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Tight finite-key security for twin-field quantum key
distribution
Guillermo Currás-Lorenzo 1✉, Álvaro Navarrete2, Koji Azuma3,4, Go Kato4,5, Marcos Curty 2 and Mohsen Razavi 1

Quantum key distribution (QKD) offers a reliable solution to communication problems that require long-term data security. For its
widespread use, however, the rate and reach of QKD systems must be improved. Twin-field (TF) QKD is a step forward toward this
direction, with early demonstrations suggesting it can beat the current rate-versus-distance records. A recently introduced variant
of TF-QKD is particularly suited for experimental implementation, and has been shown to offer a higher key rate than other variants
in the asymptotic regime, where users exchange an infinite number of signals. Here, we extend the security of this protocol to the
finite-key regime, showing that it can overcome the fundamental bounds on point-to-point QKD with ~1010 transmitted signals. In
many practical regimes of interest, our analysis offers higher key rates than those of alternative variants. Moreover, some of the
techniques we develop are applicable to the finite-key analysis of other QKD protocols.
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INTRODUCTION
Quantum key distribution (QKD) enables two remote parties, Alice
and Bob, to generate a shared secret key in the presence of an
eavesdropper, Eve, who may have unbounded computational
power at her disposal1–3. While, ideally, the two parties can be at
any distance, in practice, due to the loss and noise in the channel,
point-to-point QKD is limited to a certain maximum distance at
which secret-key bits can securely be exchanged. In fact, the
longest distance achieved to date in a terrestrial QKD experiment
is ~400 km4,5. The main limitation is the exponential decrease of
the transmittance, η, with the channel length in optical fibres.
Even with a high repetition rate of 10 GHz, it would take an
average of ~2min to send a single photon over a distance of
600 km of standard optical fibres, and ~300 years to send it over
1000 km6. Indeed, fundamental bounds7–11 on the private
capacity of repeaterless point-to-point QKD protocols show that
their secret-key rate scales at best approximately linearly with η. A
protocol that aims to overcome this linear scaling must then
include at least one middle node. Interestingly, this is not a
sufficient condition. A well-known counterexample is the so-called
measurement-device-independent QKD (MDI-QKD)12, which uses
the middle node for an untrusted Bell-state measurement
operation. There are, however, extensions of MDI-QKD that can
improve its rate scaling from η to

ffiffiffi
η

p
by either using quantum

memories13,14 or quantum non-demolition measurements15. Such
setups can, in fact, be considered to be the simplest examples of
quantum repeaters6,16, which are the ultimate solution to trust-
free long-distance quantum communications17. However, even
these simple versions may need more time to be efficiently
implemented in practice18,19.
Remarkably, the recently proposed twin-field QKD (TF-QKD)20

can also overcome this linear scaling while using a relatively
simple setup. TF-QKD is related to MDI-QKD, and it inherits its
immunity to detector side channels. However, it relies on single-
photon, rather than two-photon, interference for its entanglement
swapping operation. The secret-key rate of this protocol was first

conjectured20 and then proven21,22 to scale with
ffiffiffi
η

p
too, making

this approach a strong candidate to beat the current QKD
records23–26 with today’s technology. The main experimental
challenge is that single-photon interference needs very precise
phase stability, which makes it more demanding than two-photon
interference. Also, some of its current security proofs21,22 need
Alice and Bob to randomly choose a global phase, and then post-
select only those rounds in which their choices match, which
causes a drop in the secret-key rate. Since the original proposal,
several variants of TF-QKD have been developed27–30, sharing the
single-photon interference idea and its consequent
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scaling,

but differing in their experimental setups and security proofs.
Moreover, some of these variants have been shown to be robust
against phase reference mismatch28–30, which simplifies their
experimental implementation.
In this paper, we focus on the TF-QKD variant introduced in

ref. 28, which has two key features: (i) it does not need phase post-
selection, which results in a higher secret-key rate; and (ii) it is a
convenient option for experimental implementation. Indeed,
many of the current TF-QKD experiments use this variant23,24,26.
One of its defining characteristics is its unconventional security
proof; specifically, its estimation of the phase-error rate, a
parameter needed to bound the amount of key information that
may have leaked to an eavesdropper. In many QKD protocols, the
phase-error rate of the single-photon emissions in one basis can
be directly estimated by bounding the bit-error rate of the single-
photon emissions in the other basis. In the above TF-QKD variant,
however, the encoding bases are not mutually unbiased. To
estimate the phase-error rate, the authors in ref. 28 use the
complementarity31 between the “phase” and the “photon
number” of a bosonic mode. In this case, the security of a bit
encoded in the relative phase of two coherent pulses can be
related to the detection statistics of photon-number states. More
specifically, in the asymptotic regime, the phase-error rate can be
bounded by a non-linear function of infinitely many yield
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probabilities for even photon-number states28, which can be
estimated via the decoy-state method32–34.
While, in the asymptotic regime, the protocol in ref. 28 can offer

a higher key rate than its counterparts, it is not obvious if this
advantage will still hold in a practical setting, where only a finite
number of pulses is sent. In the finite-key regime, one should
account for possible statistical fluctuations between the true
phase-error rate and the measurement data used to estimate it.
There are, however, two challenges in doing so. The first challenge
is that the phase-error rate of the protocol is related to the
measurement statistics of infinitely many combinations of photon-
number states; in practice, one can only obtain bounds for a finite
number of them, and dealing with the unbounded components is
not as straightforward as in the asymptotic regime. The second
challenge is that, unlike in many other QKD protocols, the
encoding bases are not mutually unbiased. This opens the
possibility that, under a coherent attack by Eve, the detection
statistics of a particular round may depend on the basis choices
made in previous rounds. Accounting for these correlations makes
the analysis quite cumbersome.
In this work, we provide a rigorous security proof for the

protocol in ref. 28 that accounts for these two issues in the finite-
key setting. Our security proof provides a tight bound on the key
rate against general coherent attacks. To overcome the two main
challenges mentioned above, we borrow ideas from the finite-key
analysis of MDI-QKD35 and the loss-tolerant protocol36,37, as well
as introduce several methods of our own. To obtain a tighter
result, we employ a recent technique to bound the deviation
between a sum of correlated random variables and its expected
value38 which can be much tighter than the widely employed
Azuma’s inequality39 when the success probability is low.
Importantly, our numerical simulations show that the protocol
can overcome the repeaterless bounds8–10 for a block size of
~1010 transmitted signals in nominal working conditions.
During the preparation of this manuscript, an alternative finite-

key security analysis for an identical protocol setup has been
reported in ref. 40, using an interesting, but different, approach.
We would like to highlight that our analysis imposes fewer
conditions on the setup parameters than that of ref. 40, and results
in a higher key rate in most practical regimes. In the “Discussion”
section, we compare both approaches. We also compare our
results with those of the sending-or-not-sending TF-QKD protocol
introduced in ref. 30, whose security has recently been extended to
the finite-key regime41. We find that for reasonably large block
sizes, and sufficiently low phase reference mismatch errors, the
asymptotic key rate advantage of the scheme in ref. 28 is
maintained in the finite-key regime, for most practical ranges of
distance.

RESULTS
Protocol description
The setup of the TF-QKD protocol in ref. 28 is illustrated in Fig. 1
and its step-by-step description is given below. Alice and Bob
generate quantum signals and send them to a middle node,
Charlie, who would ideally couple them at a balanced 50:50
beamsplitter and perform a photodetection measurement. For
simplicity, we assume the symmetric scenario in which the
Alice–Charlie and Bob–Charlie quantum channels are identical. We
note, however, that our analysis can be straightforwardly
extended to the asymmetric scenario recently considered in
refs. 42,43. The emitted quantum signals belong to two bases,
selected at random. In the X basis, Alice and Bob send phase-
locked coherent states ± αj i with a random phase of either 0 or π
with respect to a pre-agreed reference. In the Z basis, Alice and
Bob generate phase-randomised coherent states (PRCSs), which
are diagonal in the Fock basis. The X-basis states are used to

generate the key, while the Z-basis data is used to estimate the
detection statistics of Fock states, in combination with the decoy-
state method. This is a crucial step in estimating the phase-error
rate of the key, thus bounding the information that could have
been leaked to a potential eavesdropper. The detailed steps of the
protocol are:

(1) Preparation
Alice (Bob) chooses the key-generation basis X with
probability pX or the parameter estimation basis Z with
probability pZ= 1− pX, and

(1.1) If she (he) chooses the X basis, she (he) generates a
random bit bA (bB), prepares an optical pulse in the
coherent state jð�1ÞbAαi (jð�1ÞbBαi), and sends it to
Charlie.

(1.2) If she (he) chooses the Z basis, she (he) sends an
optical pulse in a PRCS of intensity μ, selected from
the set μ ¼ fμ0; μ1; ¼ ; μd�1g with probability pμ,
where d is the number of decoy intensities used.

They repeat step (1) for N rounds.

(2) Detection
An honest Charlie measures each round separately by
interfering Alice and Bob’s signals at a 50:50 beamsplitter,
followed by threshold detectors Dc and Dd placed at the
output ports corresponding to constructive and destructive
interference, respectively. After the measurement, Charlie
reports the pair (kc, kd), where kc= 1 (kd= 1) if detector Dc

(Dd) clicks and kc= 0 (kd= 0) otherwise. If he is dishonest,
Charlie can measure all rounds coherently using an arbitrary
quantum measurement, and report N pairs (kc, kd) depend-
ing on the result. A round is considered successful
(unsuccessful) if kc ≠ kd (kc= kd).

(3) Sifting
For all successful rounds, Alice and Bob disclose their basis
choices, keeping only those in which they have used the
same basis. Let MX (MZ ) be the set of successful rounds in
which both users employed the X (Z) basis, and let MX ¼
MXj j (MZ ¼ MZj j) be the size of this set. Alice and Bob
disclose their intensity choices for the rounds in MZ and
learn the number of rounds Mμν in MZ in which they
selected intensities μ 2 μ and ν 2 μ, respectively. Also, they
generate their sifted keys from the values of bA and bB
corresponding to the rounds in MX . For those rounds in
which kc= 0 and kd= 1, Bob flips his sifted key bit.

(4) Parameter estimation
Alice and Bob apply the decoy-state method to Mμν, for
μ; ν 2 μ, obtaining upper bounds MU

nm on the number of
rounds Mnm in MZ in which they sent n and m photons,
respectively. They do this for all n, m ≥ 0 such that n+m is

Fig. 1 Setup of the simple TF-QKD protocol28 considered in this
work. Alice and Bob generate their sifted key from the rounds in
which they both select the X basis and Charlie declares that a single
detector has clicked. The key bit is encoded in the phase of their
coherent state. When the users select the same (a different) bit, the
constructive (destructive) interference at Charlie’s 50:50 beamsplitter
should cause a click in detector Dc (Dd). The Z-basis PRCSs are only
used to estimate the phase-error rate of the X-basis emissions.
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even and n+m ≤ Scut for a prefixed parameter Scut. Then,
they use this data to obtain an upper bound NU

ph on the
number of phase errors, Nph, in their sifted keys.

(5) Postprocessing

(5.1) Error correction: Alice sends Bob a prefixed amount
λEC of syndrome information bits through an
authenticated public channel, which Bob uses to
correct errors in his sifted key.

(5.2) Error verification: Alice and Bob compute a hash of
their error-corrected keys using a random universal
hash function, and check whether they are equal. If
so, they continue to the next step; otherwise, they
abort the protocol.

(5.3) Privacy amplification: Alice and Bob extract a secret-
key pair (SA, SB) of length SAj j ¼ SBj j ¼ ‘ from their
error-corrected keys using a random two-universal
hash function.

Parameter estimation and secret-key rate analysis
The main contribution of this work—see “Methods” section for the
details—is a procedure to obtain a tight upper bound NU

ph on
the total number of phase errors Nph in the finite-key regime for
the protocol described above. Namely, we find that, except for an
arbitrarily small failure probability ε, it holds that

Nph � N U
ph :¼ p2X

p2Z

P1
j¼0

P
n;m 2 Nj

nþm � Scut

ffiffiffiffiffiffiffiffi
pnmjX
pnmjZ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MU

nm þ Δnm

q
þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

MZ þ Δ
p P

n;m 2 Nj

nþm>Scut

ffiffiffiffiffiffiffiffi
pnmjX
pnmjZ

q
2
664

3
775
2

þΔ;

(1)

where pnm∣X (pnm∣Z) is the probability that Alice and Bob’s joint X
(Z) basis pulses contain n and m photons, respectively, given by

pnmjX ¼ hαjnij j2 hαjmij j2; (2)

pnmjZ ¼
X
μ;ν2μ

pμpνpnjμpmjν; (3)

with pnjμ ¼ μn expð�μÞ=n! being the Poisson probability that a
PRCS pulse of intensity μ will contain n photons;N0 (N1) is the set
of non-negative even (odd) integers; and Δ and Δnm are statistical
fluctuation terms defined in step (4) of subsection “Instructions for
experimentalists”, where we provide a step-by-step instruction list
to apply our results to the measurement data obtained in an
experimental setup. The rest of the parameters have been
introduced in the protocol description.
When it comes to finite-key analysis, there is one key difference

between the protocol considered in this work and several other
protocols, such as, for example, decoy-state BB8444, decoy-state
MDI-QKD35, and sending-or-not-sending TF-QKD41. In all the latter
setups, when there are no state preparation flaws, the single-
photon components of the two encoding bases are mutually
unbiased; in other words, they look identical to Eve once averaged
by the bit selection probabilities. This implies that such states
could have been generated from a maximally entangled bipartite
state, where one of its components is measured in one of the two
orthogonal bases, and the other half represents an encoded key
bit. In fact, the user(s) could even wait until they learn which
rounds have been successfully detected to decide their measure-
ment basis, effectively delaying their choice of encoding basis.
This possibility allows the application of a random sampling
argument: since the choice of the encoding basis is independent
of Eve’s attack, the bit-error rate of the successful X-basis
emissions provides a random sample of the phase-error rate of
the successful Z-basis emissions, and vice versa. Then, one can
apply tight statistical results, such as the Serfling inequality45,

to bound the phase-error rate in one basis, using the measured
bit-error rate in the other basis. This approach, however, is not
directly applicable to the protocol considered here, in which the
secret key is extracted from all successfully detected X-basis
signals, not just from their single-photon components. Moreover,
the encoding bases are not mutually unbiased: the Z-basis states
are diagonal in the Fock basis, while the X-basis states are not. This
will require a different, perhaps more cumbersome, analysis as we
highlight below.
To estimate the X-basis phase-error rate from the Z-basis

measurement data, we construct a virtual protocol in which the
users learn their basis choice by measuring a quantum coin after
Charlie/Eve reveals which rounds were successful. Note that,
because of the biased basis feature of the protocol, the statistics of
the quantum coins associated to the successful rounds could
depend on Eve’s attack. This means that the users cannot delay
their choice of basis, which prevents us from applying the random
sampling argument. Still, it turns out that the quantum coin
technique now allows us to upper bound the average number of
successful rounds in which the users had selected the X basis and
obtained a phase error. This bound is a non-linear function of the
average number of successful rounds in which they had selected
the Z basis and respectively sent n and m photons, with n+m
even. More details can be found in the “Methods” section; see Eq. (19).
The main tool we use to relate each of the above average terms

to their actual occurrences, Nph and Mnm, is Azuma’s inequality39,
which is widely used in security analyses of QKD to bound sums of
observables over a set of rounds of the protocol (in our case, the
set of successful rounds after sifting) when the independence
between the observables corresponding to different rounds
cannot be guaranteed. When using Azuma’s inequality, the
deviation term Δ scales with the square root of the number of
terms in the sum. In our case, Δ scales with

ffiffiffiffiffiffi
Ms

p
, where Ms is the

number of successful rounds after sifting. For parameters of
comparable magnitude to Ms, this provides us with a reasonably
tight bound. Whenever the parameter of interest is small,
however, the provided bound could instead be loose. This is
the case for the crucial term MU

00 in Eq. (1), as vacuum states are
unlikely to result in successful detection events, and thus the
bound obtained with Azuma’s inequality can be loose. This is
important because, in Eq. (1), the coefficient associated to the
vacuum term is typically the largest. To obtain a better bound for
this term, we employ a remarkable recent technique to bound the
deviation between a sum of dependent random variables and its
expected value38. This technique provides a much tighter bound
than Azuma’s inequality when the value of the sum is much lower
than the number of terms in the sum. In particular, it provides a
tight upper bound for the vacuum component M00. In “Methods”
section, we provide a statement of the result and we explain how
we apply it to our protocol.
Having obtained the upper bound eU

ph :¼ NU
ph=MX on the phase-

error rate, we show in Supplementary Note A that, if the length of
the secret key obtained after the privacy amplification step
satisfies

‘ � MX 1� hðeU
phÞ

h i
� λEC � log 2

2
ϵc

� log 2
1

4ϵ2PA
; (4)

the protocol is guaranteed to be ϵc-correct and ϵs-secret, with
ϵs ¼

ffiffi
ε

p þ ϵPA; where ε is the failure probability associated to the
estimation of the phase-error rate, hðxÞ ¼ �x log2x � ð1� xÞ
log 2ð1� xÞ is the Shannon binary entropy function, and λEC is
number of bits that are spent in the error correction procedure.
Here, our security analysis follows the universal composable
security framework46,47, according to which a protocol is
ϵsec-secure if it is both ϵc-correct and ϵs-secret, with ϵsec � ϵc þ ϵs.
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Instructions for experimentalists
Here, we provide a step-by-step instruction list to apply our
security analysis to a real-life experiment:

(1) Set the security parameters ϵc and ϵPA, as well as the failure
probabilities εc and εa for the inverse multiplicative Chernoff
bound and the concentration bound for sums of dependent
random variables, respectively. Set Scut. Calculate the overall
failure probability ε of the parameter estimation process,
which depends on the number of times that the previous
two inequalities are applied. In general, ε ¼ d2εcþ
bScut2 c þ 1
� �2

εa þ εa, where d is the number of decoy
intensities employed by each user. For Scut= 4 and three
decoy intensities, we have that ε= 9εc+ 10εa.

(2) Use prior information about the channel to obtain a

prediction ~M
U
00 on MU

00, the upper bound on the number
of Z-basis vacuum events that will be obtained after
applying the decoy-state method.

(3) Run steps (1)–(3) of the protocol, obtaining a sifted key of
length MX, and Z-basis measurement counts Mμν for μ; ν 2 μ.
Let Ms=MX+MZ be the number of successful rounds after
sifting.

(4) Use the analytical decoy-state method included in the
Supplementary Note B and the measured values of Mμν to
obtain upper bounds MU

nm, for all n, m such that n+m is
even and n+m ≤ Scut. Alternatively, use the numerical
estimation method introduced in the Supplementary Notes
of ref. 35.

(5) Set Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2Msln ε�1

a

q
and Δnm= Δ for all n, m except for m=

n= 0. Substitute ~Λn ! ~M
U
00 in Eq. (32) to find parameters a

and b. Set

Δ00 ¼ bþ a
2MU

00

Ms
� 1

� �� � ffiffiffiffiffiffi
Ms

p
; (5)

(6) Use Eq. (1) to find NU
ph and set eU

ph ¼ NU
ph=MX .

(7) Use Eq. (4) to specify the required amount of privacy
amplification and to find the corresponding length of the
secret key that can be extracted. The key obtained is
ϵsec-secure, with ϵsec ¼ ϵc þ ϵs and ϵs ¼

ffiffi
ε

p þ ϵPA.

DISCUSSION
In this section, we analyse the behaviour of the secret-key rate as a
function of the total loss. We simulate the nominal scenario in
which there is no Eve and Charlie is honest. In this case, the total
Alice–Bob loss includes the loss in the quantum channels, as well
as the inefficiency of Charlie’s detectors. We compare the key rate
for the protocol in Fig. 1, using the finite-key security analysis
introduced in the previous section, with that of the sending-or-
not-sending TF-QKD protocol30,41, as well as with the finite-key
analysis presented in ref. 40. We also include the asymptotic secret-
key capacity for repeaterless QKD systems over lossy channels,
known as the PLOB bound9, for comparison. It is given by
�log 2ð1� ηÞ, where η is the transmittance of the Alice–Bob
quantum channel, which includes the efficiency of Charlie’s
detectors. While specific bounds for the finite-key setting have
recently been studied10,48, in the practical regimes of interest to
this work, they numerically offer a negligible difference to the
PLOB bound. The latter has then been used in all relevant graphs
for consistency. To simulate the data that would be obtained in all
protocols, we use the simple channel model described in
Supplementary Note C, which accounts for phase reference
mismatch and polarisation misalignment. Also, we assume that
both users employ three decoy-state intensities μ0 > μ1 > μ2. Since

the optimal value μ2= 0 is typically difficult to achieve in practice,
we set μ2= 10−4 and optimise the secret-key rate over the value
of μ0 and μ1. We also optimise it over the selection probabilities, as
well as over pX and α.
In our simulations, we model the phase reference mismatch

between Alice and Bob’s pulses by shifting Bob’s signals by an
angle ϕ= δphπ, where δph= 9.1%. This corresponds to a QBER of
~2% for most attenuations, matching the experimental results in
ref. 23. For brevity, we do not consider the effect of polarisation
misalignment in our numerical results, but one can use the
provided analytical model to study different scenarios of interest.
In principle, even if the mechanism used for polarisation stability is
not perfect, one can use polarisation filters to ensure that the
same polarisation modes are being coupled at the 50:50
beamsplitter, at the cost of introducing additional loss. We
assume a per-pulse dark count probability pd= 10−8 for each
detector. We assume an error correction leakage of λEC= fMXh(eX),
where eX is the bit-error rate of the sifted key, and f is the error
correction inefficiency, which we assume to be f= 1.16. For the
security bounds, we set ϵc= ϵs= 10−10, and for simplicity we set
ε= ϵPA= ϵs/3.
In Fig. 2, we display the secret-key rate per pulse achievable for

different values of the block size, N, of transmitted signals. It can
be seen that the protocol could outperform the repeaterless
bound for a block size of ~1010 transmitted signals per user, at an
approximate total loss of 50 dB. For standard optical fibres, this
corresponds to a total distance of 250 km, if we neglect the loss in
the photodetectors. At a 1 GHz clock rate, it takes only ~10 s to
collect the required data. For a block size of 1011 transmitted
signals, the protocol can already outperform the repeaterless
bound for a total loss ranging from 45 to over 80 dB. By increasing
N, we approach the asymptotic performance of the protocol. We
note that our choice of dark count probability, pd= 10−8, may be
conservative, since a dark count rate of 1 c.p.s., corresponding to
pd= 10−9 with a repetition rate of 1 GHz, may be achievable with
state-of-the-art SSPD49. In Supplementary Note D, we show an
additional graph for pd= 10−9. We find that, for sufficiently large
block sizes, the maximum distance increases when the dark count
probability decreases. Interestingly, however, this is not the case
for N= 1010, for which the two curves are almost identical.
The dependence of the secret-key rate on the block size N has

been shown in Fig. 3, at a fixed total loss of 50 dB and for several
values of the phase reference mismatch δph. In all cases, there is a
minimum required block size to obtain a positive key rate. This
minimum block size can be even <109 in the ideal case of no
phase reference mismatch, and it goes up to ~1010 at δph= 20%.
There is a sharp increase in the secret-key rate once one goes over

Fig. 2 Secret-key rate obtainable as a function of the channel
loss. We consider different values of the block size N, which
represents the total number of rounds in the protocol. The overall
Alice–Bob loss includes the loss in both quantum channels and in
Charlie’s detectors. The simulation parameters are stated in the
main text.
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this minimum required block size, after which one slowly
approaches the key rate in the asymptotic limit. The latter
behaviour is likely due to the use of Azuma’s inequality. One can,
nevertheless, overcome the repeaterless bound at a reasonable
block size in a practical regime where δph ≤ 15%. At higher values
of total loss this crossover happens at even larger values of δph.
In Fig. 4, we compare the performance of our protocol with that

of the sending-or-not-sending TF-QKD protocol presented in
refs. 30,41. To compute the results of the sending-or-not-sending
protocol, we have used the analysis in ref. 41, after correcting a
mistake present in Appendix A of that work. Namely, according to
Eqs. (S14)–(S19) of ref. 50, if the failure probability of the phase-
error rate estimation is ε, then the smooth max entropy term in
the left-hand side of Eq. (A5) should be H

ffiffi
ε

p
max instead of Hε

max. In the
asymptotic regime, the protocol considered in this work outper-
forms the sending-or-not-sending protocol at all values of total
loss. For a block size of 1012 transmitted signals, this is still the case
up to 80 dB of total loss, after which the key rate is already <10−6

bits per pulse for both protocols. For a block size of 1010

transmitted signals, however, the curves for the two protocols
cross at ~55 dB, after which the sending-or-not-sending protocol
offers a better performance. This behaviour is due to the different
statistical fluctuation analyses applied to the two protocols. As
explained in the “Results” section, the single-photon components
in the sending-or-not-sending protocol are mutually unbiased,
allowing for a simpler and tighter estimation of the phase-error
rate. This is not the case for our TF-QKD protocol, for which this
estimation involves the application of somewhat looser bounds
for several terms in Eq. (1). We conclude that for sufficiently large

block sizes, and a sufficiently low phase reference mismatch,
the protocol considered in this work maintains its better key rate
performance over the sending-or-not-sending variant. We note
that for smaller block sizes and higher values of phase reference
mismatch, this comparative advantage is reduced, or even
inverted in some regimes. For completeness, in Supplementary
Note D, we provide additional simulation results for a broader
range of parameter values.
Finally, in Fig. 5, we compare our results with those of

the alternative analysis in ref. 40. To compute the secret-key rate
of the latter, we use the code provided by the authors, except for
the adjustments needed to match it to the channel model
described in Supplementary Note C. It can be seen that, in most
regimes, the analysis introduced in this paper provides a higher
key rate than that of ref. 40. Moreover, we remark that the security
proof presented in ref. 40, in its current form, is only applicable
when the state generated by the weakest decoy intensity μ2 is a
perfect vacuum state of intensity μ2= 0. The security analysis
presented in this work, however, can be applied to any
experimental value of μ2, and we assume a value of μ2= 10−4,
which may be easier to achieve in practice. That said, the security
proof in ref. 40 adopts an interesting approach that results in a
somehow simpler statistical analysis. In particular, unlike in the
analysis presented in this paper, the authors in ref. 40 do not
estimate the detection statistics of photon-number states as an
intermediate step to bounding the phase-error rate. Instead, they
show that the operator corresponding to a phase error can be
bounded by a linear combination of the Z-basis decoy states.
While this linear bound is asymptotically looser than the non-
linear formula in Eq. (1), it allows the application of a simpler
statistical analysis based on a double use of Bernoulli sampling.
Given that the finite-key analysis of a protocol could be part of the
software package of a product, we believe that the additional key
rate achievable by our analysis in many regimes justifies its slightly
more complex approach.
In conclusion, we have proven the security of the protocol

proposed in ref. 28, in the finite-key regime and against coherent
attacks. Our results show that, under nominal working conditions
experimentally achievable by today’s technology, this scheme
could outperform the repeaterless secret-key rate bound in a key
exchange run of ~10 s, assuming a 1 GHz clock rate. In terms of
key rate, it would also outperform other TF-QKD variants, as well
as alternative security proofs, in many practical regimes of interest.

METHODS
In this section, we introduce the procedure that we use to prove the
security of the protocol, referring to the Supplementary Notes when
appropriate. For notation clarity, we assume the symmetric scenario in

Fig. 3 Secret-key rate obtainable as a function of the block size N.
We assume a total loss of 50 dB and consider several values of the
phase reference mismatch δph. All other simulation parameters are
stated in the main text.

Fig. 4 Comparison between this work (solid) and sending-or-not-
sending TF-QKD30,41 (dashed). We consider different values for the
block size N of transmitted signals. All other simulation parameters
are stated in the main text.

Fig. 5 Comparison between this work (solid) and the alternative
analysis in ref. 40 (dashed). We consider different values for the
block size N of transmitted signals. All other simulation parameters
are stated in the main text.
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which Alice and Bob employ the same X-basis amplitude α and the same
set of Z-basis intensities μ, which is optimal when the Alice–Charlie and
Bob–Charlie channels are identical. However, the analysis can be applied as
well to the asymmetric scenario42,43 by appropriately redefining the
parameters pnm∣X and pnm∣Z.

Virtual protocol
To bound the information leakage to Eve, we construct an
entanglement-based virtual protocol that is equivalent to the actual
protocol. In this virtual protocol, Alice and Bob measure their local
ancilla systems in a basis that is conjugate to that used to generate the
key. We refer to the error rate of the virtual protocol as the phase-error
rate eph. The objective of the security analysis is to find an upper bound
eUph such that Prðeph>eUphÞ � ε. In Supplementary Note A, we show how
this can be used to prove the security of the key obtained in the actual
protocol.
In the virtual protocol, Alice replaces her X-basis emissions by the

preparation of the state

ψXj iAa ¼
1ffiffiffi
2

p ð þj iA αj ia þ �j iA �αj iaÞ; (6)

where A is an ancilla system at Alice’s lab, a is the photonic system sent to
Eve, and ±j i ¼ 1ffiffi

2
p ð 0j i± 1j iÞ; while Bob replaces his X-basis emissions by a

similarly defined ψXj iBb . After Eve’s attack, Alice and Bob measure systems
A and B in the Z-basis f 0j i; 1j ig, which is conjugate to the X basis
f þj i; �j ig that they would use to generate the key. It is useful to write the
state in Eq. (6) as

ψXj iAa ¼ 0j iA C0j ia þ 1j iA C1j ia; (7)

where C0j i and C1j i are the (unnormalised) cat states

C0j i ¼ 1
2
ð αj i þ �αj iÞ; C1j i ¼ 1

2
ð αj i � �αj iÞ: (8)

Alice’s Z-basis emissions are diagonal in the Fock basis, and the virtual
protocol replaces them by their purification

ψZj iAa ¼
X1
n¼0

ffiffiffiffiffiffiffiffi
pnjZ

p
nj iA nj ia; (9)

where pnjZ ¼Pμ2μpμpnjμ is the probability that Alice’s Z-basis pulse
contains n photons, averaged over the selection of μ. Unlike in the actual
protocol, in the virtual protocol Alice and Bob learn the photon number of
their signals by measuring systems A and B after Eve’s attack.
Lastly, Alice’s emission of ψXj iAa with probability pX and ψZj iAa with

probability pZ is replaced by the generation of the state

ψj iAcAa ¼
ffiffiffiffiffi
pX

p
0j iAc ψXj iAa þ

ffiffiffiffiffi
pZ

p
1j iAc ψZj iAa; (10)

where Ac is a quantum coin ancilla at Alice’s lab; while Bob’s is replaced by
an equally defined ψj iBcBb . Alice and Bob measure systems Ac and Bc after
Eve’s attack, delaying the reveal of their basis choice. The full description of
the virtual protocol is the following:

(1) Preparation
Alice and Bob prepare N copies of the state ϕj i ¼ ψj iAcAa � ψj iBcBb
and send all systems a and b to Eve over the quantum channel.

(2) Detection
Eve performs an arbitrary general measurement on all the
subsystems a and b of ϕj i�N and publicly announces N bit pairs
(kc, kd). Without loss of generality, we assume that there is a one-to-
one correspondence between her measurement outcome and her
set of announcements. A round is considered successful (unsuccess-
ful) if kc ≠ kd (kc= kd). Let M (M) represent the set of successful
(unsuccessful) rounds.

(3) Virtual sifting
For all rounds, Alice and Bob jointly measure the systems Ac and Bc,
learning whether they used the same or different bases, but not the
specific basis they used. Let Ms (Md) denote the set of successful
rounds in which they used the same (different) bases.

(4) Ancilla measurement

(4.1) For all rounds in Ms, Alice (Bob) first measures the system Ac
(Bc) in f 0j i; 1j ig, learning her (his) choice of basis. If the result
is 0j iAc ( 0j iBc ), she (he) measures system A (B) in f 0j i; 1j ig; if
the result is 1j iAc ( 1j iBc ), she (he) measures system A (B) in the
Fock basis.

(4.2) For all rounds in Md, Alice (Bob) measures the systems Ac
(Bc) and A (B), using the same strategy as in step (4.1).

(5) Intensity assignment
For all rounds in M in which Alice (Bob) obtained 1j iAc ( 1j iBc ), she
(he) assigns each n-photon state to intensity μ with probability pμ∣n.

(6) Classical communication
For all rounds in M, Alice and Bob announce their basis and
intensity choices over an authenticated public channel.

(7) Estimation of the number of phase errors
Alice and Bob calculate an upper bound on Nph using their Z-basis
measurement data.

Two points from the virtual protocol above require further explanation.
The first is that, in the real protocol, Bob flips his key bit when Eve reports
kc= 0 and kd= 1. This step is omitted from the virtual protocol, since the
X-basis bit flip gate σz has no effect on Bob’s Z-basis measurement result.
The second point concerns step (5), which may appear to serve no
purpose, but is needed to ensure that the classical information exchanged
between Alice and Bob is equivalent to that of the real protocol. The term
pμ∣n is the probability that Alice’s (Bob’s) Z-basis n-photon pulse originated
from intensity μ, and it is given by

pμjn ¼
pμpnjμP
μ2μpμpnjμ

: (11)

Phase-error rate estimation
We now turn our attention to Alice and Bob’s measurements in step (4.1)
of the virtual protocol. Let u∈ {1, 2, ...,Ms} index the rounds in Ms, and let
ξu denote the measurement outcome of the uth round. The possible
outcomes are ξu= Xij, corresponding to 00j iAcBc ijj iAB , where i, j∈ {0, 1}; and
ξu= Znm, corresponding to 11j iAcBc n;mj iAB , where n and m are any non-
negative integers. Note that the outcomes 10j iAcBc and 01j iAcBc are not
possible due to the previous virtual sifting step. A phase error occurs when
ξu∈ {X00, X11}. In Supplementary Note E, we prove that the probability to
obtain a phase error in the uth round, conditioned on all previous
measurement outcomes in the protocol, is upper bounded by

Pr ξu 2 fX00; X11gjF u�1ð Þ � p2X
p2Z

X1
j¼0

X
n;m2Nj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pnmjX
pnmjZ

Pr ξu ¼ ZnmjF u�1ð Þ
s2

4
3
5
2

;

(12)

where F u�1 is the σ-algebra generated by the random variables ξ1, ..., ξu−1,
N0 (N1) is the set of non-negative even (odd) numbers, and the
probability terms pnm∣X and pnm∣Z have been defined in Eqs. (2) and (3). In
Eq. (12), for notation clarity, we have omitted the dependence of all
probability terms on the outcomes of the measurements performed in
steps (2) and (3) of the virtual protocol.
Applying the concentration bound in Eq. (30), we have that, except with

probability εa,

Nph �
XMs

u¼1

Pr ξu 2 fX00; X11gjF u�1ð Þ þ Δ; (13)

where Nph is the number of events of the form ξu∈ {X00, X11} in Ms, and

Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2Msln ε�1

a

q
is a deviation term. Similarly, from Eq. (30), we have that,

except with probability εa,

XMs

u¼1

Pr ξu ¼ ZnmjF u�1ð Þ � Mnm þ Δ; (14)

where Mnm is the number of events of the form ξu= Znm in Ms. As we will
explain later, this bound is not tight when applied to the vacuum counts
M00. For this term, we use the alternative bound in Eq. (33), according to
which, except with probability εa,

XMs

u¼1

Pr ξu ¼ Z00jF u�1ð Þ � M00 þ Δ00: (15)

In this case, the deviation term is given by

Δ00 ¼ bþ a
2M00

Ms
� 1

� �� � ffiffiffiffiffiffi
Ms

p
; (16)

where a and b can be found by substituting ~Λn by ~M
U
00 in Eq. (31).
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Now, we will transform Eq. (12) to apply Eqs. (13)–(15). Let us denote the
right-hand side of Eq. (12) as f ð p!uÞ, where p!u is a vector of probabilities
composed of Prðξu ¼ ZnmjF u�1Þ ∀ n, m. If we expand the square in f ð p!uÞ,
we can see that all addends are positive and proportional to

ffiffiffiffiffiffiffiffiffiffi
p1p2

p
, where

p1 and p2 are elements of p!u , implying that f ð p!uÞ is a concave function.
Thus, by Jensen’s inequality51, we have

1
Ms

XMs

u¼1

f ð p!uÞ � f
1
Ms

XMs

u¼1

p!u

 !
: (17)

After taking the average over all rounds Ms on both sides of Eq. (12),
applying Eq. (17) on the right-hand side, and cancelling out the term 1/Ms

on both sides of the inequality, we have that

XMs

u¼1

Pr ξu 2 fX00; X11gjF u�1ð Þ � p2X
p2Z

X1
j¼0

X
n;m2Nj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pnmjX
pnmjZ

XMs

u¼1

Pr ξu ¼ ZnmjF u�1ð Þ
vuut

2
4

3
5
2

:

(18)

We are now ready to apply Eqs. (13)–(15) to substitute the sums of
probabilities in Eq. (18) by Nph and Mnm. However, note that, in their
application of the decoy-state method, Alice and Bob only estimate the
value of Mnm for terms of the form n+m ≤ Scut, so it is only useful to
substitute Eq. (14) for these terms. With this in mind, we obtain

Nph � Δ � p2X
p2Z

P1
j¼0

P
n;m 2 Nj

nþm � Scut

ffiffiffiffiffiffiffiffi
pnmjX
pnmjZ

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mnm þ Δnm

p þ P
n;m 2 Nj

nþm>Scut

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pnmjX
pnmjZ

PMs

u¼1
Pr ξu ¼ ZnmjF u�1ð Þ

s2
664

3
775
2

;

(19)

where Δnm= Δ except for Δ00.
We still need to deal with the sum over the infinitely many remaining

terms of the form n+m > Scut. For them, we apply the following upper
bound

XMs

u¼1

Pr ξu ¼ ZnmjF u�1ð Þ �
XMs

u¼1

Pr ξu ¼ ZjF u�1ð Þ � MZ þ Δ; (20)

where ξu= Z denotes that Alice and Bob learn that they have used the Z
basis in the uth round in Ms; and MZ is the number of events of the form
ξu= Z obtained by Alice and Bob. In the last step, we have used Eq. (30),
using an identical argument as in Eq. (13). When we apply Eq. (20) to Eq. (19),
we end up with the term

X
n;m 2 Nj

nþm>Scut

ffiffiffiffiffiffiffiffiffiffiffi
pnmjX
pnmjZ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MZ þ Δ

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MZ þ Δ

p X
n;m 2 Nj

nþm>Scut

ffiffiffiffiffiffiffiffiffiffiffi
pnmjX
pnmjZ

s
:

(21)

It can be shown that the infinite sum in Eq. (21) converges to a finite value
if

maxfμg>α2: (22)

Substituting Eq. (20) into Eq. (19), and isolating Nph, we obtain

Nph � p2X
p2Z

X1
j¼0

X
n;m 2 Nj

nþm � Scut

ffiffiffiffiffiffiffiffiffiffiffi
pnmjX
pnmjZ

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mnm þ Δnm

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MZ þ Δ

p X
n;m 2 Nj

nþm>Scut

ffiffiffiffiffiffiffiffiffiffiffi
pnmjX
pnmjZ

s2
6664

3
7775
2

þΔ:

(23)

Note that the right-hand side of Eq. (23) is a function of the
measurement counts Mnm, which cannot be directly observed. They must
be substituted by the upper bounds MU

nm obtained via the decoy-state
analysis, as explained below. After doing so, we obtain Eq. (1). The failure
probability ε associated to the estimation of Nph is upper bounded by
summing the failure probabilities of all concentration inequalities used.
That includes each application of Eqs. (30) and (33), which fail with
probability εa; and each application of the multiplicative Chernoff bound in
the decoy-state analysis, which fails with probability εc. In the case of three
decoy intensities and Scut= 4, we have ε= 9εc+ 10εa. In our simulations,
we set εc= εa for simplicity.

Decoy-state analysis
Since Alice and Bob’s Z-basis emissions are a mixture of Fock states, the
measurement counts Mnm have a fixed value, which is nevertheless
unknown to them. Instead, the users have access to the measurement

counts Mμν, the number of rounds inMZ in which they selected intensities
μ and ν, respectively. To bound Mnm, we use the decoy-state method32–34.
This technique exploits the fact that Alice and Bob could have run an
equivalent virtual scenario in which they directly send Fock states n;mj i
with probability pnm∣Z, and then randomly assign each of them to
intensities μ and ν with probability

pμνjnm ¼ pμνpnmjμν
pnmjZ

; (24)

where pμν= pμpν and pnm∣μν= pn∣μpm∣ν. In particular, each of the instances
in which Alice and Bob chose the Z basis, sent n and m photons, and Eve
announced a detection is assigned to intensities μ and ν with a fixed
probability pμν∣nm, even if Eve employs a coherent attack. This implies that
these assignments can be regarded as an independent Bernoulli trial, and
Mμν can be regarded as a sum of independent Bernoulli trials. The average
value of Mμν is

E½Mμν� ¼
X1
n;m¼0

pμνjnmMnm: (25)

In the actual protocol, Alice and Bob know the realisations Mμν of these
random variables. By using the inverse multiplicative Chernoff bound52,53,
stated in Supplementary Note F, they can compute lower and upper
bounds EL½Mμν� and EU½Mμν� for E½Mμν�. These will set constraints on the
possible value of the terms Mnm. We are interested in the indices (i, j) such
that i+ j ≤ Scut and i+ j is even, and an upper bound on each Mij can be
found by solving the following linear optimisation problem

maxMij

s:t: 8μ; ν EU½Mμν� � P1
n;m¼0

pμνjnmMnm;

EL½Mμν� � P1
n;m¼0

pμνjnmMnm:

(26)

This problem can be solved numerically using linear programming
techniques, as described in the Supplementary Note 2 of ref. 35. While
accurate, this method can be computationally demanding. For this reason,
we have instead adapted the asymptotic analytical bounds of refs. 42,54 to
the finite-key scenario and used them in our simulations. The results
obtained using these analytical bounds are very close to those achieved by
numerically solving Eq. (26). This analytical method is described in
Supplementary Note B.

Concentration inequality for sums of dependent random
variables
A crucial step in our analysis is the substitution of the sums of probabilities
in Eq. (18) by their corresponding observables in the protocol. Typically,
this is done by applying the well-known Azuma’s inequality39. Instead, we
use the following recent result38:
Let ξ1, ..., ξn be a sequence of random variables satisfying 0 ≤ ξl ≤ 1, and

let Λl ¼
Pl

u¼1 ξu . Let F l be its natural filtration, i.e. the σ-algebra generated
by {ξ1, ..., ξl}. For any n, and any a, b such that b � aj j,

Pr
Xn
u¼1

EðξujF u�1Þ � Λn � bþ a
2Λn

n
� 1

� �� � ffiffiffi
n

p
" #

� exp
�2ðb2 � a2Þ
ð1þ 4a

3
ffiffi
n

p Þ2

2
4

3
5:
(27)

By replacing ξl→ 1− ξl and a→−a, we also derive

Pr Λn �
Xn
u¼1

EðξujF u�1Þ � bþ a
2Λn

n
� 1

� �� � ffiffiffi
n

p
" #

� exp
�2ðb2 � a2Þ
ð1� 4a

3
ffiffi
n

p Þ2

2
4

3
5:
(28)

In our analysis, we apply Eqs. (27) and (28) to sequences ξ1, ..., ξn of
Bernoulli random variables, for which EðξujF u�1Þ ¼ Prðξu ¼ 1jF u�1Þ.
Now, if we set a= 0 on Eqs. (27) and (28), we obtain

Pr Λn �
Pn
u¼1

Prðξu ¼ 1jF u�1Þ � b
ffiffiffi
n

p� �
� exp �2b2

	 

;

Pr
Pn
u¼1

Prðξu ¼ 1jF u�1Þ � Λn � b
ffiffiffi
n

p� �
� exp �2b2

	 
 : (29)

This is a slightly improved version of the original Azuma’s inequality,
whose right-hand side is exp � 1

2 b
2	 

. Equating the right-hand sides of
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Eq. (29) to εa, and solving for b, we have that

Pn
u¼1

Pr ξu ¼ 1jξ1; :::; ξu�1ð Þ � Λn þ Δ;

Λn �
Pn
u¼1

Pr ξu ¼ 1jξ1; :::; ξu�1ð Þ þ Δ;

(30)

with Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 n ln ε

�1
a

q
, and where each of the bounds in Eq. (30) fail with

probability at most εa.
The bound in Eq. (30) scales with

ffiffiffi
n

p
, and it is only tight when Λn is of

comparable magnitude to n. When Λn≪ n, one can set a and b in Eq. (27)
appropriately to obtain a much tighter bound. To do so, one can use
previous knowledge about the channel to come up with a prediction ~Λn of
Λn before running the experiment. Then, one obtains the values of a and b
that would minimise the deviation term if the realisation of Λn equalled ~Λn ,
by solving the optimisation problem

min
a;b

bþ a 2~Λn
n � 1

� �h i ffiffiffi
n

p

s:t: exp �2ðb2�a2Þ
ð1þ 4a

3
ffiffi
n

p Þ2

� �
¼ εa;

b � aj j:

(31)

The solution to Eq. (31) is

a ¼ 3 72
ffiffi
n

p
~Λnðn�~ΛnÞln εa�16n3=2 ln2εaþ9

ffiffi
2

p ðn�2~ΛnÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�n2ln εað9~Λnðn�~ΛnÞ�2nln εaÞ

p� �
4ð9n�8ln εaÞð9~Λnðn�~ΛnÞ�2nln εaÞ ;

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
18a2n� 16a2þ24a

ffiffi
n

p þ9nð Þln εa
p

3
ffiffiffiffi
2n

p :

(32)

After fixing a and b, we have that

Xn
u¼1

Pr ξu ¼ 1jξ1; :::; ξu�1ð Þ � Λn þ Δ0; (33)

except with probability εa, where

Δ0 ¼ bþ a
2Λn

n
� 1

� �� � ffiffiffi
n

p
: (34)

In our numerical simulations, we have found the simple bound in Eq. (30)
to be sufficiently tight for all components except the vacuum contribution
M00. For this latter component, we use Eq. (33) instead. However, note that
the users do not know the true value of M00, even after running the
experiment. Instead, they will obtain an upper bound MU

00 on M00 via the
decoy-state method, and they will apply Eq. (33) to this upper bound.
Therefore, to optimise the bound, the users should come up with a
prediction ~M

U
00 on the value of MU

00 that they expect to obtain after running
the experiment and performing the decoy-state analysis, and then
substitute ~Λn ! ~M

U
00 in Eq. (31) to obtain the optimal values of a and b.

To find ~M
U
00, one can simply use their previous knowledge of the channel to

come up with predictions ~M
μν

of Mμν, and run the decoy-state analysis
using these values to obtain ~M

U
00.
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