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a b s t r a c t

To provide precise prediction of tunnelling-induced deformation of the surrounding geomaterials, a
framework for derivation of rigorous large-strain solutions of unified spherical and cylindrical cavity
contraction is presented for description of confinement-convergence responses for deep tunnels in
geomaterials. Considering the tunnelling-induced large deformation, logarithmic strains are adopted for
cavity contraction analyses in linearly elastic, non-associated MohreCoulomb, and brittle HoekeBrown
media. Compared with approximate solutions, the approximation error indicates the importance of
release of small-strain restrictions for estimating tunnel convergence profiles, especially in terms of the
scenarios with high stress condition and stiffness degradation under large deformation. The ground
reaction curve is therefore predicted to describe the volume loss and stress relaxation around the tunnel
walls. The stiffness of circular lining is calculated from the geometry and equivalent modulus of the
supporting structure, and a lining installation factor is thus introduced to indicate the time of lining
installation based on the prediction of spherical cavity contraction around the tunnel opening face. This
study also provides a general approach for solutions using other sophisticated geomaterial models, and
serves as benchmarks for analytical developments in consideration of nonlinear large-deformation
behaviour and for numerical analyses of underground excavation.
� 2020 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
1. Introduction

Tunnels improve connections and shorten lifelines (Kolymbas,
2008), and large-scale tunnels are widely constructed for convey-
ance and storage (Zhou et al., 2014; Barla, 2016). Tunnel with a
buried depth over 20 m or cover to diameter ratio over 5 can be
treated as a typical deep tunnel (Peck, 1969; Mair and Taylor, 1993).
Tunnel convergence is vital to the stability of underground exca-
vation, as accurate control of tunnelling deformation is highly
desired in geotechnical engineering, especially with the rapid
development of urban underground traffic system. The
convergence-confinement method (CCM), proposed in 1980s,
aimed to provide analytical and graphical descriptions of the
ock and Soil Mechanics, Chi-

s, Chinese Academy of Sciences. Pr
by-nc-nd/4.0/).
ground-support interaction of a deep circular tunnel within ho-
mogeneous and isotropic geomaterials, serving as a useful and
effective method in the preliminary design stage for deep tunnel
construction (Panet et al., 2001; Kainrath-Reumayer et al., 2009;
Oreste, 2014). The concept of CCM lies on utilizing the arching ef-
fects of geomaterials and the adaptation of support measures to
decisively absorb large deformation caused by excavation. The
ground reaction curve (GRC) represents the pressure-deformation
relation at the excavation surface, and the support characteristic
curve (SCC) and the longitudinal deformation profile (LDP) indicate
the retaining force/deformation and the installation time/location
of the various support measures, respectively. The development of
CCM is detailed in Oke et al. (2018).

Since the basic assumptions of CCM are consistent with those of
conventional cavity contraction methods, the prediction of GRC is
generally provided based on the cavity expansion/contraction
theory (Carranza-Torres and Fairhurst, 2000; Vrakas and
Anagnostou, 2014; Mo and Yu, 2017; Vrakas, 2017; Zou and Zou,
2017; Yu et al., 2019). As the small-strain cavity expansion/
oduction and hosting by Elsevier B.V. This is an open access article under the CC BY-
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contraction in elastic material (Timoshenko and Goodier, 1970)
gains wide applications in various branches of science and engi-
neering, analytical solutions have been extended to consider
cohesive-frictional and softening behaviour of geomaterials, along
with the assumptions of small-strains or a loosening factor for
volumetric change (Yu and Houlsby, 1995; Chen and Abousleiman,
2013, 2017; Zou and Xia, 2017; Mo and Yu, 2018; Chen et al., 2018;
Zou et al., 2019; Li and Zou, 2019; Li et al., 2019a,b). In respect of the
circular openings in rock, semi-analytical solutions in nonlinear
elasto-plastic materials were developed with some simplified hy-
potheses on boundary conditions and dispersal factors (Brown
et al., 1983; Song et al., 2016). However, the tunnel long-term sta-
bility and its interactions with underground structures are deter-
mined by precise prediction of tunnelling-induced deformation of
surrounding geomaterials. Theoretical analyses thus tend to
remove any restrictive assumptions to provide reliable estimations
during the design phase.

Small-strain assumption indicates the infinitesimal deforma-
tion, whereas the undeformed and deformed configurations cannot
be distanced through the derived displacements that leads to the
small-strain solutions approximate. Linearisation of small-strain
assumption tends to remove the difference between Lagrangian
and Eulerian descriptions, which is only valid for stiff materials; the
method to simply transform the small-strain solution to large-
strain solution is either empirical or semi-analytical with hypoth-
eses (e.g. Vrakas, 2016). On the other hand, the large-strain
assumption considers the nonlinear displacement gradient, and is
exact for any deformation state, especially for materials with
inherent nonlinearity.

This paper provides a framework for derivation of rigorous
large-strain and quasi-static solutions of cavity contraction for
prediction of confinement-convergence responses for deep tunnels
in geomaterials. Considering the tunnelling-induced large defor-
mation, logarithmic strains are adopted for both spherical and cy-
lindrical cavity contraction analyses in linearly elastic, Mohre
Coulomb and brittle HoekeBrown media. The fully rigorous solu-
tions on GRC describe the volume loss and tunnel relaxation, while
the ground-support interaction is obtained through incorporation
of compression on lining structure for the SCC. The provided cavity
contraction solutions could therefore serve as benchmark solutions
for deep tunnel convergence in geomaterials, and contribute to the
further developments on nonlinear and elasto-viscous analyses.

2. Cavity contraction problem and deep tunnel convergence

The problem in this paper considers a cylindrical or spherical
cavity embedded in an infinite isotropic material with an initial
hydrostatic stress condition s0. The cavity pressure sr;a is reduced
from its initial value (equal to s0) to cause contraction of cavity, and
the cavity radius decreases from a0 to a, as illustrated Fig. 1. The
Fig. 1. Schematic of cavity contraction for both cylindrical and spherical scenarios: (a)
Initial cavity; and (b) Cavity after contraction.
solutions are therefore developed to provide both evolutions and
distributions of stresses and strains of the medium surrounding the
cavity.

Due to the axisymmetric configuration, the differential equation
of quasi-static equilibrium can be expressed as

sq � sr ¼ r
k
dsr
dr

(1)

where sr and sq are the radial and tangential stresses, respectively;
r is the current radius of an arbitrary material element to the centre
of cavity; k is used to integrate solutions for both cylindrical (k ¼
1) and spherical (k ¼ 2) cavities; and d denotes the Eulerian de-
rivative for material element at a specific moment. A tension pos-
itive notation is used and rate dependency is precluded in this
study.

In continuum mechanics, analytical solutions are considerably
simplified with assumption of infinitesimal strain, which are also
termed as small-strain analyses. However, small-strain assumption
in axisymmetric coordinates is restrictive and leads to no volu-
metric strain, whereas the deformation characteristics of geo-
materials indicate finite strain, which requires equilibrium in every
deformed state of a structure.

Therefore, to account for finite strain in geomaterials, the large-
strain theory is adopted for derivation of rigorous cavity contrac-
tion solutions, and logarithmic strains (or Hencky strains) with no
rotation are used in this study, i.e.

εr ¼ ln
�
dr
dr0

�
; εq ¼ ln

�
r
r0

�
(2)

where εr and εq are the radial and tangential strains, respectively;
and r0 is the original radius of an arbitrary material element.

Analytical cavity contraction solutions aim to provide distribu-
tions of stresses and displacements within the elasto-plastic zones
around spherical and cylindrical cavities. Based on the geometrical
analogies, cylindrical cavity contraction representing an incre-
mental procedure of confinement loss is typically adopted as a
fundamental model for ground responses at the tunnel cross-
section, whereas the spherical scenario is capable of correlating
to those at the face cross-section (Mair, 2008; Mo and Yu, 2017).

3. Rigorous large-strain solution for elastic medium

The elastic medium is assumed to obey Hooke’s law with linear
relationships between stresses and strains:

Dεr ¼ 1� n2ð2� kÞ
E

�
Dsr � kn

1� nð2� kÞDsq
�

Dεq ¼ 1� n2ð2� kÞ
E

n
� n

1� nð2� kÞDsr þ ½1� nðk� 1Þ�Dsq
o
9>>>=
>>>;
(3)

where E and n are the Young’s modulus and Poisson’s ratio,
respectively; and D denotes the Lagrangian derivative for a given
material element.

For convenience of derivation, the mean (p) and deviatoric (q)
stresses can be expressed as follows (Mo and Yu, 2017):

p ¼ ðsr þ ksqÞ = ð1þ kÞ; q ¼ sr � sq (4)

Similarly, the volumetric (εp) and shear (εq) strains are defined
as

εp ¼ εr þ kεq; εq ¼ εr � εq (5)
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Substitution of Eqs. (4) and (5) into the elastic stressestrain
relationships leads to the following expressions:

Dp ¼ E
ð1þ kÞð1� 2nÞ½1þ ð2� kÞn�Dεp; Dq ¼ E

1þ n
Dεq (6)

In order to transform the Eulerian description into the
Lagrangian description, the approach of auxiliary variable c is
adopted following Mo and Yu (2018), i.e.

c ¼ ur
r

¼ r � r0
r

¼ 1� r0
r

(7)

Based on the assumptions of logarithmic strain (Eq. (2)), the
volumetric and shear strains are rewritten as

εp ¼ � ln
h�

1�c� rdc
dr

�
ð1� cÞk

i
; εq ¼ � ln

�
1� rdc

dr
1

1� c

�
(8)

Thus, the equilibrium equation (Eq. (1)) can be expressed as a
nonlinear first-order differential equation about qðcÞ, as follows:
Dq
Dc

¼ �kq=fð1� cÞ½1� expð � qð1þ nÞ=EÞ�g � E=fð1� cÞð1� 2vÞ½1þ ð2� kÞv�g
ð1þ vÞ=fð1þ kÞð1� 2vÞ½1þ ð2� kÞv�g þ k=ð1þ kÞ (9)
Together with the boundary conditions (q and c at infinite
radius: q0 ¼ 0, c0 ¼ 0; c at cavity boundary: ca ¼ ða � a0Þ= a),
the distribution of q in terms of c can be obtained by solving the
ordinary differential equation (Eq. (9)). The full distributions of
stresses and strains are then calculated by the following explicit
expressions:

sr ¼ s0 þ
qð1þ nÞ þ Eðkþ 1Þlnðc� 1Þ
ð1þ kÞð1� 2nÞ½1þ ð2� kÞn� þ

kq
1þ k

9>>>>>>

sq ¼ s0 þ

qð1þ nÞ þ Eðkþ 1Þlnðc� 1Þ
ð1þ kÞð1� 2nÞ½1þ ð2� kÞn� �

q
1þ k

εr ¼ qð1þ nÞ=E þ lnðc� 1Þ
εq ¼ lnðc� 1Þ

>>>>=
>>>>>>>>>>;

(10)

To determine the distributions in terms of r rather than c, a
numerical integration is required for the conversion between
physical and auxiliary variables as follows:

Zr
a

dr
r

¼ ln
�r
a

�
¼

Zc
ca

dc
1� c� expð�εrÞ (11)

Combining Eq. (10) and integrations of Eq. (11) therefore gives
the rigorous large-strain solution to cavity expansion or contraction
in linearly elastic medium.

The proposed solution is referred to as rigorous solution, as it
removes the assumption of small strains and is strictly derived for
an arbitrary cavity contraction, leading to the conventional solution
by Timoshenko and Goodier (1970) which is semi-analytical:
sr ¼ s0 þ
�
sr;a � s0

	�a
r

�1þk
9>>>>>
sq ¼ s0 �
sr;a � s0

k

�a
r

�1þk

εr ¼ dur
dr

¼ sr;a � s0
2G

�a
r

�1þk

εq ¼ ur
r

¼ �sr;a � s0
2kG

�a
r

�1þk

>>>>>>>>>>=
>>>>>>>>>>>>>>>;

(12)

where G is the shear modulus, defined as E=½2ð1 þ nÞ�.
For a pressure-controlled cavity contraction problem with the

following reference parameters: js0j ¼ 100 kPa, E ¼ 10 MPa and
n ¼ 0:3 (representing a typical stiff clay or medium dense sand at
about 5 m depth), Fig. 2 provides the validation of elastic solution
against numerical results. Numerical simulation in this study was
conducted using commercial finite element software ABAQUS 6.13
(Dassault Systemes, 2013). In consideration of geometric nonlinearity
and large-deformation analysis, an axisymmetric model with 25,000
elements was established to simulate cylindrical cavity contraction.
The statistical measure to the comparisons is given by the coefficient
of determination, R2, and data from Fig. 2 lead to the overall value of
R2 > 0:9999, indicating the accuracy of rigorous solution.

Although small-strain assumption was widely adopted in
elastic zones by neglecting the higher order terms in logarithmic
strains (e.g. Vrakas and Anagnostou, 2014; Vrakas, 2017), the
derived formulations can only be treated as approximate rather
than exact or rigorous solutions. Compared with the quadratures
of Durban (1988), this solution simplifies the calculation to in-
tegrations of Eqs. (9) and (11), and the resulting expressions of
stresses and strains are derived in the explicit forms, leading to
the closed-form solution. The error analysis for comparing the
approximate (xapprox:) and rigorous (xrigorous) solutions is con-
ducted through the following expression in terms of any resulting
index x:

Error of x ¼ xapprox: � xrigorous
xrigorous

� 100% (13)

Taking the soil parameters in Fig. 2 as a reference, the error of
cavity radius appears to increase exponentially with contraction,
while overestimation is observed for cylindrical cavity and the
spherical scenario behaves oppositely, as shown in Fig. 3a and b.
The error of tangential stress during contraction is higher with
several orders of magnitude than that of cavity radius, especially for
cylindrical cavities (Fig. 3c).

The parametric study of stiffness ratio G=js0j is examined and
presented in Fig. 3def, for contraction at the state of convergence
(sr;a ¼ 0). The error of small-strain solution tends to be consid-
erable when the stiffness ratio is less than 10. Considering the
large deformation of tunnel excavation, the stiffness degradation



Fig. 2. Validation of elastic solution against numerical results for cylindrical cavity contraction: (a) Distributions of normalised stresses; and (b) Distributions of strains.

Fig. 3. Results of rigorous elastic solution compared with small-strain solution: (a) Error of cylindrical cavity displacement during contraction; (b) Error of spherical cavity
displacement during contraction; (c) Error of tangential stress for cavity wall during contraction; (d) Variation of cavity displacement at state of convergence with stiffness ratio; (e)
Error of cavity displacement at state of convergence with stiffness ratio; and (f) Error of tangential stress for cavity wall at state of convergence with stiffness ratio.
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is significant in terms of large strain level (Mair,1993). Shear strain
of the elastic test rises up by 2.5% at the unsupported cylindrical
cavity wall, where the stiffness is orders of magnitude smaller
compared to the small-strain stiffness (Likitlersuang et al., 2013).
Even in the elastoplastic analysis, the elastic stage typically yields
to 1% of shear strain during excavation, while cyclic loading can
lead to some level of stiffness degradation. Moreover, stress con-
dition in deep tunnels contributes further to the decrease of
stiffness ratio and thus the increase of approximation error. The
deep urban subway tunnel has reached close to 100 m depth (Liu
et al., 2017), whereas the deep tunnelling related to mining often
exceeds 1000 m depth with in situ stress level over 30 MPa, such
as the Jinchuan mine in Gansu, China (Yu et al., 2015). Therefore,
the rigorous solution is necessary for analysing problems with
large deformation, especially for deep underground construction
with special stratum conditions.
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Note that the provided solution is based on the assumption of
linear elasticity, and nonlinearity and irreversibility are the two
main features of geomaterials. When the concept of incremental
nonlinearity is introduced, solutions for hyperelastic (derived from
the elastic potential within the principles of thermodynamics) and
hypoelastic models (i.e. purely phenomenologically-defined elastic
models) can be extended in terms of the incremental form to
provide more sophisticated elastic behaviour of geomaterials. The
proposed large-strain solution can then serve as an important
benchmark for validation of further developments in consideration
of nonlinear elasticity and cyclic loading. Considering the plasticity
of geomaterials, the elastic stage usually performs during the early
loading process with limited deformation. Irrecoverable deforma-
tion plays a key role in plastic behaviour of geomaterials, and thus
the large-strain assumption is indispensable for rigorous analysis.
Despite of the relatively small error of small-strain solution in the
elastic stage, the proposed rigorous large-strain solution can pro-
vide the continuity and consistency in the elasto-plastic regions
without overcomplicating the derivations. The combination with
typical plastic models will be described in the following sections.
4. Rigorous contraction solution for MohreCoulombmedium

Considering the shear strength of dilatant elasto-plastic media,
the MohreCoulomb yield criterion with a non-associated flow rule
is typically used to describe geomaterial behaviour. Cavity
contraction in MohreCoulomb medium results in an inner plastic
region surrounded by an outer infinite elastic region, and the radius
of elasto-plastic boundary is denoted by ‘c’. Therefore, the rigorous
large-strain solution presented in this section integrates the
aforementioned large-strain elastic solution and the solution of Yu
and Houlsby (1995) which neglected the effect of true strain in the
elastic range.
h ¼ exp




1þ kb½1� nðk� 1Þ� � knð1þ bÞ
1� nð2� kÞ

�
$

�
1� n2ð2� kÞ

i
½Y=ða� 1Þ � s0�
E

�

m ¼


1þ kba½1� nðk� 1Þ� � knðaþ bÞ

1� nð2� kÞ
�
$

�
1� n2ð2� kÞ

i�
Y
ða� 1Þ � sr;c

�
E

9 ¼ ðr=cÞkða�1Þ
For unloading of cavities, the yield condition of MohreCoulomb
medium is expressed as

asr �sq ¼ Y (14)

where Y ¼ 2C cos f=ð1�sin fÞ and a ¼ ð1 þ sin fÞ= ð1 � sin fÞ, in
which f and C are the friction angle and cohesion of geomaterials,
Fig. 4. (a) MohreCoulomb yield criterion and (b) Elasto-plastic stressestrain relation.
respectively (see Fig. 4). Note that for cylindrical scenarios, the ef-
fect of axial stress is not included in this study, and sz is assumed as
the intermediate stress which was discussed to satisfy most real-
istic soil parameters by Yu and Houlsby (1995). Combining Eq. (14)
and the distributions of stresses in the elastic region can give the
magnitudes of radial stress sr;c, tangential stresses sq;c, and the
contraction ratio c0=c ( ¼ 1� cc) at the elasto-plastic boundary (i.e.
r ¼ c), which serve as the boundary conditions for the plastic-
region solution.

The stresses in the plastic region are expressed in the following
form satisfying the yield condition and the equilibrium equation:

sr ¼ Y
.
ða�1ÞþArkða�1Þ; sq ¼ Y

.
ða�1Þ þ Aarkða�1Þ (15)

where A is an integration constant, and boundary condition at r ¼ c
leads toA ¼ ½sr;c �Y =ða �1Þ�c�kða�1Þ. For contraction of cylindrical
and spherical cavities, the non-associatedMohreCoulomb flow rule
is

Dεpr
Dεp

q

¼ � kb (16)

where b ¼ ð1 þ sin jÞ=ð1 � sin jÞ, in which j is the dilation angle
of geomaterials; and superscript ‘p’ indicates the plastic compo-
nents. Fully associated flow rule can be recovered by setting b ¼ a.

Substituting the large-strain assumptions (Eq. (2)), elastic
stressestrain relations (Eq. (3)) and stresses in the plastic region
(Eq. (15)) into the flow rule (Eq. (16)) leads to

ln
��

r
r0

�kb dr
dr0

�
¼ ln h� m9 (17)

where
With the aid of the series expansion (Yu and Houlsby, 1995),
integration of Eq. (17) over the interval between r and c (9c ¼ 1)
results in

XþN

n¼0
An ¼ hkða� 1Þ

kbþ 1

��r0
c

�kbþ1
�
�c0
c

�kbþ1
�

(18)

where

An ¼

8>>>><
>>>>:

mn

n!
ln 9 ðif nþ gþ 1 ¼ 0Þ

mn

n!
9nþgþ1 � 1
nþ gþ 1

ðif nþ gþ 1s0Þ

g ¼ ðbþ 1=k� aþ 1Þ=ða� 1Þ
For a given contracted cavity with radius of a, full integration of

plastic region based on Eq. (18) gives the amount of c, c0, A, sr;a and



Fig. 5. Validation of MohreCoulomb solution against numerical results for cylindrical cavity contraction: (a) Distributions of normalised stresses; and (b) Distributions of strains.
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sq;a, together with the relation of 9a ¼ ða=cÞkða�1Þ ¼ ½Y =ða � 1Þ �
sr;a�=½Y =ða � 1Þ � sr;c�. The displacement field in the plastic region
is then calculated by given an arbitrary r in Eq. (18). The rigorous
large-strain cavity contraction solution in MohreCoulomb medium
is therefore obtained by combining both plastic and elastic regions.

Numerical validation of MohreCoulomb solution against nu-
merical results is shown in Fig. 5. Both elastic properties and stress
condition are the same as last section; MohreCoulomb parame-
ters are chosen as: cohesion C ¼ 10 kPa, friction angle f ¼ 30�,
and dilation angle j ¼ 10�. After complete unloading, the plastic
region yields to 1.84 times the cavity radius, and the overall co-
efficient of determination gives R2 > 0:9998, validating the pro-
posed rigorous solution. Note that a hyperbolic function in the
meridional stress plane and a smooth elliptic function in the
deviatoric stress plane are adopted as the flow potential of the
MohreCoulomb model in Abaqus, which is slightly different to
that used with Eq. (16) in this study. Comparing with the results of
Vrakas and Anagnostou (2014), analysis of the Sedrun section of
the Gotthard Base tunnel in Switzerland is revisited using the
proposed solution. Fig. 6 shows the GRC and distributions of
normalised displacement and stresses after excavation, and the
comparisons indicate the accuracy of the analytical solution with
R2 > 0:9997. Note that the numerical data incorporate the
analytical results of Vrakas and Anagnostou (2014), in which the
second order terms in the logarithmic strains in the elastic region
was assumed to be negligible. Although the differences from Fig. 5
are marginal in this case, errors would be introduced and cumu-
lated when further analyses were applied. Despite of the differ-
ences on plastic flow, the rigorous analytical solution is validated
against the numerical simulations.

Semi-analytical solutions of cavity contraction forMohreCoulomb
materialwere also provided by Yu and Rowe (1999), which included a
small-strain solution and anapproximate large-strain solution,whose

elastic deformation in the plastic regionwas neglected:
ur ¼ Y � ð1� aÞs0
2Gð1þ akÞ

�c
r

�1þkb
r ðsmall-strainÞ

1�
�a0
a

�1þkb

1�
�c0
c

�1þkb
¼


ð1þ akÞ�Y þ ð1� aÞsr;a
�

ð1þ kÞ½Y þ ð1� aÞs0�
� 1þkb

kð1�aÞ
ðapprox: large-s
The error analysis is conducted with the following reference
parameters: js0j ¼ 100 kPa, E ¼ 10 MPa, n ¼ 0:3, C ¼ 10 kPa,
f ¼ 30�, and j ¼ 10�. The variations of cavity radius at the state of
convergence with cohesion and their errors are shown in Fig. 7a
and b, respectively. The approximate large-strain solution seems to
overestimate the cavity convergence, whereas the small-strain
solution generally provides the underestimation. The error rises
with the decrease of cohesion, and the cylindrical scenario appears
to introduce more significant error. The effects of both friction and
dilation angles are presented in Fig. 7c and d, respectively, indi-
cating that the errors decrease with f and j, but the influence is
weaker than that of cohesion.

5. Rigorous contraction solution for brittle HoekeBrown
medium

Compared with the linear MohreCoulomb failure criterion (Eq.
(14)), nonlinear yield criteria for geomaterials were used to analyse
cavity unloading problems. The HoekeBrown failure criterion was
proposed in 1980s originally for the design of underground exca-
vation in isotropic intact rock (Hoek and Brown, 1980), which was
later updated to correlate themodel parameters with the geological
strength index (GSI) and damage factor D (Hoek et al., 2002; Hoek
and Brown, 2019). HoekeBrown provides a nonlinear, parabolic
relation between the major and minor principal stresses at failure,
assuming independence of the intermediate principal stress. While
the small-strain analytical solution of cylindrical cavity contraction
in brittle HoekeBrown medium was developed by Brown et al.
(1983) and Yu (2000), the current section presents a novel
rigorous large-strain solution for both cylindrical and spherical
scenarios.

For unloading of spherical and cylindrical cavities in this paper
with tension positive notation, the initial yield condition is
described as follows:
trainÞ

9>>>>>>>=
>>>>>>>;

(19)



Fig. 6. Comparisons of MohreCoulomb solution and numerical data for the Gotthard Base tunnel: (a) Ground reaction curve; and (b) Distributions of normalised displacement and
stresses.
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sq ¼ sr �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ssci2 �mscisr

q
(20)

where sci is the unconfined compression strength of the intact
geomaterial (e.g. rock); andm and s are the dimensionless material
constants, and the value of s varies from 1 indicating intact rock to
0 representing heavily fractured rock with zero tensile strength
(Eberhardt, 2012).

In order to describe the brittle-plastic behaviour of rock, the
strength parameters are assumed to drop suddenly to their residual
Fig. 7. Results of rigorous MohreCoulomb solution at state of convergence compared with s
with cohesion; (b) Error of cavity displacement with cohesion; (c) Error of cavity displacem
values after yielding. Thus, the failure criterion has the following
expression:

sq ¼ sr �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0sci2 �m0scisr

q
(21)

where s0 and m0 are the residual HoekeBrown constants. Fig. 8
shows the schematic of yield criterion and stressestrain relation
for the brittle HoekeBrown medium.

Similarly to the MohreCoulomb solution, for determination of
the elasto-plastic boundary (r ¼ c), Eq. (20) is adopted to calculate
mall-strain and approximate large-strain solutions: (a) Variation of cavity displacement
ent with friction angle; and (d) Error of cavity displacement with dilation angle.



Fig. 8. (a) Yield criterion and (b) stressestrain relation for brittle HoekeBrown
medium.
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sr;c, sq;c and c0=c together with the distributions in the elastic re-
gion. Combining equilibrium equation (Eq. (1)) and residual stress
condition in the plastic region (Eq. (21)) leads to

1

�k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0sci2 �m0scisr

p dsr ¼ 1
r
dr (22)

Applying the continuity of the radial stress at the elasto-plastic
boundary, the spatial integration over the interval between r and c
gives

sr ¼ sr;c þD1 ln
c
r
� D2ln

2
�c
r

�
(23)

where

D1 ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0sci2 �m0scisr;c

q
; D2 ¼ k2m0sci

4

Substituting the differentiation form of Eq. (23) into the equi-
librium equation, we have

sq ¼ sr;c �D1

k
þ
�
D1 þ

2D2

k

�
ln
�c
r

�
� D2ln

2
�c
r

�
(24)

Together with the inequality of lnðc =rÞ < D1=ð2D2Þ based on the
unloading condition, the boundary condition of Eq. (23) for r ¼ a
yields the relation between c=a and cavity pressure sr;a:

c
a
¼ exp

2
4 D1

2D2
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
D1

2D2

�2

� sr;a � sr;c
D2

s 3
5 (25)

The non-associated flow rule (Eq. (16)) is again employed for the
large-strain analysis, and substitution of Eqs. (3), (23) and (24) leads
to the following historical-integrated expression:

r0
kbdr0 ¼ ckbþ1D3

�r
c

�D4þD5 ln
�

r
c

�
d
�r
c

�
(26)

where

D3 ¼ exp
�
D1D7

k
� ðD6 þ D7Þ

�
sr;c � s0

	�

D4 ¼ kbþ D1D6 þ D1D7 þ
2D2D7

k
D5 ¼ D2D6 þ D2D7

D6 ¼ 1� n2ð2� kÞ
E

�
1� bkn

1� nð2� kÞ
�

D7 ¼ 1� n2ð2� kÞ
E



kb½1� nðk� 1Þ� � kn

1� nð2� kÞ
�

The spatial integration of Eq. (26) within the range of r ¼ a and
r ¼ c is expressed as
ckbþ1 ¼ a0kbþ1

ðc0=cÞkbþ1 � ðkbþ 1ÞD3D8

(27)

where

D8 ¼
Z1
a=c

xD4þD5 ln xdx

where D8 is a constant for a known value of a=c. The calculation
procedure is therefore suggested to be cavity pressure-controlled
with a given sr;a, and Eq. (25) provides the magnitude of c=a.
Note that the cavity pressure needs to satisfy the following
inequality sr;a < minfssci =m; s0sci =m0g according to the yielding
creteria. The value of c is then solved by Eq. (27), following by the
calculation of c0 and a. In terms of the distributions of r and r0,
integration of Eq. (26) between ½r; c� leads to

c0kbþ1 � r0kbþ1

kbþ 1
¼ ckbþ1D3

Z1
r=c

xD4þD5 ln xdx (28)

The following expression rewritten from Eq. (26) is used for
calculation of radial strain:

dr
dr0

¼ r0kb

ckbD3

�
r
c

�D4þD5 ln
�

r
c

� (29)

It is noted that the rigorous large-strain solutions presented in
this paper provide a general approach for cavity contraction prob-
lems, which is also applicable to other sophisticated constitutive
models for geomaterials.

An example of cylindrical cavity in HoekeBrown criterion is
provided with the following parameters: sci ¼ 50 MPa, mi ¼ 10,
GSI ¼ 45, D* ¼ 0 (D* ¼ 0 for undisturbed in situ rock and D* ¼ 1
for highly disturbed rock; a* ¼ 0:5 is assumed according to the
original HoekeBrown criterion). According to Hoek et al. (2002),
the HoekeBrown constants are given with m ¼ 1:4026 and s ¼
0:0022; assuming that the residual parameters are half of the
magnitudes, i.e. m0 ¼ 0:7013 and s0 ¼ 0:0011. For best fitting of
the HoekeBrown criterion with the MohreCoulomb parameters,
the derived cohesion and friction angle are as follows:
C ¼ 12:14 kPa and f ¼ 37:2�.

Fig. 9a shows the comparison of HoekeBrown and equivalent
MohreCoulomb criteria, as well as the residual HoekeBrown fail-
ure criterion. The cavity contraction-pressure curves, representing
the GRC or convergence-confinement curve, are presented in
Fig. 9b, together with the rigorous elastic solution. Owing to the
similarity of failure criterion, both HoekeBrown and Mohre
Coulomb materials yield to their plastic state when the cavity
pressure is reduced to approximately 0:29s0. Although the ultimate
cavity convergences are comparable, it is obvious to notice the
difference on the revolution of confinement-convergence. When
considering the residual parameters after yielding, the cavity
displacement is built upwith contraction, as well as the sudden loss
of tangential stress at the elasto-plastic boundary (Fig. 9c). Both
radial and tangential strains at the cavity wall are provided in
Fig. 9d, indicating the effects of plasticity and residual strength.



Fig. 9. Cylindrical results of rigorous HoekeBrown (HB) solution compared with MohreCoulomb (MC) solutions: (a) Comparisons of yield criteria; (b) Development of cavity
displacement with contraction; (c) Development of tangential stress at cavity wall with contraction; and (d) Development of radial and tangential strains at cavity wall with
contraction.
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6. Results of deep tunnel convergence with support

While the analysis of cavity contraction can be directly adopted to
obtain the GRC of a deep tunnel, supporting structure is typically
installed to prevent the over large deformation after excavation.
Similarly, the tunnel lining is reasonablyassumedas a cylindrical ring,
experiencing an increase of pressure from zero at the outer boundary
transmitting from the surrounding geomaterial. The tunnel lining
structure is equivalently treated as elasticmaterial with El and nl. The
outer and inner boundaries of the deformed lining are defined as al
andbl, respectively. Thus, the thicknessof lining is tl ¼ al � bl.When
the load is transmitted onto the lining, with the aid of small-strain
assumption, the stiffness of lining is approximately defined as

ksn ¼ srjr¼al
ujr¼al

al ¼
El
�
al

kþ1 � bl
kþ1

�
ð1þ nlÞ

�
1�2nl

1þðk�1Þnlal
kþ1 þ 1

kbl
kþ1

� (30)

When the thickness of lining is small enough compared to the
tunnel diameter (tl � al), the stiffness for cylindrical lining is
simplified as
ksnz
El tl�

1� nl
2
	
al

(31)

The derived lining stiffness determined the slope of the SCC, in
combination with the GRC. The start of SCC represents the time or
location of lining installation after excavation. As the lining instal-
lation is closed to the tunnel face, the tunnel convergence before
support ur;d is comparable to the displacement based on spherical
cavity contraction ur;sph. When the installation is located at some
distance behind the face, it is reasonable to set ur;d > ur;sph. How-
ever, tunnel convergence might be smaller than the estimated
displacement when the advance support technique is applied.
Therefore, with the aid of combined spherical-cylindrical cavity
contraction solutions, a lining installation factor x is introduced
here to indicate the time of lining installation at the tunnel face,
noting that ur;d ¼ xur;sph. The stress release coefficient is thus
defined as

ld ¼ ur;d
ur;cyl

¼ ur;sph
ur;cyl

x (32)



Fig. 10. Results of tunnel convergence with support: (a) Predicted GRC and SCC; (b) Plastic region at convergence with and without support; (c) Variation of plastic region at
convergence with lining stiffness; (d) Variation of cavity displacement at convergence with lining stiffness; and (e) Variation of cavity pressure at convergence with lining stiffness.
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where ur;max is the radial displacement at convergence without
support; and ur;cyl is the calculated radial displacement at conver-
gence without support for cylindrical scenario.

With the same soil parameters as last section using Mohre
Coulomb criterion, both spherical and cylindrical cavity
contraction-pressure curves are calculated, and the SCCs with
different values of lining installation factor are predicted by
assuming ksn ¼ 30 MPa, as shown in Fig. 10a. The intersections of
SCCs with the GRC are estimated as the tunnel convergence with
support. Note that the cavity pressure at convergence also indicates
the grouting pressure behind the lining. In Fig. 10b, the de-
velopments of plastic region of both spherical and cylindrical cav-
ities with contraction are shown. The convergence with support
also indicates the magnitude of plastic region, compared with the
situation without support. The parametric study, as presented in
Fig. 10cee, ascertains the effects of lining installation factor and
lining stiffness on the plastic region, cavity displacement and cavity
pressure at state of convergence with support, which contributes to
the design of deep tunnels.

Squeezing tunnel problems are critical to tunnel construction, as
time-dependent large convergence occurs during excavation. In
this study, the rate effect is considered by introducing the lining
installation factor x, which represents the cavity deformation dur-
ing the stage between excavation and support. However, determi-
nation of x requires empirical evaluation, and further development
on cavity contraction solutions with rate-dependent constitutive
models would give detailed analytical illustration. It should also be
noted that anchors and/or cables are typically used to support deep
tunnels in cooperation with bolt-concrete supports. The sur-
rounding rock loose circle supporting theory is suggested to esti-
mate the equivalent inner layer with supporting structures, after
Dong and Song (1994). This method can provide accurate and
rapid determination of equivalent thickness of loose circle, and this
layer is thus taken as the supporting layer for the design of deep
tunnels.

The proposed rigorous large-strain cavity contraction solutions
provide benchmarks for analyses of deep tunnel convergence in
geomaterials. The elastic solution applies for preliminary stability
analysis, and it is also suitable for tunnels with strict requirements
on deformation. The elastic analysis could be extended to under-
ground structures including lining layers. The MohreCoulomb so-
lution employs the classical MohreCoulomb yield criterion and
non-associated flow rule, and has wide applications for tunnels in
typical soils under essentially monotonic loading. For tunnels in
rocks, the HoekeBrown solution is suggested, which adopts a
nonlinear yield criterion. The brittle effect is more preferable to
breakable rocks or soils with obvious softening. However, the
limitations need to be mentioned for applications. The solutions
assumed the geomaterials as homogenous and isotropic, and tun-
nels in layered soil need further considerations on the layering
profile. Shallow embedded tunnel also requires investigation on the
surface effects. The current analyses focused on the rate-
independent behaviour of geomaterials, whereas the dynamic
and rheological phenomenon may be important for tunnels in soft
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geomaterials. In terms of tunnel geometry, solutions should be
modified accordingly for rectangular, elliptic or other irregularly
shaped tunnels.

7. Conclusions

Rigorous large-strain solutions of unified spherical and cylin-
drical cavity contraction in linearly elastic, non-associated Mohre
Coulomb, and brittle HoekeBrown media are proposed in this pa-
per, which provide a general approach for solutions using other
sophisticated geomaterial models and benchmarks for analytical
developments and numerical analyses of underground excavation.

The approximation error showing the discrepancy between the
previous and current solutions indicates the necessity of release of
small-strain restrictions for estimating tunnel convergence profiles.
Stiffness degradation and higher stress condition for deep tunnels
result in reduction of stiffness ratio, which shows considerable er-
rors for elastic scenarios. The GRC is therefore predicted by rigorous
solutions, describing the volume loss and stress relaxation around
the tunnel walls, as well as the SCC of the installed lining around
the opening face.

The stiffness of circular lining is calculated from the geometry
and equivalent modulus of the supporting structure, and a lining
installation factor is introduced to indicate the time of lining
installation based on the prediction of spherical cavity contraction
for tunnel face. The parametric studies thus ascertain the effects of
material properties, lining stiffness and lining installation factor on
the stress/strain evolutions, generated plastic region and ground-
support interaction, during the incremental procedure of confine-
ment loss.
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List of symbols

A;An;D1�8;h;m;9;g Auxiliary variables in derivation
a0;a Initial and current cavity radii, respectively
al;bl Outer and inner boundaries of the deformed lining,

respectively
C Cohesion
c0;c Initial and current radii of the elasto-plastic boundary,

respectively
D Lagrangian derivative for a given material element
D* Rock factor on the degree of disturbance
d Eulerian derivative for material at a specific moment
E Young’s modulus
El; nl Elastic parameters for tunnel lining
G Shear modulus
GSI Geological strength index
k Parameter for integration of cylindrical (k ¼ 1) and

spherical (k ¼ 2) cavities
ksn Stiffness of lining
m; s Constants for HoekeBrown material
m0; s0 Residual constants for HoekeBrown material
mi Material constant for the intact rock
p;q Mean and deviatoric stresses
r0; r Initial and current radius of an arbitrary material element
tl Thickness of lining (¼ al � blÞ
ur Displacement of an arbitrary material element (¼ r� r0)
Y;a Constants for MohreCoulomb material
b Constant for non-associated flow rule
ld Stress release coefficient
n Poisson’s ratio
x Lining installation factor
s0 Initial hydrostatic stress condition
sci Unconfined compressive strength of the intact rock
sr ;sq Radial and tangential stresses, respectively
sr;a Cavity pressure, radial stress at cavity wall
sr;c;sq;c Radial and tangential stresses at the elasto-plastic

boundary, respectively
sz Intermediate stress
εp; εq Volumetric and shear strains, respectively
εr ; εq Radial and tangential strains, respectively
f Friction angle
c Auxiliary variable for transformation between Eulerian

and Lagrangian descriptions
j Dilation angle
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