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Abstract: This paper deals with the development and comparison of prediction models established
using response surface methodology (RSM) and artificial neural network (ANN) for a wire electrical
discharge machining (WEDM) process. The WEDM experiments were designed using central
composite design (CCD) for machining of Inconel 718 superalloy. During experimentation, the
pulse-on-time (TON), pulse-off-time (TOFF), servo-voltage (SV), peak current (IP), and wire tension
(WT) were chosen as control factors, whereas, the kerf width (Kf), surface roughness (Ra), and
materials removal rate (MRR) were selected as performance attributes. The analysis of variance
tests was performed to identify the control factors that significantly affect the performance attributes.
The double hidden layer ANN model was developed using a back-propagation ANN algorithm,
trained by the experimental results. The prediction accuracy of the established ANN model was
found to be superior to the RSM model. Finally, the Non-Dominated Sorting Genetic Algorithm-II
(NSGA- II) was implemented to determine the optimum WEDM conditions from multiple objectives.

Keywords: response surface method (RSM); artificial neural network (ANN); wire electrical discharge
machining (WEDM); kerf width (Kf); surface roughness (Ra); material removal rate (MRR), NSGA-II

1. Introduction

For the past few decades, Inconel 718 alloy has been widely employed for the manufacturing
of critical aircraft components owing to its high strength at elevated temperature, good corrosion
resistance, and excellent fatigue resistance [1,2]. Due to superior thermal, chemical, and mechanical
properties, the traditional machining of Inconel 718 typically results in the formation of built-up-edge
at elevated temperature. It weakens the degradation of the machining performances, thereby the
literature has endorsed it as a difficult-to-cut material [1,2]. The problems of machining of difficult-
to-cut materials can be minimised by using the non-traditional machining techniques. Wire electrical
discharge machining (WEDM) can be effectively used for the machining of difficult-to-cut materials
and has the ability to produce accurate, precise, and complex surfaces with the help of very thin
wires [3,4]. However, the selection of the proper machining parameters to achieve the desired machining
performance has always been a challenging task for industry [5].
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WEDM is an electro-thermal machining process in which a rapid cyclic spark yields a temperature
around 10,000 ◦C. It is discharged in the gap between an electrically conductive wire electrode and the
work piece that further leads to material removal through melting and evaporation [6]. This process is
governed by several direct and indirect parameters such as pulse-on-time, pulse- off-time, peak current, wire
tension, gap voltage, frequency of discharge, mechanical and thermal properties of wire electrode, and work
piece, etc. Most researchers have presented their studies on the influence of input parameters of WEDM
on various responses including and materials removal rate (MRR), kerf width, and surface roughness, etc.
Tosun et al. [7] applied Taguchi’s approach to perform experiments during the machining of AISI4140
steel to investigate the impact of pulse duration, open circuit voltage, wire speed, and dielectric flushing
pressure on MRR and kerf width. They concluded that the open circuit voltage and pulse duration have a
significant impact on MRR and kerf width in the WEDM process. Hewidy et.al. [8] applied the response
surface methodology (RSM) approach during the machining of Inconel 601, where they highlighted the
impact of peak current, duty factor, wire tension, and water pressure on the MRR, wear ratio and surface
roughness. It has been reported that peak current increases the MRR and wear ratio while decreasing the
surface finish owing to increased discharge energy. In [9], the authors used the Genetic Algorithm (GA)
for multipurpose optimization of WEDM and examined the effects of different process parameters like
discharge current, pulse duration, pulse frequency, wire speeds, wire tension, and dielectric flow rate on
MRR, surface roughness (Ra), and kerf width (Kf). Further, Kumar and Agarwal [10] applied the NSGA-II
optimization method to optimize WEDM input parameters for multi-objective optimization of surface
integrity and MRR while performing high speed machining of steel with the help of zinc coated wire.
The literature survey shows that many studies have already reported on WEDM processes for the machining
of titanium alloys. Constrained and Pareto optimization techniques were used for the optimization of
WEDM for various process parameters like dimensional deviation, cutting speed, and surface integrity
during the machining of c-titanium aluminide alloy by Sarkar et al. [11]. In other study, Kuriakose et al. [12]
used zinc coated brass wire for the machining of titanium alloy (Ti-6Al-4V). They further studied the effects
of numerous process variables using the machine learning based data mining method on cutting speed and
surface integrity. Manna and Bhattacharyya [13] used the Gauss elimination dual response technique in
order to find the optimum machining conditions for WEDM during the machining of aluminium reinforced
silicon carbide metal matrix composites. WEDM for the machining of Armor materials was presented by
Bobbili et al. [14] to machine RHA steel and aluminium alloy 7017. They concluded that an increase in
pulse-on-time increases MRR and surface roughness. Patil and Brahmankar [15] investigated the effects
of various WEDM process parameters on surface quality, kerf width, and cutting speed using brass wire
material with a zinc coating. They applied Taguchi’s approach for the machining of alumina particulate
reinforced aluminium matrix composites (Al/Al2O3p). They recommended that current, and pulse-on-time
have substantial influence on cutting rate, surface finish, and kerf width.

It was found that designing a mathematical relationship between the input process parameters
and the output responses is extremely difficult in WEDM because of the inherent nonlinear nature of
these process parameters [16]. In order to find the responses for a given set of process parameters and
to optimize them, the modelling of a complex system is crucial for reducing the manufacturing costs.
From the literature survey, we found that artificial neural network (ANN) is a widely used technique for
process modelling and optimization. This is because of its ability to form non-linear relations between
various inputs and output parameters. Further, it can be easily applied for modelling complex problems
owing to its powerful data-driven, self-adaptive, flexible computational capabilities, unlike mathematical
models. Moreover, ANN can handle large quantity of data sets for training and has the ability to implicitly
detect complex nonlinear relationships between dependent and independent variables. The research work
conducted by Samantha et al. [17] investigated the predicted values for both ANN and the regression
model. The performance of these two approaches was compared and ANN was found to be more efficient.
Biswas et al. [18] found that ANN architecture is a unique, flexible, and powerful method of modelling for
the laser micro-drilling process on titanium nitride/alumina composites. Table 1 presents a comprehensive
review of the literature on the application of ANN for modelling of the WEDM process.
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Table 1. Previous research on application of ANN in modelling WEDM.

Author(s) Prediction Model Training Method Work Piece Machining Parameters Response Variables Summary

Ramakrishnan and
Karunamoorthy [19]

feedforward neural network - Inconel 601
TON, delay time, wire feed rate,
ignition current

MRR, Ra
TON found to be most imfluecing
factor for MRR.

Saha et al. [20]
feed-forward back-propagation
neural network with
1-hidden layer

-
tungsten
carbide-cobalt
(WC-Co) composite

TON, TOFF, IP, capacitance Cutting speed, Ra

ANN predicts MRR & Ra with
3.29% overall mean
prediction error.

Khan and Rajput [21]
feed-forward back-propagation
neural network

- Alloy Steel (HCHCr)
TON, TOFF, IP, average gap
voltage, WT, Wire feed

Cutting speed, Ra
Higher cutting speed degrades
surface finish.

Shandilya and Jain [22]
Back-propagation neural
network with 1-hidden layer

-
SiCp/6061 Al metal
matrix composite

TON, TOFF, voltage, wire feed Surface roughness
ANN model outperforms RSM
model prediction.

Zhang et al. [23] BPNN with 2-hidden layers - SKD11 steel
TON, TOFF, IP, wire speed,
tracking coefficient

Cutting speed, Ra, MRR
TON, TOFF are significant factors
for Ra.

Ugrasen et al. [24] BPNN with 1-hidden layer Levenberg-Marquardt -
TON, pulse-off-time, IP, bed
speed

VMRR, accuracy, Ra

ANN model with 70% training
data gave best prediction as that
of model with 50% or 60%
training data.

Vates et al. [25] ANN with 1-hidden layer - D2 Steel
gap voltage, flush rate, TON,
TOFF, wire feed, and WT

Ra, MRR
Best surface finish achieved at
lower MRR values.

Shakeri et al. [26]
Feedforward backpropagation
neural network

Levenberg-Marquardt
cementation alloy
steel

wire speed, servo speed,
frequency, IP

Ra, MRR
ANN model outperformed
Regression models prediction.

Jafari et al. [27] ANN with 1-hidden layer
Bayesian
regularization

Copper
TON, TOFF, IP, spark gap voltage,
wire speed

Ra
IP had most significant effect of Ra
followed by TON.

Singh and Mishra [28] BPNN with 1-hidden layer Levenberg-Marquardt Nimonic 263 TON, TOFF, IP, spark gap voltage Ra, recast layer thickness
Mukhopadhyay et al. [29] feedforward neural network Levenberg-Marquardt EN 31 tool steel Discharge current, SV, TON, TOFF fractal dimension
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From Table 1, it can be seen that most of the work carried out in the past did not consider the
superalloys, especially, Inconel 718, as the work piece. The kerf width is a critical response parameter
for the WEDM process which influences the accuracy of the WEDM operation, but was not considered
in previous studies while modelling the WEDM process. That apart, most of the work used single
hidden based ANN architecture and the prediction accuracy of the developed model has not been
critically examined.

Therefore, the aim of this work was to perform a systematic investigation while machining Inconel
718 using WEDM operation and to establish an accurate ANN-based prediction model for the process.
MRR, Ra, and kerf width were selected as performance measures for the varying input parameters, viz.,
pulse-on-time (TON), pulse-off-time (TOFF), servo-voltage (SV), peak current (IP), and wire tension (WT).
Moreover, the performance of the established ANN model was compared with the traditional RSM
model. Initially, the central composite design (CCD) approach was used to develop the experimental
plan. Then, based on the experimental results, the ANN and RSM models were established and their
performance compared. Further, the machining characteristics were evaluated using the established
ANN model. Finally, The Non-dominated Sorting Genetic Algorithm (NSGA-II) was applied for
optimisation of WEDM process performance.

2. Experimentation

2.1. Workpiece Material

The work piece specimens of size 50 mm (length)× 12 mm(width)× 2.5 mm(height) were prepared
from commercial Inconel 718 material with the help of an abrasive cutter (Isomet-4000, Buehler, Lake
Bluff, IL, USA). To obtain a uniform surface finish, the specimens were finished using a semi-automatic
polishing-machine (MetaServ-250, Buehler, Lake Bluff, IL, USA). The composition of the work piece
was investigated using a glow discharge spectrometer (GDS-500A, LECO, Saint Joseph, MI, USA) and
the results are shown in Table 2.

Table 2. Chemical composition of our work piece material (Inconel 718).

Component Ni C Si Mn P Cr Fe Mo

Weight % 55.40 00.03 00.08 00.04 00.01 23.80 03.70 13.30
Component V Nb W Co Ti Al Zr

Weight % 00.09 02.78 00.26 00.26 00.81 00.19 00.08

2.2. Experimental Setup

The experimental layout is shown in Figure 1. The experiments were conducted using a CNC
Wire-EDM machine (Ecocut, Electronica, Pune, India). A cylindrical brass wire (Ø 250 µm) was
used as a wire electrode with negative polarity and deionized water was used as the dielectric
fluid. Both electrodes were kept immersed in dielectric without any external flushing while
performing experiments.
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Figure 1. Schematic diagram of the wire electrode discharge machining (WEDM).

For WEDM operation, the important variables having significant impact on the response variable
are the electrical parameters, diameter and tension of wire, electrical and physical properties of the
wire, and work piece materials. For this research, the aim was to analyse the effect of electrical
parameters for selected brass wire (Ø 250 µm) and Inconel 718 work piece alloy so that industry can
select suitable machining parameters to achieve the desired performance. Therefore, the pulse- on-
time (TON), pulse-off-time (TOFF), servo-voltage (SV), peak current (IP), and wire tension (WT) were
selected as the input machining parameters. The input parameters and their levels are shown in Table 3.
The current levels of input parameter were chosen based on the literature review, trial runs, mechanism
competence, and machine constraints.

Table 3. Independent control factors, and their levels.

Input Parameter Symbol Unit
Level

−1 0 1

pulse-on-time TON µs 100 110 120
pulse-off-time TOFF µs 40 50 60
servo-voltage SV V 40 50 60
peak current IP A 120 150 180
wire tension WT kg 1.1 1.3 1.5

In WEDM technology, each pulse is associated with on-time and off-time expressed in microseconds
(µs). Upon dielectric breakdown, current commences flowing and the period for which current flows to
the end of the discharge is known as pulse-on-time (TON). The period between two consecutive pulses
is generally known as pulse-off-time (TOFF). This period is time lapsed from the end of a discharge
to the start of consecutive discharge. During pulse-off-time, WEDM remains at momentary rest and
deionization of plasma resulting from previous discharge takes place [30]. The servo motion of EDM is
controlled harmony with gap-voltage fluctuation relative to SV. The wire electrode advances in the
machining direction when the gap voltage is higher than SV or else the wire electrode is retracted
backwards. The maximum current accessible for each pulse during a spark that is applied between
both electrodes is known as the peak current. It is an important parameter that is widely considered in
EDM technology. Apart from the above mentioned electrical parameters, the wire tension is considered
a crucial parameter which can affect cutting accuracy and profile shape [31].
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The kerf width (Kf), surface roughness (Ra), and material removal rate (MRR) were chosen as
the response variables. An optical microscope (AxioCam AX10, Zeiss, Germany) was used for the
measurement of kerf width at five different locations along the length of the microchannel (as shown
in Figure 2) and then the average of these measurements was considered as Kf of the microchannel. Ra

was measured at three different locations on the same surface using a surface roughness tester (SJ210,
Mitutoyo, Japan) which has a conformance standard of ISO 1997 and the corresponding mean value
was considered as the net Ra value. The cut-off length (λc) of 0.8 mm and the number of sampling (λ)
of five (traverse length is 0.8 × 5 = 4 mm) were used in the measurements. Furthermore, the surface
quality was investigated by analysing the surface morphology with the help of field emission electron
scanning microscopic (FESEM) images taken by Nova NanoSEM 450® (FEI, Hillsboro, OR, USA).

ndsȱǻΐsǼǯȱUponȱdielectricȱbreakdownǰȱcurrentȱcommencesȱλlowinμȱandȱtheȱperiodȱλorȱwhichȱ

oλλȱ lenμthȱ ǻΏ
samplinμȱǻΏǼȱoλȱλiveȱǻtraverseȱlenμthȱisȱŖǯŞȱ

 

Figure 2. Kerf width measurement using an optical microscope.

2.3. Response Surface Methodology (RSM)

RSM is a combination of statistical and mathematical methods for prediction and optimization of
response parameters which include quantifiable independent variables [32]. The WEDM system is
described by a second order (quadratic) polynomial model:

Y = α0 +
n
∑

i = 1

αiXi +
n
∑

i = 1

αiiX
2
i +

n
∑

i = 1

n
∑

j = 1

αi jXiX j (1)

where Y represents the predicted response variable, α0, αi, and αii represent constant term, linear
coefficients and quadratic coefficients, respectively. The cross-product coefficients are represented by
αi j, the total number of factors and input parameters are represented by n and X, respectively.

In the current study, the experiments were planned on the basis of central composite design (CCD)
which is a well-known design methodology within response surface methodology. The CCD technique
reduces the total number of experimental trials essential to evaluate the effects of each parameter and
its interactions [33]. The face-cantered design with eight centre points was selected for investigation
and measured response values are shown in Table 4.
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Table 4. Experimental plan with chosen input machining parameters and measured response variables.

S. No.
Input Machining Parameters Response Variables

Pulse on
Time (µs)

Pulse off
Time (µs)

Servo
Voltage (V)

Peak
current (A)

Wire
Tension (kg)

Kerf Width
(mm)

Average Surface
Roughness (µm)

MRR
(mm3/min)

1 120 40 60 120 1.1 0.402 3.71 10.53
2 100 40 40 180 1.1 0.382 1.71 05.28
3 100 60 40 120 1.1 0.350 1.52 02.39
4 120 60 60 120 1.1 0.385 3.77 09.04
5 110 40 50 150 1.3 0.399 1.51 08.34
6 120 60 60 120 1.5 0.404 3.58 08.18
7 120 50 50 150 1.3 0.416 3.51 08.19
8 100 40 40 120 1.1 0.356 1.75 04.64
9 120 60 40 180 1.5 0.404 3.81 05.85

10 110 50 50 150 1.5 0.395 2.86 07.91
11 100 40 60 120 1.5 0.369 1.27 06.53
12 120 60 40 120 1.5 0.411 3.38 05.58
13 120 60 40 120 1.1 0.391 3.55 05.38
14 120 40 60 180 1.1 0.433 3.09 10.22
15 100 60 60 180 1.1 0.361 1.74 05.14
16 110 50 50 120 1.3 0.386 2.27 06.68
17 100 50 50 150 1.3 0.365 1.61 04.19
18 120 40 60 120 1.5 0.433 2.87 10.36
19 120 40 40 120 1.1 0.397 3.35 07.38
20 110 50 50 150 1.3 0.392 2.60 07.96
21 110 50 50 150 1.3 0.378 2.52 07.54
22 100 60 60 120 1.1 0.350 1.70 04.91
23 100 60 60 120 1.5 0.337 1.51 04.78
24 120 40 40 180 1.5 0.411 3.51 07.78
25 100 40 40 120 1.5 0.366 1.55 04.94
26 100 40 60 120 1.1 0.349 1.48 06.36
27 120 40 60 180 1.5 0.426 3.30 10.80
28 120 60 60 180 1.5 0.407 4.00 08.85
29 100 60 40 180 1.1 0.368 1.54 03.47
30 100 60 40 120 1.5 0.360 1.32 02.69
31 110 50 50 150 1.3 0.392 2.59 07.35
32 120 60 60 180 1.1 0.414 3.80 08.95
33 110 50 50 180 1.3 0.402 2.49 07.33
34 100 40 60 180 1.1 0.381 1.53 05.19
35 100 60 60 180 1.5 0.359 1.91 05.64
36 110 50 50 150 1.3 0.391 2.59 07.44
37 110 50 50 150 1.3 0.385 2.91 07.96
38 110 60 50 150 1.3 0.387 2.28 06.41
39 110 50 50 150 1.3 0.392 2.64 07.41
40 100 40 60 180 1.5 0.366 1.91 06.79
41 100 40 40 180 1.5 0.370 1.20 05.38
42 120 40 40 120 1.5 0.407 3.14 07.33
43 110 50 50 150 1.3 0.402 2.59 07.16
44 110 50 60 150 1.3 0.394 3.00 08.92
45 120 40 40 180 1.1 0.419 3.36 07.18
46 110 50 50 150 1.3 0.392 2.56 07.40
47 120 60 40 180 1.1 0.410 3.69 04.82
48 110 50 50 150 1.1 0.392 2.15 08.77
49 100 60 40 180 1.5 0.378 1.71 03.83
50 110 50 40 150 1.3 0.420 3.51 08.26

2.4. Artificial Neural Network (ANN)

ANN is an intelligent computational system able to fit complex functions. It was successfully
used for solving numerous problems in various fields such as diagnosing of faults, identification of
the process, property estimation, smoothing of data, and error filtering, designing and development
of a product, optimization of processes, and estimation of activity coefficients [34,35]. The neural
network is based on the idea of biological neural networks, and can be defined as a vastly parallel
distributed processing technique. It is formed by neurons that have the capability to acquire, to learn,
and to adapt to the information, in order to make it available for future use [36,37]. Thus, by taking
the computational capability of a multi-layered neural network into account, we adopted it for the
modelling of the WEDM process to predict the response variables Kf, Ra, and MRR involved in the
machining of Inconel 718.

2.5. Non-Dominated Sorting Genetic Algorithm (NSGA-II)

The NSGA-II was chosen to optimize WEDM using the developed mathematical models.
The reason is linked to the complexity nature of the WEDM process because it assumes three
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objectives to be solved all together. Thus, it can be extremely difficult to determine the optimal solution
for the WEDM. In single-objective optimization, the best decision is usually obtained by determining
the global maxima/global minima depending on the nature of the optimization problem. While in the
case of multiple objectives optimization, there exists more than one solution. There are a number of
classical techniques available to determine the solutions of a multi-objective problem such as min– max,
distance function, and weighted sum techniques. However, these methods have several disadvantages
like weighing of objectives based on their relative importance. The authors must have complete
knowledge of the ranking of objective functions while using conventional optimization methods. While
using Genetic Algorithm based techniques, users do not require any gradient information and inherent
parallelism in searching the design space, thus making it a robust adaptive optimization technique.
NSGA-II was designed based on the Pareto methodology and it has been established as a competent
algorithm for cracking any multiple optimization problem [38]. The fast, non-dominated sorting, fast
crowded distance estimation, and simple crowded comparison operator make NSGA-II an efficient
optimization technique. Basic definitions and the flow chart of NSGA-II are available in [39,40] and
have not been described in this paper.

3. Results and Discussion

3.1. ANOVA Simulation

Minitab 16 software was used to execute the ANOVA for investigating the adequacy of
thedeveloped models, and the results of response surface model are given in Tables 5–7 for Kf,
Ra, and MRR, respectively. The backward elimination technique was used to remove the model terms
which are insignificant. In the present study, all the adequacy measures, R2, adjusted R2, and predicted
R2, were found to be closer to one, which implies adequacy and fit of models. The values of R2 of
92.31% for Kf, 95.85% for Ra, and 96.30% for MRR indicate that only less than 7.59%, 4.25%, and 3.70%
of the total variations in K, Ra, and MRR, respectively, were not explained by the models. The high
values of the adjusted R2 i.e., 90.57% for Kf, 94.78% for Ra and 95.10% for MRR further confirm the
validity of these models. Both predicted R2 and adjusted R2 were found to be in conformity with each
other. Lack of fit was obtained to be non-significant for each of the cases as required. The smaller value
of the coefficient of variation (CV) indicates improved accuracy and consistency of the experiments
performed [41].

Table 5. Results of ANOVA analysis for the kerf width (Kf).

Source Sum of Square
Degree of
freedom

Mean Square F Value
p-Value
Prob > F

Percentage
Contribution

Model 0.024 09 2.655 × 10−3 053.32 <0.0001 significant
A-Pulse-on-time 0.019 01 0.019 379.94 <0.0001 73.07%
B-Pulse-off-time 1.055 × 10−4 01 1.055 × 10−3 021.20 <0.0001 00.40%
C-Servo Voltage 2.375 × 10−5 01 2.375 × 10−5 000.48 0.4938 00.09%
D-Peak Current 1.657 × 10−3 01 1.657 × 10−3 033.28 <0.0001 06.37%
E-Wire Tension 1.210 × 10−4 01 1.210 × 10−4 002.43 0.1269 00.46%

AC 3.890 × 10−4 01 3.890 × 10−4 007.81 0.0079 01.49%
BC 3.696 × 10−4 01 3.696 × 10−4 007.42 0.0095 01.42%
DE 7.443 × 10−4 01 7.443 × 10−4 014.95 0.0004 02.86%
A2 6.137 × 10−4 01 6.137 × 10−4 012.33 0.0011 02.36%

Residual 1.992 × 10−3 40 4.979 × 10−5

Lack of Fit 1.654 × 10−3 33 5.014 × 10−5 001.04 0.5246
not

significant
Pure Error 3.371 × 10−4 07 4.816 × 10−5

Cor Total 0.026 49

σ 7.056 × 10−3 R2 00.923
Mean 0.39 Adjusted R2 00.905
C.V. % 1.81 Predicted R2 00.884

PS 2.986 × 10−3 Adequacy Precision 30.326
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Table 6. Results of ANOVA analysis for the surface roughness (Ra).

Source Sum of Square
Degree of
Freedom

Mean Square F Value
p-Value
Prob > F

Percentage
Contribution

Model 34.27 10 03.43 090.04 <0.0001 Significant
A-Pulse-on-time 30.95 01 30.95 813.04 <0.0001 90.31%
B-Pulse-off-time 00.61 01 00.61 016.13 0.0003 01.77%
C-Servo Voltage 8.768 × 10−3 01 8.768 × 10−3 000.23 0.6339 00.02%
D-Peak Current 00.19 01 00.19 005.08 0.0300 00.55%
E-Wire Tension 00.01 01 00.01 000.28 0.5967 00.03%

AB 00.23 01 00.23 005.94 0.0195 00.67%
BC 00.11 01 00.11 002.92 0.0954 00.32%
DE 00.30 01 00.30 007.89 0.0077 00.87%
B2 01.75 01 01.75 045.97 <0.0001 05.10%
C2 01.62 01 01.62 042.51 <0.0001 04.67%

Residual 01.48 39 00.03

Lack of Fit 01.39 32 00.04 003.11 0.0613
not

significant
Cor Total 35.76 49

σ 0.20 R2 00.958
Mean 2.55 Adjusted R2 00.947
C.V. % 7.64 Predicted R2 00.929

(PS) 2.52 Adequacy Precision 28.842

Table 7. Results of ANOVA analysis for the material removal rate (MRR).

Source Sum of Square
Degree of
Freedom

Mean Square F Value
p-Value
Prob > F

Percentage
Contribution

Model 184.38 12 15.37 080.17 <0.0001 significant
A-Pulse-on-time 086.65 01 86.65 452.11 <0.0001 46.99%
B-Pulse-off-time 024.94 01 24.94 130.11 <0.0001 13.52%
C-Servo Voltage 044.77 01 44.77 233.57 <0.0001 24.28%
D-Peak Current 000.68 01 00.68 003.54 0.0678 00.36%
E-Wire Tension 000.37 01 00.37 001.92 0.1740 00.20%

AC 005.20 01 05.20 027.13 <0.0001 02.82%
BC 000.66 01 00.66 003.46 0.0707 00.35%
DE 000.76 01 00.76 003.95 0.0544 00.01%
A2 006.98 01 06.98 036.41 <0.0001 03.78%
C2 001.55 01 01.55 008.07 0.0073 00.84%
D2 001.75 01 01.75 009.13 0.0046 00.94%
E2 000.71 01 00.71 003.68 0.0628 00.38%

Residual 007.09 37 00.19

Lack of Fit 006.51 30 00.22 002.62 0.0939
not

significant
Pure Error 000.58 07 00.08
Cor Total 191.48 49

σ 00.44 R2 00.963
Mean 06.83 Adjusted R2 00.951
C.V. % 06.41 Predicted R2 00.914

PS 16.36 Adequacy Precision 34.899

The significant machining parameters that affect the response variables i.e., Kf, Ra, and MRR were
determined at 95% confidence level. It can be observed that the pulse-on-time (TON) is the key factor
having the highest impact on Kf, Ra, and MRR, contributing 73.07% on K, 90.31% on Ra, and 46.99% on
MRR, respectively. In summary, a high pulse-on-time yields a faster erosion of the material due to high
values of associated discharge energy, hence a considerable increase in MRR may be observed [42].

3.2. Regression Equations

The relationships among the response characteristics (Kf, Ra, and MRR) and the input process
parameters (TON, TOFF, SV, IP, and WT) were expressed by the following second-order polynomial
equations in terms of actual factors.
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For kerf width-

K = −0.83891 + 0.017139× TON + 1.14203× 10−3
× TOFF − 2.21967× 10−3

× SV+

1.27766× 10−3
× IP + 0.13001×WT + 3.48662× 10−5

× TON × SV

−3.39838× 10−5
× TOFF × SV − 8.03813× 10−4

× IP ×WT − 7.51065× 10−5
× T2

OFF

(2)

For surface roughness-

Ra = −0.35667 + 0.053372× TON + 0.58558× TOFF − 0.69528 V − 0.018477× IP

−2.51114×WT + 8.40625× 10−4
× TON × TOFF + 5.89375× 10−4

× TOFF × SV+

0.016146× IP ×WT − 6.94078× 10−3
× T2

OFF
+ 6.67422× 10−3

× SV2 .
(3)

For MRR-

MRR = −158.77725 + 3.54861× TON − 0.15766× TOFF − 1.16912 SV + 0.24375× IP

−37.05428×WT + 4.03094× 10−3
× TON × SV + 1.44031× 10−3

× TOFF ×V + 0.025620
×IP ×WT − 0.016321× T2

ON
+ 7.68448× 10−3

× SV2
− 9.07836× 10−4I2

P
+ 12.97369×WT2

(4)

3.3. ANN Performance

A total of fifty input–output patterns were investigated through the NN toolbox available in the
MATLAB software. In general, the ANN model is supposed to be of the form: X−N1−N2−Y, where X
is the number of neurons in the input layer, N1 is the number of neurons in the first hidden layer, N2 is
the number of neurons in the second hidden layer, and Y represents the number of neurons in the
output layer. Moreover, noise was added to the weights in order to encourage the stability of the NN
structure that is to be optimized. The Levenberg–Marquardt (LM) training algorithm was used to train
the feed forward back propagation network with the help of the tansig function. The tansig function

used for training this neural network is given by tansig (n)= 2÷
(

1 + e−2n
)

−1
. In this work, we chose

five neurons in the input layer that corresponds to TON, TOFF, SV, IP, and WT and three neurons in the
output layer corresponding to Kf, Ra, and MRR, as shown in Figure 3.

ܴܴܯ ൌ  െͳͷͺǤ͹͹͹ʹͷ ൅ ͵ǤͷͶͺ͸ͳ ൈ  ைܶே െ ͲǤͳͷ͹͸͸ ൈ ைܶிி െ ͳǤͳ͸ͻͳʹ Sܸ ൅ ͲǤʹͶ͵͹ͷ ൈ ௉ െܫ ͵͹ǤͲͷͶʹͺൈ ܹܶ ൅ ͶǤͲ͵ͲͻͶ ൈ ͳͲିଷ ൈ ைܶே  ൈ  ܸܵ ൅ ͳǤͶͶͲ͵ͳ ൈ ͳͲିଷ ൈ ைܶிி  ൈ ܸ ൅ ͲǤͲʹͷ͸ʹͲ ൈ ௉ൈܫ ܹܶ െ ͲǤͲͳ͸͵ʹͳ ൈ ைܶேଶ ൅ ͹Ǥ͸ͺͶͶͺ ൈ ͳͲିଷ ൈ ܸܵଶ െ ͻǤͲ͹ͺ͵͸ ൈ ͳͲିସܫ௉ଶ ൅ ͳʹǤͻ͹͵͸ͻൈ ܹܶଶ

Ȯ െ െ െ
Ȯ  ൌ ʹ ൊ ሺͳ ൅ ݁ିଶ௡ሻିଵ

 

ܧܵܯ ൌ ͳܯ ൈ ܰ ෍  ே
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௜ୀଵ െ ௜ܻሻ ଶ
௜ܻᇱ ௜ܻ  

Figure 3. Artificial Neural Network architecture (5-N1-N2-3).

The performance of the network was judged on the basis of the Mean Square Error (MSE) which
is given by the following equation.

MSE =
1

M×N

N
∑

j = 1

M
∑

i = 1

(Y′i −Yi)
2 (5)
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where Y′
i

is the experimental output of the ith neuron, Yi is the predicted output of the ith neuron, N is
the total number of training patterns, and M is the total number of neurons in the output layer [43].

Numerous trails were conducted by varying the number of neurons in the first layer to optimize
the 5-N1-3 NN structure. Based on the performance the number of neurons in the N1 layer was finalised
and then the neurons in the second hidden layer were varied from one to fifteen in order to optimize
5-13-N2-3. This methodology was adopted to reduce the number of total combinations of neurons
on both hidden layers by a significant amount from 225 to 30. For the first step, the performance of
the 5-13-3 structure was found as optimum with 4.74% MSE. Then, while varying the neurons in the
second hidden layer, the performance of the 5-13-15-3 structure was found as optimum with 1.49%
MSE. The NN structure was trained more than once with minimal variation in weights in order to
avoid the problems of local minima. Therefore, the 5-13-15-3 structure was selected for the prediction
of the WEDM process performance in later sections. Data on the sensitivity of ANN’s response to the
number of neurons are presented in Table 8.

Table 8. ANN architecture performance while varying the number of neurons.

For hidden Layer = 1 For Hidden Layer = 2

No. of Neurons MSE
No. of Neurons in

the 1st Layer
No. of Neurons in

the 2nd Layer
MSE

1 1.103645 13 1 0.986389
2 0.337575 13 2 1.619909
3 0.219654 13 3 0.401487
4 0.146387 13 4 0.154014
5 0.124594 13 5 0.270056
6 0.150487 13 6 0.070328
7 0.145620 13 7 0.138533
8 0.077698 13 8 0.445419
9 0.049678 13 9 1.158510

10 0.088550 13 10 0.150517
11 0.090630 13 11 0.328056
12 2.448050 13 12 0.081355
13 0.047438 13 12 0.191720
14 0.155834 13 14 0.203620
15 4.100331 13 15 0.014916

3.4. Validation Experiments

Six additional experiments were performed using settings of input parameters that are different
from the settings used in Table 4. Results of the validation experiments are presented in Table 9.

The predicted outcomes of these validation experiments obtained using RSM and ANN models
were found to be in good agreement suggesting that the developed model can reliably be used for
representing the experimental results. Moreover, MSE for prediction is also given in Table 8 and
the ANN model outperformed the RSM model with a lower MSE of 1.41% than that of 6.33% of the
RSM model.
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Table 9. Comparison of predicted WEDM output parameters by RSM and ANN with experimental results, including absolute and percent errors.

S. No. Input Parameters Response Variables
Predicted Values Absolute Error Percentage Error

RSM ANN RSM ANN RSM ANN

TON TOFF V IP T Kf Ra MRR Kf Ra MRR Kf Ra MRR Kf Ra MRR Kf Ra MRR Kf Ra MRR Kf Ra MRR

1 100 50 60 150 1.3 0.338 2.12 5.50 0.359 2.30 5.90 0.343 2.17 5.60 0.020 0.180 0.399 0.004 0.051 0.104 6.0 8.4 7.2 1.4 2.4 1.8
2 110 50 40 180 1.1 0.378 2.97 6.33 0.405 3.21 6.82 0.383 3.03 6.43 0.026 0.241 0.489 0.004 0.056 0.105 7.1 8.1 7.7 1.2 1.8 1.6
3 120 40 40 150 1.5 0.381 3.06 7.82 0.411 3.30 8.42 0.386 3.12 7.94 0.030 0.240 0.597 0.005 0.059 0.123 7.9 7.8 7.6 1.3 1.9 1.5
4 105 40 50 120 1.3 0.349 1.13 5.83 0.379 1.23 6.30 0.359 1.16 5.97 0.030 0.096 0.477 0.009 0.023 0.146 8.6 8.4 8.1 2.8 2.1 2.5
5 110 60 60 140 1.5 0.355 2.47 8.57 0.385 2.67 9.25 0.362 2.52 8.73 0.029 0.201 0.682 0.006 0.043 0.165 8.3 8.1 7.9 1.9 1.7 1.9
6 120 60 50 180 1.4 0.368 2.86 5.73 0.410 3.16 6.30 0.380 2.96 5.89 0.042 0.300 0.565 0.011 0.102 0.156 11.4 10..4 9.8 3.1 3.5 2.7



J. Manuf. Mater. Process. 2020, 4, 44 13 of 21

3.5. Parametric Study Using the Developed ANN Model

The developed 5-13-15-3 ANN model was used to determine the effect of input process parameters
on the response variables. While plotting the graphs for each individual parameter, other parameters
were kept constant at zero level (see, Table 3).

3.5.1. Effect of Pulse-On-Time

From Figure 4a, it was observed that the Kf, Ra and MRR values increase with an increase in
pulse-on-time value. An increase in Ton leads to an increase in the discharge energy melting more
material from the work piece and thus increasing the Kf, Ra and MRR values [44]. In Figure 4b plotted
between TON and Ra, it was observed that the surface roughness increases from 0.36 µm to 0.41 µm
when the pulse-on-time increases from 100 µs to 120 µs. The increase in pulse-on-time also increases
the crater size on the machine surface due to increased spark intensity thus leading to poor surface
quality [45]. As shown in Figure 4c, the MRR increases with the increase in pulse-on-time till a pulse-
on-time value of 115 µs and then slightly decreases at pulse-on-time value of 120 µs. The increase of
MRR with increase of the pulse-on-time values is due to the higher thermal energy of the spark which
melts and vaporizes consequently a larger amount of material from the plasma channel, hence leading
to an increase in MRR [46].

 

(a) (b) (c) 

Ȯ

Figure 4. Effects of pulse-on-time (TON) on (a) kerf width, (b) surface roughness and (c) MRR.

3.5.2. Effect of Pulse-Off-Time

From the graph plotted in Figure 5a amid TOFF and Kf, it appears that TOFF has a negative impact
on Kf i.e., Kf increases with the decrease in TOFF and vice versa. Figure 5b shows a direct positive impact
between TOFF and Ra. As TOFF increases, the flushing of the molten material significantly improves
due to the increased time interval between two consecutive electrical discharges, thus improving
the surface quality [44]. However, MRR decreases due to the reduced spark intensity at high TOFF.
Conversely, smaller TOFF values tend to increase the spark intensity which melts and vaporizes a larger
amount of material in the machining zone, thus increasing the MRR [47]. However, there is a critical
value of TOFF characterized by insufficient flushing of the molten material. This causes the formation
of craters and micro-flaws on the machined surface thus increasing the surface roughness Ra.
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(a) (b) (c) 

Ȯ

Figure 5. Effects of pulse-off-time (TOFF) on (a) kerf width, (b) surface roughness and (c) MRR.

3.5.3. Effect of Servo-Voltage

The effect of servo-voltage on kerf width, Ra and MRR is shown in Figure 6a–c, respectively.
The kerf width was not much influenced by the servo-voltage as seen from Figure 6a. It is apparent
from Figure 6b that the Ra value initially decreases with increase in servo voltage up to a servo voltage
value of 50 V and then increases with further increase in servo voltage. An increase in servo-voltage
leads to higher values of MRR. It is known that higher voltages increase the spark discharge energy.
This results in energy suspension amid the wire and work piece [46]. The higher evaporation rate is
related to the larger discharge force exerted on the work piece area [48]. Thus, such energy dissolution
leads to enhancement of the MRR and also contributes to decoration of the machined surface finish.

 

(a) (b) (c) 

Figure 6. Effects of servo-voltage (SV) on (a) kerf width, (b) surface roughness, and (c) MRR.

3.5.4. Effect of Peak Current

The graph plotted in Figure 7b between IP and Ra shows that the surface roughness increases
from 2.4 µm to 2.7 µm with the increase in peak current value due to the increase in discharge energy.
It is known that the discharge energy is proportional to the peak current [49]. At high values of peak
current, continuous sparking occurs and hence MRR increases. This increase in discharge energy in
turn leads to the melting of larger amounts of material and to increased kerf width, as can be seen from
Figure 7a. The MRR was found to increase initially with an increase in peak current value till 150 A
then tapers off.
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(a) (b) (c) 

Figure 7. Effects of peak current (IP) on (a) kerf width, (b) surface roughness, and (c) MRR.

3.5.5. Effect of Wire Tension

Figure 8a shows a graph plotted between WT and Kf. It was found that wire tension has a
negligible impact on kerf width. Figure 8b shows that the effect of wire tension on surface quality is
even less marked than the effect on kerf width. However, increasing wire tension allows mechanical
vibrations to be reduced and thus wire deflection from its straight path to be minimized. Hence, the
wire electrode keeps closer to its nominal (i.e., mean) position throughout the machining process. This
contributes to enhance the MRR parameter (see Figure 8c).

 

(a) (b) (c) 

Figure 8. Effects of wire tension (WT) on (a) kerf width, (b) surface roughness, and (c) MRR.

3.6. Surface Morphology of the Wed Machined Specimens

The literature reports that the discharge energy mainly produces changes in the surface texture
during the WEDM process. Hence, the surface quality of specimens machined using WEDM for
different parametric settings was investigated (Figure 9). The material characterization depicts an
uneven material deposition, presence of pockmarks and voids, globules of debris, and white layer
formation. However, no surface cracking was witnessed. These patterns of machined specimens were
obtained for different settings of parameters in such a manner as to detect the effect of pulse-on-time,
sparking voltage, and pulse-off-time. The selected specimens were (i) Specimen of Experiment 3
(Figure 9a); (ii) Specimen of Experiment 48 (Figure 9b) and (iii) Specimen of Experiment 14 (Figure 9c).
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(a) 

 

(b) 

 

(c) 

Figure 9. FESEM micrographs showing surface morphology of WEDM samples for different parametric
settings. (a) Experiment 3: TON = 100 µs, TOFF = 60 µs, SV = 40 V, IP = 120 Amp, and WT = 1.1 kg.
(b) Experiment 48: TON = 110 µs, TOFF = 50 µs, SV= 50 V, IP = 150 Amp, and WT= 1.1 kg. (c) Experiment
14: TON = 120 µs, TOFF = 40 µs, SV = 60 V, IP = 180 Amp, WT = 1.1 kg.
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From Figure 9a,b, it can be observed that the increase in pulse-on-time from 100 µs to 110 µs,
sparking voltage from 40 V to 50 V, and peak current from 120 to 150 A, resulted in enlargement of
the size of globules of debris, bigger pockmarks and voids, and further uneven deposition of layers.
Moreover, with increase in pulse-on-time, sparking voltage, and peak current, the discharge energy
released per spark increases significantly. The increased discharge energy melts and vaporizes a larger
amount of material from the plasma channel which helps in the formation of larger and deeper craters
due to increased spark intensity [50]. A part of the melted materials is flushed away by pressurized
dielectric fluid. However, the remaining molten material re-solidifies and forms globules of debris and
pockmarks on the machined surface. It is suspected that the molten materials elemental composition
has been altered during EDM action. Such phenomenon may occur when there is a high level of energy
but not enough time to cool the surface and to remove the debris [51]. From Figure 9c, it is evident
that for the largest values of pulse-on-time that is 120 µs, sparking voltage of 60 V, and peak current
of 180 A, there is a significant increase in the size of globules of debris, pockmarks and voids, and
further uneven deposition of layers due to increase in the thermal energy of the spark. It is evident
from Figure 9a–c that a lower amount of globules, voids and pockmarks of smaller size form when the
discharge energy is low. This is directly related to the crater size and amount of metal removed at low
discharge energy. The size and number of globules, voids and pockmarks increase at higher discharge
energy. The WEDM also attributes to modified surface layers of machined work pieces. These surface
layers consist of a white layer (also known as the recast layer), heat affected zone and chemically
affected zone with changes in the average chemical composition and possible phase changes. Typically,
hardness of the white layer is higher than the bulk material due to the presence of oxides. However,
this work did not study the influence of WEDM parameters on these surface layers of Inconel 718 and
further study is required for such investigations.

3.7. NSGA-II Optimisation

The optimization problem was formulated with objectives to minimize the Kf and Ra and to
maximize MRR. These goals are contradictory to each other and the function of pulse-on-time (TON),
pulse-off-time (TOFF), servo-voltage (SV), peak current (IP) and wire tension (WT) were considered.

minimise K f = f
(

Ton, To f f , SV, Ip, WT
)

minimise Ra = f
(

Ton, To f f , SV, Ip, WT
)

maximise MRR = −minimise MRR = f
(

Ton, To f f , SV, Ip, WT
)

Subjected to constraints:
100 < Ton < 120

40 < To f f < 60

40 < V < 60

120 < Ip < 180

1.1 <WT < 1.5

The selected NSGA-II variables were identified on the basis of the literature and the characteristics
of the current optimization problem to obtain optimal solutions with low computational effort:
Maximum Number of Generations = 100, Total Population Size = 50, Mutation Probability = 0.25,
Crossover Probability = 0.8. To determine the Total Population Size, sufficient optimization runs were
conducted. After analyzing the results, it is found that the value of the objective functions attains
its maximum value for a total population size of 50. Furthermore, it was observed that there was
no appreciable change in the objective function value with further increase in total population size.
Therefore, we selected a total population size of 50 for this research work. Crossover Probability for
this research work is taken as 0.8, as it was observed that faster initial convergence was obtained for
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the value of 0.8 after testing eight different values varying from 0.1 to 0.9. The Mutation Probability
needs to be kept low in order to avoid random searches, but too low a mutation probability results
in a local minimum/maximum. Therefore, a mutation probability of 0.25 was selected in this study
so that the genetic algorithm avoids stopping at a local minimum/maximum. Figure 10 shows the
Pareto front of the results in the exploration space for the optimization results. The NSGA-II yielded
18 optimal solutions which are listed in Table 10. Furthermore, it was also observed that there was
a trade-off between MRR, kerf width, and surface roughness. i.e., no solution is better than any
other solution and the decision maker will have to choose from the optimum results on the basis of
particular requirements.
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Figure 10. Pareto front of non-dominated solutions.

Table 10. Optimal combinations of WEDM parameters and non-dominated solutions.

S. No.

Optimum Combination of Parameters Predicted Optimal Responses

Pulse on
Time (µs)

Pulse off
Time (µs)

Servo
Voltage (V)

Peak
Current

(A)

Wire
Tension (kg)

Kerf Width
(mm)

Average Surface
Roughness (µm)

MRR
(mm3/min)

1 115.7 41.3479 58.9851 145.6258 1.5 0.4115 2.9032 11.0445
2 116.1976 51.0227 58.8759 140.2582 1.002 0.4007 3.7455 10.081
3 115.7361 48.609 58.4004 140.9127 1.1499 0.403 3.5708 9.9281
4 111.8471 53.369 57.6318 139.7052 1.1846 0.3912 3.1399 8.982
5 106.2293 43.3575 55.8224 138.0302 1.4665 0.3886 1.9739 8.3452
6 109.0756 51.2509 54.952 135.5442 1.1557 0.3843 2.6745 8.0852
7 107.6299 54.3343 56.1504 137.6518 1.1792 0.3789 2.5472 7.7192
8 103.8108 55.7966 55.6415 136.7205 1.1733 0.3653 2.0421 6.2681
9 103.509 58.5855 56.0647 131.1638 1.1326 0.359 1.8143 5.9988

10 102.5863 59.2397 56.1829 129.3532 1.1186 0.3541 1.6625 5.5898
11 100.6012 40.2018 49.5448 125.1871 1.4991 0.3712 0.7983 5.3027
12 103.6348 58.6548 53.2785 125.4858 1.245 0.3623 1.5738 4.9978
13 100.4823 41.0112 49.6387 126.0315 1.2619 0.3636 1.0146 4.7551
14 100.8304 58.3529 54.7529 134.7287 1.1789 0.3524 1.4451 4.5571
15 100.1058 59.7993 54.683 127.479 1.1017 0.344 1.2261 4.1407
16 100.1064 59.6998 53.5976 126.8243 1.116 0.3449 1.1667 3.9059
17 100.1194 59.7852 51.1414 127.104 1.2612 0.3511 0.9925 3.1583
18 100.1884 59.7203 49.7307 123.9073 1.3032 0.3529 0.9621 2.8823

4. Conclusions

This work aimed to establish a predictive model for the wire electrical discharge machining
process for machining Inconel 718. The experiments were performed using central composite design
based on RSM to analyze the effects of various input parameter on the response variables. The ANN
and RSM models were established to predict the process performance. The process optimization was
further verified by applying the Non-dominated Sorting Genetic Algorithm (NSGA-II). The following
conclusions were drawn based on the results obtained in this work.
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1. ANOVA results indicate that TON has the highest impact on the machining of Inconel 718 by the
WEDM process. Here, the percentage contributions of TON on Kf, Ra, and MRR were found to
be 73.07%, 90.31%, and 46.99%, respectively. With an incrase in TON, the Kf, Ra, and MRR were
found to increase due to the increase of discharge energy.

2. The results of ANOVA and analysis of experimental data indicate that the RSM models for Kf, Ra,
and MRR are well fitted with the experimental values having a prediction error less than ±12%.

3. A robust process model was developed on the basis of a feed-forward back propagation neural
network structure with 5-13-15-3 structure with minimum prediction MSE.

4. The confirmation experiments performed for the validation of both RSM and ANN models show
that ANN, owing to its better modelling ability, is superior in giving appropriate and reliable
predictions of Kf, Ra, and MRR compared to that of RSM models. The lower value of MSE for
ANN (1.49%) than MSE for RSM (5.71%) further validates the better fitting of the neural network.

5. The surface morphology of WEDM machined samples shows the presence of a larger size of
globules of debris, bigger pockmarks and voids, and further uneven deposition of layers for high
discharge energy settings.
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