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ABSTRACT: Nanoparticles could conceal bioactive proteins during therapeutic
delivery, avoiding side effects. Superparamagnetic iron oxide nanoparticles
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D eveloping controlled release for bioactive substances has
revolutionized many bioscience and medical applica-
tions. For example, photoactivation of caged small-molecule
drugs has been instrumental for the detailed investigation of
biological processes and drug mechanisms." Moreover, photo-
activatable drugs have found use in medical applications in
which the timing and location of drug action need careful
control.” Examples of caged photoactivatable proteins have
been developed, but this requires chemical protein modifica-
tions and is unavailable for many protein types and
applications.” A generic controlled protein delivery system
would, however, be of great importance to a range of medical
applications. For example, the Wnt3a protein can stimulate
osteoblast progenitor pool proliferation and thereby promote
bone formation to assist chronic fracture healing.” Yet systemic
Wnt3a administration would raise safety concerns due to the
role of canonical Wnt/f-catenin signaling in tumor formation.”
Hence, concealed delivery and controlled release at the target
will be needed for therapeutic use of Wnt3a as well as many
other potentially therapeutic proteins. A more versatile
alternative to photoactivation could be the magnetic release
of proteins caged into nanoparticles.

Temperature-sensitive polymers have in the past been used
as scaffolds to release bioactive compounds following
implantation because of their ability to undergo a fully
reversible gel-to-liquid phase transition.” Phase-transition
temperatures can be tuned between 30 and 45 °C by alteration
of the monomer structure or by copolymerization.” Most
commonly used is poly(N-isopropylacrylamide) (PNIPAM),
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which has a lower critical solution temperature (LCST) of 32
°C, above which the polymer expels water, going from a
swollen hydrated state to a shrunken hydrophobic state.’
Vascular endothelial growth factor (VEGF) could, for example,
be released from a PNIPAM scaffold containing dispersed
superparamagnetic iron oxide nanoparticles (SPIONs), which
were used to contract the gel by heating. Expelled VEGF was
able to promote human umbilical vein endothelial cell growth
in a culture.®

A more precise tool for the delivery of bioactives are
nanoparticles. These can distribute throughout the body, while
concealing bioactive proteins during transit if fitted with a
trigger mechanism to enable controlled release at the target
site.” Using a superparamagnetic core (e.g., SPIONs) enables
controlled release of bioactive compounds through magnetic
heating, as shown for VEGE.® SPIONs are made up of a
magnetite/maghemite core, generally 5—150 nm in size. They
had previously been developed for magnetic hyperthermia,
imaging, and cell-tracking applications.m’11 Moreover, SPIONs
functionalized with thermally responsive polymers have been
demonstrated to release small-molecule drugs, such as
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Figure 1. Characterization of polymer-coated SPIONs. (a) High-resolution transmission electron micrograph of nanoparticles and (b) the
associated size distribution, as determined from lower-magnification micrographs. For calculation of the shown lattice plane distance, see also
Figure S1. A Gaussian fit over the SPION size distribution is shown.'” (c) Schematic of nitrodopamine-terminated PNIPAM and its attachment to
the SPION surface (the black sphere denotes a SPION). (d) TGA of 10 mg each of uncoated and PNIPAM-coated SPION samples, which were
heated under nitrogen gas at a ramp rate of 10 °C/min between 0 and 600 °C. (e) Photographs of 10 mg/mL PNIPAM-coated (C) and uncoated
(U) SPIONS incubated at the indicated temperatures for 30 min in plastic cuvettes. For magnetic heating, the sample was exposed to a 108 kHz/
0.67 T alternating magnetic field before quick transfer to the cuvette for photographing.

doxorubicin, upon magnetic-field-induced heating.'> The
interactions between proteins and the PNIPAM shell
surrounding the SPIONs, however, are more complex, and
reports are often contradictory. Protein—PNIPAM interactions
are likely to be strongly dependent on the polymer density and
morphology in the shell.”” The release of a protein from a
polymer-coated nanoparticle is therefore more complex than
simply squeezing out the protein in the aqueous phase during
hydrophobic collapse, as was observed for VEGF in a SPION-
doped hydrogel.® In many cases, adsorption of proteins on
PNIPAM substrates was observed above the LCST, presum-
ably driven by hydrophobic interactions that could hinder
protein release in the collapsed state.'*

In this study, we provide proof-of-concept for the develop-
ment of SPIONs coated with a temperature-sensitive polymer,
which could entrap proteins below the polymer’s LCST of 32
°C, concealing their bioactivity. Subsequent magnetic heating
triggered collapse of the polymer shell at bulk temperatures
well below the LCST. Although the collapsed polymer retained
the cargo protein through hydrophobic interactions, non-
specific competing proteins promoted the release of cargo
proteins, which, in turn, could perform bioactive functions,
such as enhancing stem cell proliferation, in a model system.
We propose from these results that SPIONs, once coated with
polymers transitioning above 42 °C and equipped with the
means for targeting, could provide an effective controlled in
vivo delivery system for bioactive proteins.

Water-soluble thermally responsive SPIONs with an average
size of 6.3 + 0.9 nm, which can entrap and then release
bioactive proteins, were synthesized using a modified polyol
process (Figure 1ab)."> The measured lattice spacing of 0.25

5009

nm (Figures la and S1) is in good agreement with Fe304,16 as
were X-ray photoelectron spectroscopy measurements'’
(Figure S2). Vibrating-sample magnetometry confirmed super-
paramagnetism (Figure S3),'* while a specific absorption rate
of 3.6 W/g of Fe was determined in water by measuring a
heating rate of 0.26 °C/min at 5 mg/mL SPION concentration
upon exposure to a 0.67 T/108 kHz alternating magnetic field.
Given their small size (<12 nm), Néel relaxation will dominate
heating, while the contribution from mechanical movement
(Brownian relaxation) will be negligible.'**°

A thermally responsive coating was achieved using
PNIPAM, which has well-documented phase-transition proper-
ties, and has been widely used in biological applications,
including SPION coating.”'* Using an established atom-
transfer-radical polymerization method, PNIPAM polymers
(Figure S4a) with a number-average molecular weight (M,) of
12.99 kDa (Figure S4b) were synthesized. The addition of a
terminal nitrocatechol group enabled SPION coating (Figures
1, S5, and S6).>! Thermogravimetric analysis (TGA) showed
a total mass loss of 50.3% when the organic polymer shell was
decomposed above 200 °C (Figure 1d). This equates to a
grafting density of 0.26 chains/nm* or 32 polymer chains per
nanoparticle, consistent with published data.”’ PNIPAM-
coated SPIONs remained readily dispersed in water below
the polymer’s LCST (Figure le, top). Coated SPIONSs
precipitated due to aggregation when incubated above the
LCST or when heated with an alternating magnetic field
(Figure le, bottom). We next explored the potential
application of these coated SPIONs to entrap and release
proteins.
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Figure 2. Protein release from PNIPAM-coated SPIONS. (a) Schematic diagram of protein entrapment and release by PNIPAM-coated SPIONS.
(1) 1 pg of protein was mixed with 1 mg of coated SPIONs above the LCST. Polymer chains were collapsed around the nanoparticle core, and
agitation was used to avoid particle aggregation. (2) Upon cooling below the LCST, the polymer shell expanded, and some protein molecules were
engulfed by the shell; we call this the entrapping state of the coated SPION. (3) Following removal of excess protein by washes in the presence of
competing nonspecific proteins, entrapped proteins could be discharged by polymer collapse above the LCST, (4) which permitted nonspecific
competitor proteins to replace the weakly bound cargo proteins, thereby releasing them. (b) (Left) Western blot analysis of the apotransferrin
collected from the supernatant, following incubation of apotransferrin-loaded PNIPAM-coated nanoparticles (1 mg) in the presence of 10 mg/mL
RNase B (the nonspecific competitor) at pH 7.5. SPIONs were briefly collected on one side of the tube with a permanent magnet when the
solution was sampled at the indicated time points. (Right) Densitometry of the apotransferrin immunoblot signal used to quantify the amount of
apotransferrin released. Error bars denote standard deviation, n = 3. 100% is the amount of protein used for entrapment, given that the amount of
protein detected in the washing steps prior to release was negligible. (c) As in part b, but with or without application of an alternating magnetic field
(+£MF as indicated) turned on constantly for 10 min and then in pulses of 10 s on and 10 s off. The bulk solution temperatures measured during
magnetic heating using an IR thermocouple probe are shown in parentheses above each time point. The sample without magnetic heating was
maintained at 21 °C. Error bars denote standard deviation, n = 3. Input lanes are from the same blot images but had to be moved because these
were not in lanes adjacent to the release samples. Therefore, a divider line was introduced. Note that the double band of apotransferrin represents
differently glycosylated forms whose ratios are batch-dependent.

Entrapment and release of small-molecule cargo from proteins are entrapped but strongly associate with the polymer

PNIPAM-coated nanoparticles has been reported”'* but not itself.
protein entrapment and release. Apotransferrin, a major serum We found that the incubation of loaded SPIONs in the
glycoprotein, was used as a model to assess protein entrapment presence of a competing nonspecific protein (10 mg/mL
and release. Apotransferrin loading was achieved by first RNase B) at the physiological pH of 7.4 facilitated
incubating coated SPIONs with the protein above the polymer apotransferrin release, but only above the LCST (Figure 2b).
LCST (37 °C), followed by cooling below the LCST to Thus, in the presence of a competitor, cargo protein can be
promote polymer expansion and protein entrapment in the released in a temperature-controlled manner under physio-
polymer shell (Figure 2a). Shaking above the LCST prevented logical conditions (Figure 2a). Note that this competitor effect
aggregation-mediated precipitation. Most attempts to release is not specific to RNase B, as shown for Wnt3a release. This
proteins failed even above the LCST (Figure S9a), except indicates that the presence of competing proteins in tissues at
treatment at high pH (data not shown), indicating that physiological concentrations could enable release of the
5010 https://dx.doi.org/10.1021/acsanm.0c01167
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Figure 3. Magnetically activated nanoparticles can release bioactive Wnt3a. (a) Experimental strategy for Wnt-reporter experiments. (b)
Quantification of Wnt3a released from 1 mg of SPIONSs (loaded with 1 ug of Wnt3a), calculated from scatter plots of the Wnt-reporter response
measured by flow cytometry (Figure S11c). Flow cytometry was performed following overnight incubation of the Y201 Wnt-reporter MSCs at 30
°C. Wnt3a release from SPIONs was triggered for 30 min in custom-built cell-growth vessels by magnetic treatment that shifted the bulk solution
temperature from 21.0 to 24.5 °C. SPIONs were removed following magnetic treatment where indicated. The amount of released Wnt3a was
calculated from a calibration curve (Figure S11a,b). Error bars denote standard deviation, n = 4. *** indicates p < 0.001 compared with “Overnight
Wnt SPIONs” at 30 °C using Dunnet’s multiple comparisons ANOVA. (c) Picogreen staining-based DNA quantification of Y201 MSCs that were
incubated for 7 days with protein-free coated SPIONS at the indicated concentrations. Error bars denote standard deviation, n = 3. The solid red
bar shows the SPION concentration used in Wnt3a release experiments. (d) Y201 MSCs treated for 30 min with Wnt3a-loaded (Wnt SPIONS; 1
mg of SPIONs and 1 ug of Wnt3a used in the loading reaction) or protein-free (SPIONs only; 1 mg) coated SPIONs in the presence of an
alternating magnetic field where indicated. At the end of the 30 min incubation, all SPIONs were removed with a permanent magnet. Cells were
then incubated for S days at 37 °C, followed by picogreen staining-based DNA quantification. The results for cells incubated with increasing
concentrations of Wnt3a only are shown for comparison. Error bars denote standard deviation, n = 3. ** indicates p < 0.01 using Tukey’s multiple
comparisons ANOVA. Application of the alternating magnetic field caused a bulk solution temperature shift of 20.9—24.1 °C. DNA quantification
with picogreen staining was based on calibration curves obtained using salmon sperm DNA.

entrapped proteins. We believe that this is the first report of release was indeed detected when the SPION core was
the temperature-controlled release of an entrapped protein magnetically heated from an ambient temperature of 21 °C
from polymer-coated nanoparticles under physiological con- (Figures 2c and S9b). Interestingly, released apotransferrin was
ditions. We would argue that the interactions between the detected at bulk solution temperatures well below the LCST
protein and the hydrophilic polymer below its LCST are (Figure 2c). It is likely that the thermal energy generated in the
dominated by hydrogen bonding. Steric entanglement of the SPION core promotes localized polymer collapse during
protein in the polymer chains likely contributes to entrapment transmission through the shell to the bulk solution, permitting
(Figure 2a). In contrast, when the polymer collapses into a protein release. Importantly, cumulative release of apotrans-
hydrophobic state, steric entrapment ceases. At the same time, ferrin could be achieved without a significant temperature
the polymer—protein interactions shift from hydrogen bonding increase in the bulk solution when magnetic heating was
to weaker hydrophobic interactions. The effect of competing applied in short pulses (Figure 2c). This is in agreement with
proteins suggests that the collapsed polymer shell allows for previous reports that an alternating magnetic field can heat the
the binding and release of proteins that associate with it via SPION core to a much greater extent than the consequent
weak noncovalent hydrophobic interactions. heating of the bulk solution.”” Cumulative release appears to
Having observed temperature-controlled release of protein be somewhat more efficient during pulsed magnetic heating.
from the coated SPIONSs, we next assessed whether release Such release did, however, depend on recurrent SPION
could be triggered by magnetic heating. Using a bespoke heating because further release was halted when magnetic
magnetic setup (Figures S7 and S8), apotransferrin-loaded heating was switched off (Figure S9c). This implies that the
SPIONs were incubated in a 0.67 T/108 kHz alternating PNIPAM transition on the particle surface is reversible and the
magnetic field, while monitoring the sample temperature in temperature gradient required for polymer collapse quickly
real time and sampling for released protein. Apotransferrin dissipates. During magnetic heating experiments, where the
5011 https://dx.doi.org/10.1021/acsanm.0c01167
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bulk solution temperature remained below the LCST, we never
observed particle aggregation. This is in contrast to reversible
aggregation during release experiments using bulk heating
(Figure 2b). In apotransferrin release experiments, 10—25% of
the model protein used for entrapment was recovered. We
believe that the remaining protein was still associated with the
coated SPIONs because we did not detect signs of protein
degradation. To our best knowledge, this is the first report of a
magnetically triggered release of proteins entrapped in
polymer-coated nanoparticles. We turned to testing how the
developed coated SPIONs can shield and release bioactive
proteins.

To test bioactive protein release in response to magnetic
heating, we used the growth factor Wnt3a, together with an
immortalized human mesenchymal stem cell (MSC) line
(Y201) engineered to produce enhanced green fluorescent
protein (eGFP) in response to Wnt signaling (Figure
Sl1ab).”> Wnt3a released upon magnetic triggering of the
coated SPIONs can bind to Wnt receptors on the MSC
surface, initiating signaling resulting in eGFP expression to be
quantified by flow cytometry (Figure 3a). For compatibility
with the magnetic heating setup, we used custom-made tubes
that permit normal cell growth (Figure S10). MSCs treated
with an alternating magnetic field in the presence of Wnt3a-
loaded SPIONS, produced increased eGFP expression (Figures
3b and Sllc). This showed magnetic-heating-induced active
Wnt3a release, while the bulk solution remained under 24.5
°C, well below the polymer’s LCST, and in a safe range to
prevent the protein’s denaturation (Figure S12). These
experiments used competing proteins present in fetal bovine
serum, part of the growth medium and mimicking a natural
cellular environment.

In some of the above experiments, SPIONs carrying
entrapped Wnt3a were removed following the 30 min
magnetic stimulation. In other experiments, the Wnt3a-loaded
particles remained in the culture medium following the 30 min
magnetic stimulation for the whole overnight incubation prior
to fluorescence analysis. The measured eGFP level was
indistinguishable between these conditions, suggesting that
active Wnt3a release stopped once magnetic stimulation was
halted. Moreover, Wnt3a-loaded SPIONs did not trigger
signaling in the absence of magnetic heating, showing that
entrapped Wnt3a remained biologically inactive within the
polymer shell (Figure 3b). These results show that PNIPAM-
coated SPIONSs can entrap a protein factor to shield it from its
biological target and can release this same protein in a
bioactive form upon heating by an alternating magnetic field.
This technology could thus find application with biopharma-
ceuticals that have harmful side effects when acting away from
an injury site.

The above experiments demonstrated that Wnt3a released
from coated SPIONs was able to activate intracellular signaling
and drive transactivation of Wnt target genes. Next, we
determined whether the strength of the Wnt signal was
sufficient to influence cell function, namely, proliferation, a
known biological response of MSCs to Wnt3a exposure
(Figure S13).** For these experiments, we used the multi-
potent clonal human MSC line (Y201),*® from which the Wnt
eGFP reporter line was generated. In toxicity tests, we could
show that SPIONS alone, at concentrations 4 times higher than
those used in proliferation experiments, did not affect the
viability of Y201 MSCs (Figure 3c). When Wnt3a-loaded
SPIONs were added to Y201 MSCs and magnetically

stimulated for 30 min before their removal, the treated cells
showed significantly (p < 0.01) increased proliferation
compared to untreated controls after S days (Figure 3d).
Thus, the bioactive Wnt3a released from SPIONs by an
alternating magnetic field could influence complex cellular
behavior. This shows that these coated nanoparticle carriers
are capable of influencing important physiological cell
responses by controlled release of a bioactive protein factor
through remote magnetic heating.

SPIONS are a versatile tool for noninvasive nanomedicine-
based therapeutic strate§ies because of the ease with which
they penetrate tissues’ and can be triggered with an
alternating magnetic field.”” Previous agplications of SPIONSs
have included magnetic hyperthermia'® and the magnetically
driven delivery of small-molecule drugs.”'* Here, we show that
SPIONSs, when coated with a thermally sensitive polymer shell,
can be used to deliver protein growth factors to target cells
under physiological conditions in vitro. Exposure of SPIONSs to
an oscillating magnetic field changed the mode of binding of
entrapped proteins. Using two very different model cargo
proteins, we showed that, although these proteins had
remained bound to the SPIONS, they were released into
solution in the presence of nonspecifically binding competing
proteins that are naturally present in human tissues.
Importantly, release occurred following local heating of the
SPION shell, while the bulk solution temperature remains
below the LCST. While the protein remained inactive in the
entrapped form, upon release, it could trigger the proliferation
of MSCs. This should enable the use of this technology
without the harmful side effects of hyperthermia. A primary
goal for ongoing and future work is to increase the polymer
LCST using established methodology.” Increasing the LCST
will be an essential next step to make the coated SPION device
usable in animal model studies and ultimately for human use.
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