
k = (m − 2k)(m − 2k − 1)vk+1 + k(m − k)vk ∈ C(vk+1,vk) ⊆ Dn. Note that the scalars

appearing in the above linear combination of vk+1 and vk are non-negative: if m = 2n is even
and k = n then factor m− 2k − 1 is negative, but in this case m− 2k = 0.

Theorem 4 follows by combining Lemma 6, Theorem 8, Lemma 9 and the fact that Dn ⊆ Cn.

5 Positive results for approximate computation

It is now a short step to the two results claimed in the Introduction. Note that in this section
n = |V (Γ)| and m = |E(Γ)| will always denote the number of vertices and edges of an instance
graph Γ.

5.1 Proofs of the main results

Proof of Theorem 2. This result follows directly from [12, Lemma 29] using Theorem 4 and
Lemma 3. Note that the quantity µΛ(Ω0) appearing in that lemma is just H0(Γ)/(H0(Γ)+H2(Γ))
in our notation, and hence µΛ(Ω0)

−1 = O(m2).

Proof of Theorem 1. The reduction from estimating the partition function to sampling configu-
rations is standard. Choose a suitably spaced sequence of values 0 = β0 < β1 < · · · < βr = β.
The ratios Zβi,ν(Γ)/Zβi−1,ν(Γ), for 1 ≤ i ≤ r, may be estimated from polynomially many samples
from the distribution DΓ,βi−1,ν using the Markov chain described in Section 2, which mixes in
polynomial time by Theorem 2. The partition function Z0,ν(Γ) factorises, and is hence easy to
compute. Thus, Zβ,ν(Γ) itself may be estimated from the telescoping product

Zβ,ν(Γ) =
Zβr,ν(Γ)

Zβr−1,ν(Γ)
× Zβr−1,ν(Γ)

Zβr−2,ν(Γ)
× · · · × Zβ1,ν(Γ)

Zβ0,ν(Γ)
× Z0,ν(Γ).

Details can be found in [23], together with refinements.

Alternatively, one could show self-reducibility of the partition function and apply [12, Thm 3].
Details of this approach can be found in [13, §3.2].

5.2 Glauber dynamics

Theorem 2 was established by considering a Markov chain based on updates to half-edges of Γ (see
Section 2). A more natural approach would be to work with whole edges. So, the configurations
would simply be the natural ones, namely σ : E(Γ) → {0, 1}, and a transition would update a
single (whole) edge. We might call this the (single-site) Glauber dynamics. As usual, it is easy
to arrange transition probabilities so that the stationary distribution of the Markov chain is the
Gibbs distribution.

A convenient way to define Glauber dynamics for our purposes is the following. Start with the
half-edge Markov chain on Ω = Ω0 ∪ Ω2 as defined in (3), and censor all transitions from a
state in Ω0 to a state in Ω2. That is to say, instead of making a transition from τ ∈ Ω0 to
τ ′ ∈ Ω2, the Markov chain remains at τ . Since the number of available transitions out of any
state is now m instead of

(2m
2

)
, we take the opportunity to increase the proposal probability from

1/4m2 to 1/2m. This simple modification speeds up the Markov chain and reduces the mixing
time by a factor 2m. Assuming the initial state is in Ω0, the censored Markov chain on state
space Ω0 is ergodic with stationary distribution DΓ,β,ν . Note that every transition of this derived
Markov chain has the following property: the two half-edges whose spins are flipped belong to
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the same whole edge. Since Ω0 is isomorphic to 2E(Γ) it would have been more natural to define
the Glauber dynamics directly on whole-edge configurations, but the above view simplifies the
analysis that follows.

To show that Glauber dynamics is rapidly mixing, we will compare it with the already analysed
half-edge Markov chain. To follow the argument in detail, some acquaintance with the canonical
paths method is required, and in particular the use made of it by Huang et al. [12]. However,
it should be possible to obtain an intuitive grasp of the argument, without that prerequisite.
Denote the transition probabilities of the half-edge Markov chain by P : Ω2 → [0, 1] and the
stationary distribution by π : Ω → [0, 1]. Imagine the Markov chain as a transition graph with
states as vertices and transitions as edges. Each edge (transition) (τ, τ ′) is assigned a capacity
Q(τ, τ ′) = π(τ)P (τ, τ ′). Since the Markov chain is time-reversible, Q(τ, τ ′) = Q(τ ′, τ) and the
capacity is well defined. For each pair of states σ, σ′, we specify a collection of (canonical) paths
from σ to σ′ through which we route a flow of π(σ)π(σ′). Suppose we can do this in such a
way that the total flow through any transition τ → τ ′ is small, specifically, less than or equal to
̺Q(τ, τ ′) for some uniform bound ̺. Then the relaxation time of the Markov chain (a quantity
strongly related to the mixing time) is known to be O(̺). The quantity ̺ is the congestion of
the chosen canonical paths. For more detail see, e.g., [13, §5.2].

The canonical paths exploited first by McQuillan and later by Huang et al., are derived from
collection of (graph theoretic) paths and cycles in the instance graph Γ. Given such a collection,
the corresponding canonical path in the transition graph is obtained by “unwinding” these paths
and cycles in sequence. Unwinding consists in tracing along the path or around the cycle, at
each vertex flipping the two half-edges incident at that vertex. (See [12, §B] for details.) Suppose
that e0, e1, e2, e3, . . . , e2ℓ−2, e2ℓ−1 is a path or cycle in Γ of length ℓ, composed of half-edges. For
each 0 ≤ i ≤ ℓ − 1, the half edges e2i, e2i+1 form a single edge, and for each 1 ≤ i ≤ ℓ − 1, the
half edges e2i−1, e2i are incident at a common vertex. The half edges e0 and e2ℓ−1 may or may
not be incident at a common vertex. In Huang et al’s analysis, the half-edges are flipped in the
sequence (e2ℓ−1, e0), (e1, e2), . . . , (e2ℓ−3, e2ℓ−2). If we pair the half edges in the other natural way,
i.e., (e0, e1), (e2, e3), . . . , (e2ℓ−2, e2ℓ−1), then we obtain a canonical path that flips whole edges
at each step. In this way, a canonical path on half-edges induces a canonical path on (whole)
edges. As we shall see, these canonical paths witness rapid mixing of the Glauber dynamics. It
is important in this context to note that the signatures we are working with are all permissive,
in the sense that each function fv is supported on the whole of {0, 1}E(v) . In other situations,
the derived paths might be invalid.

In more detail, suppose

σ = σ0 → σ1 → · · · → σi → σi+1 → · · · → σℓ = σ′

is the canonical path in Ω0 ∪ Ω2 from σ ∈ Ω0 to σ′ ∈ Ω0 that results from the sequence
(e2ℓ−1, e0), (e1, e2), . . . , (e2ℓ−3, e2ℓ−2) of half-edge flips. Then let

σ = σ̃0 → σ̃1 → · · · → σ̃i → σ̃i+1 → · · · → σ̃ℓ = σ′

be the derived path in Ω0 resulting from the sequence (e0, e1), (e2, e3), . . . , (e2ℓ−2, e2ℓ−1). Thus,
for 0 ≤ i ≤ ℓ− 1,

σ̃i+1(e) =

{
1− σ̃i(e), if e ∈ {e2i, e2i+1};
σ̃i(e), otherwise.

The derived path stays close to the original path at all times; specifically, for 1 ≤ i ≤ ℓ− 1,

σ̃i(e) =

{
1− σi(e), if e ∈ {e2i−1, e2ℓ−1};
σi(e), otherwise.

(11)
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Consider a transition σ̃i → σ̃i+1 in the derived path. By comparing σ̃i and σ̃i+1 we may deduce
the unordered pair of edges {e2i, e2i+1}, and with one extra bit of information we may identify
the edges e2i and e2i+1 individually. If we now specify e2i−1 and e2ℓ−1, we may recover the
corresponding transition σi → σi+1 in the original path, by putting (11) into reverse. (The first
and last transitions are special, but the given data is still sufficient to recover the transition
σi → σi+1.) Since e2i−1 shares a vertex with edge e2i, we have at most n choices for e2i−1,
where n = |V (Γ)|. The upshot of this is that, given the transition σ̃i → σ̃i+1, there are at most
2nm possibilities for the corresponding transition σi → σi+1. Suppose τ̃ → τ̃ ′ is any transition
with τ̃ , τ̃ ′ ∈ Ω0. Define the halo around τ̃ → τ̃ ′ to be the set of 2nm transitions τ → τ ′ that
correspond to τ̃ → τ̃ ′ via the above procedure. Note that the flow in any derived path through
τ̃ → τ̃ ′ must originally have passed through some transition in this (small) halo.

Now observe that the capacity of any transition τ → τ ′ in the halo of transition τ̃ → τ̃ ′ is not
too much bigger that the capacity of τ̃ → τ̃ ′. Since τ differs from τ̃ at at most two half-edges,
the weights ŵ(τ) and ŵ(τ̃ ) are within a constant factor of each other; the same applies to ŵ(τ ′)
and ŵ(τ̃ ′). It follows that Q(τ, τ ′) ≤ CQ(τ̃ , τ̃ ′), where C = C(β, ν,∆). Suppose ̺ is the (known)
congestion of the half-edge Markov chain. Then the flow in transition τ → τ ′ is bounded by
̺Q(τ, τ ′) ≤ C̺Q(τ̃ , τ̃ ′). So if we reroute the flow between pairs of states in Ω0 through the
derived paths, the new flow in transition τ̃ → τ̃ ′ is bounded by 2nm×C̺Q(τ̃ , τ̃ ′). So rerouting
flow through paths lying entirely within Ω0 increases congestion by at most a factor 2Cnm.

Since the derived paths lie entirely within Ω0, they can be used to bound the congestion of the
censored Markov chain (Glauber dynamics). Denote the transition probabilities of this full-edge
Markov chain by P̃ : Ω2

0 → [0, 1] and the stationary distribution by π̃ : Ω0 → [0, 1]. Also
define the capacities of transitions in the censored Markov chain by Q̃(τ, τ ′) = π̃(τ)P̃ (τ, τ ′). Let
R = π(Ω0)

−1, and note that π̃(τ) = Rπ(τ) and

Q̃(τ, τ ′) = π̃(τ)P̃ (τ, τ ′) = Rπ(τ)× 2mP (τ, τ ′) = 2RmQ(τ, τ ′),

for all τ, τ ′ ∈ Ω0. Thus the flows are increased by a factor R2 but the capacities are increased
by a factor 2Rm. Thus the congestion ˜̺ of the censored Markov chain is increased by a factor
R/2m. Putting it all together, ˜̺ = 2Cnm̺R2/2mR = CnR̺. Since R = O(m2), we see that the
relaxation time (and hence the mixing time) of Glauber dynamics is at most O(nm2) longer than
that of the half-edge Markov chain. The comparison argument could be tightened by delving
further into the details of the canonical paths analysis in [12].

5.3 Ferromagnetic interactions

Direct calculation from Theorem 5 shows that [1, e2β , e2β , 1] is windable when e4β ≥ 1
2 . Thus,

Glauber dynamics is rapidly mixing on line graphs of cubic graphs (such as fragments of the
kagome lattice) when β > −0.173286. The kagome lattice exhibits a phase transition when
e4β = 1/(3 + 2

√
3) [22], so we cannot expect Glauber dynamics to be rapidly mixing when

β < −0.466567.

Rapid mixing can also be deduced from Theorem 5 for graphs of maximum degree ∆, for small
values of ∆ > 3 and all β in some range β∆ ≤ β < 0. It seems likely that a general argument
could be found covering all ∆, though we have not done this. However, β∆ will necessarily
converge to 0 as ∆ → ∞. For ∆ even, consider the star Γ = K1,∆, the line graph of which is the
complete graph K∆. Let Ω denote the set of all configurations E(Γ) → {0, 1} and Ω1/2 denote
the subset of balanced configurations with equal numbers of 0s and 1s. Then

∑

σ∈Ω

ŵ(σ) ≥ 2 and
∑

σ∈Ω1/2

ŵ(σ) ≤ 2∆ exp(β∆2/4),
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where the first inequality comes from considering just the all 0s and all 1s configurations. When
β < −4/∆, the second sum is exponentially smaller than the first. Since Ω1/2 forms a cut in the
state space, a standard conductance bound [21, Thm 2] then shows that mixing time of Glauber
dynamics is exponential in ∆.

5.4 Local fields

Finally, varying fields, with an individual strength νk for each vertex k of L(Γ) can be handled.
One way is to repeat the calculations in Sections 3 and 4 with νk and µk in place of µ and ν. The
notational complexity increases, but there are no essential changes. However, the same end can
be achieved with less effort as follows. Subdivide each edge of Γ by a single vertex with signature
vector [1, 0, eνk ]. This signature is windable by [12, Lemma 21], and correctly implements the
field acting on a single spin. The Markov chain on the extended configurations is rapidly mixing,
as before.

6 Negative results for exact computation

The problem Holant([x0, x1, x2, x3]) is the following. Given a cubic graph Γ, evaluate the
holant (2), where fk is the function with signature vector [x0, x1, x2, x3], for all k ∈ V (Γ).
The problem Pl-Holant([x0, x1, x2, x3]) is the same with the instance Γ restricted to be planar.
According to the correspondence derived in Section 3, the partition function of the antifer-
romagnetic Ising model on a line graph of a cubic graph can be expressed as an instance of
Holant([1, a, a, 1]) with a > 1.4 Lemma 10 thus implies that computing exactly the partition
function of the antiferromagnetic Ising model on a graph Γ is #P-hard, even in the absence of an
external field, and even when Γ is the line graph of a cubic graph. The following results exploit
a tiny fraction of a vast theory of the computational complexity of holant problems. To see the
wider scope, refer to Cai and Chen’s monograph [4].

Lemma 10. Holant([1, a, a, 1]) is #P-hard, for all a ∈ Q ∩ (1,∞).

The route to proving this lemma is via an intermediate computational problem. Suppose Γ′ is
a bipartite graph with vertices of degree two on one side of the bipartition and of degree three
on the other. The problem Holant([y0, y1, y2] | [1, 0, 0, 1]) is the following. Given a graph Γ′ of
the specified form, evaluate the holant (2), where vertices of degree two have signature vector
[y0, y1, y2] and those of degree three have signature vector [1, 0, 0, 1] (i.e., ternary equality).
Following Cai, Huang and Lu, [5, §3] we derive (possibly complex) numbers y0, y1, y2 such that
Holant([x0, x1, x2, x3]) is polynomial-time interreducible with Holant([y0, y1, y2] | [1, 0, 0, 1]). We
then complete the proof of Lemma 10 by invoking the following dichotomy result.

Lemma 11. [5, Theorem 2]. The problem Holant([y0, y1, y2] | [1, 0, 0, 1]) is #P-hard for all
y0, y1, y2 ∈ C, except in the following cases, for which the problem is in P: (1) y21 = y0y2;
(2) y120 = y121 and y0y2 = −y21 (y1 6= 0); (3) y1 = 0; and (4) y0 = y2 = 0.

Proof of Lemma 10. In the notation of [5, §3], we have x0 = x3 = 1 and x1 = x2 = a. The first

4To avoid issues with the representation of real numbers, and so obtain a clean computational problem, we
introduce a = e2β and assume a ∈ Q.
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step is a change of variables. Write

x0 = α3
1 + β3

1

x1 = α2
1α2 + β2

1β2

x2 = α1α
2
2 + β1β

2
2

x3 = α3
2 + β3

2 ,

where α1, α2, β1, β2 are to be determined. Setting α1 = β2 = eiθ and α2 = β1 = e−iθ we have

x0 = 2cos 3θ

x1 = 2cos θ

x2 = 2cos θ

x3 = 2cos 3θ.

Then, by setting 0 < θ < π
6 appropriately, the signature vector [x0, x1, x2, x3] can be made to

match [1, a, a, 1] up to a scaling factor. Following Cai et al., introduce the matrix

T =

[
α1 β1
α2 β2

]
=

[
eiθ e−iθ

e−iθ eiθ

]
,

and (in the compact notation used in work on holants) define [y0, y1, y2] = [1, 0, 1]T⊗2 =
[2 cos 2θ, 2, 2 cos 2θ]. This last identity can be expanded into a less compact but more gener-
ally accessible matrix equation:

[
y0 y1
y1 y2

]
= T ⊺I2T =

[
eiθ e−iθ

e−iθ eiθ

] [
eiθ e−iθ

e−iθ eiθ

]
=

[
2 cos 2θ 2

2 2 cos 2θ

]
.

(See the exercise preceding Theorem 1.6 of [4].) So we have y0 = y2 = 2cos θ and y1 = 2. Since
none of the four conditions involving y0, y1, y2 in the statement of Lemma 11 hold, it follows that
Holant([1, a, a, 1]) is #P-hard.

We can even restrict the graph Γ to be planar, at the expense of introducing a non-zero field.

Lemma 12. Pl-Holant([1, ab, ab2, b3]) is #P-hard, for all a ∈ Q ∩ (1,∞) and b ∈ Q+ \ {0, 1}.

The proof follows a similar line to the previous one, using the following dichotomy result for
planar holants.

Lemma 13. Kowalczyk and Cai [17, Thm 4.4]. The problem Pl-Holant([y0, y1, y2] | [1, 0, 0, 1])
is #P-hard for all y0, y1, y2 ∈ C, except in the four cases listed in the statement of Lemma 11,
together with a fifth, namely (5) y30 = y32. In these five cases, the problem is in P.

Note that in the statement of this result in [17, Thm 4.4], Hol(a, b) is shorthand for Holant([a, 1, b] |
[1, 0, 0, 1]).

Proof of Lemma 12. Define α1 = e−λ+iθ, β1 = e−λ−iθ, α2 = eλ−iθ and β2 = eλ+iθ; then define

x0 = α3
1 + β3

1 = 2e−3λ cos 3θ

x1 = α2
1α2 + β2

1β2 = 2e−λ cos θ

x2 = α1α
2
2 + β1β

2
2 = 2eλ cos θ

x3 = α3
2 + β3

2 = 2e3λ cos 3θ.
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By setting 0 < θ < π
6 and λ ∈ R appropriately, the signature vector [x0, x1, x2, x3] can be made

to match [1, ab, ab2, b3] up to a scaling factor. Again define

T =

[
α1 β1
α2 β2

]
=

[
e−λ+iθ e−λ−iθ

eλ−iθ eλ+iθ

]
,

and
[y0, y1, y2] = [1, 0, 1]T⊗2 = [e−2λ+2iθ + e2λ−2iθ, e2λ + e−2λ, e2λ+2iθ + e−2λ−2iθ].

To establish #P-hardness for planar graphs, we just need to verify that none of the five conditions
in Lemma 13 hold. To this end, observe that

y0y2 = 2cosh 4λ+ 2cos 4θ and y21 = 2cosh 4λ+ 2.

Noting that cosh 4λ ≥ 1 and 0 < θ < π
6 , we find that 0 < y0y2 < y21. Also, y2 is the complex

conjugate of y0 and so |y0| = |y2| < |y1|. These facts rule out the four polynomial-time cases (1)–
(4) listed in the statement of Lemma 13. The fifth condition is ruled out by arg y0 = − arg y2 6= 0
and −π

3 < arg y0, arg y2 <
π
3 . It follows that Pl-Holant([1, ab, ab2, b3]) is #P-hard.

Note that the final step of the proof crucially uses the fact that λ 6= 0, which is equivalent to
b 6= 1. Indeed, the partition function can be evaluated in polynomial time on planar graphs in
the zero field case, using the algorithm of Fisher and Kasteleyn mentioned earlier. Lemma 12
can be interpreted as asserting that exactly computing the partition function of the Ising model
with a constant non-zero external field is hard even when restricted to line graphs of cubic planar
graphs. An example of such a graph is the kagome lattice with toroidal boundary conditions, as
it is the line graph of the hexagonal lattice with the same boundary conditions.
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