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Abstract
Memory-assisted quantum key distribution (MA-QKD) systems are among novel promising
solutions that can improve the key-rate scaling with channel loss. By using a middle node with
quantum storage and measurement functionalities, they offer the same key-rate scaling with
distance as a single-node quantum repeater. However, the distance at which they can surpass the
nominal key rate of repeaterless systems, in terms of bits per second, is typically long, owing to the
efficiency and/or interaction time issues when one deals with quantum memories. This crossover
distance can be a few hundred kilometres, for instance, when one relies on the exchange of
infinitely many key bits for the key-rate analysis. In a realistic setup, however, we should account
for the finite-key effects in our analysis. Here, we show that accounting for such effects would
actually favour MA-QKD setups, by reducing the crossover distance to the regime where realistic
implementations can take place. We demonstrate this by rigorously analysing a decoy-state version
of MA-QKD, in the finite-key regime, using memory parameters already achievable
experimentally. This provides us with a better understanding of the advantages and challenges of
working with memory-based systems.

1. Introduction

Quantum key distribution (QKD) has made a lot of progress as part of the solution package for secure
communications in the quantum era [1]. But, when it comes to long distances, quantum technologies still
have a long way to go before they can replicate the same functionalities that public-key cryptography offers.
In terrestrial networks, such as the infrastructure that today’s Internet is based on, the biggest challenge to
overcome is perhaps the exponential growth of loss in optical fibres [2]. This makes it extremely difficult to
perform QKD at long distances without trusted middle nodes. Quantum repeaters are potential solutions,
but none of their theoretical architectures can currently be implemented experimentally to the full effect
[3]. For instance, probabilistic quantum repeaters [4–6] would require quantum memory (QM) modules
with high coupling efficiencies to light and with coherence times exceeding the transmission delays, which
are hard to achieve together [7]. That said, even if the current QMs are not sufficiently advanced for
quantum repeaters, they may still be used to offer key-rate improvements in some of the existing QKD
systems. Working on such memory-assisted QKD (MA-QKD) systems paves the way for future scalable
quantum repeaters. This work studies the secret key rate for decoy-state MA-QKD systems in the practical
regime where only a finite block of data is exchanged among QKD users.

MA-QKD setups [7, 8] are based on the measurement-device-independent QKD (MDI-QKD) protocol
[9], in which Alice and Bob send BB84-encoded pulses to a middle node, Charlie, who performs a Bell-state
measurement (BSM). In MDI-QKD, a raw key bit can be generated if both pulses survive the channel loss in
the same round and the BSM is successful. In MA-QKD, however, Charlie employs two QMs to store the
quantum state of the users’ pulses, and only performs the BSM when both memories have been loaded.
This will allow the pulses that arrive in different rounds to be combined to produce a key bit. Thus, the
key-rate scaling is improved from η2 in MDI-QKD to η in MA-QKD [7], where η is the transmittance of
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the channel between Alice/Bob and Charlie. Together with the recently introduced twin-field QKD
(TF-QKD) [10], MA-QKD is a strong contender to beat the current rate versus distance records in QKD.
Such an advantage has recently been demonstrated experimentally using silicon vacancy centres [11].

Offering advantage in a realistic setup that relies on imperfect QMs is not without its own challenges.
For instance, photon-memory coupling can introduce additional loss in the setup. Some memories have
also a long photon-memory interaction time that requires users to employ a low source repetition rate. The
better scaling with channel loss can only offset these effects after a certain distance, which we refer to as the
crossover distance. If this distance happens to be long, it would then be difficult to experimentally
implement a stable system that benefits from such an advantage. Other effects, such as decoherence in the
QMs, also need to be taken into account when evaluating system performance [7] and they typically
exacerbate the situation. Additionally, in realistic setups, we should consider the effect of using weak laser
pulses by the users in conjunction with finite-key effects. In this work, we develop a security analysis that
accounts for all the above, and, in particular, quantify the interplay between the crossover distance and
other parameters of the system.

Several analyses of MA-QKD have already been carried out, under varying assumptions and for different
implementations of QMs. However, most of them [8, 12, 13] assume single-photon sources, which are
difficult to attain in practice. In many QKD experiments, attenuated laser sources are used, instead. The
multi-photon components in the signals generated by these sources introduce security loopholes, and they
need to be dealt with [14]. The decoy-state method [15] is often used to bound the leaked information from
these multi-photon signals, thus closing the loophole. This method involves the statistical estimation of
channel probabilities, based on data collected from the use of different laser intensities. This statistical
characterisation of the channel would only be perfect if one could collect an infinite amount of data by
using the channel infinitely many times. In practice, a QKD experiment will run for a fixed amount of time,
and a finite-size dataset will be generated [16]. By using statistical analyses based on concentration
inequalities, it has been shown that a bound on the leaked information can be computed [16, 17], thus a
secret key can still be distilled, with a failure probability that can be made arbitrarily small. However, as the
total number of signals exchanged (the block size) gets smaller, the obtainable secret key rate is reduced. In
fact, if the block size is too small, no secret key rate may be obtained at all.

In this paper, we provide the first analysis of a decoy-state MA-QKD setup that accounts for the
statistical fluctuations that arise from generating a finite-size key. Previous work [7] on MA-QKD has only
considered the asymptotic limit in which the users exchange an infinite number of signals, and under
simplified assumptions on the loading of QMs with attenuated laser sources. In our finite-key analysis, we
compare MA-QKD performance with that of a no-memory MDI-QKD system, by using parameters from
state-of-the-art experiments on quantum memories [12]. We find that MA-QKD is inherently more
resistant to finite-key effects, and it experiences a lower reduction in secret key rate than MDI-QKD. In
particular, we see that once these effects are considered, the distance from which MA-QKD offers an
advantage is reduced. This would make it easier for experimentalists to implement a decoy-state MA-QKD
setup that outperforms, in terms of secret key rate versus distance, the equivalent decoy-state BB84 or
MDI-QKD setups.

In terms of key rate, MA-QKD may not outperform the recently introduced TF-QKD, at least with
state-of-the-art quantum memories. However, one should be careful when comparing systems that have
different requirements. For instance, the single-photon interference of TF-QKD demands phase stability
over long channels, which is experimentally difficult, and which MA-QKD does not need. We believe that
comparing MA-QKD with MDI-QKD is the fairest when it comes to the requirements of each system. We
note that there exists some recent work on memory assisted TF-QKD [18], which specifies under what
circumstances adding quantum memories to TF-QKD setups can be advantageous. Moreover, we believe
that MA-QKD is of special interest as the very first step towards building memory-based quantum
repeaters. Unlike TF-QKD, or other no-memory systems, these offer a scalable solution for long distance
quantum communications. Any practical progress with quantum repeaters would be based on fully
understanding and implementing MA-QKD as the simplest memory-based repeater system. Our findings
for MA-QKD systems suggest that memory-based quantum repeaters may also be resilient to finite-key
effects, at least when users access them with decoy-state sources.

The rest of the paper is organised as follows. In section 2, we describe the analysed setup, placing an
emphasis on the QM modules, and the different parameters that are used for modelling them. In section 3,
we explain how different system parameters affect the secret-key rate. In section 4, we compare the secret
key rate achievable in decoy-state MA-QKD and decoy-state MDI-QKD with examples from warm vapour
and cold atomic ensembles. Section 5 concludes the paper with our interpretation of the results.
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Figure 1. The schematic of an MA-QKD system. The two users Alice and Bob use decoy-state BB84 encoders to generate
polarisation/phase encoded signals. Charlie, in the middle, uses EPP sources to teleport the state sent by the users to the
corresponding memories. When both memories are loaded, their states are converted back to photons and combined in the
middle BSM. For an example of the BSM module, see figure 4 of appendix A.

2. System description

In this section, we describe our MA-QKD setup and the assumptions we make on different devices and
components of the system.

Figure 1 shows the schematic of the MA-QKD setup considered in this work. Here, in each round, Alice
and Bob each send decoy-state BB84 states in their chosen basis. Charlie verifies the receipt of the
transmitted signal by generating an entangled photon pair (EPP) on each side to effectively teleport the
state of the users to a local photon on his site. The side BSMs in figure 1 would herald the success of such an
event, in which case the remaining photon of the EPP source will be written to the corresponding QM. That
is, its photonic state is transferred to the memory, and will be kept there until the state of the other user is
also successfully received and teleported to its respective QM. At this point, the two QMs will be read, i.e.,
their states will be transferred to photons on which the middle BSM is performed. At the end of the
protocol, Charlie announces his measurement results, and Alice and Bob would follow with conventional
steps for sifting and post-processing of their key bits.

Note that the teleportation scheme used here to herald and transfer the state of photons is not an ideal
one. In an ideal teleportation setting, the users have to send ideal single photons, whereas here they are
using weak laser pulses. The effect of the multi-photon components has then to be taken into account. We
analyse the memory-loading procedure for weak laser pulses in appendix A. In this scheme, we are also
delaying the writing of the second photon of the EPP until we learn about the success of teleportation.
While there is a chance that the transfer of this photonic state to the QM may fail, this delayed writing
process has the advantage that the QM initialisation is not necessary in each round [12], but only when a
writing procedure has been attempted. This helps with maximising the repetition rate of the protocol,
especially when the initialisation phase is time consuming. We account for the failure in transferring a local
single photon to the memory by the memory writing efficiency parameter.

Finally, while, in practice, an ideal EPP source as assumed here may not be realistic, it would help us
obtain the key features of our finite-key analysis without overly complicating the calculations. The former
issue can be managed by techniques introduced in reference [12], where they propose a quasi-EPP scheme
based on single-photon sources, instead. It is also possible to create a photon-QM entangled pair in certain
QMs [13, 19]. In all cases, we should be careful with the possible multiple excitations we may locally create
at Charlie’s node to not violate the conditions for the proper operation of MA-QKD systems [12, 20].
Under above considerations, we believe that the main result from our paper, i.e., the resilience of the
decoy-state MA-QKD to finite-key effects, should still hold.

In the following, we describe the key components of our system in more detail.

2.1. Quantum memories
We model QMs using a few relevant parameters to our setup, while keeping our model as general as
possible:

• The writing efficiency, denoted as ηw , is the probability of successfully transferring a single-photon
state to the QM. We refer to this process by the term ‘loading’.

• The reading efficiency, denoted as ηr, is the probability to transfer the qubit state stored in the QM
back to a single photon. We assume that, at time t after loading, ηr(t) = ηr0exp[−t/T1], where ηr0

denotes the reading efficiency at time t = 0 and T1 is the decay time constant of the QM.

• The QM decoherence time constant is denoted by T2. We consider two decoherence processes:
dephasing and depolarisation. In the case of dephasing, for an initial state ρ(0) of the QM, the state at
a time t after loading will be

ρ(t) = p(t)ρ(0) + [1 − p(t)]σzρ(0)σz, (1)
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where p(t) = [1 + exp(−t/T2)]/2. Dephasing will only affect X-basis states. For a depolarisation
process, we assume

ρ(t) = p(t)ρ(0) +
1 − p(t)

3
[σzρ(0)σz + σxρ(0)σx + σyρ(0)σy]. (2)

In both cases, we treat the QM state as a qubit for which σx, σy, and σz are its corresponding Pauli
operators.

• We denote the interaction time with single photons as τ int, for both reading and writing procedures.
We denote the initialisation time of the QM as τ init. Because of our delayed-writing assumption, a
writing procedure will always be followed by a reading procedure, and the QM only needs to be
initialised after reading.

• The writing time is denoted as τw, and the reading time is denoted as τ r. For our delayed writing
procedure, we assume τw = τ int and τ r = τ int + τ init. We effectively neglect the required time for
measurement in both cases.

• We denote as τ p the pulse duration of both the user sources and the EPP sources, which are assumed
to have matching pulse shapes. We assume τp = τw to maximize the writing efficiency into the
memory. The MA-QKD system is to be run at a repetition rate of Rs = 1/τp.

2.2. Channel and source model
Similarly, we present our assumptions on the channel and the users sources:

• We assume that the user sources produce phase-randomised coherent states, and that the intensity of
the pulse can be perfectly tuned in each round. The users select a random intensity, in terms of mean
number of photons, from the set {z,w1,w2, v} with probability {pz, pw1 , pw2 , pv}. Emissions with the z
intensity will be encoded in the Z basis, and they will be used to generate the raw key. Emissions with
any other intensity will be encoded in the X basis, and they will be used to estimate the single-photon
counts and their corresponding phase-error rate. We will refer to z as the signal intensity, and to
{w1,w2, v} as the decoy intensities. Our model can work with either polarisation or phase encoding.
We denote the source repetition rate as Rs.

• We assume non-resolving detectors with efficiency ηd and a dark count rate γdc. The latter includes
intrinsic effects as well as background photons in the channel. The dark count probability per detector
per round of the protocol is pdc = γdcτ p.

• We denote the total length of the channel separating Alice and Bob by L. We assume that the central
node is located exactly halfway between the users. We denote the attenuation length of the channel by
Latt. The transmission coefficient for each leg of the channel is given by ηch = exp( −L

2Latt
).

• We consider the effect of setup misalignment between the user sources and the measurement devices
in the central node. The standard way to model misalignment in QKD is by a misalignment
probability emis, and previous analyses of MA-QKD have also modelled it that way [7]. However, as
explained in appendix A, such a model is not directly applicable when considering the indirect loading
of QMs with weak laser pulses. Here, we model misalignment by assuming that the encoding modes,
e.g., horizontal and vertical polarisations, have been rotated from their ideal settings by a random
angle θ. We then average over θ to find parameters of interest.

• In our setup, we allow for the usage of frequency converters to match the frequency of the telecom
signals sent by the users with that of the EPP source. The EPP source, in one leg, should generate a
beam that interacts with the QM. For a degenerate EPP source, this would typically require us to
downconvert the frequency of the other beam to the telecom band. One can, in principle, design a
non-degenerate EPP source, but we should then be careful with the extent of multiple excitations in
the source [20]. We account for the efficiency of frequency converters by including additional loss in
our setup.

3. Key-rate analysis

In this section, we find the secret key generation rate for our decoy-state MA-QKD setup, in both the
asymptotic and finite-key regimes. We assume the nominal mode of operation in which no eavesdropper is
present, and the system is only affected by device imperfections. Also, for simplicity, we assume that the
sources used by Alice and Bob, and the channels connecting them to the middle node are identical.

3.1. Asymptotic case
In this subsection, we calculate the key rate obtainable in the limit that the users exchange an infinite
number of signals. In this regime, we can assume that the signal intensity is used with probability pz � 1,
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and that the decoy-state analysis provides a perfect estimate of the single-photon channel probabilities.
Under these assumptions, the secret key rate is lower bounded by [7]

R � Rs

[
QZ

11

(
1 − h(eph)

)
− f QZh(eZ)

]
, (3)

where QZ is the probability of generating a sifted key bit per round of the protocol, and eZ is the error rate
of the sifted key. Also, QZ

11 is the single-photon contribution to QZ, and eph is the phase-error rate of these
single-photon components.

Our objective here is to calculate what Alice and Bob would observe in a nominal experiment for
directly measurable parameters QZ and eZ, and their corresponding estimation for QZ

11 and eph after using
the decoy state method. For this, we mainly use the method introduced in [7], but we adjust it as needed to
account for the specific components of our model. In particular, in the case of weak laser pulses at the
source, we need to pay special attention to the modelling of misalignment in the channel. We also extend
the results of [7] to depolarising channels.

Appendix A provides a detailed and self-contained description of our analysis. In short, we first obtain
the exact expression for loading probability pμload and loading error rate eμload when Alice/Bob sends a
phase-randomised coherent state with intensity μ under a generic model for channel misalignment. This
parameter would then allow us to calculate the average number of rounds needed to load both memories,
and the corresponding state of the memories after a heralded loading. We will then account for memory
decoherence and decay processes and calculate the rate of success, and the corresponding error rate, for the
middle BSM. Appendix A.2.1, provides the analytical form for all parameters needed in equation (3).

3.2. Finite-key regime
Now, we calculate the secret key rate in the more realistic scenario where the number of signals exchanged
by the users is finite. In this regime, we still derive the secret key from the data points for which both users
have used the Z basis, but we also need to take into account the rounds in which the users employ decoy
intensities. In this case, we can no longer assume that the decoy-state analysis provides a perfect estimate of
the single-photon statistics QZ

11 and eph. Instead, we use a statistical analysis to bound them. Under our new
assumptions, the total secret key length K satisfies

K � MZ
11[1 − H(eph)] − MZH(eZ), (4)

where MZ is the length of the sifted key, generated from the events in which both users selected the Z basis
(i.e., the z intensity), and eZ is its bit error rate; MZ

11 is the number of bits in this sifted key that originated
from single-photon emissions, and eph is their phase-error rate.

In an experimental implementation of the protocol, the measurable observables available to us are the
sets {Mab} and {Eab}, where Mab is the total number of measurement counts when Alice has used intensity
a and Bob has used intensity b, while Eab is the number of such events that result in error. The objective of
Alice and Bob is to use this data to obtain statistical bounds on MZ

11 and eph.
The full description of our statistical analysis appears in appendix B. We use the idea in [21] to perform

our statistical fluctuation analysis using X-basis data only. This would make our statistical estimation
procedure more efficient. By applying tight multiplicative Chernoff bounds [16], we are then able to use the
measured counts Mab and Eab to set linear constraints on the possible values that MZ

11 and eph could take.
These constraints enable us to express the desired bounds on these quantities as the solution to two linear
programs. We use the analytical estimation procedure introduced in [17] to solve these programs.

For our numerical simulations, we still need to make some assumptions on the obtained measurement
results in a nominal experiment. For this purpose, we use the expected values for relevant parameters using
the corresponding probability in the asymptotic regime, derived in the previous subsection. That is, we
assume

Mab = NQab and Eab = eabMab, (5)

where N is the total number of rounds, i.e., the number of transmitted pulses by Alice/Bob, in the protocol,
Qab is the probability of having a successful measurement originating from intensities a, for Alice, and b, for
Bob, and eab is the probability that this measurement results in an error. Appendix A.2.2 provides the
derivation and the analytical form for all these parameters.

In our finite-key analysis, we have only considered the effect of statistical fluctuations on parameter
estimation. Thus, in our key rate formula in equation (4), we have neglected some of the less significant
terms that usually appear in a rigorous finite-key analysis. The latter is to adhere to the universal
composable framework [22, 23]; e.g., we direct the reader to equation (1) of [17]. We have neglected these
terms for simplicity, as they are, in practice, only on the order of tens of bits, and because their effect is
identical for the memory-assisted and no-memory systems, which the present work aims to compare.
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Table 1. Parameter values of recently demonstrated warm vapour (WV)
and cold atom (CA) ensembles [12], as well as silicon vacancy (SV)
centres, used in the simulations in this work. For simplicity, in our
simulations, we assume T2 = T1.

WV [24] CA [25] SV [11]

Writing–reading efficiency, ηwηr0 0.05 0.76 0.423
Decay time, T1 120 μs 220 ms 200 μs
Interaction time, τ int 1.43 ns 240 ns 142 ns
Repetition rate, Rs 518 MHz 4.2 MHz 7.04 MHz

Table 2. System parameter values used for the simulations in this work. For
no-memory MDI-QKD, we assume that the channel misalignment, in their
respective leg of the channel, flips the state sent by each user with probability emis.
For MA-QKD, we assume that channel misalignment rotates the states sent by
the users by an angle θ that follows a uniform distribution of width 2

√
3emis; see

equation (A23), and the explanation preceding it.

Attenuation length of the channel, Latt 22 km
Detector efficiency, ηd 93%
Detector dark count rate, γdc 1 count/s
Misalignment error probability, emis 0.5%
Conversion efficiency, ηc 0.5, 1

4. Numerical results

In this section, we use the results of section 3 to simulate the secret key rate that can be achieved with the
decoy-state MA-QKD scheme in figure 1, in both the asymptotic and finite-key regimes. We use two types
of memories for our analysis: warm vapour atomic ensembles, which often offer high bandwidth, hence
high repetition rates, but a rather low coherence time; and cold atomic ensembles, which are often slower
but benefit from longer coherence times. Table 1 summarises the relevant memory parameters used in our
simulation based on the experimentally reported values in [24], for warm vapours, and [25], for cold
atomic ensembles. In our simulations, we have assumed T1 = T2.

We compare the MA-QKD system with a no-memory MDI-QKD setup, run at a repetition rate of 1
GHz, as a reference point, and study how finite-key effects change the crossover distance under different
circumstances. Appendix A.3 provides the analytical expressions used for simulating the MDI-QKD system.
MDI-QKD is the closest no-QM system to MA-QKD, which enables us to make this comparison as fair as
possible. They both offer measurement-device-independent features and they can both be run with
minimal requirements on the source or channel phase stabilisation. The latter property is needed for
advanced TF-QKD systems, whose rate-versus-distance scaling is similar to MA-QKD, but are expected to
offer higher rates if properly implemented [26–28].

In all cases, we use the system parameters listed in table 2, which are attainable by today’s technologies
[29]. In all graphs, we optimise over the values of the intensities {z,w1,w2}, and assume a vacuum intensity
of v = 0.5 × 10−3, since the optimal value v = 0 may be difficult to achieve in practice. We also optimise
over their selection probabilities {pz, pw1 , pw2 , pv}. In our finite-key analysis, we assume a failure probability
of ε = 0.5 × 10−11 for each of the concentration bounds used in section 2; the total failure probability of
the estimation process is 20ε = 10−10.

In figure 2, we show the performance of the warm vapour memory in reference [24], for different values
of the block size N, which represents the total number of signals sent by Alice (or Bob) in that run of the
protocol. We can see that, at low distances, the key rate of MA-QKD is lower than that of MDI-QKD. This is
partly due to the lower repetition rate for MA-QKD, but also due to the additional loss effects introduced by
the QM’s less-than-one writing and reading efficiencies. At longer distances, however, the improved
key-rate scaling of MA-QKD with channel loss may overcome these effects. In figure 2(a), we can see that in
the asymptotic regime (black curves), the MA-QKD protocol can only offer a small advantage over
MDI-QKD from around 340 km to 430 km. However, once we use a finite block size N (colour curves), the
crossover distance moves to the left to shorter channel lengths, and even approaches 100 km at N = 1010.
This suggests that in order to see the advantages of MA-QKD over no-QM MDI-QKD we only need to
demonstrate such systems over much shorter distances than one may require in the asymptotic regime.
With record distances for entanglement distribution between two QMs being around 50 km [30], one can
hope that such a demonstration can take place in the near future.
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Figure 2. Secret key generation rate, in b/s, for an MA-QKD setup using warm vapour quantum memories [24] (solid lines), in
comparison with no-memory MDI-QKD (dashed lines), for different values of the block size N. In (a) and (c) a dephasing
channel is used to model memory decoherence, whereas, in (b), a depolarisation channel is used. The efficiency of the frequency
converter is assumed ideal in (a) and (b), whereas, in (c), it is 50%.

While a slight shift to the left, due to finite-key effects, might be expected in figure 2, the considerable
change in the crossover distance may come as a surprise. A naive thinking may suggest that in order to see
the benefits in the finite-key setting, we need to have larger count numbers in MA-QKD, as compared to
MDI-QKD, to reduce statistical errors in our parameter estimation. But, so long as, in the asymptotic case,
the key rate for MDI-QKD is higher than that of MA-QKD, we may expect that the corresponding counts
will also remain larger in the finite-key setting, hence no considerable change may be expected in the
crossover distance. This argument, however, fails to give us an accurate picture of what is happening in the
MA-QKD case. Below, we explain two key reasons for why the finite-key setting may benefit the MA-QKD
setup, hence shifting the crossover distance to much shorter channel lengths.

• Self-purification of multi-photon terms: the MA-QKD system can by design get rid of some of the
erroneous terms that would otherwise be present in the no-QM setup. Let us compare the two setups
when Alice selects a non-vacuum intensity s, in the X basis, and Bob selects the vacuum intensity v. In
no-QM MDI-QKD, there is a single BSM module, in which Alice’s and Bob’s emissions are directly
combined. A successful BSM, in polarisation encoding, is declared if two detectors corresponding to
different polarisations click. In the event that Bob sends a vacuum state, a successful BSM could
happen because of the multi-photon terms in Alice’s signal. This increases Msv and Esv counts, which
add to the uncertainty in estimating eph. In MA-QKD, such counts are much lower. Charlie will
declare that Bob’s QM has been loaded when his corresponding side BSM is successful. For a vacuum
input, such an event could only happen if one of the detectors clicks because of the dark count,
assuming that the EPP source can only cause a click in one of the detectors. For low dark count rates,
as we assume here, the measurement counts Msv , as well as its corresponding terms in error will be
close to zero in MA-QKD. Around the crossover distance, this makes the upper bound on eph lower
for MA-QKD even if its corresponding value in the asymptotic case is higher than that of MDI-QKD.
That is, MA-QKD enjoys less noisy statistics that helps us obtain tighter bounds on our parameters of
interest.

• Efficient use of decoy states: in both MDI-QKD and MA-QKD, the secret key is extracted from events
in which both users select the signal intensity z. The rounds in which they both employ the decoy
intensities are used for parameter estimation only. The points that one user uses the Z basis and the
other uses the X basis, are then somehow ‘wasted’ and will be sifted out. MA-QKD can help with
better sifting efficiency. This is partly because of the main advantage of MA-QKD with respect to
MDI-QKD in that the key rate scales with the transmissivity of one leg of the channel, rather than the
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entire channel. To better understand this point, let us consider the effect of employing the vacuum
intensity, v. Suppose that Alice and Bob are using either an MDI-QKD or an MA-QKD setup with a
channel transmittance per leg of η, and that they use intensity z with probability pz � 1, as they do in
the infinite key regime. Charlie will report a successful detection with probability Qz. Now suppose
that they use the same scheme as above, except that they now employ a (fictitious) finite-key scheme,
in which they employ the vacuum intensity v with probability pv = pz = 1/2. The effect of this is
equivalent to using a channel with transmittance per leg of η/2, since the effective transmittance of
each user’s link has been reduced by one half. Since MDI-QKD scales with η2, Qz will be reduced by a
factor of 4. However, since MA-QKD scales with η, Qz will only be reduced by a factor of 2. In reality,
Alice and Bob will use additional decoy intensities other than the vacuum intensity. But since the
decoy states will typically have larger vacuum components than the signal intensity z, they will have a
similar effect as adding loss to the system, which MA-QKD tolerates better.

Another important factor in our finite-key comparison is the amount of time needed to collect data for
a block size N. In the case of MDI-QKD, we can typically run the system at a high repetition rate on the
order of GHz for very long periods of time. The stability of the memory-based system may, however,
require us to stop collecting data after a certain period of time. It would be interesting to see how the two
systems compare if, instead of the block size, one fixes the total data collection time Tcol, instead. This
corresponds to a block size of N = RsTcol, for each system, and gives a considerable advantage to the
faster system in collecting more data at an identical time. This would not make much a difference in the
case of warm vapours as we can already run the system at sub-GHz rates. But, in the case of cold atomic
ensembles or silicon vacancy centres, which represent slower memories, this would be interesting to
study.

Figures 3(a)–(c) show the performance of MA-QKD using the cold atom QM reported in reference [25],
with a repetition rate of 4.2 MHz, at different collection times. This means that, at an identical collection
time, the MDI-QKD system can collect almost 250 times more data than the MA-QKD setup. It is
interesting to see that, even under these harsher conditions, the MA-QKD system can offer a similar
advantage as we saw in figure 2 over the no-QM MDI-QKD setup. As shown in figure 3(a), for a dephasing
channel, in the asymptotic regime (black curves), the MA-QKD system can only offer a small advantage in
the range from 300 km to 430 km. However, if the experiment is run for an hour (orange curves), MA-QKD
can generate more key after 230 km, and, while MDI-QKD dies off at about 250 km, MA-QKD can generate
a key up to 350 km. If the experiment is run for just a minute (blue curves), MA-QKD can offer an
advantage after a distance of just 170 km. In figure 3(d), we show a similar graph for the silicon vacancy
centres used in the recent MA-QKD experiment reported in [11]. This system has a slightly higher
repetition rate, but a lower coherence time. The latter is the main reason why the cut-off distance is shorter
in figure 3(d) compared with figure 3(a).

Note that it may not be possible to use a memory-based system continuously for a long period of time
without applying certain calibrations or cooling techniques. This could reduce the time available for data
collection, reducing the effective block size for an MA-QKD system. One key technique that may mitigate
this problem in the setup considered in this work is the delayed writing procedure, in which we only
attempt to interact with the memory if the corresponding side-BSM is successful. This means that the
memory is kept in a ready-to-go initial state until we know a photon has survived the path loss, in which
case its state is teleported to the memory. Given that at long distances the chance of the latter event is low,
this suggests that the external interaction with the memory is not that frequent, and the time between any
two such events can be used to bring the memory back to a solid initial state. In the case of memories
reported in [24, 25], we also have the additional advantage that after reading the memory, it automatically
goes back to its initial state. Nevertheless, it is easy in our analysis to consider the effect of possible
interruptions in data collection by modifying the block size. For instance, for CA ensembles, we have
verified that the advantage shown in figure 3(a) will remain even if we can only collect data a quarter of the
experiment time.

Finally, we have looked at how different system parameters can affect the conclusion we draw above. In
figures 2(b) and 3(b), we have used a depolarising channel to model the decoherence effect. In comparison
to figures 2(a) and 3(a), where a dephasing model is used, we see that the warm vapour system, which has
lower T2 values, is more adversely affected than the cold atom system. We observe the same behaviour when
we change the frequency converter efficiency from one to 0.5 as can be seen in figures 2(c) and 3(c). This
can simply be a ramification of having noisier data in the case of warm vapours as compared to the cold
atom case. This would result in less tight bounds on system parameters at the same block size or collection
time, hence sharper drop in key rates. The overall effect would nevertheless suggest that MA-QKD systems
can offer competitive performances in the finite-key regime irrespective of the memory or other relevant
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Figure 3. Secret key generation rate, in b/s, for an MA-QKD setup (solid lines) using (a)–(c) cold atom quantum memories,
reported in [25], and (d) silicon vacancy centres, reported in [11], in comparison with no-memory MDI-QKD (dashed lines), if
we collect data for 1 min (blue), 1 h (orange), or with no time limit (black). In (a), (c), and (d) a dephasing channel is used to
model memory decoherence, whereas, in (b), a depolarisation channel is used. The efficiency of the frequency converter is
assumed ideal in (a), (b), and (d), whereas, in (c), it is 50%.

system parameters. This would be an essential observation in the early demonstrations of memory-based
systems and how we benchmark them against their rival counterparts.

5. Conclusions

By borrowing ideas from quantum repeaters, MA-QKD can improve the scaling of repeaterless QKD
systems. However, the common imperfections in memory-based systems such as their coupling efficiency to
photonic systems, or their finite coherence times, may make it difficult for them to offer any practical
advantage as compared to their no-memory counterparts. In particular, previous analyses suggest that any
advantage in the total key rate would often come only after a crossover distance that is still challenging to
implement experimentally. In this work, we showed that once we considered the finite-key effects in the key
rate analysis, the crossover distance in such systems was reduced to a point that an experimental
implementation could be foreseen in the near future. This effect was attributed to two features of
decoy-state MA-QKD systems. First is their ability to purify some of the errors that result from
multi-photon terms in weak laser pulses, and the other relates to a more efficient sifting of signal and decoy
states. It is essential, however, for MA-QKD systems to keep all sources of noise near the memory units low,
as they otherwise would translate into erroneous measurements in the middle site. As such are the multiple
excitation terms in the memories, or sources that drive them, or additional background noise that may
enter the setup. All these issues are manageable with careful design and they are all precursors to
implementing longer quantum communications links relying on QM units. In particular, we believe that
the results of this work would be applicable to possible architectures for future quantum networks, in which
end users are only equipped with simple equipment, such as decoy-state BB84 encoders, but the core of the
network has advanced memory-based repeater chains [31].

We should note that there are no-memory QKD systems, such as TF-QKD [10], that offer a similar
rate-vs-distance scaling as MA-QKD, and they have already been implemented at record distances [28]. An
MA-QKD system may not be currently able to offer higher key rates or reach longer distances than those
achieved by TF-QKD systems. But, it is important to recognise that the expertise and skills in both
MA-QKD and TF-QKD would be required to implement scalable quantum repeater systems that go beyond
the current rate-versus-distance records. In this respect, this work makes us one step closer to the final goal
of implementing long-distance quantum communications systems.
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Figure 4. Loading of a QM with a Z-encoded weak coherent pulse, in a round with a misalignment angle of θ. The module in
the dotted box represents a partial BSM on polarisation-encoded photons. We refer to the module in the dashed box as the
butterfly module, in which ηa models the channel transmissivity and the quantum efficiency of a single-photon detector, whereas
ηb captures the coupling and frequency conversion efficiencies as well as the quantum efficiency of a single-photon detector. The
quantum efficiency of photodetectors in the BSM module is then assumed to be one.
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Appendix A. Simulation model

In this appendix, we describe our simulation model, starting with our analysis of the indirect-loading of
QMs with attenuated laser sources. Here, we assume that Charlie is honest, there is no eavesdropper, and we
are only interested in finding the relevant parameters in a realistic setting.

Figure 4 shows a schematic view of our memory loading model for a single user, say Alice, in the
polarisation encoding case. We model the loss in the channel, the measurement devices, and possible
frequency converters as two beam splitters of transmissivity ηa = ηchηd and ηb = ηcηd located at each input
port of the 50:50 beam splitter of the BSM module. Here, ηch models the transmissivity of the Alice–Charlie
channel, ηc models the frequency conversion and/or coupling efficiency, and ηd represents the efficiency of
the single-photon detectors. Note that by assuming the same efficiency ηd for all detectors, we are able to
analyse its effects at the input ports of the BSM, simplifying our model. We do not need to consider the
effect of the QM’s writing efficiency, ηw, at the loading stage. Instead, we modify the reading efficiency ηr by
an ηw factor, allowing us to analyse its effect at the reading stage. In figure 4, the EPP source is assumed to
generate an ideal entangled state in the form 1√

2
(|HH〉b̂m̂ + |VV〉b̂m̂), where b̂ and m̂, respectively, represent

the two output modes of the EPP source heading towards the BSM module and the QM.
We also consider setup misalignment between the user sources and the central node, which, in

polarisation encoding, we model as a random rotation of the horizontal and vertical modes. For simplicity,
we assume that the rotation angle θ is independent and identically distributed between different rounds of
the protocol, and for the two legs of the system. Also, we assume that polarisation maintenance schemes are
in place, so that the reference frames at the user sources and the central node are the same on average. It is
reasonable then to assume, as we do in this work, that the probability density function f(θ) is an even
function of θ. One can use a similar formulation when other types of encoding, e.g. time-bin, are used.

In the following, in appendix A.1, we first find the post-measurement state of the loaded memory, the
loading probability, and the its corresponding error rate under above considerations. The particular issue of
misalignment turns out to complicate the analysis when we use weak laser pulses (WCPs) as compared to
single-photon sources. Previous analyses of MA-QKD either assume no channel misalignment [8, 12] or
model it as an error probability emis [7, 20], which is effectively given by

∫ π

−π f (θ)sin2(θ) dθ. In our case,
while the analysis is more cumbersome, the end result, in terms of the form of the post-measurement state
of the QM, is similar to the single-photon case. This allows us to replicate most of the analysis in [7] in
appendix A.2, and extend it to the case of depolarisation channels. In the last section of this appendix, we
have summarised the key rate relationships used for the no-QM MDI-QKD as a reference point.
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A.1. Memory loading
Here, we calculate the post-measurement state of the QM, its loading probability and error rate, in the two
cases of Z and X bases.

A.1.1. Analysis for Z basis

Without loss of generality, let us consider the case that the user generates a horizontally polarised WCP of
intensity μ. Ideally, the state generated is of the form |α〉âh

|0〉âv , where α =
√
μ and âh and âv represent,

respectively, the horizontal and vertical modes of the transmitted light in figure 4. In a particular round
with a misalignment angle of θ, the misaligned state, at the input of the butterfly module, is given by

|ψ〉θâ = |αh〉âh
|αv〉âv , (A1)

where αh = α cos θ and αv = α sin θ. Meanwhile, the joint state of the two output modes of the EPP
source, i.e., b̂ and m̂, is given by

|Φ+〉b̂m̂ =
1√
2

(|HH〉b̂m̂ + |VV〉b̂m̂) =
1√
2

(|10H〉b̂h b̂vm̂ + |01V〉b̂hb̂vm̂), (A2)

where in the last equality, we have divided b̂ into, respectively, horizontal and vertical modes b̂h and b̂v .
After reordering modes, and averaging over θ, the joint input state to the butterfly module is given by

ρ̂in =

∫ π

−π

f (θ)ρ̂θin dθ, (A3)

where

ρ̂θin = |ψ〉θâ〈ψ| ⊗ |Φ+〉b̂m̂〈Φ
+| = 1

2
|αh〉〈αh|âh

|1〉〈1|b̂h
|αv〉〈αv |âv |0〉〈0|b̂v |H〉〈H|m̂

+
1

2
|αh〉〈αh|âh

|0〉〈0|b̂h
|αv〉〈αv |âv |1〉〈1|b̂v |V〉〈V|m̂

+
1

2
|αh〉〈αh|âh

|1〉〈0|b̂h
|αv〉〈αv |âv |0〉〈1|b̂v |H〉〈V|m̂

+
1

2
|αh〉〈αh|âh

|0〉〈1|b̂h
|αv〉〈αv |âv |1〉〈0|b̂v |V〉〈H|m̂ , (A4)

and |ψ〉〈ψ|â is our shorthand notation for |ψ〉ââ〈ψ|.
We are interested in the state projected to the QM after a successful loading, i.e., when exactly an H

detector and a V detector click in the BSM module. To model this measurement process, we should find the
output state of the butterfly module, with an input state as in equation (A3), and then find the
post-measurement state for the desired measurement outcome. The key to calculate this is to realise that the
horizontal and vertical modes will interact separately at the 50:50 beam splitter of the butterfly module, and
will cause clicks in the horizontal and vertically polarised detectors, respectively. Thus, we can split the
overall transformation B̂ for the butterfly module in figure 4, and the overall POVM operator M̂ in
horizontal and vertical operators as follows:

B̂ = B̂h ⊗ B̂v (A5)

M̂ = M̂h ⊗ M̂v. (A6)

Here, the butterfly operators B̂h and B̂v in figure 4 only differ in their input and output modes: B̂h will take
modes âh and b̂h to modes l̂ h and r̂h, while B̂v will take modes âv and b̂v to modes l̂ v and r̂v . The
measurement operators (POVMs) are also identical for both the horizontal and vertical modes, and are
given by

M̂x = (1 − pdc)
[(

Î̂l x
− (1 − pdc)|0〉〈0|̂l x

)
⊗ |0〉〈0|̂rx

]
+ (1 − pdc)

[
|0〉〈0|̂l x

⊗
(
Î̂rx − (1 − pdc)|0〉〈0|̂rx

)]
,

(A7)
for x ∈ {h, v}, where Î is the identity operator for the corresponding mode. M̂x represents the event of
getting a click in the x-polarised left detector and no click on the x-polarised right detector, or vice versa.

Using the above notation, the post-measurement state of the QM, after a successful loading, is given by
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ρ̂m̂ =
Trl̂ h ,̂l v ,̂rh r̂v

[
B̂†ρ̂inB̂M̂

]
Tr

[
B̂†ρ̂inB̂M̂

] =
1

pμload

∫ π

−π

f (θ)Trl̂ h ,̂l v ,̂rh r̂v

[
B̂†ρ̂θinB̂M̂

]
dθ (A8)

where

Trl̂ h ,̂l v ,̂rhr̂v

[
B̂†ρ̂θinB̂M̂

]
= cHH(θ)|H〉〈H|+ cVV (θ)|V〉〈V| + cHV (θ)|H〉〈V| + cVH(θ)|V〉〈H|, (A9)

with

cHH(θ) =
1

2
Tr

[
B̂†

h|αh〉〈αh|âh
|1〉〈1|b̂h

B̂hM̂h

]
Tr

[
B̂†
v|αv〉〈αv|âv |0〉〈0|b̂v B̂vM̂v

]

cVV (θ) =
1

2
Tr

[
B̂†

h|αh〉〈αh|âh
|0〉〈0|b̂h

B̂hM̂h

]
Tr

[
B̂†
v|αv〉〈αv|âv |1〉〈1|b̂v B̂vM̂v

]

cHV (θ) =
1

2
Tr

[
B̂†

h|αh〉〈αh|âh
|1〉〈0|b̂h

B̂hM̂h

]
Tr

[
B̂†
v|αv〉〈αv|âv |0〉〈1|b̂v B̂vM̂v

]

cVH(θ) =
1

2
Tr

[
B̂†

h|αh〉〈αh|âh
|0〉〈1|b̂h

B̂hM̂h

]
Tr

[
B̂†
v|αv〉〈αv|âv |1〉〈0|b̂v B̂vM̂v

]
,

(A10)

and

pμload = Tr
[
B̂†ρ̂inB̂M̂

]
=

∫ π

−π

f (θ)[cHH(θ) + cVV (θ)] dθ (A11)

is the probability of a successful loading for a WCP with intensity μ.
Every individual trace term in equation (A10) involves either horizontal or vertical modes, and is

equivalent to the probability of having exactly one detector click in the corresponding polarisation. Such
terms have already been calculated in table 3 of [31], which here we reuse, after making necessary
adjustments, to obtain

cHH(θ) =
(
1 − pdc

)2
(

1 − e−1/2 ηa (sin2 θ)μ (1 − pdc

))
×
((

ηb

(
cos2 θ

)
μ ηa − 2 ηb + 4

)
e1/2 ηa (cos2 θ)μ − 4 (1 − ηb)

(
1 − pdc

))
e−1/2 ηa μ ((cos2 θ)+1),

cVV (θ) =
(
1 − pdc

)2
[(

1 − pdc

) (
ηb cos2 θμ ηa − ηb ηa μ+ 2 ηb − 4

)
e−1/2 ηa μ (cos2 θ+1)

− 4 (1 − ηb)
(
1 − pdc

)
e1/2 ηa μ (cos2 θ−2) −

(
ηb cos2 θμ ηa − ηb ηa μ+ 2 ηb − 4

)
e−1/2 ηa μ

+ 4 e−ηa μ
(
−1 + pdc

)2
(1 − ηb)

]
, (A12)

and

cHV (θ) = cVH(θ) =
1

4
cos θ sin θ(1 − pdc)2(ηaηbμ e−ηaμ). (A13)

It is interesting that, in the above, the diagonal terms cHV and cVH are odd functions of θ. Under our
assumption that f(θ) is an even function, we have that

∫ π

−π

f (θ)cHV (θ) dθ =

∫ π

−π

f (θ)cVH(θ) dθ = 0, (A14)

implying that these terms vanish when considering the average post-measurement state ρ̂m̂ in
equation (A8). Thus, ρ̂m̂ can be expressed as

ρm̂ = eμload|H〉〈H|+ (1 − eμload)|V〉〈V|, (A15)

where

eμload =
1

pμload

∫ π

−π

f (θ)cHH(θ) dθ (A16)

is the probability of loading the memory with the wrong state. In our case, when we send H-polarised light,
a successful BSM in figure 4 suggests that the b̂ mode is V-polarised. The state stored in the memory, for an
EPP source with |Φ+〉b̂m̂ as its initial state, is then also expected to be V-polarised. That is why the
coefficient for |H〉〈H|, in equation (A15), represents the loading error probability, in Z basis, for a WCP
with intensity μ.

Due to the symmetry of the setup, if the user sends vertically polarised light, the loading probability pμload

would be the same, but the post-measurement state is given by ρm̂ = (1 − eμload)|H〉〈H|+ eμload|V〉〈V|.
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A.1.2. Analysis for X basis

Without loss of generality, let us assume that Alice generates the plus state given by∣∣∣∣ α√2

〉
âh

∣∣∣∣ α√2

〉
âv

. (A17)

In a particular round with a misalignment angle θ, the butterfly module will receive the state

|ψ〉θâ =

∣∣∣∣ α√2
(sin θ + cos θ)

〉
âh

∣∣∣∣ α√2
(sin θ − cos θ)

〉
âv

, (A18)

while the output state of the EPP source can be written as

|Φ+〉b̂m̂ =
1√
2

(|DD〉b̂m̂ + |AA〉b̂m̂) =
1√
2

(
(|10〉+ |01〉)|D〉+ (|10〉 − |01〉)|A〉

)
)b̂hb̂vm̂, (A19)

where |D〉 = (|H〉+ |V〉)/
√

2 and |A〉 = (|H〉 − |V〉)/
√

2.
The analysis is similar to the one for the Z basis. After going through similar steps, we find that the

probability to successfully load the memory is given by

pμload =

∫ π

−π

f (θ)
1

2

(
1− pdc

)2
((

1− pdc

) (
cos θ sin (θ)μηa ηb− 1/2 ηb μηa+ 6 ηb− 8

)
e−1/2 ηa μ(cos θ sin(θ)+3/2)

−
(
1 − pdc

) (
cos θ sin (θ)μηa ηb + 1/2 ηb μηa − 6 ηb + 8

)
e1/4 ηa μ(2 cos(θ) sin(θ)−3)

+ (ηb μηa − 4 ηb + 8) e−1/2 ηa μ + 8 e−ηa μ
(
1 − pdc

)2
(1 − ηb)

)
dθ, (A20)

and, under our assumption that f (θ) is even, the post-measurement state of the memory can be written as

ρm̂ = eμload|D〉〈D|+ (1 − eμload)|A〉〈A|, (A21)

where

eμload =
1

pμload

∫ π

−π

f (θ)
1

4

(
−1 + pdc

)2

×
((

1 − pdc

) (
cos (θ) sin (θ)μηa ηb − 1/2 ηb μηa + 6 ηb − 8

)
e−1/2 ηa μ(cos(θ) sin(θ)+3/2)

−
(
1 − pdc

) (
cos (θ) sin (θ)μηa ηb + 1/2 ηb μηa − 6 ηb + 8

)
e1/4 ηa μ(2 cos(θ) sin(θ)−3)

+
(
2 ηb μηa − 2

(
cos2 θ

)
μηa ηb − 4 ηb + 8

)
e−1/2 ηa μ + 8 e−ηa μ

(
1 − pdc

)2
(1 − ηb)

)
dθ. (A22)

Finally, note that we calculate the integrals in and equations (A11), (A16), (A20) and (A22) numerically
as a closed form expression for them could not be found. In our simulations, to compute pμload and eμload, we
assume that f(θ) follows a uniform distribution over [−Θ,Θ]. To have a fair comparison with no-memory
MDI-QKD, we choose Θ =

√
3emis, where emis is the misalignment error probability in one leg of a

symmetric MDI-QKD setup. This is motivated by the fact that

1

2
√

3emis

∫ √
3emis

−√
3emis

sin2 θ dθ ≈ 1

2
√

3emis

∫ √
3emis

−√
3emis

θ2 dθ = emis, (A23)

which implies that the chosen f(θ) would cause a misalignment error of approximately emis in the
MDI-QKD setup.

A.2. Key rate simulation
In appendix A.1, we showed that the post-measurement QM state after a successful loading is a mixture of
the desired and undesired states for the QM; see equations (A15) and (A21). In effect, it is as if the state of
QM has flipped with a probability eμload. This is similar to how misalignment acts on a single photon state,
because of which we can think of the whole loading process as a channel with an effective misalignment of
eμload. This would also make it possible to use the methodology in reference [7] to calculate the required
parameters of the key rate formula. In particular, the photonic states retrieved from the two QMs turn out
to also have a similar form to a misaligned photon, although at a higher error rate to account for the
dephasing/depolarisation process.

In the following, we explain how to simulate all terms in the key-rate formula, in both the asymptotic
and finite-key regimes. Given that in MA-QKD, one of the memories will be read immediately after loading,
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only one of the QMs would undergo the decay process. That implies that the middle BSM in figure 1 can be
thought as an asymmetric MDI-QKD setup, with possibly different transmissivities ηl and ηr for,
respectively, its left and right legs [7]. We can then use the yield and error rate formulas, summarised below,
of asymmetric single-photon MDI-QKD for our rate calculation:

YMDI
11 (ηl, ηr) = (1 − pd)2

[ηlηr

2
+ (2ηl + 2ηr − 3ηlηr)pd + 4(1 − ηl)(1 − ηr)p2

d

]
, (A24)

eMDI
11;X(ηl, ηr, ed)YMDI

11 (ηl, ηr) = e0YMDI
11 (ηl, ηr) − (e0 − ed)(1 − pd)2ηlηr/2, (A25)

eMDI
11;Z (ηl, ηr, ed)YMDI

11 (ηl, ηr) = e0YMDI
11 (ηl, ηr) − (e0 − ed)(1 − pd)2(1 − 2pd)ηlηr/2, (A26)

where e0 = 1/2 and ed is the total misalignment probability in the asymmetric MDI-QKD setup, i.e., the
probability that exactly one of the photons is misaligned.

A.2.1. Asymptotic regime

In this case, the key-rate formula is given by equation (3). In this regime, we assume that the signal intensity
z, encoded in the Z-basis, is chosen with probability approaching one, and the parameter estimation
provides perfect estimates of the single-photon terms QZ

11 and eph. We only then need to simulate the values
of QZ, eZ, QZ

11 and eph under nominal mode of operation. The procedure we use to calculate these terms is
very similar to that of [7]. The main differences are our new model for the memory-loading with WCPs,
developed earlier in this appendix, and the inclusion of the depolarising channel for memory decoherence.

To compute QZ, we divide it into two parts: (1) the probability of having the two memories loaded and
available to read in a given round, denoted by Pside, and (2) the probability that the middle BSM is
successful, given that the QMs are ready, denoted by Pmid. Then,

QZ = PsidePmid. (A27)

To find Pside, we first estimate the probability to load the QM with a Z-encoded WCP, given by pz
load in

equation (A11). Then, we compute the average number of rounds NL that it takes to load both memories,
substituting ηA and ηB by pz

load in equation (C.3) of [7], to obtain

NL =
3 − 2pz

load

pz
load(2 − pz

load)
. (A28)

Then, we have that

Pside =
1

NL + Nr
, (A29)

where Nr is the number of rounds it takes to read the memory, which we assume to be one.
The second term is given by

Pmid = YMDI
11 (ηm, ηm′), (A30)

where ηm = ηwηr0ηd is the effective reading efficiency of the QM loaded later, and ηm′ is the average
effective reading efficiency of the QM loaded earlier, given by [7]

ηm′ =
(1 + eT/T1 − pz

load)pz
load

(2 − pz
load)(eT/T1 + pz

load − 1)
ηm, (A31)

where T1 is the time constant for the decay process of the QM.
The single-photon component QZ

11 is given by

QZ
11 = QZ

(pSP
load)2

(pz
load)2

z2 e−2z, (A32)

where pSP
load is the probability to load the QM when a single photon is sent, given by [7]

pSP
load = YMDI

11 (ηchηd, ηcηd). (A33)

To find eph, we first calculate the misalignment-error probability for loading the QM with an X-basis
single photon, which is given by [7]

eX,SP
load = eMDI

11;X(ηchηd, ηcηd, emis). (A34)

Then, we obtain
eph = eMDI

11;X(ηm, η′m, E
{

eSP
QM

}
), (A35)
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where E
{

eSP
QM

}
is the total misalignment probability, given by

E
{

eSP
QM

}
= 2eX,SP

load + 2βE
{

edeph

}
− 2eX,SP

load eX,SP
load − 4βE

{
edeph

}
eX,SP

load , (A36)

with

E
{

edeph

}
= 1 − pz

load

1 − (1 − pz
load)2

− (pz
load)2(1 − pz

load e−T/T2)

[1 − (1 − pz
load)e−T/T2][1 − (1 − pz

load)2]
, (A37)

in the case of dephasing memories, and by

E
{

eSP
QM

}
= 2eX,SP

load + 2βE
{

edepol

}
− 2eX,SP

load eX,SP
load − 4βE

{
edepol

}
eX,SP

load , (A38)

with

E
{

edepol

}
=

2

3
E
{

edeph

}
, (A39)

in the case of depolarising memories.
To calculate eZ, we use

eZ = eMDI
11;Z (ηm, η′m, E {eQM}), (A40)

where E {eQM} is the average total misalignment-error probability between the two QMs, which depends on
the specific model used for decoherence. In the dephasing model, the Z-basis QM states will not be affected
by the decoherence, therefore, the probability that exactly one state is misaligned is as follows

E {eQM} = eQM = 2ez
load(1 − ez

load), (A41)

where ez
load is given by equation (A16). For the depolarisation model, we have

E {eQM} = 2ez
load + 2βE

{
edepol

}
− 2ez

loadez
load − 4βE

{
edepol

}
ez

load, (A42)

where β = 1 − 2ez
load.

To derive equation (A42) and equations (A36) to (A39), we have used a similar analysis as in appendix
D of reference [7].

A.2.2. Finite-key regime

In this case, we need to calculate the sets {Mab} and {Eab}, where Mab is the total number of measurement
counts when Alice (Bob) has used intensity a (b), while Eab is the number of such events that also result in
an error. Note that intensity z is encoded in the Z basis and intensities {w1,w2, v} are encoded in the X
basis; we are only interested in estimating {Mab} and {Eab} when a, b are encoded in the same basis.

For our numerical simulations, we still need to make some assumptions on the obtained measurement
results in a nominal experiment. For this purpose, we use the expected values for relevant parameters using
the corresponding probability in the asymptotic regime. That is, we assume

Mab = NQab and Eab = eabMab, (A43)

where N is the total number of rounds, i.e., the number of transmitted pulses by Alice/Bob, in the protocol,
Qab is the probability of having a successful measurement originating from intensities a, for Alice, and b, for
Bob, and eab is the probability that this measurement results in an error.

To calculate Qab, we first compute the total gain Qtot, using the same procedure as for QZ in the
asymptotic case, with the difference that Qtot is now a function of the average memory-loading probability
given by

p̄load =
∑

a

papa
load, (A44)

where pa is the probability of selecting intensity a ∈ {z,w1,w2, v}; and pa
load is the probability of a successful

loading when the user selects intensity a, given by either equations (A16) or (A22), depending on whether
intensity a is encoded in the Z or X basis. Then, we have that

NL =
3 − 2p̄load

p̄load(2 − p̄load)
, (A45)

ηm′ =
(1 + eT/T1 − p̄load)p̄load

(2 − p̄load)(eT/T1 + p̄load − 1)
ηm, (A46)

Pside =
1

NL + Nr
(A47)
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Pmid = YMDI
11 (ηm, ηm′), (A48)

Qtot = PsidePmid, (A49)

where Nr = 1 and ηm = ηwηr0ηd. Now, Qab is the fraction of Qtot that originated from intensities a, b. Note
that after a successful loading, the state projected to the QM is always a misaligned qubit. The probability
that the middle BSM is successful only depends on the loss coefficients ηm and ηm′ , and it is independent of
the intensities a, b that caused the loading. Thus, Qab only depends on how likely intensities a, b are to cause
a successful loading, that is,

Qab = Qtotpapb
pa

loadpb
load

p̄2
load

. (A50)

For eab, we have that

ezz = eMDI
11;Z (ηm, η′m, E

{
eQM

zz

}
), (A51)

eab = eMDI
11;X

(
ηm, η′m, E

{
eQM

ab

})
, a, b ∈ {w1,w2, v} (A52)

where E
{

eQM
ab

}
is the total average misalignment error probability between the two QMs, and depends on

whether one considers a dephasing or depolarisation model. The former has no effect on Z-basis states, and
therefore

E
{

eQM
zz

}
= eQM

zz = 2ez
load(1 − ez

load). (A53)

For the X-basis intensities, we have that

E
{

eQM
ab

}
= ea

load + eb
load + βaE

{
edeph

}
+ βbE

{
edeph

}
− 2ea

loadeb
load − 2βaE

{
edeph

}
eb

load − 2βbE
{

edeph

}
ea

load,

(A54)
where βk = 1 − 2ek

load, and

E
{

edeph

}
= 1 − p̄load

1 − (1 − p̄load)2
− p̄2

load(1 − p̄loade−T/T2)

[1 − (1 − p̄load)e−T/T2][1 − (1 − p̄load)2]
, (A55)

using a similar analysis to the one that results in equation (D.8) of [7].
For a depolarisation channel, we have that, for all intensities

E
{

eQM
ab

}
= ea

load + eb
load + βaE

{
edepol

}
+ βbE

{
edepol

}
− 2ea

loadeb
load − 2βaE

{
edepol

}
eb

load − 2βbE
{

edepol

}
ea

load,

(A56)
where

E
{

edepol

}
=

2

3
E
{

edeph

}
. (A57)

A.3. MDI-QKD without QMs
Here, we give the formulas that we have used to simulate the no-memory MDI-QKD with WCP sources.

In general, if Alice and Bob encode in the Z basis and choose intensities a and b, respectively, the gain
and error-rate formulas are given by [32]

Qab = Qc + Qe, (A58)

eab = edQc + (1 − ed)Qe, (A59)

where ed represents the total misalignment error probability given by ed = 2emis(1 − emis), and

Qc = 2(1 − pd)2e−ζ/2(1 − (1 − pd)e−ηa/2)(1 − (1 − pd)e−ηb/2)

Qe = 2pd(1 − pd)2e−ζ/2[I0(2x) − (1 − pd)e−ζ/2]

x = η
√

ab/2

ζ = η(a + b),

(A60)

where I0 is the modified Bessel function of the first kind and η = ηchηd is the total attenuation between each
user and the middle node. If they encode in the X basis, they are given by [32]

Qab = 2y2[1 + 2y2 − 4yI0(x) + I0(2x)], (A61)
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eab =
Qab

2
− (1 − 2ed)y2[I0(2x) − 1], (A62)

where
y = (1 − pd)e−ζ/4. (A63)

A.3.1. Asymptotic regime

In the asymptotic regime, the key rate formula is given by

R � Rs

[
QZ

11

(
1 − h(eph)

)
− f QZh(eZ)

]
. (A64)

QZ and eZ are given by equations (A58) and (A59), respectively, by substituting a = b = z. In the
asymptotic regime, we assume that the users are able to obtain perfect estimates of QZ

11 and eph, which are
given by

QZ
11 = z2 e−2zY11, (A65)

eph = eMDI
11;X(η, η, ed) =

1

2
− 1

Y11
(1/2 − ed)(1 − pd)2(1 − 2pd)

η2

2
, (A66)

where

Y11 = YMDI
11 (η, η) = (1 − pd)2

[
η2

2
+ (4η − 3η2)pd + 4(1 − η)2p2

d

]
. (A67)

A.3.2. Finite-key regime

We need to simulate the sets {Mab} and {Eab}. In our simulations, we assume that all measurement counts
equal their expected values, that is,

Mab = NpabQab and Eab = eabMab, (A68)

where Qab and eab are given by equations (A58) and (A59) for Z-encoded intensities, and by
equations (A61) and (A62) for X-encoded intensities, and pab is the probability that Alice and Bob choose
intensities a and b, respectively.

Appendix B. Finite-key analysis

In this appendix, we explain the detailed procedure for finding a lower bound on MZ
11 and an upper bound

on eph in equation (4). For our finite-key analysis of MDI-QKD and MA-QKD, we use the analytical
estimation procedure introduced in [17], together with the tighter multiplicative Chernoff bounds
introduced in [16]. Also, as in [21], we estimate the total single photon measurement counts M11 in both
bases using data in the X basis only. We then link it with Mzz

11 via random sampling analysis. This allows us
to encode decoy intensities in the X basis only, thus wasting fewer rounds for statistical estimation.

B.1. Background
In the protocol, Alice and Bob emit phase-randomised coherent states of a random intensity
a ∈ {z,w1,w2, v}, where the z intensity is encoded in the Z basis and the rest of the intensities are encoded
in the X basis. Without knowing the basis information, the output state corresponding to intensity a can be
written as

ρa =

∞∑
n=0

pn|a|n〉〈n|, (B1)

where pn|a is the probability that a pulse of intensity a contains n photons, and |n〉 is the n-photon Fock
state. For WCPs, we can typically assume a Poisson distribution for the photon number, in which case,
pn|a = ane−a/n!. While most of our analysis does not depend on the choice of the probability distribution,
we also use the Poisson assumption for our numerical results. Based on the above diagonal form, for a pulse
encoded in a given basis, the only information available to Eve is its photon number n. This implies that,
instead of the actual protocol, Alice and Bob could have run the equivalent virtual scenario in which

• Alice (Bob) sends a Z-encoded n-photon Fock state with probability pn,Z = pzpn|z.

• Alice (Bob) sends an X-encoded n-photon Fock state with probability pn,X =
∑

a∈{w1,w2,v}papn|a.

In this virtual scenario, Alice and Bob can wait until after Eve’s attack to assign each emission of an
X-encoded n-photon Fock state to intensity a ∈ {w1,w2, v} with probability

pa|n,X =
papn|a
pn,X

, (B2)
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and then ‘reveal’ their intensity choices in the appropriate step of the protocol, so that Eve cannot tell which
scenario (actual or virtual) is being performed.

Note that Fock states encoded in different bases are in general partially distinguishable to Eve, so Alice
and Bob must decide their encoding basis before their emission, even in the virtual scenario. There is one
important exception, however: single-photon signals encoded in either the X or Z bases are
indistinguishable once averaged by their selection probabilities, since

ρ1 =
1

2
|H〉〈H| + 1

2
|V〉〈V| = 1

2
|D〉〈D|+ 1

2
|A〉〈A|. (B3)

This implies that the users could have replaced their single-photon emissions by the following
purification of ρ1

|ψ1〉 =
1√
2

(
|0〉|H〉+ |1〉|V〉

)
=

1√
2

(
|+〉|D〉+ |−〉|A〉

)
, (B4)

where the first qubit, in |0〉–|1〉 basis, is held by the users and |±〉 = 1√
2
(|0〉 ± |1〉). This allows us to alter

our virtual scenario in the following way: when Alice and Bob both decide to send a single-photon state,
they replace their respective emissions by the generation of |ψ1〉, and then wait until after Eve’s attack to
decide in which basis to measure their ancilla. This delayed basis choice will allow us to estimate the
statistics of Z-encoded single-photon emissions using X-basis data.

B.2. Estimation of MZ
11

The estimation is divided in two steps:

(a) Estimation of M11, the total single-photon measurement counts in both basis, using the decoy state
analysis.

(b) Estimation of MZ
11 from M11, via a random sampling analysis.

B.2.1. Estimation of M11

In our virtual scenario, the users have replaced their decoy-state emissions by Fock states, which are only
assigned to a particular intensity after Eve’s attack. Let MX

nm, with (n, m) �= (1, 1), be the set of rounds in
which Alice (Bob) chooses the X basis, sends n (m) photons, and Charlie reports a successful detection.
Also, let MX

nm = |MX
nm|. After her reports, Alice and Bob will assign each event in MX

nm to intensities
a, b ∈ {w1,w2, v} with probability

pab|nm,X = pa|n,Xpb|m,X =
papn|a
pn,X

pbpm|b
pm,X

, (B5)

where pn,X =
∑

a∈{w1,w2,v}papn|a by the law of total probability. As explained above, Alice and Bob have also
delayed their choice of basis on those rounds in which both sent a single photon. Let M11 be the set of
rounds in which Alice and Bob sends a single photon and Charlie reports a successful detection, and let
M11 = |M11|. The probability that they assign each event in M11 to intensities a, b ∈ {z,w1,w2, v} is

pab|11 = pa|1pb|1 =
pap1|a

p1

pbp1|b
p1

(B6)

where p1 =
∑

a∈{z,w1,w2,v}papn|a by the law of total probability. Let Mab denote the number of rounds
assigned to intensities a, b ∈ {w1,w2, v}. Its expected value is

E[Mab] = pab|00,XMX
00 + pab|01,XMX

01 + pab|11M11 +
∑

(m,n)∈S

pab|mn,XMX
mn, (B7)

where S = {(m, n)|m, n ∈ Z, m, n � 0} − {(0, 0), (0, 1), (1, 1)}. Each of these intensity assignments is a
Bernoulli random variable, and therefore E[Mab] is the average value of the sum of some Bernoulli random
variables. The values of Mab measured by Alice and Bob correspond to an instance of this sum of Bernoulli
random variables.

Let χ =
∑n

i=1 χi be the outcome of the sum of n independent Bernoulli random variables χi ∈ {0, 1}.
Given the observation of the outcome χ, its expectation value E[χ] can be bounded by [16]

EL[χ] =
χ

1 + δL
,

EU[χ] =
χ

1 − δU
,

(B8)
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except with probability ε, where δL and δU are the solutions of the equations

[
eδ

L

(1 + δL)1+δL

]χ/(1+δL)

=
1

2
ε

[
e−δU

(1 − δU)1−δU

]χ/(1−δU)

=
1

2
ε.

(B9)

These solutions can be expressed in terms of the Lambert W function, the inverse of f(z) = zez, as
follows

δL = W0(−eln(ε/2−χ)/χ)

δU = W−1(−eln(ε/2−χ)/χ),
(B10)

which is useful for their quick numerical computation.
We use equation (B8) to find bounds on E[Mab], which by equation (B7) will set constraints on the

values of MX
nm and M11. Since we are interested in ML

11, our analysis can be reformulated as the optimization
problem: find minM11 such that

EL[Mab] � pab|00,XMX
00 + pab|01,XMX

01 + pab|11M11 +
∑

(m,n)∈S

pab|mn,XMX
mn � EU[Mab] (B11)

∀a, b ∈ {w1,w2, v}. This problem can be solved using linear optimisation techniques [17]. In this work,
however, we use the computationally faster analytical estimation method laid out in the supplementary note
1 of [17], for Poisson distributed input signals. Note that to use this analytical method, one needs to define
the term M̂X

11 such that
pab|11M11 = pab|11,XM̂X

11, (B12)

where pab|11,X is given by equation (B5), and substitute pab|11M11 by pab|11,XM̂X
11 in equation (B11). Then, one

can use the results of [17] to find a lower bound on M̂X
11, and reuse equation (B12) to turn it into a lower

bound ML
11 on M11.

B.2.2. Estimation of MZ
11 from M11

Let MZ
11 be the subset of M11 in which both users employ the Z basis, and let MZ

11 = |MZ
11|. By the delayed

basis argument, Alice and Bob could decide which events in M11 belong to MZ
11 after Eve’s attack. They

assign each event in M11 to MZ
11 with probability

pzz|11 =

(
pzp1|z

p1

)2

. (B13)

Let χ =
∑n

i=1 χi be the outcome of the sum of n independent Bernoulli random variables χi ∈ {0, 1}.
Given the expectation value E[χ], the outcome χ can be lower-bounded by [16]

χ � χL = (1 − δ)χ̄

δ =
− ln(ε) +

√
[ln(ε)]2 − 8 ln(ε)χ̄

2χ̄
,

(B14)

except with probability ε.
The lower bound on MZ

11 is then given by (MZ
11)L = (1 − δ)χ̄, where χ̄ = pzz|11ML

11 and δ is given by
equation (B14).

B.3. Estimation of eph

The upper bound on eph is given by

eU
ph =

(EZ
11)U

(MZ
11)L

, (B15)

where EZ
11 is the number of phase errors in MZ

11, that is, the number of bit errors that Alice and Bob would
have obtained if they had encoded their Z basis single-photon emissions in the X basis. The estimation of
this quantity is divided in two steps:

(a) Estimation of E11, the total amount of phase-flip errors in all single-photon emissions.

(b) Estimation of EZ
11 from E11, via a random sampling analysis.
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B.3.1. Estimation of E11

Let us imagine that, in the virtual scenario, Alice and Bob measure all their pairs of ancillas in M11 in the X
basis, even those that they have assigned to MZ

11. Let E11 be the subset of M11 in which they find a
phase-flip error, and let E11 = |E11|. Each event in E11 is assigned to intensity a, b ∈ {z,w1,w2, v} with
probability pab|11 defined in equation (B6).

Also, let EX
nm, with (n, m) �= (1, 1), be the subset of MX

nm in which Alice and Bob obtain a phase-flip
error. Each event in EX

nm is assigned to intensity a, b ∈ {w1,w2, v} with probability pab|nm,X defined in
equation (B5). For a, b ∈ {w1,w2, v}, the expected value of Eab with respect to these assignments is

E[Eab] = pab|00,XEX
00 + pab|01,XEX

01 + pab|11E11 +
∑

(m,n)∈S

pab|mn,XEX
mn. (B16)

From equations (B8)–(B10), we obtain bounds EL[Eab], EU[Eab], and redefine our analysis as the
optimization problem: find max E11 such that

EL[Eab] � pab|00,XEX
00 + pab|01,XEX

01 + pab|11E11 +
∑

(m,n)∈S

pab|mn,XEX
mn � EU[Eab], (B17)

∀a, b ∈ {w1,w2, v}. Again, this problem can be solved using linear programing techniques, but we use the
analytical estimation method in the supplementary note 1 of [17]. Note that to use this analytical method,
one needs to define a term ÊX

11 such that

pab|11E11 = pab|11,XÊX
11, (B18)

where pab|11,X is given by equation (B5), and substitute pab|11E11 by pab|11,XÊX
11 in equation (B17). Then, one

can use the results of [17] to find an upper bound on ÊX
11, and reuse equation (B18) to turn it into an upper

bound EU
11 on E11.

B.3.2. Estimation of EZ
11 from E11

By the delayed basis argument, each event in E11 will be assigned to EZ
11 with probability pzz|11, defined in

equation (B13).
Let χ =

∑n
i=1 χi be the outcome of the sum of n independent Bernoulli random variables χi ∈ {0, 1}.

Given the expectation value E[χ], the outcome χ can be upper-bounded by [16]

χ � χU = (1 + δ)χ̄

δ =
− ln(ε) +

√
[ln(ε)]2 − 8 ln(ε)χ̄

2χ̄
,

(B19)

except with probability ε.
Finally, an upper bound on EZ

11 is given by (EZ
11)U = (1 + δ)χ̄, where χ̄ = pzz|11EU

11 and δ is given by
equation (B19).
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