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Abstract: This paper presents a novel Fast Nonlinear Model Predictive Control approach for a parallel double inverted pendu-

lum. The approach uses dual mode closed-loop predictions to obtain numerically robust optimal solutions. Moreover, it uses the

Real-Time Iteration Scheme to reduce the computational burden and achieve real-time performance. Furthermore, two main mod-

ifications are proposed which significantly improve the performance of the RTI Scheme in the presence of large disturbances,

namely; additional energy-based costs, and a hybrid switching scheme. Finally, the approach is combined with an Online System

Identification scheme to address parameter uncertainty, and with an Extended Kalman Filter for state-estimation. The resulting

performance is validated through both simulations and experimental results.

1 Introduction

Nonlinear Model Predictive Control (NMPC) is an advanced optimal
control strategy able to handle complex and constrained nonlin-
ear dynamic systems [1]. Although NMPC has a long history of
development, its deployment had been restricted to the process in-
dustry where relatively slow processes allowed time to compute the
required control algorithms [2]. However, recent progress in com-
puting performance has enabled its application in many systems
through the use of efficient solutions [1, 3, 4]. One of the most
successful and popular approaches for fast NMPC is the Real-Time
Iteration (RTI) Scheme, originally developed in [5]. Its efficiency
is based on the fact that NMPC is required to succesively solve
Optimal Control Problems (OCP) which are closely linked to each
other [1]. An excellent tutorial-like paper detailing the main dif-
ferences between the RTI NMPC and standard NMPC is given in
[1]. Moreover, the efficiency of the overall approach depends largely
on how the algorithms are programmed, as well as the platforms
in which they are deployed, e.g. using embedded hardware such as
field-programmable gate-arrays (FPGA) [6]. To address this, several
toolkits containing efficient autogeneration routines are available
such as the ACADO toolkit [3], VIATOC and CasADi [7], to name
a few. Furthermore, the underlying optimisation may be solved us-
ing simultaneous or sequential approaches which lead to sparse or
condensed OCPs. Authors from [4] concluded condensing based ap-
proaches are faster for small to medium systems, whereas sparse
solutions give better overall performance for large scale optimi-
sations and deal better with unstable systems [8]. Finally, direct
methods are commonly used to discretise the problem, typically by
using multiple or single-shooting discretisations [8, 9].

The (double) inverted pendulum is a complex multivariable non-
linear system that presents many challenges such as input-output
constraints as well as underactuated, unstable and non-minimum
phase dynamics [10]. For this reason, it has been used extensively
for benchmarking of NMPC, though mostly for simulation works
such as [1, 3, 7], and similar systems such as cranes studied in [6].
Nonetheless, experimental contributions have been achieved in [10–
12], and furthermore discussed within. In [10], a triple pendulum
swing up was achieved by using a two-degrees of freedom control
structure which used offline optimisation to compute a feedforward
trajectory, and a feedback controller to stabilise the system along
it. In [11], a fast NMPC scheme for a twin parallel pendulum was
developed which used a control-parameterisation where the decision

variable was able to take only 3 possible values. Finally, authors from
[12] presented a NMPC for a single inverted pendulum.

In this paper we propose a novel condensed single-shooting Dual
Mode NMPC based on the RTI Scheme for a parallel double in-
verted pendulum, which differs from all previous works such as
[1, 3, 7, 10–12] for the general inverted pendulum problem. The
proposed approach cancels the unstable dynamics of the inverted
pendulum through the use of closed-loop predictions [13] leading to
numerically robust solutions when compared to the standard NMPC.
Moreover, we propose two main modifications to improve the per-
formance of the RTI Scheme in the presence of large disturbances,
namely; additional energy related costs, and a hybrid switching
scheme. Finally, the entire scheme is combined with an Online Sys-
tem Identification (OSI) algorithm based on Recursive Least Squares
(RLS) and Delta Modeling approaches, to address parameter uncer-
tainty. The whole approach is validated through both simulations and
experimental results. The benefits when compared to [10, 11] were
faster performance, and the use of online optimisations, thus allow-
ing large disturbances and model updates. A video of the resulting
performance can be found at (https://youtu.be/7E-SXi3YKQo), and
the data of the experiments is available in [14] along with a C++
code implementing the approach using the EIGEN library.

The paper is organized as follows: Section 2 introduces the math-
ematical models of the pendulum along with a discretisation scheme.
Section 3 presents a detailed derivation of the proposed dual-mode
fast NMPC approach based on the RTI Scheme along with the two
aforementioned modifications required to improve the RTI perfor-
mance, which overall represent the main contribution of the paper.
Sections 4 and 5 present Extended Kalman Filter (EKF) and OSI
frameworks used for this work without a detailed derivation as both
are well known in the literature. Section 6 presents the details of the
experimental setup and discusses the experimental results of the pro-
posed approach. Finally, section 7 presents conclusions, summarizes
the contribution of the paper and describes future work.

2 Mathematical Modeling

In this section we present the equations of motion for the parallel
double inverted pendulum depicted in figure 1 based on the assump-
tion that the pendulums’ will have negligible effect on the cart.
Moreover, a discretization of the system is presented based on a
backward-forward euler scheme which will be used for the NMPC,
EKF and OSI, presented in the following sections.
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Fig. 1: Diagram from [11]

2.1 Equations of Motion

The equations of motion for the double inverted pendulum can be
derived by using Lagrange formalism [10]. As this is well known,
this paper uses the model from [11] with additional friction terms,
given by (1a) and (1b).

p̈ = fmṗ+ ku (1a)

θ̈i = aiθ̇i + bi sin θi + ci cos θi (fmṗ+ ku) (1b)

∀i = [1, 2]

where p is the position of the car; u is an input signal to the system
which in this case is a Pulse Width Modulated (PWM) signal for
the motor driver; k is a constant that relate the PWM with the force
and mass of the system; θi are the angles of the pendulum; fm and

ai are viscous friction constants; bi = (milig)/(mil
2
i + Ii) are the

pendulums’ gravity related terms; ci = bi/g are the acceleration-
torque related constants; g is the gravity constant; and mi, li, Ii,
are the mass, length and moment of inertia of each pendulum, re-
spectively. In this paper the relevant coefficients of the model will
be found by the online system identification algorithm presented in
section 5. Note that the sign of certain coefficients might be subject
to the specific experimental setup depending on orientation, e.g. pos-
itive cart motion to the left or positive angle rotation CCW, however,
all the viscous friction constants (fm and ai) must always be nega-
tive. Moreover, it should be noted that thought counter-intuitive, the
lengths of the arms should be different to achieve better controlla-
bility of the system [11], particularly in the presence of noise which
causes a significantly increasing amount of input shattering as the
lengths become closer. This was validated through simulations to
select appropriate length differences for out particular system.

This model is valid for our particular experimental setup given
two conditions are true; both pendulum’s masses are much lower
than the cart, and the motor driver used has a regenerative breaking
feature which further cancels out any possible uncontrolled move-
ment of the cart. In the case where the cart motion is indeed affected
by the pendulum’s motion, a subordinate controller can be developed
to cancel this effects as in [10], or the full nonlinear model can be
included in the general NMPC framework as it has been shown in
[3].

2.2 Discretization

This paper uses a “direct approach” which requires to “first dis-
cretize, then optimise” [6]. Thus, we now look to discretize the
equations of motion (1a) and (1b) which will allow us to simulate
and linearize the system for both NMPC and EKF frameworks. This
can typically be done using some form of integration method such
as explicit Euler method or explicit Runge Kutta methods [1].

For this work, a forward Euler method was considered at first,
following similar works as in [10, 12], however, based on the ob-
servation that only position and angles are measured by the system,
this scheme was modified to a forward-backward euler scheme in-
cluding an extra previous input uk−1, thus augmenting the state to
obtain a Non-Minimal State Space (NMSS) [15]. This was moti-
vated by observing that the position dynamics (1a) clearly represent
a linear second order model which is known to have an exact ZOH
discretization of the form:

pk+1 = a1pk − a2pk−1 + b1uk + b2uk−1 (2)

which considering the backward euler approximations:

ṗk =
yk − yk−1

Ts
p̈k+1 =

ẏk+1 − ẏk
Ts

(3)

results in the following position acceleration model:

p̈k+1 = fmṗk + k1uk + k2uk−1 (4)

where fm, k1, and k2 are some equivalent coefficients after combin-
ing equations (1a), (2) and (3).

Similarly, considering the backward euler approximations:

θ̇ik =
θik − θik−1

Ts
θ̈ik+1 =

θ̇ik+1 − θ̇ik
Ts

(5)

and giving a forward-euler step in equation 1b combined with the
position acceleration model (eq. 4) results in:

θ̈ik+1
= aiθ̇ik + bi sin θik + ci cos θik (fmṗk + k1uk + k2uk−1)

(6)

∀i = [1, 2]

Combining equations (3-6), and considering the state xk =
[p, θ1, θ2, ṗ, θ̇1, θ̇2, uk−1]k, the simulation step is then given as,

xk+1 = xk + Tsf(xk, uk) (7a)

f(xk, uk) =
[

fTup, f
T
down, (uk − uk−1)/Ts

]T
(7b)

fup =





ṗk + Tsf1
θ̇1k + Tsf2
θ̇2k + Tsf3



 fdown =





f1
f2
f3



 (7c)

f1 = fmṗk + k1uk + k2uk−1 (7d)

f2 = a1θ̇1k + b1 sin θ1k + c1 cos θ1kf1 (7e)

f3 = a2θ̇2k + b2 sin θ2k + c2 cos θ2kf1 (7f)

where Ts is the sampling time. It is noted that the last term of func-
tion (7b) was only used to represent the propagation of the input
x7k+1

= uk = uk−1 + Ts(uk − uk−1)/Ts and doesn’t represent,
in any way, a “derivative of the input” u̇k = (uk − uk−1)/Ts which
would lead to a completely different integration scheme if more
intermediate steps were computed [1].

This discretisation differs slightly from the standard forward euler
method in the sense that the latter would compute a forward-euler
step on the higher derivative states (p, θ1, θ2). However, as stated
previously, given only position and angle’s measurement were avail-
able, the backward euler approximations (3 and 5) were used instead
to use the latest information of the system. Moreover, it would only
take into account uk for simulation purposes. Nonetheless, this mod-
ification was observed to produce much better predictions in an
offline analysis of the system identification process for both, position
and angle dynamics, and in fact, increasing the number of previous
input terms uk−j was be able to improve them even further, possi-
bly given that it accommodates some unmodeled higher order motor
dynamics which are known to be at least 2nd order in the angular ve-
locity; 3rd order in the angular position; which can be accounted for
using convolution/FIR models. However, the system was observed to
get good performance whilst only including 2 previous input terms,
uk and uk−1.
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3 Nonlinear Model Predictive Control

In this section, a Dual Mode NMPC scheme based on the closed-loop
paradigm [16] is proposed to cancel the open-loop unstable dynam-
ics of the double inverted pendulum for numerical robustness of the
optimisation. Furthermore, to enable real-time performance, the op-
timisations are performed within the RTI Scheme which allows the
constrained optimisation to be solved within the microsecond range
[6]. Finally, a modification to the standard cost used for inverted
pendulum control is proposed based on energy considerations along
with a hybrid switching scheme which overall significantly improves
the convergence of the algorithm, particularly for large disturbances,
a situation where the assumptions for local-asymptotic closed-loop
stability of the RTI Scheme are lost. Simulations are presented along
the section to illustrate the significance of the proposed approach.

3.1 Stable Predictions and Optimization

In this paper we are looking to optimise the system performance
along a given prediction horizon Np by minimizing the cost function
(8), defined as,

J =
1

2
(Yr − Ŷ )TQ(Yr − Ŷ ) +

1

2
ÛTRÛ s.t (8a)

x̂k = x0 (8b)

x̂k+i|k = f(x̂k+i−1|k, ûk+i−1|k) (8c)

ŷk+i|k = g(x̂k+i|k) (8d)

Umin ≤ Û ≤ Umax (8e)

Ymin ≤ Ŷ ≤ Ymax (8f)

where xk ∈ R
nx , uk ∈ R

nu and yk ∈ R
ny are the states, inputs

and outputs of the system, respectively; the notation “k + 1|k” reads
“predicted value at k + 1 considered at sample time k”, and will only

be used in full when needed for clarity; Q > 0 ∈ R
Npny×Npny

and R > 0 ∈ R
Npnu×Npnu are positive-definite matrices for pe-

nalising output-errors and inputs, respectively, typically selected as
Q = blkdiag([qk+1, qk+2, . . . , qk+Np

]) where qk+Np
is typically

referred to as the terminal weight, and R = ruI
Npnu×Npnu ; Yr =

[rTk+1, r
T
k+2, . . . , r

T
k+Np

]T ∈ R
Npny , Ŷ = [ŷTk+1, ŷ

T
k+2, . . . , ŷ

T
k+Np

]T

∈ R
Npny , Û = [ûTk , û

T
k+1, . . . , û

T
k+Np−1]

T ∈ R
Npnu are refer-

ences, outputs and inputs column-vectors, respectively; (8b) is the
initial condition; (8c) are the state dynamics; (8d) is the function
that relates the output with the states; (8e) are the input con-
straints; and (8f) are the output constraints. For our particular system,
the outputs are typically selected as in [1, 10, 12] as yk+i =
[ṗ, θ̇1θ̇2, p, θ1, θ2]k+i (ny = 6), and the references are selected as
rk+i = [0, 0, 0, pr, θ1r , θ2r ]k+i.

Remark 1. Stability of the resulting closed-loop system can be typi-
cally ensured by having long horizons with zero-terminal constraints
and/or proper terminal weights [6].

Cost function (8) for system (7a) represents a non-convex Nonlin-
ear Programming (NLP) problem which is difficult to solve. Sequen-
tial Quadratric Programing (SQP) is a popular alternative where the
cost is linearised at a given point to formulate a linearized Quadratic
Program (QP) and find an optimal search direction, typically based
on the Newton method, that eventually drives the solution to the local
optimal. Notice in the case of predictive control, future state trajecto-
ries x̂k+i required for the linearisation are only defined after a given
input trajectory ûk+i−1 has been applied through the state dynamics
(8c) with the initial condition (8b). A workaround to this are shooting
methods which use an “initially guessed” nominal input trajectory,

Ū = [ūTk , ū
T
k+1, . . . , ū

T
k+Np−1]

T ∈ R
Npnu to generate nominal

state and output trajectories, X̄ = [x̄Tk+1, x̄
T
k+2, . . . , x̄

T
k+Np

]T

∈ R
Npnx and Ȳ = [ȳTk+1, ȳ

T
k+2, . . . , ȳ

T
k+Np

]T ∈ R
Npny , respec-

tively, by simulating the system with Ū using initial condition (8b)
and state dynamics (8c).

The standard NMPC single-shooting approach would linearise
the system along this resulting trajectories with a first order Tay-
lor Series on the state dynamics, the output-state function, and the
input. However, given the open-loop unstable dynamics of the in-
verted pendulum in its upright equilibrium, closed-loop dual mode
prediction models were motivated [16]. The linearised model at a
given time step k is then given by,

x̂k+1 = x̄k+1 + δx̂k+1 = x̄k+1 +Akδx̂k +Bkδûk (9a)

ŷk = ȳk + δŷk = ȳk + Ckδxk (9b)

ûk = ūk + δuk = ūk −Kkδxk + δĉk (9c)

where Kk is a stabilizing gain obtained from solving the Time-
Varying Discrete Algebraic Ricatti Equation (DARE) backwards in
time along the nominal state trajectory using the same Q and R
weights as in [10], and:

Ak =
∂f(x̂k, ûk)

∂x̂k

∣
∣
∣
∣x̂k=x̄k

ûk=ūk

Bk =
∂f(x̂k, ûk)

∂ûk

∣
∣
∣
∣x̂k=x̄k

ûk=ūk

(10a)

Ck =
∂g(x̂k)

∂x̂k

∣
∣
∣
∣
x̂k=x̄k

(10b)

Notice this dual-mode prediction model differs from common
dual-mode schemes in the sense that standard methods would se-
lect a gain K, typically a constant one, which stabilizes the system
to the origin when the system is in the terminal region [17]. In con-
trast, our approach uses dual-mode closed loop models to stabilize
the predictions and achieve better numerical performance as in [13].
This is because we aim to deal with the situation when the system is
not in the terminal region, and finding a stabilizing gain that does the
swing up whilst satisfying the constraints is, in general, not a trivial
task for our system.

By substituting δûk = −Kkδx̂k + δĉk from (9c) in (9a), a stable
state deviation model can be obtained as,

Φk = Ak −BkKk (11a)

δx̂k+1 = Φkδx̂k +Bkδĉk (11b)

Propagating model (11b) Np steps forward starting from an initial
state mismatch δx0, leads to the following predictions matrices for

all future inputs and outputs, Û and Ŷ , are condensely represented
by,

Ŷ = Ȳ + δŶ = Ȳ +Gδx0 +HδĈ (12a)

Û = Ū + δÛ = Ū +Dδx0 + FδĈ (12b)

where δx0 = x0 − x̄0 is the initial condition mismatch which forms
a part of the RTI Scheme, δĈ are now the decision variables,

G =








g1
g2
...

gNp








H =









h1,1 0 · · · 0

h2,1 h2,2
. . .

...
...

. . .
. . . 0

hNp,1 hNp,2 . . . hNp,Np









(13a)

D =








d1
d2
...

dNp








F =









Inu 0 · · · 0

f2,1 Inu
. . .

...
...

. . .
. . . 0

fNp,1 fNp,2 . . . Inu









(13b)
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where Inu is a nu × nu identity matrix, G ∈ R
Npny×nx , H ∈

R
Npny×Npnu , D ∈ R

Npnu×nx , F ∈ R
Npnu×Npnu , and

gi = Ci

x

i−1∏

k=0

Φk (14a)

hi,j =







CiBj−1, i = j

Ci

[
x

∏i−1
k=jΦk

]

Bj−1, i > j
(14b)

di =







−Ki−1, i = 1

−Ki−1

x
∏i−2

k=0Φk, i > 1
(14c)

fi,j =







−Ki−1Bj−1, i = j + 1

−Ki−1

[
x

∏i−2
k=jΦk

]

Bj−1, i > j + 1
(14d)

∀i = [1, Np] ∀j = [1, Np]

Substituting the stable linearized prediction models (12) in (8) and

rearranging in terms of the decision variable δĈ to obtain the
standard QP format gives;

J =
1

2
δĈTEδĈ + δĈT f + const s.t. (15a)

E = HTQH + FTRF (15b)

f = −
[

HTQ(Yr − Ȳ −Gδx0)− FTR(Ū +Dδx0)
]

(15c)

MδĈ ≤ γ (15d)

M =






F
−F
H
−H




 γ =






Umax − Ū −Dδx0
−(Umin − Ū −Dδx0)
Ymax − Ȳ −Gδx0

−(Ymin − Ȳ −Gδx0)




 (15e)

with E known as the Hessian, f typically referred as the linear term,
and M and γ are the constraint matrix and vector, respectively. No-

tice equations (8b), (8c) and (8d) are implicit in the linearisation of Û
and Ŷ . Moreover, note the not all the outputs may be required to be
constrained which can be done by selecting (or computing) only the
relevant rows of M and γ. In our particular system, only the position
outputs will be constrained.

By derivating (15a) w.r.t. the decision variable δĈ and equating to

zero ( ∂J
∂Ĉ

= 0), the well known unconstrained solution can be found

to be δĈ = −E−1f . For constrained solutions, any QP solver can

be used to compute the optimal deviation δĈ after having defined
E, f,M, γ. For our experiments, an efficient version of the active-
set based primal-dual Hildreth’s QP found in [15] was used given
its simplicity and its ability to be hot-started which is required for
achieving fast implementation of the overall scheme. After solving

the optimisation, the corrected input Û can then be recovered by
(12b). Only the first input is applied to the system and the process is
repeated which is the well known “receding horizon” strategy [11].

3.1.1 Stability and Numerical Robustness: Because this

model produces the exact same predictions for a given δÛ =
Dδx0 + FδĈ than using the standard model without the stable pre-

dictions, and because δÛ can always be calculated exactly through

the inversion of F which is always invertible, the solution for Û
is exactly the same as the one given by the standard approach
using unstable predictions, and therefore presents the exact same
stability and convergence properties of the standard single-shooting
approach. The benefit of it is that the predictions matrix H is now

stable w.r.t the decision variable δĈ which leads to a numerically
robust Hessian inversion required by the optimisation. This allows
the prediction horizon to be increased as much as required with-
out sacrificing numerical robustness. For reference, in our particular

system, the condition number (c.n.) of the Hessian at the upward
equilibrium when using the proposed approach was around the unit

magnitude (Ec.n. = 2.5× 100); the c.n. without using the approach

was (Ec.n. = 5× 106), 6 orders of magnitude larger which indeed
shows severe numerical issues given it comes close to singular as the
c.n. increases.

Finally, for the interest of the reader, the standard NMPC con-
densed single-shooting solution can be recovered by enforcing
Kk+i = O, ∀i = [0, Np − 1] which would then use the unstable
predictions.

3.2 Real Time Iterations

Ideally, the fully converged NMPC would relinearize cost function

(8) until no deviation is required δĈ = O [1]. However, this is not
computationally tractable in practice given one must give a solu-
tion at every time-step within the available time and avoid solving
a problem that is only “getting older” [9]. A very successfull and
popular approach to address this is to use the Real-Time Iteration
(RTI) Scheme which exploits the fact that NMPC is required to suc-
cessively solve optimisations which are closely related to each other.
The method benefits from the fast contraction rate of Newton-type
optimisations and achieves convergence of the solution “on the fly”,
using the current predictions and measurements rather than through
offline reference trajectories [1]. The overall RTI Scheme is based
on three well defined strategies.

3.2.1 Initial Value Embedding (IVE): The input trajectory ob-

tained in the previous sampling Ûk = [ûTk|k, û
T
k+1|k, · · · , û

T
k+Np−1|k]

T

is used in a shifted version to hotstart the solution in the
next sampling time, typically by duplicating the last value

Ûk+1 = [ûTk+1|k, û
T
k+2|k, · · · , û

T
k+Np−1|k, û

T
k+Np−1|k]

T . More-

over, in the case of active-set based QP, the lagrange multipliers λ
related to the constraints of the optimisation can also be used for
hotstarting the QP in a shifted version.

3.2.2 Single SQP: Only a single linearisation of the QP is per-
formed given the solution is hotstarted from the previous solution
which is expected to be close. In the case where the previous so-
lution was indeed close to the optimal solution and no significant
disturbances have entered the system, this approach can be proved
to have nominal local-asymptotic closed-loop stability [18]. In gen-
eral, the solution is not given exactly but as an approximation that
decreases the sub-optimality of cost J at each iteration. Moreover,
one must be satisfied with finding a local minimum, and the solu-
tion will be subject to small approximation errors given only one
re-linearisation is done.

3.2.3 Computation Separation: In order to avoid the delay re-
lated to the computations required by the optimisation, we divide
them into a preparation and a feedback phase. A timing diagram that
illustrates this is given in [1].

1.Preparation Phase: Uses a predicted nominal state ˆ̄xk+1|k obtained
with the current input and states to compute the matrices E,M and
vectors f, γ required by the optimisation assuming δx0 = 0.

2.Feedback Phase: As soon as the state xk+1 becomes available, the
deviation δx0 = xk+1 − ˆ̄xk+1|k is used to complete the calculation

of f and γ and the optimal correction δÛ to the current trajectory Û .

A slight modification was implemented in our test where, the de-
viation δx0 was only applied to the linear term f and the QP was
iterated assuming δx0 = 0 to find the active set λ before the state
xk+1 was available. By doing so, the solution is now given by

(16), which allows the preparation phase part (Ûpre−computed)
to be pre-computed prior to the arrival of the measurement, and

only the feedback correction Û = Ū − Ûpre−computed −Kxδx0
is required to be computed when the state becomes available, with
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Kx = FE−1(HTQG+ FTRD)−D.

Û = Ū +

Feedback Phase
︷ ︸︸ ︷

Dδx0

−FE−1







Unconstrained
︷ ︸︸ ︷

−(HTQ(Yr − Ȳ )−RŪ)

Constrained
︷ ︸︸ ︷

+MTλ
︸ ︷︷ ︸

Preparation Phase ( Ûpre−computed)

+(HTQG+ FTRD)δx0
︸ ︷︷ ︸

Feedback Phase





(16)

This modification completely removes the time-delay related to
the iterations of the QP required to be done by the standard RTI in
the feedback phase. By including this term δx0 in the linear term f ,
the stability characteristics of the overall RTI Scheme are preserved,
however, given the term is ignored for the calculation of the con-

strained correction E−1MTλ, the system may present small output
constraint violations depending on how large is the deviation from
the predicted state at a given time. However, this modification is jus-
tified considering that feasibility guarantees for output constraints
in the presence of disturbances are, in general, difficult to achieve
without using robust approaches or slack variables (soft-constriants)
which are outside the scope of this paper. Nonetheless, the system
presented excellent performance in constraints satisfaction as it will
be seen in the experimental results presented in section 6.

3.3 Improving RTI NMPC Performance

A mayor issue with the RTI Scheme is that the solution might give
very poor performance whenever an abrupt change is made, e.g.,
when there is an abrupt change in the reference of the system [1],
or a large fault or disturbance enters the system, which may lead
to leaving the region of contraction of the Gauss-Newton method
and in some cases may even lead to instability of the system [6].
In these cases, the previous solution will not be close to the opti-
mal, and therefore, the method would need to quickly find a suitable
correction from the previous solution. This issue may be addressed
by adding suitable end weights and other regularity conditions [6].
However, to address this issue, this paper takes a different approach
with two main modifications to the standard approach of NMPC of
an inverted pendulum such as [1, 3, 7, 12], namely: an additional
energy based cost; and a hybrid switching scheme.

3.3.1 Energy Based Costs: Motivated by the fact that a com-
mon strategy for the swing up of the pendulum are Energy based
control laws [11], along with the fact that standard cost terms de-
fined for inverted pendulum NMPC, e.g. [1, 12], do not actually
capture the requirement of “swinging-up” but rather a more restric-
tive cost requiring the optimisation to drive the angles to a desired
reference without considering other upward equilibrium points, the
outputs and references used for the cost function (8) were modified
to include two extra terms related to the potential energy of both
pendulums Eθi = cos θi as;

yk =
[
ṗ, θ̇1, θ̇2, p, θ1, θ2, cos θ1, cos θ2

]

k
(17a)

rk =
[
0, 0, 0, pr, θ1r , θ2r , cos θ1r , cos θ2r

]

k
(17b)

Remark 2. With this modification, the optimisation now has ny = 8
outputs.

Some of the relevant properties of this added term are:

1.Boundedness: The error ek = cos θ1r − cos θ1 is always bounded at
ek = [−2, 0] for the upright position, and ek = [0, 2] for the down-
side position. This in general would make the additional term of the
linear term (f) bounded.

2.Singularity: The derivative w.r.t. the added term (Ci = − sin θi)
required by (12a) has a singularity at any Nπ multiple given the

sensitivity matrix is zero. Thus, if the system is at a steady con-
dition, e.g. all other errors zero, the optimisation would have no
sensitivity on it, therefore, not reacting or causing any movement.
Although the system can be confined inside an incorrect singularity,
if the system is started at any other sufficiently non-singular point,
the optimisation will eventually drive the solution to the desired
singularity.

By penalising the energy term much higher than the angles directly,
the optimisation is more relaxed, essentially aiming to drive the po-
tential energy of the pendulum to the desired state Eθi = cos θi →
cos θir whilst accepting swinging up in either directions. This is
because if at a given time the system cannot swing the pendulums
up in a given direction, the optimisation would naturally select the
other direction which is not the case when the standard costs are
used, and the solution was observed to be severely affected when the
system reached this infeasibility condition. After a series of simula-
tions it was concluded that imposing higher penalties on this added
terms instead of the angles directly, resulted in much better con-
vergence properties than when using the standard cost, which in
turn resulted in a larger region of contraction of the Gauss-Newton
method. Moreover, notice the stability of the resulting scheme can
still be guaranteed by imposing heavy terminal weights in the ad-
ditional terms to emulate zero-terminal constraints, even though the
sensitivity at that condition dissipates, which in turn leads to hav-
ing the original problem once the system has reached the terminal
region.

To visualize the benefits of this approach, a comparison sim-
ulation is given in figure 2 where the predicted and closed-loop
trajectories are plotted, with and without focusing on the added en-
ergy term. For clarity, the predicted responses that presented the
erratic behavior are signaled. As it can be seen from (figure 2b), the
optimisation penalizing only the angles presented mayor erratic be-
havior in the input at times 0.5 < t < 1,and significant differences
between predicted and closed-loop responses leading to ill-posed op-
timisation [16]. In contrast, the optimisation that focused effort on
the added energy-cost (figure 2a) presented smooth and much better
overall closed-loop performance.

Although this approach might not be immediately generalisable
for other control systems and applications, it is very common to
find trigonometric terms in robotics systems and mechatronic ap-
plications that arise from rotation matrices. This naturally brings the
question of whether it is better to target a desired potential energy
or an angle directly when dealing with multi-link robots. Indeed, it
is well known that the understanding of the inverted pendulum dy-
namics helped with the development of many robotic applications
nowadays, thus its generalisation to multi-link robotic problems, eg.
triple inverted pendulum in series [10], could lead to a significant
improvement in performance in a broader spectrum of applications,
particularly when using the RTI Scheme.

3.3.2 Hybrid Switching Scheme: As discussed previously, pe-
nalizing the energy-related terms lead to smoother responses. How-
ever, because of aforementioned singularity problem, if only the
energy terms are penalized instead of the angles directly, the opti-
misation would have no sensitivity to potential energy errors at the
equilibrium, and would only be sensitive to angular velocity errors.
Moreover, if a sufficiently small penalty was imposed on the angles,
the optimisation could converge to upright positions were the angle
errors were essentially ignored.

To avoid this problems whilst preserving the smoothness of the
added energy terms during the swing up phase, a hybrid approach
was used where the optimisation would switch between different
weightings depending, not only on the region in which the angles
where, but also the time that they have been there.

The hybrid switching scheme is given by;

qθi =

{

1, tlin < 2

10, tlin ≥ 2
(18)
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(a) With (b) Without

Fig. 2: Example comparison of predicted (dashed-lines) and closed-loop (thick lines) responses with (2a) and without (2b) energy

costs with parameteres defined in table (1); Ts = 0.02 (s); Np = 75; x0 = [0, 0, 0, 0, 1.51, 4.45, 0]T ; Ū0 = O (free-response); Qwith =
diag([1, 0.1, 0.1, 100, 1, 1, 10, 10]), Qwithout = diag([1, 0.1, 0.1, 100, 10, 10, 0, 0]), and R = 0.001.

where qθi is the weight of the ith pendulum angle error; and tlin is
the time that has elapsed since cos θi > 0.9, ie. the time the system
has been in the “linear” zone.

Regarding the stability of this proposed hybrid scheme, it should
be noted that both penalization terms of qθi were stable for our par-
ticular system, and the only reason for this change was to preserve
the smoothness of the system during the swing up phase. As the
change was implemented when the system was already in the ter-
minal region, the cost of both selected weights dissipated to zero
within the available horizon, which in turn made the change between
both weights stable. Essentially, the selection of this different terms
changes the frequency response of the system to a more “rigid” or
fast response for angle perturbations. Indeed, this approach could
be used for fault-tolerant applications where the system momentar-
ily has to undergo through a “softer/smoother” set of actions to bring
the system back to its target before regaining a more “reactive” state.

4 State Estimation - Extended Kalman Filter

As only position and angle measurements were available in our sys-
tem, a standard EKF was used for the purpose of state estimation. As
this is a well known method in the literature, the details of this are
omitted and only the relevant equations and steps are provided.

The EKF uses the following prediction-correction type frame-
work:

1.Prediction Step: The state, output and covariance at time k are es-
timated based on the previously estimated state and covariance as,

x̂k|k−1 = x̂k−1|k−1 + Tsf(x̂k−1|k−1, uk−1) (19a)

Pk|k−1 = Ak−1Pk−1|k−1A
T
k−1 +QEKF (19b)

where QEKF > 0 is the process noise; and Pk|k−1 is the covari-
ance matrix

2.Correction Step: As soon as the outputs of the system become
available, the correction step is then given by,

ŷk|k−1 = g(x̂k|k−1) (20a)

x̂k|k = x̂k|k−1 +KEKF

[

(yk − ŷk|k−1)
]

(20b)

Pk|k = (I −KEKFCk)Pk|k−1 (20c)

KEKF = Pk|k−1C
T
k

(

CkPk|k−1C
T
k +REKF

)−1
(20d)

where REKF > 0 is the output noise covariance matrix, and Ck =
∂g(x̂k|k−1)
∂x̂k|k−1

.

Remark 3. As system 7a is a NMSS, the input-related state (x7)
must be included in the measurement for observability. The proof of
this is out of the scope of this paper.

5 Online System Identification

In this section, an OSI scheme based on RLS with forgetting factor
combined with a Delta-Modeling approach [19] is presented. The
latter was used for the purpose of learning/adapting the parameters of
the discrete model (7a), particularly fm, k1, k2, ai, bi, ci. As this is
a well known method in the literature, the details of this are omitted
and only the relevant equations and steps are provided.

The RLS algorithm with forgetting factor (λ) is given by:

z̃k = zk −ΨTΘk|k−1 (21a)

KRLS = Pk|k−1Ψ
(

λ+ΨTPk|k−1Ψ
)−1

(21b)

Θk|k = Θk|k−1 −KRLS z̃k (21c)

Pk|k = λ−1
(

Pk|k−1 −KRLSΨ
TPk|k−1

)

(21d)

where Ψ is known as the regressors vector, Θk|k is the parameters
vector, Pk|k is a covariance matrix of appropriate dimensions, and λ
is the forgetting factor, typically selected as 0.98 < λ < 1.

For our system, the definition of Ψ, Θk|k and zk for both, position
and pendulum dynamics, are given by;

1.Position Dynamics:

Ψ = [ṗk−1, uk−1, uk−2]
T

(22a)

zk = p̈k =
pk − 2pk−1 + pk−2

T 2
s

(22b)

Θk|k = [fm, k1, k2]
T

(22c)
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2.Pendulum Dynamics:

Ψ = [θ̇ik−1
, sin θik−1

, cos θik−1
p̈k]

T
(23a)

zk = θ̈ik =
θk − 2θk−1 + θk−2

T 2
s

(23b)

Θk|k = [ai, bi, ci]
T

(23c)

which can be derived from the position and angle acceleration mod-
els (4 and 6), and also represent the use of the Delta ∆ - modeling
approach [19], which is known to numerically perform better than
ARX models for system with fast sampling times. The coefficients
were then extracted to be used in both NMPC and EKF frameworks
presented previously.

On the other hand, several execution rules discussed in [20, 21]
were implemented to shut-down the algorithm to protect it from peri-
ods of poor excitation which can lead to the rapid grow of covariance
matrix Pk|k.

The implemented shut-down rules were:

1.The trace of the covariance Pk|k was limited by

Pk|k =
klim

tr(Pk|k)
Pk|k if tr(Pk|k) > klim (24)

to prevent it from becoming ill-conditioned, where for our particu-
lar system klim = 10. Additionally, the limitation of the covariance
trace allows for better control on the rate of convergence of the
parameters.

2.The range of the parameters of both models were limited according
to offline analysis, as well as based on the uncertainty of expected
models coefficients. In particular, a threshold of ±15% was imposed
for the coefficients bi and ci calculated from the expressions given in
section 2.1, as well as forcing the negative sign of the friction terms
fm and ai.
If the RLS algorithm moved any of the coefficients outside the
available range, they were simply saturated.

3.The RLS algorithms were only run when the system was detected to
be moving, in particular, when the angular velocity was greater than
a threshold, and kept running for a maximum of 2 seconds after this
conditions were satisfied to be able to capture “decaying" dynamics.
Specifically, the thresholds used were:

||ṗk|| > 0.4
(m

s

)

||θ̇ik|| > 0.5

(
rad

s

)

(25)

This ensured that the system was properly excited.
4.The model used for the NMPC was only updated if the uncertainty

of the coefficients, captured in the covariance matrix Pk|k was lower
then a threshold. For this system, the uncertainty was simply consid-
ered as the trace of the covariance matrix, although a more accurate
distribution of the uncertainty could be extracted by using the so

called Chi-squared (χ2) distribution.

Although the rules for shut-down did improve the performance of
the online system identification as a potential adaptive controller, a
proper excitation signal is required for better model estimation such
as PRBS or Frequency Sweep (chirp), as without there is no guar-
antee that the model estimation would be accurate or even stable,
thus no stability guarantee of the combined methodology could be
provided, which is generally known. The overall performance of this
algorithm can be seen in figure 5 and will be discussed in the results
section 6.1.

6 Experimental Results

The test bench used for the experiments is depicted in figure 3. The
cart is driven by a brushed 24V DC motor via a toothed-belt and a
toothed-pulley of 0.05 (m) diameter. The DC motor is driven by a

Fig. 3: Test Bench Photograph

Motor Coeffs. Pend 1 Coeffs. Pend 2 Coeffs.

fm -4.67 a1 -0.129 a2 -0.107

k1 0.0174 b1 38.4 b2 49.6

k2 0.0477 c1 3.95 c2 5.11

Table 1 Identified Parameters for the Double Inverted Pendulum (3)

Cytron MD30C Motor Driver operated using sign-magnitude drive
with a 8-bit resolution PWM at a frequency of 20 kHz via a Mi-
cro Controller Unit (MCU). Three incremental encoders are used
to measure both pendulum angles and the DC motor rotation. The
resolution of both pendulum encoders and of the motor are 4000
and 2040 counts per revolution, respectively, which are processed

by the MCU, leading to angle and position resolutions of 9× 10−2◦

and 7.7× 10−5 (m), respectively. The sampling time of the sys-
tem is handled by the MCU and kept constant at Ts = 20 (ms).
Every sampling time, encoders data is streamed via (UART) serial
communication to a PC where the calculations related to proposed
NMPC approach, OSI and EKF are performed. After the control ac-
tion is calculated via the RTI Scheme, it is send back to the MCU
which generates the motor signals. Due to network communication
delays, the motor signal was always implemented exactly 5 ms after
the encoders data was streamed to have a constant behavior at least.
Figure 4 shows an control diagram detailing the interaction between
the different components.

6.1 Online System Identification

To test the online system identification algorithm presented in
section 5, the system was excited using a random input 30 < ||u|| <
60, which reversed every time the system crossed a maximum limit
of the position ||x|| > 0.15 (m) in the current direction. All the
parameters were started from completely unknown values Θ0 = O

with a forgetting factor of λ = 0.995 and initial covariance matrices
as P0 = 1000I3×3. The resulting performance of the overall OSI
algorithm can be seen in figure 5. As it can be seen, the system pre-
sented very fast convergence rates, giving settling times for all the
parameters of τs < 2 (s), indicating that the models are indeed well
defined. The resulting parameters after 1 minute of excitation are
gathered in table 1, and the input-output data is available in [14].
Notice the theoretical relationship ci = bi/g stated in section 2 is
very close to the one observed in the resulting parameters. Finally,
although the system was only tested for online system identification,
it could work using the available adaptation mechanism provided
proper rules are used to avoid the periods of poor excitation, as
discussed in [20].

6.2 Swing Up, Stabilization and Disturbance Rejection

Regarding the optimisation setup, the cart has a maximum range
for the position of −0.35 < x < 0.35 and the PWM input was
constrained to −200 < uPWM < 200 despite the actual maximum
being 255 (8-bit) to avoid wearing of the DC motor which defined
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Fig. 5: Online System Identification Example

the constraints to be included in the optimisation. Furthermore, the
DC motor presented a dead-zone nonlinearity of udz ≈ 30 which
was removed by implementing the conditional function (26), adjust-
ing constraints to −200 + udz < u < 200− udz and using u in the
relevant models to simulate and linearise the system.

uPWM =

{

u+ udz , u > 0

u− udz , u < 0
(26)

The prediction horizon for the NMPC was set at Np = 75 (Tp =
1.5 (s)) leading to 600 outputs, 75 decision variables and 300 con-
straints to be optimised. The output and input weights were selected
as qk+i = diag([1, 0.1, 0.1, 100, qθ1 , qθ2 , 10, 10]) ∀i = [1, Np −
1] and R = 0.003I which were observed to give good balanced be-
tween fast swing up performance and input chattering due to noise at
the steady state. A terminal weight qk+Np

= 10qk+i was selected

for the last values of the prediction horizon when tlin > 2 (s), em-
ulating soft zero terminal constraints to improve the stability charac-
teristics of the optimisation [6]. Moreover, a tailored C++ code avail-
able in [14] was developed using EIGEN library following sugges-
tions of [4, 6], and was tested in a laptop running Ubuntu 18.04 with
an Intel i7-5700 HQ @ 2.7 GHz giving computation times of tunc <
800 µs for the unconstrained solution and tcon < 2500 µs for the
constrained one when doing 10 iterations of an efficient version of
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Fig. 6: Example performance with initial condition steady at lower
equilibrium and large disturbances at t ≈ 9 (s) and t ≈ 17 (s).

Hildreth’s QP found in [15] . Finally, the EKF weights were set
at QEKF = diag([0.1, 0.1, 0.1, 0.0001, 0.0001, 0.0001, 1]) and
REKF = diag([0.0001, 0.0001, 0.0001, 1]) based on the variance
of the errors observed in an offline analysis of the system identifica-
tion process.

The resulting performance of the overall scheme can be seen in
figure 6 starting from the rest position at the lower equilibrium and
introducing large disturbances at t ≈ 9 (s) and t ≈ 17 (s). As it
can be seen, the system clearly exhibits much faster performance
than [11] giving settling times of τs ≈ 1.4 (s) for the swing up ma-
neuver and of τ ≈ 2.5 (s) after large disturbances. Moreover, the
system presented smooth input shapes during the swing up phases
as a result of the added energy costs and the hybrid switching
scheme. Furthermore, notice the position constraint is clearly sat-
isfied at t ≈ 17 (s) after the disturbance was given, demonstrating
good handling of the rapid active-set changes by the QP. Finally,
in some cases the position presented small steady state error and
the well known limit cycle, however, this can be removed using
standard methods such as integral control or disturbance estimation
methods which are not the focus of the paper, and therefore were
omitted. For the interest of the reader, an overall video is provided in
(https://youtu.be/7E-SXi3YKQo) where the results can be seen, and
the input-output data is available in [14].
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7 Conclusion

This paper presents a novel NMPC approach based on the RTI
Scheme for the swing-up and stabilisation of a parallel double in-
verted pendulum with experimental validation. The approach uses
dual-mode closed loop predictions for the state deviation model
to cancel the unstable open-loop dynamics of the double inverted
pendulum which improve the numerical robustness of the opti-
misation. Moreover, two important modifications were introduced
for the improvement of the RTI Scheme in the presence of large
disturbances, namely; additional energy-related costs and a hybrid
switching scheme. The approach was able to compute approximate
constrained solutions in tc < 2500(µs), and a C++ code implement-
ing it can be found in [14]. Finally, the approach was combined with
an OSI Scheme based on RLS to address parameter uncertainty.

An overall video of the resulting performance is provided in
(https://youtu.be/7E-SXi3YKQo), and the data obtained throughout
the tests is available in [14].

To the best of the authors knowledge, this is the first contribution
presenting numerical and experimental results for the swing-up and
stabilization of a parallel double inverted pendulum in the presence
of large disturbances based on NMPC using the RTI method. Fu-
ture work will include the extension to the multiple-shooting scheme
along with further analysis of the closed-loop performance with
adaptation mechanism active as well as offset-free methods to cancel
possible input-output disturbances.
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